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Solution of non homogenous stiff
Ordinary Differential Equations
using a Parametric Integral Method
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David G. Zeitoun

Parametrlc mtegrals (Ref: DP2)

* Ubiquitous in engineering
* Build bridges between Integrals, Series,
Combinatorics, etc.

* Examples: ]
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An example from soil mechanics (rzinimest 2017)

zl4 ﬂ is a non-negative integer, then the following hfm
| = J tan" x dx
0 T
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shear stress
; oz 2k+ (_ 1)f

42 T T
" 4 F2-1

normal stress

n2 2k (_ l)f

\ 14“3:777;2:1“7 /

AADIOS — ACA 2018

‘ IT'*I:"‘:‘A"I'}:‘“ 9%9!?5:5&?9&:?55965%&9?r“
Stiff ODEs — different definitions

* Astiff problem is one for which no solution component is
unstable (i L .e.noei envalue of the Jacobian matrix has a real
part which is at all large and posmve) and at least one
component is ver st le (i.e. at least one eigenvalue has a
real part which is large and negative).

* A problem is stiff if the solution being sought varies slowly
but there are nearby solutions that vary rapidly, so the
numerical method must take small steps to obtain
satisfactory results.

* Stiffness occurs when some components decay more
rapidly than others.

(;l'he matrix A in the linear system of differential equations

e Aut,te[0,T]  has negative eigenvalues.
~* Aproblem is stiff if explicit methods fail to provide

utions or works extremely slowly.
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The topic

* Stiff ordinary differential equations arise frequently
in the study of chemical kinetics, electrical circuits,
vibrations, control systems and so on.

* |tis a difficult and important concept in the study
of differential equations.

* |t depends on the differential equation itself, the
initial conditions, and the numerical method.
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Example: Van de Pol equation for
relaxation oscillation

[The Van der Pol oscillator is a non-conservative oscillator with non-linear damping. J

> W= 1000
W= 1000

& S \
> ade = — y(x) = p (1= y(x)%) [ 5= v(x) | + ¥(x)=0
pws =Rl
ode = < 30 =100 (1 = 3(0)%) [ 51) | +310) =0
P™) L 29

> ie= {¥(0) =2, D(¥)(0) =0}
iet= {30) =2, D(y) (0] =0}

> sol_ode 1= dsolve( {ode) Uic, mmeric, range = 0 - true)
sol_ode = proe(x_rosenbrock) .. end proc

"> plots{ odeplor](sol_ode, [x y(x)])
10w 200

I 11g|.: of 5,2538547, maxfun limit exceeded (see ?dsolve,maxfun for details)
[Length of output exceeds limit of 1000060]
I ARUIUD — ALA 2UL0

> sol2_ode = dsolve( | ode} Uic, mmeric, range = 03000, stiff = fulse)
Warning, cannot evaluate the solution(Turtl




N"ywn/an/x"

g M \CI\ 201, MOEEETN
Stablllty of the solution y0)=1

t>0

1.Euler's method with a step size of h=1/4 oscillates wildly and quickly exits the range of the
graph - shown in red.

2.Euler's method with h=1/8 produces a solution within the graph boundaries, but oscillates
about zero - shown in green.

3.The trapezoidal method (that is, the two-stage Adams—Moulton method) is given by

yn+1 yn +—= h ( f (tn1 yn ) + f (tn+11 yn+l))
where y'=f(t,y).

Applying this method instead of Euler's method gives a much better result (blue). The
numerical results decrease monotonically to zero, just as the exact solution does .

3 T \ T T
Eulerh=14 —3—
2 Eulerh=1/8 —5— ]
Adams-Moulion, h=1/8 —3—

1[3'\ 7 /;\ \?/ /E\ — /E(am solution
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0 02 AADIOg 7 ACA 2018 06 o

8 Ref: wikipedia !
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General ODE and Boundary Value Problem

A general ODE may be expressed as follows:

Z:i:g an(z) dc{l::) = f(x) Homogeneous if f=0
a<z<b

BCatr =ax=b

Decompose it into homogeneous and non-homogeneous part using MacLaurin
developments:

ax(z) = ax(0) + ak(0)z + af (0) + .. = 3 %a(k)([}}.
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General ODE and Boundary Value Problem

o ) Lo(y) = —L(y)
By substitution, we obtain: ) <z<b

BCatxr =—ax =105

Where the differential operator L is defined by:

L= (S a0 4

n=0 [n=1
And d(“)
Lo = Z an(0)——
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Matlab Library

Oded5 Non-stiff differential equations Runge-Kutta

Non-stiff differential equations Runge-Kutta

Non-stiff differential equations Adams-Bashfort-Moulton
Numerical Differentiation

stiff differential equations Formulas (Backward

Differentiation Formulas)

Stiff differential equations Rosenbrock

Moderately stiff differential
Trapezoidal Rule
equations

Stiff differential equations TR-BDF2

Fully implicit differential equations BDFs
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Methodology based on the Adomian
decomposition method

* The Adomian decomposition method (ADM) is systematic
method for solution of either linear or nonlinear operator
equations, including ODEs, PDEs, integral equations,
integro-differential equations, etc.

* The ADM is a powerful technique, which provides efficient
algorithms for analytic approximate solutions and numeric
simulations for real-world applications in the applied
sciences and engineering.

* It allows to solve both nonlinear initial value problems (IVPs)
and boundary value problems (BVPs) without physical
restrictive assumptions such as required by linearization,

_——perturbation, ad hoc assumptions, guessing the initial term
L (o a set of basis functions.

e j = AADIOS — ACA 2018
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Using an Adomian decomposition method ([1]), we assume a solution y(z) =
Zi:o Ym (z). Then the general solution of the non homogeneous ODE may be
solved in an iterative way as follows:

e Solve for yo(x):
Lo(wo) =0
a<xz<b
BCatr =ax =b

e Solve for ym(z);m=1,2,....
LO(ym) - 7L(ym—1)
a<x<hbh
BCatx = ax =b

I\r,j ‘“j AADIOS — ACA 2018



N"ywn/an/x"

kc k 20 18 vttt e r“

Eigenvalues expansion

After solving for yo(z), the general solution of the equations (8) may be derived
using the Green function associated with the operator Lg.

Lo(G(z.£)) = d(z — £)
a<x<b
BCatxr =ax=0»

Using this and suitable boundary conditions for G(x,&) , one obtains an iterative solution
for m>1:

ym(2) = f G, )L (ym—1 (€)dE
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Iterative solution

In a large class of boundary value problems, the Green function G(z,£) may
expressed as an eigenfunction expansion as follows:

Clag) =3 ZEHE,
r=1

where A, is the eigenvalue associated with the eigenfunction ¢,(x) which is the
solution of the following ODE:

Lo(ér) = Argr
a<axz<b
BCatzr =ax =5

So finally the iterative Adomian solution of equation (8) may be written as:

= ;
unle) =3 28 [ 61 (@0
=i “
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Remarks

* This last expression will be used to generate
different types of iterative algorithms for the
solution of the BVP.

* This iterative algorithm generates an iterative
algorithm which can be implemented in a CAS.

* We wish to mention solutions of groundwater flow
through non homogeneous formations using
parametric integral solutions.
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Motlvatlon
Artificial recharge of Confined aquifers
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Non Homogenous Problems

Consider, as an example, the well known two dimensional non homogencous
boundary value problem on the interval [0, L]:

&y _
LY k2 = sa) (19)
(20)

The boundary conditions are: y(0) = y(L) = 0

To simply the calculations assume that L = . The differential operator is
Lo = d2/da?* + k? and we seek an eigenfunction expansion satisfying the Sturm
Liouville equation:

d*yn
L Ky + Any = 0) (21)
Yn(0) = yu(7) =0 (22)
(23)
In general y, = A, sin(nz) + Bycos(nz) and the corresponding eigenvalues A,
is given by A n? — k%, The boundary conditions in 23 requires B, = 0 and
Ynlz) = \/;m(m)‘ The functions sin(na) are the eigenfunctions of the ODE
equations 23 The general solution of the non homogeneous equation 20 is given
by: y(a) = 302, @ayn(x) where a, = ——tmz [7(2)/?sin(nz)dz
Finally the solution of the non hemogeneous equation 20 is given by:

) = 72 i sin(nz) f F(=)sin(nz)d= (21)
=

When using a string of length L, this last equation reduces to:

Csin(27z)

L nmz
y@) = -2 Z Ca el AP CETC T 25)
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Non Homogenous Problems

05

fix)= delta(x-0.3)
=0/3

NS

z —
== MERKAZ
-
-25
3 f{x)=delta(x-0.5)
K=0.01
s AN
-
s

AADIOS — ACA 2018




N"ywn/an/x"

i ”'ﬁwmsfwm“"r“

Non Homogenous Problems

Comparison between Runge Kuta solution

—4—PITARON ~—@—SUM2 —4—ODERKUTA —=—RKUTTA HIGHER
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Heterogeneous problems

Consider the well known 2-dimensional heterogeneous boundary value problem
appearing in groundwater hydrology on the interval [0, L]:

d . dy 2.
E[Tcrlﬁ} +#y =0 (1)
The boundary conditions are: y(0) = y(L) =0

By expanding T'(x) using MacLaurin expansion or more simply T'(z) = To +
Diz). Then the heterogeneous equation may be approximated as:

d [..dy 2 d dy
L + 2y =-L [pn) 2 20
[n)dr"'y E[m] i20)
If we define K2 = £, 20 may he rewritten as:
o

&y . 1 d dy
—_— - = )
@ PV E [P n

Using the Adomian method and expanding w(z) as

y(x) = volz) + 1 (z) + 22lx) + . = 3 m(a), (22)
=0

the equations (21) may be solved iteratively as:

1. Solution for yy(r)

L 4 K2y =0 o)
vo(0) = wo(L) =0 B
2. Solution for yn(z):in = 1
Py a1 d dyn—1 a
e TH = [P 24
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Heterogeneous problems

Using the solution of the non homogeneous equation (12) on can get:

2 i sin(2FEE) - —[}'J dy" 1 (ﬂal.‘.)d (25)
LKg &= (25)7 2 dz - .
Using integration by parts, one obtains:

/ﬂ[iw [f)(z]dl’;‘:’] .r;n(?)dz = (26)

[D( ]dd ]"m(n‘r”]n—?}"]‘ [D[z]d‘-‘_-u:;-l

[

Un(z) =

] cos( g ydz (27)

Then
I, f [— [D( ]dy“ ‘] m(%m: (28)
T " [ Do) 2] cos(2T2 )z (20)
So finally, we have a generic relation:
_ 2 i“ (ZF=) nmw “IJ ynl naz, a0
Un(z) = Ik, & T=E -2 L, (z) cos(——)dz (30)

When D)(z) = dz — xo. then a series solution of the stiff ODE is given by:

sin( ";"z ) nmw

Un(T) = ‘”‘GZ[ P i3 [D[J‘n,. o ](IU)(OS[

TTy

1Y

Heterogeneous problems — an algorithm

The above equations are the basis of an algorithm to plot the solution of equation
34. The different steps are:

e Initialization: Choose N points in the range [0, L].
e Compute yo(z;)i=1---N.

e Step 1: n=1.

e For i =1 to Nyas ; Compute dy“ L(z;)i=1,---N.

e Compute .J,, numerically.

e i=1,--- N, Compute y,(z;).

o yla:) = 20 unle

o If |y, (2:)| < e then STOP.
n=n+ 1, then GOTO Step 1.
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Conclusions

* A general presentation of the use eigenfunction
expansion for non homogenous and hetrogenous
ODE has been presented.

* This different methods presented may be added to
existing libraries in CAS software such as Matlab
and Maple.

* We wish to mention solutions of groundwater flow
through non homogeneous formations using
parametric integral solutions.
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