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Solution of non homogenous stiff 
Ordinary Differential Equations 

using  a Parametric Integral Method

Thierry Dana-Picard

David G. Zeitoun

AADIOS

Parametric integrals (Ref: DP,Z)

• Ubiquitous in engineering

• Build bridges between Integrals, Series, 
Combinatorics, etc.

• Examples:
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An example from soil mechanics (DPZ in iJMEST 2017)

AADIOS – ACA 2018

/4

0
tann

nI x dx


 

Stiff ODEs – different definitions
• A stiff problem is one for which no solution component is 

unstable (i.e. no eigenvalue of the Jacobian matrix has a real 
part which is at all large and positive) and at least one 
component is very stable (i.e. at least one eigenvalue has a 
real part which is large and negative).

• A problem is stiff if the solution being sought varies slowly 
but there are nearby solutions that vary rapidly, so the 
numerical method must take small steps to obtain 
satisfactory results. 

• Stiffness occurs when some components decay more 
rapidly than others.

• The matrix A in the linear system of differential equations 

has negative eigenvalues.
• A problem is stiff if explicit methods fail to provide 

solutions or works extremely slowly.
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The topic

• Stiff ordinary differential equations arise frequently 
in the study of chemical kinetics, electrical circuits, 
vibrations, control systems and so on.

• It is a difficult and important concept in the study 
of differential equations.

• It depends on the differential equation itself, the 
initial conditions, and the numerical method.
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Example: Van de Pol equation for 
relaxation oscillation
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The Van der Pol oscillator is a non-conservative oscillator with non-linear damping.
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Stability of the solution
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1.Euler's method with a step size of h=1/4 oscillates wildly and quickly exits the range of the 

graph - shown in red.

2.Euler's method with h=1/8 produces a solution within the graph boundaries, but oscillates 

about zero - shown in green.

3.The trapezoidal method (that is, the two-stage Adams–Moulton method) is given by

where                           .

Applying this method instead of Euler's method gives a much better result (blue). The 

numerical results decrease monotonically to zero, just as the exact solution does .
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Ref: wikipedia

General ODE and Boundary Value Problem

AADIOS – ACA 2018

Homogeneous if f≡0

Decompose it into homogeneous and non-homogeneous part using MacLaurin
developments:
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General ODE and Boundary Value Problem
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By substitution, we obtain:

Where the differential operator L is defined by:

And 

Matlab Library
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Solver Kind of Problem Base Algorithm

Ode45 Non-stiff differential equations Runge-Kutta

Ode23 Non-stiff differential equations Runge-Kutta

Ode113 Non-stiff differential equations Adams-Bashfort-Moulton

Ode15s Stiff differential equations

Numerical Differentiation

Formulas (Backward

Differentiation Formulas)

Ode23s Stiff differential equations Rosenbrock

Ode23t
Moderately stiff differential

Trapezoidal Rule
equations

Ode23tb Stiff differential equations TR-BDF2

Ode15i Fully implicit differential equations BDFs
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Methodology based on the Adomian
decomposition method
• The Adomian decomposition method (ADM)  is systematic 

method for solution of either linear or nonlinear operator 
equations, including ODEs, PDEs, integral equations, 
integro-differential equations, etc.

• The ADM is a powerful technique, which provides efficient 
algorithms for analytic approximate solutions and numeric 
simulations for real-world applications in the applied 
sciences and engineering. 

• It allows to solve both nonlinear initial value problems (IVPs) 
and boundary value problems (BVPs) without physical 
restrictive assumptions such as required by linearization, 
perturbation, ad hoc assumptions, guessing the initial term 
or a set of basis functions. 
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Eigenvalues expansion
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Using this and suitable boundary conditions for                 , one obtains an iterative solution 
for  m≥1:

( , )G x 

Iterative solution
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Remarks

• This last expression will be used to generate 
different types of iterative algorithms for the 
solution of the BVP. 

• This iterative algorithm generates an iterative 
algorithm which can be implemented in a CAS. 

• We wish to mention solutions of groundwater flow 
through non homogeneous formations using 
parametric integral solutions.
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Motivation: 
Artificial recharge of Confined aquifers
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Non Homogenous Problems
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Non Homogenous Problems
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Non Homogenous Problems
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Heterogeneous problems
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Heterogeneous problems
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Heterogeneous problems – an algorithm
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Conclusions

• A general presentation of the use eigenfunction
expansion for non homogenous and hetrogenous
ODE has been presented. 

• This different methods presented may be added to 
existing libraries in  CAS software such as Matlab
and Maple. 

• We wish to mention solutions of groundwater flow 
through non homogeneous formations using 
parametric integral solutions.
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