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In the study of linear differential systems, one can be interested in deciding whether a set
of m given square matrices A1, . . . , Am are simultaneously triangularizable or not. If the
answer is yes, then we sometimes need to compute effectively an invertible matrix P such
that, for all i ∈ {1, . . . ,m}, the matrix P−1 Ai P is upper triangular. See, for instance, the
recent paper [1].

The classical approach consists in using Lie algebra theory to test whether the matrix Lie
algebra spanned by the Ai’s is solvable (e.g., using the so-called derived series) and if so,
find a basis in which all matrices of the Lie algebra are upper triangular using a constructive
version of Lie’s theorem on solvable algebras for computing common eigenvectors. See [2].

In this presentation, we will rather consider the following result due to McCoy [4]: ma-
trices A1, . . . , Am are simultaneously triangularizable if and only if, for every scalar poly-
nomial p(x1, . . . , xm) in the (non-commutative) variables x1, . . . , xm, each of the matrices
p(A1, . . . , Am)[Ai, Aj ] = p(A1, . . . , Am)(Ai Aj−Aj Ai) (i, j = 1, . . . ,m) is nilpotent. We
shall show that the proof of this result provided in [3] can be turned into an efficient algorithm
for computing particular common eigenvectors of A1, . . . , Am. As a consequence, this yields
an efficient algorithm for the simultaneous triangularization problem. Note that this new ap-
proach does not require the construction of the Lie algebra spanned by the matrices Ai’s. The
algorithm has been implemented in Maple and we will show comparisons to the implementa-
tion of the “Lie algebra method” included in the DifferentialGeometry/LieAlgebras
package of Maple.
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