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Parametric b-functions for some hypergeometric ideals∗
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We denote by D := C[x1, . . . , xn, ∂1, . . . , ∂n] the Weyl algebra over the field C.
The aim of this note is to study the b–function associated with a class of hypergeometric

ideals HA(β) ⊆ D following [9, Section 5.1]. Let us recall the definition of HA(β). Given
A = (aij) a d× n matrix of rank d with integer coefficients, we first consider the associated
toric ideal IA ⊂ C[∂] := C[∂1, . . . , ∂n]

IA := C[∂]{∂u − ∂v | u, v ∈ Nn, Au = Av}.

Moreover we consider the Euler operators, for 1 ≤ i ≤ d

Ei = ai1x1∂1 + · · ·+ ainxn∂n.

Then for any parameter vector β ∈ Cd the hypergeometric ideal is defined as

HA(β) = D · IA +
∑

1≤i≤d

D(Ei − βi).

Given a holonomic left ideal I in D and a nonzero weight vector ω ∈ Rn, we denote
in(−ω,ω)(I) ⊂ D the initial ideal of I with respect to the filtration (Fp)p∈R induced on D by
the vector (−ω, ω) ∈ R2n. The C–vector space Fp is defined as follows:

Fp := C{xα∂β | − ωα+ ωβ ≤ p} for p ∈ R.

Kashiwara has introduced in (On the Holonomic Systems of Linear Differential Equa-
tions, II. Inventiones Math. 49, 121–135, 1978) the b–function bI,ω(s) associated with the
pair (I, ω), as the monic generator of the ideal

in(−ω,ω)(I) ∩ C[s] (1)

where s :=
∑n
i=1 ωixi∂i. It is proven in loc. cit. Theorem 2.7 that the ideal in (1) is nonzero.

In this note we follow the presentation and notations of [9, §5] on this subject.

Definition 1. The polynomial bI,ω(s) is called the b–function of the holonomic ideal I ⊂ D
with respect to the weight vector ω.

Previous b-functions are closely related to the classical notion of Bernstein polynomial
(also called Bernstein-Sato polynomial) bf (s) associated with a given nonzero polynomial
f ∈ C[x] (see e.g. [9, Lemma 5.3.11]). Bernstein polynomials have been introduced in
[2] and [8] and represent fundamental invariants in singularity theory. There are several
algorithms for computing Bernstein polynomials. Some of them are described in [5], [6], [4],
and [1]. These and other algorithms have been implemented in the computer algebra systems
Asir, Macaulay2 and Singular among others. Nevertheless, in practice bf (s) is hard
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to compute even in the case of a polynomial f in two variables. In [3] the authors propose
the algorithm checkRoot which, given a rational number α checks if it is a root of the
Bernstein polynomial bf (s), and computes its multiplicity.

We simply denote bω,β(s) := bHA(β),ω(s). We refer to [9] for the main results on hyper-
geometric ideals and the corresponding b–functions bω,β(s) for generic parameters w and β
(see below for details). In [7] the authors describe bounds for the roots of bω,β(s).

In this paper we restrict ourselves to matrices of the form A = (1, p, q) with integers
1 < p < q and p and q coprime. The first step is to describe the Gröbner fan of the toric
ideal IA, as defined in (T. Mora; L. Robbiano, The Gröbner fan of an ideal. J. Symbolic
Comput. 6(2-3) 183–208 (1988)) and in (B. Sturmfels, Gröbner bases and convex polytopes.
University Lecture Series, 8. Providence RI, 1995.) We define a finite family of disjoint
regions R(k)

i ⊂ R3 which are the intersection of two half-spaces with the line (1, p, q)R in
common (see Example 3). The possible integers k and i depend on the extended Euclidean

division of q over p. We prove an equality R3 =
⋃
i,k R

(k)
i such that for each ω ∈ R(k)

i , the
initial ideal inω(IA) is a monomial ideal and it is independent of ω.

In [9, Proposition 5.1.9.] there is a description of bω,β(s) for Zariski generic β and generic
ω In (M.C. Fernández-Fernández, Soluciones Gevrey de sistemas hipergeométricos asociados
a una curva monomial lisa. DEA, U. Sevilla, 2008.), the polynomial bω,β(s) is described for
ω = (1, 0, 0) and β generic. Our main result is:

Theorem 2. Given R(k)
i , a facet of the Gröbner fan of IA, there is a proper Zariski closed

set C(k)
i ⊂ R(k)

i such that if ω ∈ R(k)
i \ C

(k)
i and β is generic the b–function is

bω,β(s) =
∏

α∈F (k)
i

(s− α)

for certain finite set F (k)
i ⊆ C. Moreover, if ω ∈ C(k)

i or β is non-generic, the right hand
side of previous equality gives a multiple of the b–function.

The set F (k)
i is explicitly described in terms of standard monomials of in(−ω,ω)(HA(β)).

In the following example we sum up our results.

Example 3. Consider the matrix A = (1, 3, 5). The Gröbner fan of IA ⊂ C[∂x, ∂y, ∂z]
consists of seven facets. Let us focus in one of them, namely R(2)

1 = {ω ∈ R3 | 2ω1 + ω2 >

ω3, ω1 + 3ω2 < 2ω3}. For any ω ∈ R(2)
1

inω(IA) = D
(
∂3x, ∂

2
x∂y, ∂x∂z, ∂

2
z

)
.

Any complex number β 6= 2 is generic, and we have that

in(−ω,ω)(HA(β)) = D
(
∂2x, ∂x∂z, ∂

2
z , E − β

)
.

We have C(2)
1 = R

(2)
1 ∩ {3ω1 +4ω2 = 3ω3}. The b–function for ω ∈ R(2)

1 \C
(2)
1 and β 6= 2

is
bω,β(s) = (s− β

3
ω2)(s− ω1 −

β − 1

3
ω2)(s−

β − 5

3
ω2 − ω3).

If ω ∈ C(2)
1 and β 6= 2, the polynomial

(s− β

3
ω2)(s− ω1 −

β − 1

3
ω2)



is a multiple of the b–function. With Singular we check that in this case we obtain the true
b–function and not just a multiple. If ω ∈ R(2)

1 but β = 2 we have the following multiple of
the b–function: (s− 2

3ω2)(s− ω1 − 1
3ω2)(s− 2ω1)(s+ ω2 − ω3) if ω 6∈ C(2)

1

(s− 2
3ω2)(s− ω1 − 1

3ω2)(s− 2ω1) otherwise.

Again, with Singular we check that this is indeed bω,2(s). However, if we consider the
region R(2)

2 = {ω ∈ R3 | ω1 + 3ω2 > 2ω3, 3ω3 > 5ω2}, we have β = 1, 2, 4, 7 as non-
generic values, and for ω ∈ R(2)

2 and β = 2 we give a polynomial with five roots, and only
four of them are the roots of bω,2(s).

If ω ∈ R3 \
⋃
i,k R

(k)
i the study of bω,β(s) is a work in progress.
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