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Abstract

The expansion complexity is a new figure of merit for cryptographic sequences. In this
paper, we present an explicit formula of the (irreducible) expansion complexity of ultimately
periodic sequences over finite fields. We also provide improved upper and lower bounds on the
Nth irreducible expansion complexity when they are not explicitly determined. In addition,
for some infinite sequences with given nonlinear complexity, a tighter upper bound of their
Nth expansion complexity is given. This a joint work with Zhimin Sun, Xiangyong Zeng,
Chunlei Li, and Lin Yi.

1 Introduction

Pseudo-random sequences have many applications in digital communications and cryptography
[4, 5, 15]. Such sequences can be generated by linear feedback shift registers (LFSRs). The linear
complexity of a sequence is defined as the length of the shortest LFSRs that can generate the
sequence. For a sequence of length n having linear complexity l ≤ n/2, the Berlekamp-Massey
algorithm [14] can produce the whole sequence when 2l consecutive elements of the sequence are
given. There has been a great amount of research on linear complexity properties of sequences
in the literature [1, 3, 18, 20, 23]. Sequences with large linear complexity are generally of more
interest. However, such sequences may be generated by shorter nonlinear feedback shift registers.
This observation leads to the study of nonlinear complexity of a sequence [9, 10, 12], which is
defined as the length of the shortest feedback shift registers that generate the given sequence.
Clearly a sequence with large nonlinear complexity has a large linear complexity. To further assess
the unpredictability of a sequence and thus its suitability for cryptographic applications, the N th
nonlinear complexity, as well as nonlinear complexity profile were introduced [9]. Recent progress
on nonlinear complexity can be found in [8, 12, 13, 19, 21, 22, 24].

A random sequence has an expected linear complexity close to half of its length [17]. An infinite
sequence S is thus said to have perfect linear complexity profile if |LN(S)− N

2
| ≤ 1 for all positive

integers N and have d-almost perfect linear complexity profile if |LN(S) − N
2
| ≤ d for all N and

certain integer d, where LN(S) is the Nth linear complexity of S, namely, the length of shortest
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LFSRs that generate the first N elements of S. Based on the function expansion into expansion
series, Xing and Lam in [23] presented a general construction of infinite sequences with optimal
linear complexity, which seems to be appealing for cryptographic applications. Nevertheless, Diem
showed that this type of sequences can be efficiently computed from a relatively short subsequence
in [2], where he introduced the notion of the N th expansion complexity and the expansion complexity
of an infinite sequence. Certain progress in this research line was made recently [16, 6, 7].

In this paper, we first investigate the irreducible expansion complexity of ultimately periodic
sequences S = (si)

∞
i=0 over the finite field Fq, where q is a prime power. For characterizing the

irreducible expansion complexity of an ultimately periodic sequence S, we utilize the method of
polynomial pseudo-division [11, Chapter 4] to prove that the defining ideal of S is actually generated
by a polynomial h(x, y) = f1(x)y− f0(x) with f0(x)/f1(x) being the generating function of S. This
observation enables us to present an explicit formula of the Nth irreducible expansion complexity
of S for all integers N > N0 and thereby the irreducible expansion complexity of S, where N0 is
a positive integer determined by the irreducible expansion complexity. In addition, we present an
upper bound on the Nth expansion complexity of an infinite sequence over finite fields when its
nonlinear complexity satisfies certain condition.
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