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Abstract

Differential elimination refers to finding consequences of a system of differential equations
depending only on a chosen subset of variables. In the context of dynamical modeling, one
often starts with a polynomial dynamical system of the form x′ = g(x) and is interested to
obtain the minimal equation satisfied by a single component of x (for example, x1). Based on
the degrees of the polynomials in g, we give an upper bound on the support of such minimal
equation which can be further used, for example, for computing this equations using an ansatz.
We show that our bound is sharp in “more than half the cases”

1 Introduction

Differential elimination is a differential analogue of elimination for polynomial systems and Gaussian
elimination from linear algebra. Its study has been initiated by Ritt [8], the founder of differential
algebra, in the 1930s. He developed the foundations of the characteristic set approach, which has
been made fully constructive by Seidenberg [9]. The algorithmic aspect of this research culminated
in the Rosenfeld-Gröbner algorithm [3, 6] implemented in the BLAD library [4]. We will focus on a
special case of differential elimination of practical importance. More precisely, given a polynomial
dynamical system, that is, an ODE system of the form

x′ = g(x), (1)

compute an equation of the minimal order satisfied by x1-component of every solution of (1). This
question naturally arises, for example, if experimental data is not available for other variables [5].

2 Preliminaries

In order to state the main problem more precisely, we fix a field K of characteristic zero. For a
set of variables x = [x1, . . . , xn]

T , one can define a ring of differential polynomial in x as a ring of
infinitely many variables in x and its formal derivatives:

R = K[x(∞)] = K[x
(j)
i | 1 ⩽ i ⩽ n, 0 ⩽ j].
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This ring can be endowed with a structure of a differential ring by defining a derivation ′ to be
zero on K and (x

(j)
i )′ = x

(j+1)
i for every 1 ⩽ i ⩽ n and 0 ⩽ j. For a polynomial p ∈ K[x(∞)] and

1 ⩽ i ⩽ n, we will call the largest j such that x
(j)
i appears in p the order of p respect to xi, and if

p does not involve xi, we set the order equal to −1.
An ideal I ⊂ R is called a differential ideal if a′ ∈ I for every a ∈ I. For any f1, . . . , fs ∈ R, we

denote by (f1, . . . , fs)
(∞) the differential ideal

(f
(∞)
1 , . . . , f (∞)

s ).

To a system of polynomial ODEs (1), with g ∈ K[x]n, one can assign a differential ideal (x′ −
g(x))(∞). Then, by the differential Nullstellensatz [7, Proposition 2.4], the equations satisfied by
the x1-component of every (formal power series) solution of (1) are exactly the elimination ideal

(x′ − g(x))(∞) ∩K[x
(∞)
1 ].

It is known that this ideal is prime [7, Proposition 1.24] and that it is completely defined its minimal
polynomial [7, Proposition 1.15] (polynomials are first ordered by the order and then by the total
degree) which we will denote by fmin.

3 Main results

Theorem 1 (Bound for the support) Let g1, . . . , gn be polynomials in K[x1, . . . , xn] = K[x]

such that d := deg g1 > 0 and D := max2⩽i⩽n deg gi > 0. Let I := (x′−g)(∞) and let fmin ∈ K[x
(∞)
1 ]

be the minimal polynomial of I ∩ K[x
(∞)
1 ]. Consider a positive integer ν such that ord fmin ⩽ ν

(ν = n can be always used).

Then for every monomial xe0
1 (x′

1)
e1 . . . (x

(ν)
1 )eν in fmin the following inequalities hold

1. If d ⩽ D, then

e0 +
ν∑

k=1

(
d+ (k − 1)(D − 1)

)
ek ⩽

ν∏
k=1

(
d+ (k − 1)(D − 1)

)
; (2)

2. If d > D, then for every 0 ⩽ ℓ < ν, we have

ℓ∑
k=0

(
k(D − 1) + 1

)
ek +

ν−ℓ∑
i=1

(
i(d− 1) + ℓ(D − 1) + 1

)
ei+ℓ ⩽

⩽
ℓ∏

k=1

(
d+ (k − 1)(D − 1)

) ν−ℓ∏
i=1

(
i(d− 1) + ℓ(D − 1) + 1

)
.

(3)

We denote by Vn,d the space of polynomials of degree at most d in the variables x = [x1, . . . , xn]
T

over the field K.

Theorem 2 (Generic sharpness for d ⩽ D) Let d,D, n be positive integers such that d ⩽ D.
Then there exists a nonempty Zariski open subset U ⊂ Vn,d × V n−1

n,D such that, for every g ∈ U , the

Newton polytope of the minimal polynomial of (x′ − g)(∞) ∩K[x
(∞)
1 ] is the one given by Theorem 1

with ν = n.
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4 Challenging examples

The bound given by Theorem 1 can be turned into an algorithm [1]. We demonstrate that our
implementation of the algorithm can tackle problems which are out of reach for the state-of-the-art
software for differential elimination on the example of a model BlueSky exhibiting the blue-sky
catastrophe phenomenon (for details about the model and runtimes, see [1, Section 9]):

Name StructualIdentifiability.jl Maple(Diff.Thomas) BLAD Our Algorithm
BlueSky > 50h > 50h OOM 317 min

Table 1: Comparison with other approaches
OOM = “out of memory”

Rather than using the bound given in Theorem 1 one can also algorithmically compute the
support with [2, Section 5], which can offer computational advantages in the case of sparse input
systems.
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