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Effective criterion to test differential transcendence of
special functions.

Carlos Arreche1, Thomas Dreyfus2, Julien Roques3,

Consider a field k equipped with an automorphism φ. Typical examples are

• k = CZ, φ(un) := (un+1);

• k = C(x), φf(x) := f(x+ 1);

• k = C(x), φf(x) := f(qx), q ∈ C∗;

• k = ∪`∈N∗C(x1/`), φf(x) := f(xp), p ∈ N∗.

A difference equation is a linear equation of the form

a0y + · · ·+ anφ
n(y) = 0,

with a0, . . . , an ∈ k. The difference Galois theory, see [1], attaches to such equation a linear
algebraic subgroup of GLn(C) that measures the algebraic relations among the solutions of
the difference equation. More recently, it has been developed in [2] a Galois theory that aims
at understanding the algebraic and differential relations among the solutions of the difference
equation

The goal of this talk is to give explicit and computable criterias to ensure that a solu-
tions of an order two difference equation does not satisfy any algebraic differential equations
in coefficients in k. We apply this criterion to the elliptic analogue of the hypergeometric
functions.
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