Applications of Computer Algebra – ACA2018 Santiago de Compostela, June 18–22, 2018

Parametric *b*-functions for some hypergeometric ideals^{*}

Francisco-Jesús Castro-Jiménez¹, Helena Cobo Pablos¹

We denote by $D := \mathbb{C}[x_1, \ldots, x_n, \partial_1, \ldots, \partial_n]$ the Weyl algebra over the field \mathbb{C} .

The aim of this note is to study the *b*-function associated with a class of hypergeometric ideals $H_A(\beta) \subseteq D$ following [9, Section 5.1]. Let us recall the definition of $H_A(\beta)$. Given $A = (a_{ij})$ a $d \times n$ matrix of rank d with integer coefficients, we first consider the associated toric ideal $I_A \subset \mathbb{C}[\partial] := \mathbb{C}[\partial_1, \ldots, \partial_n]$

$$I_A := \mathbb{C}[\partial] \{ \partial^u - \partial^v \mid u, v \in \mathbb{N}^n, Au = Av \}.$$

Moreover we consider the Euler operators, for $1 \le i \le d$

$$E_i = a_{i1}x_1\partial_1 + \dots + a_{in}x_n\partial_n.$$

Then for any parameter vector $\beta \in \mathbb{C}^d$ the hypergeometric ideal is defined as

$$H_A(\beta) = D \cdot I_A + \sum_{1 \le i \le d} D(E_i - \beta_i).$$

Given a holonomic left ideal I in D and a nonzero weight vector $\omega \in \mathbb{R}^n$, we denote $in_{(-\omega,\omega)}(I) \subset D$ the initial ideal of I with respect to the filtration $(F_p)_{p\in\mathbb{R}}$ induced on D by the vector $(-\omega,\omega) \in \mathbb{R}^{2n}$. The \mathbb{C} -vector space F_p is defined as follows:

$$F_p := \mathbb{C}\{x^{lpha}\partial^{eta} \mid -\omegalpha + \omegaeta \leq p\} \text{ for } p \in \mathbb{R}.$$

Kashiwara has introduced in (On the Holonomic Systems of Linear Differential Equations, II. Inventiones Math. 49, 121–135, 1978) the b-function $b_{I,\omega}(s)$ associated with the pair (I, ω) , as the monic generator of the ideal

$$in_{(-\omega,\omega)}(I) \cap \mathbb{C}[s] \tag{1}$$

where $s := \sum_{i=1}^{n} \omega_i x_i \partial_i$. It is proven in *loc. cit. Theorem* 2.7 that the ideal in (1) is nonzero. In this note we follow the presentation and notations of [9, §5] on this subject.

Definition 1. The polynomial $b_{I,\omega}(s)$ is called the *b*-function of the holonomic ideal $I \subset D$ with respect to the weight vector ω .

Previous *b*-functions are closely related to the classical notion of Bernstein polynomial (also called Bernstein-Sato polynomial) $b_f(s)$ associated with a given nonzero polynomial $f \in \mathbb{C}[x]$ (see e.g. [9, Lemma 5.3.11]). Bernstein polynomials have been introduced in [2] and [8] and represent fundamental invariants in singularity theory. There are several algorithms for computing Bernstein polynomials. Some of them are described in [5], [6], [4], and [1]. These and other algorithms have been implemented in the computer algebra systems Asir, Macaulay2 and Singular among others. Nevertheless, in practice $b_f(s)$ is hard

^{*}Partially supported by MTM2013-40455-P, MTM2016-75024-P and Feder

to compute even in the case of a polynomial f in two variables. In [3] the authors propose the algorithm checkRoot which, given a rational number α checks if it is a root of the Bernstein polynomial $b_f(s)$, and computes its multiplicity.

We simply denote $b_{\omega,\beta}(s) := b_{H_A(\beta),\omega}(s)$. We refer to [9] for the main results on hypergeometric ideals and the corresponding *b*-functions $b_{\omega,\beta}(s)$ for generic parameters *w* and β (see below for details). In [7] the authors describe bounds for the roots of $b_{\omega,\beta}(s)$.

In this paper we restrict ourselves to matrices of the form A = (1, p, q) with integers 1 and <math>p and q coprime. The first step is to describe the Gröbner fan of the toric ideal I_A , as defined in (T. Mora; L. Robbiano, The Gröbner fan of an ideal. J. Symbolic Comput. **6**(2-3) 183–208 (1988)) and in (B. Sturmfels, Gröbner bases and convex polytopes. University Lecture Series, 8. Providence RI, 1995.) We define a finite family of disjoint regions $R_i^{(k)} \subset \mathbb{R}^3$ which are the intersection of two half-spaces with the line $(1, p, q)\mathbb{R}$ in common (see Example 3). The possible integers k and i depend on the extended Euclidean division of q over p. We prove an equality $\mathbb{R}^3 = \bigcup_{i,k} \overline{R_i^{(k)}}$ such that for each $\omega \in R_i^{(k)}$, the initial ideal $in_{\omega}(I_A)$ is a monomial ideal and it is independent of ω .

In [9, Proposition 5.1.9.] there is a description of $b_{\omega,\beta}(s)$ for Zariski generic β and generic ω In (M.C. Fernández-Fernández, *Soluciones Gevrey de sistemas hipergeométricos asociados a una curva monomial lisa*. DEA, U. Sevilla, 2008.), the polynomial $b_{\omega,\beta}(s)$ is described for $\omega = (1, 0, 0)$ and β generic. Our main result is:

Theorem 2. Given $R_i^{(k)}$, a facet of the Gröbner fan of I_A , there is a proper Zariski closed set $C_i^{(k)} \subset R_i^{(k)}$ such that if $\omega \in R_i^{(k)} \setminus C_i^{(k)}$ and β is generic the b-function is

$$b_{\omega,\beta}(s) = \prod_{\alpha \in F_i^{(k)}} (s - \alpha)$$

for certain finite set $F_i^{(k)} \subseteq \mathbb{C}$. Moreover, if $\omega \in C_i^{(k)}$ or β is non-generic, the right hand side of previous equality gives a multiple of the b-function.

The set $F_i^{(k)}$ is explicitly described in terms of standard monomials of $in_{(-\omega,\omega)}(H_A(\beta))$. In the following example we sum up our results.

Example 3. Consider the matrix A = (1, 3, 5). The Gröbner fan of $I_A \subset \mathbb{C}[\partial_x, \partial_y, \partial_z]$ consists of seven facets. Let us focus in one of them, namely $R_1^{(2)} = \{\omega \in \mathbb{R}^3 \mid 2\omega_1 + \omega_2 > \omega_3, \omega_1 + 3\omega_2 < 2\omega_3\}$. For any $\omega \in R_1^{(2)}$

$$in_{\omega}(I_A) = D\left(\partial_x^3, \partial_x^2 \partial_y, \partial_x \partial_z, \partial_z^2\right).$$

Any complex number $\beta \neq 2$ is generic, and we have that

$$in_{(-\omega,\omega)}(H_A(\beta)) = D\left(\partial_x^2, \partial_x\partial_z, \partial_z^2, E - \beta\right).$$

We have $C_1^{(2)} = R_1^{(2)} \cap \{3\omega_1 + 4\omega_2 = 3\omega_3\}$. The *b*-function for $\omega \in R_1^{(2)} \setminus C_1^{(2)}$ and $\beta \neq 2$ is

$$b_{\omega,\beta}(s) = (s - \frac{\beta}{3}\omega_2)(s - \omega_1 - \frac{\beta - 1}{3}\omega_2)(s - \frac{\beta - 5}{3}\omega_2 - \omega_3).$$

If $\omega \in C_1^{(2)}$ and $\beta \neq 2$, the polynomial

$$(s-\frac{\beta}{3}\omega_2)(s-\omega_1-\frac{\beta-1}{3}\omega_2)$$

is a multiple of the *b*-function. With Singular we check that in this case we obtain the true *b*-function and not just a multiple. If $\omega \in R_1^{(2)}$ but $\beta = 2$ we have the following multiple of the *b*-function:

$$\begin{cases} (s - \frac{2}{3}\omega_2)(s - \omega_1 - \frac{1}{3}\omega_2)(s - 2\omega_1)(s + \omega_2 - \omega_3) & \text{if } \omega \notin C_1^{(2)} \\ \\ (s - \frac{2}{3}\omega_2)(s - \omega_1 - \frac{1}{3}\omega_2)(s - 2\omega_1) & \text{otherwise.} \end{cases}$$

Again, with Singular we check that this is indeed $b_{\omega,2}(s)$. However, if we consider the region $R_2^{(2)} = \{\omega \in \mathbb{R}^3 \mid \omega_1 + 3\omega_2 > 2\omega_3, 3\omega_3 > 5\omega_2\}$, we have $\beta = 1, 2, 4, 7$ as non-generic values, and for $\omega \in R_2^{(2)}$ and $\beta = 2$ we give a polynomial with five roots, and only four of them are the roots of $b_{\omega,2}(s)$.

If $\omega \in \mathbb{R}^3 \setminus \bigcup_{i,k} R_i^{(k)}$ the study of $b_{\omega,\beta}(s)$ is a work in progress.

Keywords: *b*-function, hypergeometric ideal.

References

- [1] D. ANDRES, Noncommutative Computer Algebra with Applications in Algebraic Analysis. Dissertation, Universität Aachen, 2014.
- [2] I.N. BERNSTEIN, Analytic continuation of generalized functions with respect to a parameter. *Funkcional. Anal. i Priložen* **6**(4), 26–40 (1972).
- [3] V. LEVANDOVSKYY; J. MARTÍN-MORALES, Algorithms for checking rational roots of b-functions and their applications. J. Algebra 352 408–429 (2012).
- [4] M. NORO, An efficient modular algorithm for computing the global b-bunction. In Mathematical software (Beijing 2002), 147–157. World Sci. Publ., River Edge, NJ, 2002.
- [5] T. OAKU, An algorithm of computing b-functions. Duke Math. J. 87(1), 115-132 (1997).
- [6] T. OAKU, Regular b-functions of D-modules. J. Pure Appl. Algebra 213, 1545–1557 (2009).
- [7] T. REICHELT; CH. SEVENHECK; U. WALTHER, On the b-functions of hypergeometric systems. Int. Math. Res. Not., doi.org/10.1093/imrn/rnx039, 2017.
- [8] M. SATO, Theory of prehomogeneous vector spaces (algebraic part)–Notes by T. Shintani. Translated from the Japanese by M. Muro. *Nagoya Math. J.*, **120**, 1–34 (1990).
- [9] M. SAITO; B. STURMFELS; N. TAKAYAMA, Gröbner deformations of hypergeometric differential equations. Springer-Verlag, Berlin, (2000).

¹Departamento de Álgebra and IMUS. Universidad de Sevilla Campus Reina Mercedes 41012 Sevilla (Spain) castro@us.es, helenacobo@gmail.com