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Rankin-Cohen algebras were defined by Zagier [Z], who reprised the role of
differential operators in the theory of modular forms, central in the 19th century
but “surprisingly little (...) in more modern investigations”. In brief, for f (τ) and
g(τ) two modular forms of weights k, l respectively, on some group Γ⊂PSL(2,R),

let D be the differential operator
1

2πı
d

dτ
, given the expansion of the modular forms

in τ , where
1

2πı
d

dτ
= q

d
dq

, q = e2πıτ as usual. The n-th Rankin-Cohen bracket

(so named by Zagier, after R.A. Rankin who studied the derivations on modular
forms and H. Cohen who gave examples) of f and g is the only bilinear differential
operator of degree 2n that acts on the graded vector space of modular forms on Γ,
and is defined as follows (denoting Dr f by f (r) for a form f ):

[ f ,g]n(τ) = ∑
r+s=n

(−1)r
(

n− k+1
s

)(
n− l +1

r

)
f (r)(τ)g(s)(τ).

Zagier pursues the study of the algebraic structure that this operation gives to the
ring of modular forms viewed as a differential module, observing that it is “not
clear how far we would have to go to get the first relation or how much further
to ensure that all subsequent relations obtained would be consequences of ones
already found”. Instead of determining the relations, he proposes the abstract con-
cept of a Rankin-Cohen differential algebra and gives a “partial structure theorem”.

In this work, we propose to use Symbolic Computation to detect minimal sets
of relations for the case study of Γ(7), the modular group of the Klein curve,
the only algebraic curve of genus three with the largest possible group of auto-
morphisms, motivated by the first-named author’s Ph.D. Thesis [Farr], which uses
techniques that allow us to deal explicitly with certain modular forms.

We apply the theory of Gröbner bases (as in [EGÔP]) to control the weight
of the relations, and then perform a search (implemented in Maple syntax) for
complete, minimal sets ot relations weight-by-weight; in consequence, our results
only reach a(ny) finite given weight, but these relations are of interest, given the
large number of open problems that concern the Klein curve (more specifically
stated below).
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Then, in order to further exploit the power of computation, we propose to study
Rankin-Cohen differential algebras over finite fields; indeed, when giving their ab-
stract definition in [Z], “We will suppose the ground field K to be of characteristic
0 (in our examples it is usually Q or C) although it is clear that the theory makes
sense in any characterisitc or, for that matter, even if we work over Z rather than
a field.” Since our strategy is to reduce cusp forms modulo a prime p, we assume
that p does not divide the level [CFW], therefore p 6= 7 throughout.

1 Wronskians

The problem of determining the set of Weierstrass points on curves of arithmetic
interest, such as the Fermat curves xN +yN + zN = 0 and the modular curves X(N),
remains unsolved for all but a few values of N.

Klein’s curve, unique in genus three with maximum number of automorphisms,
is an object of current interest, studied in one or the other of its several presenta-
tions. As a covering of P1, [FK1, VII.3], it is a Riemann surface M given by the
algebraic equation

w7 = z(z−1)2.

The function z is ramified (of ramification number 7) at the points 0, 1 and ∞, and
we set: P0 = z−1(0), P1 = z−1(1), Q = z−1(∞), and consider the following di-

visors: (z) =
P7

0
Q7 , (dz) =

P6
0 P6

1
Q8 , (w) =

P0P2
1

Q3 . Per this calculation, the differentials

dz
w3 , (z−1)

dz
w5 , (z−1)

dz
w6

have divisors P3
0 Q, P0P3

1 , P1Q3, hence give a basis for Ω1(M). Using this
basis we can find an embedding of M in P2 [FK1, III.10]. In fact, if we set
w = −XY−1, z− 1 = X3Y−2 we find that the projective equation for the alge-
braic curve M is the quartic: X3Y +Y 3Z +Z3X = 0.

We can immediately conclude from the divisors of the differentials that the
points P0, P1 and Q are Weierstrass points of weight 1. We turn to the Wron-
skian of to finish the search for the Weierstrass points. We recall that, denoting
W ( f1, . . . , fg) the Wronskian determinant for a basis f1(z), . . . , fr(z) of the canoni-
cal linear system, |K|, with associated linear series L (K), over an algebraic curve
X of genus g ≥ 2, in a local coordinate z, the zeros of W ( f1, . . . , fg)(dz)g(g+1)/2

are the Weierstrass points for the curve X , the multiplicities of the zeros being
their Weierstrass weights [M, VII.4]. Using the function z above as a local co-
ordinate, since we already took into account the points over 0, 1 and ∞ where it
ramifies, we compute W (z) = 3!(z3− 8z2 + 5z+ 1)/(z8(z− 1)5) The polynomial
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p(z) = z3−8z2 +5z+1 has three distinct real roots, each of which corresponds to
7 distinct points on M. Thus M has 24 Weierstrass points, each of weight one.

We now consider a second method for finding the ordinary Weierstrass points,
as in [R]. When X(Γ) is the modular curve Γ�H ∗, for Γ a subgroup of finite
index in SL2(Z) and H ∗ the upper half plane with the cusps of Γ adjoined, the
set of weight-2 cusp forms for Γ, S2(Γ), is isomorphic to the set of holomorphic
1-forms for the Riemann surface. Thus to build a Wronskian for Γ�H ∗ we may
use a basis f1, f2, . . . , fg for S2(Γ), the Wronskian W ( f1, f2, . . . , fg) being a modular
form of weight g(g+1) for Γ.

The Klein curve X is isomorphic to the modular curve X(7), with Γ = Γ(7).
Since Γ(7) is normal in SL2(Z), this Wronskian is a modular form for SL2(Z)
itself, with character detρ , for ρ the natural representation of SL2(Z) on the space
of cusp forms of weight 2 for Γ. The choice of basis only affects the Wronskian
by a nonzero complex multiple, while we are only concerned about its zeros; to
eliminate the dependence on the choice of basis entirely we may require that the
first nonzero coefficient in the Fourier expansion of the Wronskian at the cusp at ∞

be 1. Thus we can talk about the Wronskian for Γ�H ∗.
In general, if the ramification index of Γ in SL2(Z) is r at ∞, we can express the

Fourier expansion of W (z) at ∞ as

W (z) = ∑
n≥n0

ane2πinz/r, an0 = 1.

For the case of X(7), g = 3, so W (z) is a cusp form of weight 12. The character
factors through SL2(Z)/{±1}Γ(7), hence is trivial, thus W (z) is a cusp form for
SL2(Z) itself. The only possibility is that W (z) = ∆, the “modular discriminant:

∆ = (2π)12q
∞

∏
r=1

(1−qr)24. Since ∆ is never zero on H , we find that the Weier-

strass points are the cusps.
The Wronskian for the pluricanonical series, L (nK), n≥ 2 (associated to |nK|)

gives the higher-order Weierstrass points [FK1, III.5]. In the pluricanonical case,
the Wronskian for a modular curve X(Γ) is an automorphic form of weight (2n−
1)2g(g−1)/2 [FK2, 3.1].

Using the model for X(7) given by w7 = z(z− 1)2, we have found bases for
the pluricanonical series L (nK) for X . Indeed, we observed that for 2 ≤ n ≤ 5,
pairwise multiplication of the elements of our previously found basis for L (K)
leads to exactly dimL (nK) = (2n− 1)(g− 1)− 1 independent differentials. For
example for n = 2, pairwise multiplication of the basis elements of L (K) above
led to

{ 1
w6 ,

1
wz(z−1)

,
1

zw3 ,
1

w2z(z−1)
,

1
w4z

,
1

w5z
}.

3



To use these Wronskians in the Rankin-Cohen algebra, we must find their q-
expansion: our strategy is to first identify them as automorphic forms constructed
from theta constants [FK2, III.2]; then use classical identities to embed (as Klein
did) the curve in P2 [FK2, III.8.4]; and lastly, use an algebraic map to convert
P2-coordinates into the meromorphic functions w,z on the curve as the 7-sheeted
cover; retracing our steps, we have written the pluricanonical Wronskians as classi-
cal automorphic forms, and can Fourier-expand them. As Zagier notes, a “canoni-
cal” Rankin-Cohen algebra can be generated by a form in degree four and a degree-
2 differentiation; our Wronskians are of course of higher degree, but he also con-
siders, for comparison, a homogeneous generator F of arbitrary degree, provided
it is not a zero-divisor, so our case study is a legitimate example of his theory.

2 Finite Fields

Modular forms in positive characteristic (we are only considering reduction of co-
efficient modulo a prime p, not Katz’ theory which has an algebro-geometric def-
inition and may give rise to non-liftable forms, an unsettled issue) still present
challenges, such as the structure of their Hecke algebra [BK]. The Hecke operator
makes sense in characteristic p, but others do not exist in characteristic zero, par-
ticularly “multiplication by the Hasse invariant”; the “theta operator” ϑ is defined
in characteristic zero, in fact it is precisely what we called D following [Z], where
it “destroys modularity” [K], but in positive characteristic it raises the weight by

p+1: this ϑ := q
d
dq

acts formally on the q expansion of the discriminant ∆ and the

Eisenstein series E4, E6, and these can be chosen as generators of the (graded) ring
of modular forms. In the recent monograph [K], the author implements some such
operations in computation, using both MAGMA and its open-source counterpart
SAGE, primarily with the goal of computing Fourier coefficients.

We propose to use our case-study Γ(7) and computation in characteristic p 6=
7 (over a finite field or its algebraic closure), not only to study the structure of
Rankin-Cohen algebras, but also with the goal of computing “theta cycles”: these
are specific to positive characteristic, and arise as follows. The multiplication f 7→
A f , where A is the Hasse invariant, in characteristic p raises the weight by p−1 and
leaves the q-expansion unchanged: the smallest weight in which a form f appears
is called its “filtration” w( f ). Since w(ϑ p f ) = w(ϑ f ), one can attach to any mod p
modular form f a (p− 1)-tuple of integers,

(
w(ϑ f ),w(ϑ 2 f ), ...,w(ϑ p−1 f )

)
, and

this is called its theta cycle. These were investigated by J. Tate and classified by
N. Jochnowitz in her thesis: they have applications to estimates on the number of
local components of Hecke algebras. We study the action of the Rankin-Cohen
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brackets on theta cycles: this might give us an extra handle on the relations of
Rankin-Cohen algebras in characterisitc p.

3 Conclusions

Our underlying theme is that the use of differential operators in the theory of mod-
ular forms, especially as regards their dual nature as algebro-geometric or number-
theoretic objects, should be revived in the spirit of the nineteeth century and made
powerful by means of symbolic computation. We use cusp forms over the Klein
curve, obtain a relationship between the algebraic and modular aspects, and compu-
tationally obtain explicit identities for the little-known Rankin-Cohen differential
(graded) algebras; in positive characteristic, even over finite fields, our case-study
potentially aids the quest for the structure of the Hecke algebra. Further motivation
for using the Klein curve is a computational study of its differential-Galois aspects
(when viewed as an algebraic cover) [SU], which can be related to the algebraic
Wronskians, and which we plan to relate to its cusp forms, particularly in positive
characteristic since the previous work was carried out over the complex numbers.

References
[BK] J. Bellaïche and C. Khare, Level 1 Hecke algebras of modular forms modulo p, Compos.

Math. 151 (2015), no. 3, 397-415.
[CFW] J.B. Conrey, D.W. Farmer and P.J. Wallace, Factoring Hecke polynomials modulo a prime,

Pacific J. Math. 196 (2000), no. 1, 123-130.
[EGÔP] J.C. Eilbeck, J. Gibbons, Y. Ônishi and E. Previato, From equations of Jacobians or Kum-

mer varieties to Coble hypersurfaces, Preprint 2016.
[FK1] H. Farkas and I. Kra, Riemann Surfaces, Springer-Verlag, New York, 1980.
[FK2] H. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular Group, 37, Grad-

uate Studies in Mathematics, American Mathematical Society, Providence, R.I. 2001.
[Farr] E.S.A. Farrington, Aspects of Klein’s Quartic Curve, Thesis (Ph.D.) Boston University. 2010.

172 pp. ISBN: 978-1124-05913-6 ProQuest LLC2010.
[K] Kilford, L. J. P. Modular forms. A classical and computational introduction. Imperial College

Press, London, 2008.
[M] R. Miranda, Algebraic Curves and Riemann Surfaces, 5, Graduate Studies in Mathematics,

American Mathematical Society, Providence, R.I. 1997.
[R] D.E. Rohrlich, Some remarks on Weierstrass points, in: Number theory related to Fermat’s last

theorem (Cambridge, MA, 1981), 71-78, Progr. Math., 26, Birkhäuser, Boston, MA, 1982.
[SU] M.F. Singer and F. Ulmer, On a third order differential equation whose differential Galois

group is the simple group of 168 elements, in: Applied algebra, algebraic algorithms and
error-correcting codes (San Juan, PR, 1993), LNCS, Springer, Berlin, 316–324, 673, 1993.

[Z] D. Zagier, Modular forms and differential operators, in: K. G. Ramanathan memorial issue.
Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 1, 57-75.

5


