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1 SOS-Certificates

Let A be a graded real ∗-algebra. Given f ∈ A, a sums-of-squares (SOS) certificate is a representation of
f in the form

f =
∑
t

qt q
∗
t

with finitely many qt ∈ A.
As a historical motivation, we take Hilbert’s proof from 1888 that every nonnegative homogeneous

polynomial f ∈ A = R[X] = R[X1, . . . , Xn] (with
∗ the identity) of degree 2r can be written as a sum

of squares if and only if (n, 2r) ∈ {(2, 2r), (n, 2), (3, 4)}. The first example however of a nonnegative
polynomial which is not a sum of squares was given later in 1967 by Motzkin, indicating that it is far from
trivial to find an explicit SOS-certificate (or to disprove its existence).

Theorems that state the existence of an SOS-certificate are called Positivstellensätze, see for example
[Sch91, Put93], and enable solving computational problems with techniques from real algebra geometry
[Mar08, Sch09]. Some applications are polynomial optimization

f∗ = min f(X)
s.t. X ∈ Rn

≥ max λ
s.t. λ ∈ R,

f − λ is SOS in R[X]

(POP)

with f ∈ R[X], see [Las01], computing a maximal positive invariant set of a dynamical system Ẋ(t) =
f(X(t)), see [KHJ13], or verifying Kazhdan’s property (T) for a finitely generated group G, which holds if
and only if

∆2 − λ∆ is SOS in R[G] (T)

for some λ > 0 with Laplacian ∆, see [Oza16].
Computing an explicit SOS representation can give not only the solution to the problem but also an

optimizer in which the solution is attained. In practice, this often boils down to solving a semidefinite
program (SDP), which is obtained by restricting the degrees of the sums of squares and constructing a
hierarchy of numerical bounds up to a satisfying precision. Naturally, these problems become very difficult
to handle computationally and tools to gain efficiency whilst preserving numerical accuracy are required.
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https://igorklep.github.io/
https://homepages.laas.fr/vmagron/
https://wangjie212.github.io/jiewang/
https://quantera.eu/compute/


2 Symmetry Reduction

Let G be a finite group acting on the algebra A and its subspaces Ar of degree at most r, which are
assumed to be finite dimensional. As a vector space, each Ar (or more precisely its complexification) has
an isotypic decomposition

Ar =
h⊕

i=1

m
(i)
r⊕

j=1

V
(i)
j ,

where h is the number of irreducible characters of G and m
(i)
r are their multiplicities [Ser77]. A vector

space basis admitting this decomposition is called symmetry-adapted. By Schur’s Lemma, we may choose

a total of m
(i)
r distinguished basis elements from the i–th component and denote them by w

(i)
j ∈ V

(i)
j .

Let f ∈ A be a G-invariant objective function of degree 2 rmin for which we seek an SOS-certificate in
A and denote by RG the Reynolds operator. For r ≥ rmin, we approximate f as

f =
h∑

i=1

RG(q(i)r ) with sums of squares q(i)r = (w(i)
r )t ·Q(i)

r · (w(i)
r )∗.

Here, w
(i)
r is the vector of basis elements w

(i)
j , 1 ≤ j ≤ m

(i)
r , and Q

(i)
r is a Hermitian positive semidefinite

matrix, that is, q
(i)
r is a sum of squares in the vector space generated by the w

(i)
j , see [RTAL13, Met25].

3 Adding Term Sparsity

The term sparsity pattern (tsp) is encoded by a graph with nodes given by a basis for Ar. Without going
into the technical details of the construction of the edges, one can follow [WML21] to construct a sequence
of binary matrices

B(i)
r,s ⊆ B

(i)
r,s+1 ⊆ B

(i)
r,s+2 ⊆ . . . ∈ {0, 1}m

(i)
r ×m

(i)
r ,

such that one only considers sums of squares with term sparsity (TSSOS) of the form

q(i)r,s = (w(i)
r )t · (B(i)

r,s ◦Q(i)
r ) · (w(i)

r )∗.

Here, ◦ denotes the Hadamard product and s is the sparse order. For example, the graph

1

2 3

is represented by the binary matrix B =

1 1 0
1 1 1
0 1 1


and encodes that basis elements b1, b2, b3 appear in the problem data as b1 b2 or b2 b3, but not b1 b3.

4 Symmetric TSSOS Hierarchy

For POP, we obtain a semidefinite lower bound

f∗ ≥ f r,s
sos := max λ

s.t. λ ∈ R,
f − λ ∈ SOSG(B

(1)
r,s )⊕ . . .⊕ SOSG(B

(h)
r,s ),

where SOSG(B
(i)
r,s) is the convex cone of sparse G-invariant sums of squares RG(q

(i)
r,s).

Theorem 4.1. For fixed r ≥ rmin, the sequence (f r,s
sos)s≥1 is monotonously nondecreasing and converges

in finitely many steps to some f r,∗
sos ≤ f∗. For fixed s ≥ 1, the sequence (f r,s

sos)r≥rmin is monotonously
nondecreasing. Under additional algebraic assumptions and constraints, one has asymptotic convergence
f∞,∗
sos = f∗.
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5 Conclusion, Work in Progress, Outlook

By symmetry reduction, a matrix representation of a sum of squares is not of size dim(Ar)
2, but splits into

potentially much smaller blocks Q
(i)
r of combined size (m

(1)
r )2 + . . . + (m

(h)
r )2. By sparsity exploitation,

one removes further entries of these matrices according to tsp graphs.
The preprocess of achieving such a reduction involves the computation of a symmetry adapted basis.

However, this basis does not depend on the specific form of the objective function, but only on the group
G and the degree r. Hence, one such preprocess can be reapplied for multiple problems. Afterwards,
computing the reduced SDP is more efficient than the original one.

In the talk, I will quantify these computational gains via benchmarks on a selection of polynomial
optimization problems, for which we used the Julia package TSSOS:

https://github.com/wangjie212/TSSOS

We are currently working on the combination of symmetry with further sparsity types, see [MW23], and
on the generalization of the above convergence result to noncommutative algebras.
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