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Introduction

This habilitation thesis is designed in cumulative form and is composed of 16 peer-reviewed articles

in journals, conference proceedings, and collections, and one invited paper.

A unifying theme in my research is the combination of algebraic and geometric methods with

symbolic computation to treat problems coming from analysis and applications. I am interested

in aspects ranging from purely algebraic over constructive and algorithmic considerations to the

development of software for computer algebra systems. The habilitation thesis collects papers on

three topics of my research related to analysis. A main focus over the last years was on developing

algebraic and algorithmic methods for integro-differential equations and boundary (value) problems.

The first eleven papers (I–XI) cover the main developments and applications in this area. An

overview on the literature on symbolic and algebraic methods for integro-differential operators is

given in [7]. The second area (papers XII–XIV) is on positive steady states of dynamical systems

arising from chemical reaction networks. In terms of the corresponding (generalized) polynomial

equations (with real exponents), our results guarantee uniqueness and existence of positive solutions

for all positive parameters. The last three papers (XV–XVII) are earlier work on parametrizing

filter coefficients for orthonormal wavelets and applications of such parametrized families.

Within each topic, the papers are in chronological order. In the following overview, numbered

labels refer to some related publications (not included in the habilitation thesis) at the end of the

introduction.

Integro-differential equations

Boundary problems play a dominant role in applied mathematics since in practical problems

differential equations usually come along with boundary conditions. Despite this fact, they have

not been considered much from an algebraic and symbolic computation perspective. For differential

equations per se, there has been a lot of research in (computer) algebra to develop algorithmic

methods for simplifying and solving (systems of) differential equations.

A long-term research goal with our co-authors is to develop an algebraic foundation and algorithmic

framework for solving, transforming, and simplifying (systems of) integro-differential equations

and boundary problems, complementing numerical methods. For boundary problems with linear

ordinary differential equations (LODEs), we introduced with Markus Rosenkranz the structure of

integro-differential algebras that combines a differential algebra with suitable notions of integration

and evaluation. The ring of integro-differential operators associated with an ordinary integro-

differential algebra allows us to express and compute with boundary problems (differential operator

plus boundary conditions) as well as solution operators (Green’s operators) in one algebraic structure;

see Article I and Article II. For a construction of integro-differential operators with polynomial

coefficients using skew-polynomials, see Article IV. In Article I, we also develop an approach to

factor a boundary problem into “smaller” boundary problems along a given factorization of the
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corresponding differential operator. A prototype implementation of the corresponding algorithms

for solving and factoring boundary problems in the Theorema system of Bruno Buchberger is

described in Article V; see also the survey paper [2] for further details.

In Article III, we study Green’s operators and the factorization of linear boundary problems from a

purely linear algebra perspective. This setting applies also to (systems of) linear partial differential

equations differential equations (PDEs). Some first steps for making this approach algorithmic for

PDEs with constant coefficients and an implementation are discussed in V and in the co-supervised

PhD thesis of Loredana Tec.

In a collaboration with Hansjörg Albrecher and Corina Constantinescu (former Financial Mathe-

matics group at RICAM Linz now respectively University of Lausanne and Liverpool) and others,

we adapt and apply our approach for factoring boundary problems to study ruin probabilities and

related quantities in renewal risk models. The starting point was the observation that for certain

probability distributions the integral equations for the quantities of interest can be transformed

into boundary problems. Lifting the factorization of the differential operator to the corresponding

boundary problems gives new explicit and asymptotic expressions for the so-called Gerber-Shiu

function in terms of the penalty function. In Article VI, we study the classical case with constant

premium rates leading to differential equations with constant coefficients. However, it is clear

that it will often be more realistic to let premium amounts depend on the current surplus level of

the insurance portfolio. In Article VII, we investigate these more general models based on linear

boundary problems (on the half bounded interval from zero to infinity) with variable coefficients

and the corresponding factorization of Green’s operators.

We also investigated the generalization of results and methods for regular boundary problems

(having a unique solution for every right-hand side) to singular boundary problems, which appear

in several applications. We discuss how to compute generalized Green’s operators for LODEs and

present an implementation of integro-differential operators and the corresponding algorithms for

boundary problems in the computer algebra system Maple in [1]. In Article X, we develop linear

algebra results needed for generalizing the composition and factorization of boundary problems to

singular ones. We consider generalized inverses of linear operators and study the question when

their product in reverse order is again a generalized inverse. This problem (reverse order law)

is well-studied in the literature for various kinds of generalized inverses, especially for matrices.

Motivated by our application to boundary problems, we use implicit representation of subspaces via

“boundary conditions” from the dual space. This approach gives necessary and sufficient conditions

for the reverse order law to hold and a new representation of the product of generalized inverses on

arbitrary vector spaces. We discuss algorithmic aspects and an implementation for linear ordinary

differential equations in [4]. For further details, we refer also to the co-supervised PhD thesis of

Anja Korporal.

In the frame of my Schrödinger Fellowship at INRIA Saclay–Île-de-France, we investigated with

Alban Quadrat (INRIA Lille–Nord Europe) algebraic and algorithmic properties of ordinary integro-

differential operators with polynomial coefficients. Differential operators with polynomial coefficients

(Weyl algebras) provide a rich algebraic structure with a wealth of results and algorithmic methods.

Adding an integral operator, many new phenomena appear, including zero devisors and non-

finitely generated ideals. For an algorithmic approach to linear integro-differential equations, it

turned out that computing polynomial solutions is a fundamental task. Combining ideas for
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computing polynomial solutions for linear differential equations and homological algebra, we

introduce in Article VIII a class of algorithmic Fredholm operators on the polynomial ring (rational

indicial maps) including integro-differential operators. Based on these results, we give a constructive

proof that the right annihilator of an integro-differential operator (with evaluations) is finitely

generated. For initial value problems, an involution on the algebra of integro-differential operators

allows us to compute also left annihilators, which can be interpreted as compatibility conditions. We

give a first implementation of the corresponding algorithms based on our IntDiffOp(operations)

package [3]. See also the extended version [9] of VIII, which includes a self-contained introduction

to ordinary integro-differential operators with polynomial coefficients and several evaluations.

In Article IX, we study algebraic aspects of integro-differential algebras and their relation to so-called

differential Rota-Baxter algebras. We generalize this concept to that of integro-differential algebras

with weight. Based on free commutative Rota-Baxter algebras, we investigate the construction

of free integro-differential algebras with weight generated by a regular differential algebra. The

explicit construction is not only interesting from an algebraic point of view but is also an important

step for algorithmic extensions of differential algebras to integro-differential algebras. It is also

related to the universal algebra construction of integro-differential polynomials in Article II and [2].

Algorithmic methods for integrating fractions of differential polynomials are described in [5].

Skew polynomials (Ore extensions and Ore algebras) are a well-established algebraic and algorithmic

setting for studying many common operators like differential and difference operators. However,

integro-differential operators over an arbitrary integro-differential algebra, for example, do not

fit this structure. In Article XI, we propose a general algorithmic approach to noncommutative

operator algebras generated by additive operators using quotients of tensor rings. For a constructive

approach, these quotients are defined by confluent tensor reduction systems, which are a basis-free

analog of noncommutative Gröbner bases. See [6] for the corresponding Mathematica package

TenRes. The tensor approach also allows to model integro-differential operators with matrix

coefficients, where constants are not commutative. Using tensor reduction systems, we construct

normal forms for the ring of integro-differential operators with linear substitutions having matrix

coefficients; see [10] for an application to linear differential time-delay systems.

Positive steady states

In Article XII, a joint work with Stefan Müller (University of Vienna), we propose the notion of

generalized mass-action systems that can serve as a more realistic model for reaction networks in

intracellular environments; classical mass-action systems capture chemical reaction networks in

homogeneous and dilute solutions. In addition to the complexes of a network and the related stoi-

chiometric subspace, we introduce corresponding kinetic complexes, which represent the exponents

in the rate functions and determine the kinetic-order subspace. We show that several results of

chemical reaction network theory developed by Feinberg and coauthors can be extended to the case

of generalized mass-action kinetics.

Our main result gives conditions for the existence of a unique positive steady state for arbitrary

initial conditions and independent of rate constants in this generalized setting. We also give

necessary and sufficient conditions for multistationarity, which is an important property in many

applications, for example, in connection with cell differentiation. The conditions are formulated in
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terms of sign vectors (oriented matroids) of the stoichiometric and kinetic-order subspace and face

lattices of related cones. In terms of the corresponding (generalized) polynomial equations, our

results guarantee uniqueness and existence of positive solutions for all positive parameters. In the

invited paper Article XIII, we focus on a constructive characterization of positive solutions of these

generalized polynomial equations with real and symbolic exponents. The algorithmic methods are

implemented in the Maple package GMAK. We discuss dynamical properties of planar generalized

mass-action systems in the recent papers [8] and [11].

In Article XIV, a collaboration with Anne Shiu (Texas A&M University), Alicia Dickenstein (Uni-

versity of Buenos Aires), Carsten Conradi (HTW Berlin), Elisenda Feliu (University of Copenhagen),

and Stefan Müller, we characterize the injectivity of families of generalized polynomial maps on

the positive orthant in terms of sign vectors. Our work relates to and extends existing injectivity

conditions expressed in terms of determinants. As one application, we give criteria for the uniqueness

of steady states in chemical reaction networks with power-law kinetics. In the context of real

algebraic geometry, our results allow a first partial multivariate generalization of the classical

Descartes’ rule, which bounds the number of positive real roots of a univariate real polynomial in

terms of the number of sign variations of its coefficients. In the recent preprint [12], we give an

effective characterization of the bijectivity of families of generalized polynomial maps.

Wavelets

In Article XV with Otmar Scherzer (University of Vienna) and in Article XVI, we use Gröbner bases

for constructing parametrizations of filter coefficients of scaling functions and compactly supported

orthonormal wavelets with several vanishing moments. The discrete moments of the filter coefficients

are used as parameters and we take advantage of relations between these moments. Applications

of parametrized filter coefficients include compression of signals and images and the construction

of most regular or least asymmetric wavelets; see Article XVII. Using our parametrizations, we

can also reduce the question of the existence of rational filter coefficients to finding rational points

on algebraic curves. For example, we prove that there do not exist orthonormal rational filter

coefficients of length six with at least two vanishing moments.
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Abstract

We present a new approach for expressing and solving boundary problems for linear ordinary differential
equations in the language of differential algebras. Starting from an algebra with a derivation and integration
operator, we construct an algebra of linear integro-differential operators that is expressive enough for
specifying regular boundary problems with arbitrary Stieltjes boundary conditions as well as their solution
operators.

On the basis of these structures, we define a new multiplication on regular boundary problems in such
a way that the resulting Green’s operator is the reverse composition of the constituent Green’s operators.
We provide also a method for lifting any factorization of the underlying differential operator to the level of
boundary problems. Since this method only needs the computation of initial value problems, it can be used
as an effective alternative for computing Green’s operators in the case where one knows how to factor the
given differential operators.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Linear boundary value problems; Ordinary differential equations; Green’s operators; Factorization;
Differential algebra; Noncommutative Gröbner bases

1. Introduction

In this paper, we develop a new approach for handling boundary problems in the language
of differential algebras, restricting ourselves to the case of linear boundary problems for

I This work was supported by the Austrian Science Fund (FWF) under the SFB grant F1322.
E-mail addresses: Markus.Rosenkranz@oeaw.ac.at (M. Rosenkranz), Georg.Regensburger@oeaw.ac.at

(G. Regensburger).
URLs: http://www.ricam.oeaw.ac.at (M. Rosenkranz), http://www.ricam.oeaw.ac.at (G. Regensburger).

0747-7171/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2007.11.007
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ordinary differential equations. (We reserve the traditional term “boundary value problem” for
the particular type of boundary problems that have only point evaluations, i.e. point conditions
in the terminology of Section 5.) The algebraic language that we build up allows us

• to state boundary problems in a natural algebraic language,
• to express their solution operators in the same language,
• to compute the solution operators from a fundamental system,
• to multiply boundary problems corresponding to the solution operators,
• to lift factorizations of differential operators to boundary problems.

The present paper extends the ideas from Rosenkranz (2005) and Rosenkranz et al. (2003)
in several aspects: Boundary problems can now be formulated and solved in any differential
algebra that meets some natural conditions (Theorem 26), the case of variable coefficients is fully
included, and a new monoid structure on boundary problems provides an elegant description and
an alternative computation method for the corresponding solution operators.

For developing an appropriate notion of a boundary problem in a given differential algebra,
it will be useful to have a look at the classical setting of Stakgold (1979, p. 203) dealing with a
two-point boundary problem on a finite interval [a, b]. Disregarding weak solutions and ill-posed
problems for simplicity, the general idea is that a differential equation

u(n)(x)+ cn−1(x) u(n−1)(x)+ · · · + c1(x) u′(x)+ c0(x) u(x) = f (x) (1)

with coefficient functions cn−1, . . . , c1, c0 ∈ C∞[a, b] and forcing function f ∈ C∞[a, b] is
supplemented with additional conditions that determine the solution u ∈ C∞[a, b] uniquely. In
certain cases, these may be initial conditions, but in general one has to deal with constraints that
combine the values and derivatives of u at both endpoints a and b. In the context of a linear
differential equation like (1), it is natural to restrict oneself to linear conditions of the form

pn−1 u(n−1)(a)+ · · · + p0 u(a)+ qn−1 u(n−1)(b)+ · · · + q0 u(b) = e, (2)

where the pi , qi and e are given complex numbers. For obvious reasons, boundary conditions of
the form (2) are known as two-point boundary conditions; note that they include initial conditions
as the special case where all the qi vanish. In order to obtain a regular boundary problem, one
imposes n suitable linear boundary conditions (2) on a given linear differential equation (1).
Since all differential equations, operators and conditions will be linear in this paper, we will
from now on drop the attribute “linear”.

Classical boundary problems (1), (2) have a rich structure. First of all, it is clear that one can
decompose the solution of (1), (2) into a solution of the semi-inhomogeneous problem (obtained
from (2) by setting all e = 0) and a solution of the semi-homogeneous problem (obtained
from (1) by setting f = 0). Since we assume that fundamental systems are available, the latter
problem reduces to linear algebra, and we can concentrate on the semi-inhomogeneous problem.
Thus we assume from now on homogeneous boundary conditions.

A second crucial observation is that the solution u depends linearly on the forcing function
f . In fact, the assumption of a regular boundary problem means (Definition 25) that there is
a unique u for every given f , so there is a solution operator G : C∞[a, b] → C∞[a, b] with
u = G f . This so-called Green’s operator G is linear.

Taking advantage of the linear structure, it is possible to compute the Green’s operator G
rather than a particular solution u belonging to a fixed forcing function f . We may view this as
solving the parametrized differential equation (1) together with boundary conditions (2). There
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is also a practical reason why it is useful to have the Green’s operator: The forcing function f
is often more likely to change (e.g. as the “source term” in heat conduction), while the shape
of the differential equation (its left-hand side) and the boundary conditions remain fixed. In the
classical setting, the Green’s operator G : C∞[a, b] → C∞[a, b] can be represented in the form
of an integral operator

G f (x) =
∫ b

a
g(x, ξ) f (ξ) dξ

with a uniquely determined Green’s function g ∈ Cn−2
[a, b]2. So once g is found, one can

compute each desired solution u in a single integration.
Now let us describe our strategy of rebuilding this scenario in a (moderately general)

differential algebra. In the place of C∞[a, b], we take a differential algebra F as our starting
point. Obviously, a differential equation (1) is then given by

T u = f (3)

with a differential operator T ∈ F[∂], and one has to find the solution u ∈ F in terms of a
given forcing function f ∈ F . (In order to gain flexibility, we will actually consider differential
operators T ∈ F0[∂] for a suitable subalgebra F0 ≤ F ; see Definition 18.) Boundary conditions
can be given by

β1u = · · · = βnu = 0 (4)

for suitable functionals β1, . . . , βn ∈ F∗, where F∗ denotes the dual space of F . We will allow
rather general boundary conditions of the so-called Stieltjes type (see Definition 14), including
not only two-point conditions like (2) but also global conditions involving integrals.

At this point, we would like to make a general remark on point evaluation in differential
algebra. This is a topic not often considered (within the given algebraic setting), despite its
undisputed importance in the applications. The problem is that the elements of a differential
algebra (or differential ring or differential field) are abstractions of functions that are not meant
to be “evaluated”. Robinson (1961) has addressed this discrepancy by introducing what he
called localized differential rings. Working in the much wider scope of polynomial differential
equations, he has developed a solvability criterion for initial value problems. To our knowledge,
his ideas have not found much resonance. For a more practical perspective on initial value
problems for differential–algebraic equations, see the recent survey by Pritchard and Sit (in
press), containing a method for determining admissible initial conditions. Our own approach
is to consider boundary conditions in their natural context: as functionals of the aforementioned
type.

This is why we require a differential algebra—they provide a vector space structure together
with the structure of a differential ring. In fact, we need more than that (Section 2): Since we
want to express the Green’s operator of a boundary problem (3), (4), we need a linear operator

r
denoting integration, just like ∂ is used for differentiation. We stipulate that

r
is a section (right

inverse) of ∂ , meaning that

∂
r
= 1.

Further analysis will make it clear that we must also require
r

to satisfy a version of the Baxter
axiom, an algebraic formulation of integration by parts. As we shall see, this necessarily excludes
differential fields from the admissible differential algebras F . We are thus led to the following
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crucial observation (Proposition 6): Despite their extremely useful role e.g. in the Galois theory
of linear differential equations (van der Put and Singer, 2003), differential fields are inadequate
for treating initial/boundary conditions along with the differential equations. In some sense, this
result is to be expected: Point evaluations correspond to maximal ideals, which are not available
in fields.

We call the resulting structure (F, ∂,
r
) an integro-differential algebra. They induce a natural

algebra of integro-differential operators F[∂,
r
], just like (F, ∂) alone induces the algebra of

differential operators F[∂]. We introduce a suitable rewrite system (Baader and Nipkow, 1998)
for these operators (Section 3), enabling their convenient symbolic manipulation. Our rewrite
system is both Noetherian and confluent (Proposition 13), and the corresponding normal forms
have a natural description (Proposition 17). The advantage of the F[∂,

r
] language is that it

provides a uniform frame for stating initial/boundary problems as well as deriving and expressing
their Green’s operators.

The departure from differential fields has the consequence that inhomogeneous differential
equations cannot be reduced to homogeneous ones in the way explained by van der Put and
Singer (2003, Exercise 1.14.1). Hence we have to resort to an algebraic version of the familiar
method of “variation of the constant” for solving even initial value problems (Section 4), and
this necessitates a condition on solutions of inhomogeneous first-order differential equations. It
essentially requires that exponential solutions exist and behave as normal: they have a reciprocal.

For treating boundary problems (3), (4) in a convenient fashion, we specify them as pairs:

(T,B) with T ∈ F0[∂] and B = [β1, . . . , βn] ≤ F∗.
Using this setup, we will show (Section 5) that they have a Green’s operator that can be expressed
in F[∂,

r
], and we sketch how one can compute it. For a concrete implementation in the classical

C∞ setting, see the previous article (Rosenkranz, 2005). Generalizing the idea of a boundary
problem as “a surjective linear map with linear functionals as side conditions”, we have also
developed an abstract treatment for general vector spaces in our forthcoming paper Regensburger
and Rosenkranz (in press). This approach allows us to apply the ideas of Sections 6 and 7, e.g.
to linear partial differential equations or systems of linear ordinary differential equations.

The algebraic treatment of boundary problems applied in this paper not only allows for a
symbolic solution, it is also a natural setting for exposing an important structure connecting
boundary problems amongst themselves (Section 6): It turns out that the composition structure
of Green’s operators is reflected in a monoid structure on the boundary problems, arising as a
semi-direct product of F0[∂] and the additive structure of subspaces in F∗.

Finally (Section 7), we will show how to factor a given boundary problem (T,B) into
smaller ones. While factorization of linear ordinary differential operators is an important topic in
symbolic computation (Grigoriev, 1990; van der Put and Singer, 2003; Schwarz, 1989; Tsarev,
1996), it neglects the presence of boundary conditions (possibly addressed in a post-processing
step). We will show how every factorization of the differential operator T gives rise to various
factorizations of (T,B), whose full classification is stated. In order to lift a factorization of T
to the level of boundary problems, one only needs to solve an initial value problem. Hence one
may employ factorization as a tool for computing the Green’s operator G. In the extreme case of
splitting T into linear factors, one obtains G as a composition of first-order Green’s operators,
which can be computed easily. (In practical examples, one will often be content with a partial
factorization.)

Some remarks on notation. We writeN for the set of all natural numbers including zero. The
variable n ranges over N. All algebras are assumed to be commutative with identity. The zero-
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dimensional subspace of any vector space will be denoted by O = {0}. We write [ f1, . . . , fn] for
the subspace generated by the vectors f1, . . . , fn of some vector space F . For subsets A ⊆ F
and B ⊆ F∗, the so-called orthogonal is defined as

A⊥ = {ϕ ∈ F∗ | ∀ f ∈A ϕ( f ) = 0} ≤ F∗,
B⊥ = { f ∈ F | ∀ϕ∈B ϕ( f ) = 0} ≤ F;

see Section 5 for more details.

2. Integration in differential algebras

Let (F, ∂) be a differential algebra over a field K , so ∂ : F → F is a K -linear map fulfilling
the Leibniz rule ∂( f g) = f ∂(g) + g ∂( f ). For convenience, we may assume K ≤ F , and we
write f ′ as shorthand for ∂( f ). Furthermore, we will assume that K has characteristic zero (even
though some definitions and results would make sense in positive characteristic), except when
stated otherwise. Then we may also assumeQ ≤ K , so that F is what is sometimes called a Ritt
algebra (Kaplansky, 1957, p. 12).

The algebra of (formal) differential operators over the differential algebra F is denoted by
F[∂], as e.g. in van der Put and Singer (2003). Addition in F[∂] is obvious, while multiplication
is determined by the rule ∂ f = f ∂ + f ′. Each T ∈ F[∂] acts on F as an (actual) differential
operator T : F → F . The identity operator of F[∂] is denoted by ∂0

= 1 just like the unit
element 1 ∈ F ; it will be clear from the context which is meant.

Our goal is to solve inhomogeneous differential equations by using Green’s operators. The
simplest such equation is u′ = f , and its solution operators

r
: f 7→ u are exactly the sections

of the differential operator ∂ . A derivation need not have any sections; e.g. in the algebra of
univariate differential polynomials, the indeterminate cannot be a derivative. But if it does, their
description follows from linear algebra.

Proposition 1. Every section
r
: F → F of the derivation ∂ : F → F corresponds to a unique

projector P : F → F with P = 1 −
r
∂ , and to a unique direct sum F = C u I with

C = Ker(∂) = Im(P) and I = Im(
r
) = Ker(P).

If
r

is any fixed section of ∂ , every projector P with Im(P) = Ker(∂) induces a section (1− P)
r

,
and every section of ∂ arises uniquely in this way.

Proof. See Nashed and Votruba (1976, p. 17) or Regensburger and Rosenkranz (in press). �

We refer to the elements of I = Im(
r
) as the initialized functions (with respect to

r
), while

those of C = Ker(∂) are usually known as the constants (with respect to ∂). In the prototypical
case of F = C∞(R), the initialized functions are those that can be written as F(x) =

r x
α

f (ξ) dξ
for an integrand f ∈ C∞(R) and an initialization point α ∈ R; hence F is exactly that
antiderivative of f that fulfills the initial condition F(α) = 0.

For solving inhomogeneous differential equations T u = f of higher order, one must expect to
iterate the section

r
. In general, this could lead to “nested integrals” of arbitrary complexity. But

we know from the classical C∞ setting (see Section 1) that the Green’s operator G can always be
expressed using a single integration, with the so-called Green’s function g as its integral kernel.
The essential role of Green’s functions is to resolve nested integrals, whereas the passage from
an operator G : C∞[a, b] → C∞[a, b] to a function g ∈ Cn−2

[a, b]2 is immaterial from our
viewpoint.
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In order to capture this behavior, we need an identity for resolving nested integrals (eventually
leading to the

r
f
r

rule in Table 1). Such an identity is given by the so-called Baxter axiom (of
weight zero), asserting

(
r

f )(
r

g) =
r
( f

r
g)+

r
(g

r
f ) (5)

for all f, g ∈ F ; see Guo (2002), Baxter (1960) and Rota (1969) for more details. One sees
immediately that (5) is an algebraic version of integration by parts, rewritten in such a way that it
need not refer to any derivation. A Baxter algebra (F,

r
) is then a K -algebra F with a K -linear

operation
r

fulfilling the Baxter axiom (5).
If

r
is again a section of a derivation ∂ on F , we note an important consequence of (5).

Writing x as an abbreviation for
r

1, we obtain x2/2 =
r r

1 and inductively xn/n! =
r
· · ·

r
1

with n iterates of
r

. Hence the powers u = xk with k < n are solutions of u(n) = 0, and one
checks immediately that they are all linearly independent. This means that Ker(∂n) contains
[1, x, . . . , xn−1

] as an n-dimensional subspace. So we see that F contains (an isomorphic
copy of) the polynomial ring K [x] and is thus infinite dimensional. Note that K [x] ≤ F is
simultaneously a differential algebra under ∂ and a Baxter algebra under

r
, so (K [x], ∂,

r
) is an

integro-differential algebra in the sense of Definition 4.
What we shall actually need is the differential Baxter axiom, requiring

r
f g = f

r
g −

r
( f ′

r
g) (6)

for all f, g ∈ F . Note that this is what most people do when they actually apply integration
by parts (eventually leading to the

r
f ∂ rule in Table 1), but (6) cannot be stated in pure Baxter

algebras. The variant (5) follows immediately by substituting
r

f for f in (6), and often the two
versions are actually equivalent (especially in the cases relevant for us—see after Definition 8).
For seeing that in general (6) is stronger than (5), we need a somewhat artificial construction
(Example 3). In fact, we can easily characterize what makes the differential Baxter axiom
stronger than the pure one.

Lemma 2. A section
r

of ∂ fulfills the differential Baxter axiom (6) iff it fulfills the pure Baxter
axiom (5) and the homogeneity condition

r
c f = c

r
f for all c ∈ C and f ∈ F .

Proof. Assume
r

fulfills (6). Then
r

also fulfills (5) as observed above, while substituting a
constant c ∈ C for f in (6) gives homogeneity. Conversely, assume that

r
fulfills (5) and the

homogeneity condition. The latter hypothesis means that (6) is satisfied if f ∈ C. Now consider
f ∈ I so that

r
f ′ = f . Substituting f ′ for f in (5), we see that (6) is also satisfied for these

f ∈ I. But then the general case of f ∈ F follows via the direct sum F = C u I. �

Example 3. Let K be a field of characteristic zero. Then (R[x], ∂) with R = K [y]/y4 and
∂ f = fx is a differential algebra over K . Defining

r
f =

∫ x

0
f (ξ, y) dξ + f (0, 0) y2, (7)

we obtain a K -linear map
r
: R[x] → R[x]. Since the second term vanishes under ∂ , we see

immediately that
r

is a section of ∂ . For verifying the Baxter axiom (5), let us write −
r

for the
ordinary integral in (7) and compute

(
r

f )(
r

g) = (−
r

f )(−
r

g)+ y2
−

r (
g(0, 0) f + f (0, 0) g

)
+ f (0, 0) g(0, 0) y4,

r
( f

r
g) =

r
f (−

r
g + g(0, 0) y2) = −

r
( f −

r
g)+ y2

−

r (
g(0, 0) f

)
.
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Since y4
≡ 0 and the ordinary integral −

r
fulfills the Baxter axiom (5), this implies immediately

that
r

does also. However, it does not fulfill the stronger axiom (6), because the homogeneity
condition is violated: Observe that Ker(∂) = R, so in particular we should have

r
y · 1 = y ·

r
1.

But one checks immediately that the left-hand side yields xy, while the right-hand side yields
xy + y3.

For excluding cases like the preceding example, we will insist that “integral operators” must
satisfy the differential Baxter axiom.

Definition 4. Let (F, ∂) be a differential algebra. A section
r

of ∂ is called an integral if it
satisfies the differential Baxter axiom (6). In this case, we call (F, ∂,

r
) an integro-differential

algebra.

Example 5. As an example, detailed in Rosenkranz (2005, p. 176), take F = C∞[a, b] with its
usual derivation ∂ and integral operators

r
∗
: f 7→

∫ x

a
f (ξ) dξ and

r
∗
: f 7→

∫ b

x
f (ξ) dξ.

Then both (F, ∂,
r
∗
) and (F, ∂,−

r
∗
) are integro-differential algebras. By contrast, the operator

f 7→
∫ b

a

∫ x

τ

f (ξ) dξ dτ,

used for regularizing an ill-posed problem in Rosenkranz (2005, p. 192), is just a section for ∂ ,
but not an integral.

Using Proposition 1, we can characterize integrals by their projectors and direct sums. In
the above example, we observe that the projectors f 7→ f (a) and f 7→ f (b), corresponding
respectively to the integrals

r
∗ and−

r
∗
, are multiplicative, whereas the projector

r b
a for the third

operator is not. This behavior is the key to their characterization.

Proposition 6. A section
r
: F → F of the derivation ∂ : F → F is an integral iff its projector

P : F → F is multiplicative iff I = Im(
r
) is an ideal.

Proof. Assume first that
r

is an integral for ∂ , let P = 1 −
r
∂ be its projector and F = C u I

the corresponding direct sum with C = Ker(∂) and I = Im(
r
), according to Proposition 1. We

must prove P( f g) = P( f ) P(g) for all f, g ∈ F . Substituting g′ for g in (6), we obtain

0 =
r

f g′ − f
r

g′ +
r
( f ′

r
g′) =

r
f g′ − f (g − Pg)+

r
( f ′(g − Pg))

=
r

f g′ +
r

f ′g − f g + f Pg − (
r

f ′) Pg,

where we have used the homogeneity of
r

in the last step. But then

P( f g) = f g −
r
( f ′g + f g′) = ( f −

r
f ′) Pg = P f Pg,

as claimed. Assume conversely that P is multiplicative, and take f,G ∈ F arbitrary. Expanding
the definition of P and using the Leibniz law gives

P( f G) = (1−
r
∂) f G = f G −

r
f ′G −

r
f G ′

and

P f PG = ( f −
r

f ′)(G −
r

G ′) = f G − G
r

f ′ − f
r

G ′ + (
r

f ′)(
r

G ′);
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equating the two expressions, we obtain

(
r

f ′)(
r

G ′)+
r

f ′G +
r

f G ′ = G
r

f ′ + f
r

G ′,

which yields indeed (6) by specializing to G =
r

g.
Let us now prove that I is an ideal under the assumption that P is multiplicative. Since P

is a projector along I, we have PG = 0 iff G ∈ I. Hence for all f ∈ F and G ∈ I we have
P( f G) = P f PG = 0, and f G ∈ I as claimed. Finally, we assume that I is an ideal and prove
that P is multiplicative. Taking f, g ∈ F arbitrary, we set f0 = P f ∈ C and g0 = Pg ∈ C. Then
f1 = f − f0 ∈ I and likewise g1 = g − g0 ∈ I, so we obtain

P( f g) = P( f0g0)+ P( f0g1)+ P( f1g0)+ P( f1g1) = f0g0 = P f Pg

since all of f0g1, f1g0, f1g1 ∈ I vanish under P , while f0g0 ∈ C is fixed by P . �

For the operators
r
∗ and

r
∗

in Example 5, the Baxter axiom is of course known to hold. In the
following example, where this is not obvious, we can take advantage of Proposition 6.

Example 7. Consider F = C∞(R2) with the derivation ∂u = ux + u y . Finding sections for ∂
means solving the partial differential equation ux + u y = f . Its general solution is given by

u(x, y) =
∫ x

α

f (t, t − x + y) dt + g(y − x),

where g ∈ C∞(R) and α ∈ R are arbitrary. In order to ensure a linear section, one has to choose
g = 0, arriving at

r
f =

∫ x

α

f (t, t − x + y) dt.

Using a change of variables, one may verify that
r

satisfies the Baxter axiom (5), so (F,
r
) is

a Baxter algebra. We see also that C = Ker(∂) is given by the functions (x, y) 7→ g(x − y)
with arbitrary g ∈ C∞(R), while I = Im(

r
) consists of the functions f ∈ F satisfying

f (α, y) = 0 for all y ∈ R. The projector P : F → F maps a function f to the function
(x, y) 7→ f (α, α − x + y). Since the homogeneity condition is obviously satisfied, we conclude
that (F, ∂,

r
) is an integro-differential algebra. But with Proposition 6, we could have derived

this result immediately since P is multiplicative and I an ideal.

As we see from the above example, the space of constants for an integro-differential algebra
may be infinite dimensional. Since we want to treat boundary problems for ordinary differential
equations, we will exclude these cases. Note that in the following definition our terminology
deviates from that of Kolchin (1973, p. 58), which simply requires having a single derivation. So
in Kolchin’s sense, the differential algebra of Example 7 would be addressed as “ordinary”.

Definition 8. A differential algebra (F, ∂) is called ordinary if dim Ker(∂) = 1.

Having an ordinary differential algebra F has several important consequences. First of all,
it is clear that we have K = C, so F is an algebra over its own field of constants. But then a
section is automatically homogeneous over C, so the pure Baxter axiom (5) and its differential
version (6) coincide. Furthermore, we obtain the familiar relation

Ker(∂n) = [1, x, . . . , xn−1
], (8)
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which can be seen thus: As mentioned above, the Baxter axiom implies the inclusion⊇. Equality
follows from dim Ker(∂n) = n, which is a consequence of the identity

Ker(T 2) = G Ker(T )u Ker(T )

in Regensburger and Rosenkranz (in press), generally valid for epimorphisms T and sections G
of T .

One knows from linear algebra that a projector P onto a one-dimensional subspace [w] of
a K -vector space V can be written as P(v) = ϕ(v)w, where ϕ is a unique functional with
ϕ(w) = 1. If V is moreover a K -algebra, a projector onto K = [1] is canonically described
by the functional ϕ with normalization ϕ(1) = 1. Hence in an ordinary differential algebra,
the projectors corresponding (via Proposition 1) to sections of the derivation can be regarded as
normalized functionals.

In an ordinary integro-differential algebra (F, ∂,
r
), the normalized functional corresponding

to the integral
r

is moreover multiplicative by Proposition 6. Since this will be a crucial
ingredient for our later development, it deserves a special name.

Definition 9. Let (F, ∂,
r
) be an ordinary integro-differential algebra. Then we call the

multiplicative functional e = 1−
r
∂ its evaluation.

The terminology stems from the standard model described in Example 5, where e is
a point evaluation. For boundary problems on a finite interval, it is natural to treat both
endpoints specially, leading to a pair of evaluations and integrals. This is the situation described
in Rosenkranz (2005, p. 182) by the concept of “analytic algebra”.

Example 10. An analytic algebra (F, ∂,
r
∗
,
r
∗
) is equivalent to a pair of ordinary integro-

differential algebras (F, ∂,
r
∗
) and (F, ∂,−

r
∗
). Writing as in the above reference f 7→ f←

and f 7→ f→ for the evaluations of respectively
r
∗ and

r
∗
, one finds that

(
r
∗ f )→ =

r
∗ f +

r
∗

f = (
r
∗

f )←.

This relation implies (after some calculation) that
r
∗

is the adjoint of
r
∗, with respect to the inner

product 〈|〉 : F × F → C given by

〈 f |g〉 = (
r
∗
+

r
∗
) fg.

In the standard model F = C∞[a, b], we have f← = f (a) and f→ = f (b), yielding the L2

inner product 〈 f |g〉 =
∫ b

a f (x)g(x) dx .

The multiplicative functionals on an algebra are known as its characters (note that all
characters are normalized). We write M(F) for the vector space of all characters on an
ordinary integro-differential algebra (F, ∂,

r
). The evaluation of F is a distinguished character

e ∈M(F) whose kernel I is an ideal with F = K u I according to Proposition 6.
One calls a K -algebra augmented if there exists a character on it. Its kernel I is then

known as an augmentation ideal and forms a direct summand of K ; see Cohn (2003, p. 132).
Augmentation ideals are always maximal ideals (generalizing the C∞[0, 1] case) since the direct
sum F = K uI induces a ring isomorphism F/I ∼= K . Reformulating Proposition 6, we obtain
now a characterization of integrals in ordinary differential algebras.

Corollary 11. In an ordinary differential algebra (F, ∂), a section
r

of ∂ is an integral iff its
normalized functional is a character iff I = Im(

r
) is an augmentation ideal.
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Note that the augmentation ideal I corresponding to an integral is in general not a differential
ideal of F . We can see this e.g. for

r
∗ in Example 5, where I consists of all f ∈ F with

f (0) = 0, so that I is not differentially closed since (x 7→ x) ∈ I but (x 7→ 1) 6∈ I.
We have now gathered the main ingredients needed for treating boundary problems, namely

integro-differential algebras. Similar structures are introduced under the name Rota–Baxter
algebras in the recent preprint by Guo and Keigher (2007), which came to our attention only
after completing this article. The situation considered there is more general in four respects: The
algebras are over unital commutative rings rather than fields, they may be noncommutative, they
may have nonzero weight, and they satisfy the pure Baxter axiom (5) rather than the differential
version (6). Their interest stems mainly from combinatorial investigations of tree-like structures,
where the weight is usually nonzero.

3. Integro-differential operators

From here onwards, let (F, ∂,
r
) be an ordinary integro-differential algebra over a field K

with evaluation e. We introduce now an algebra of operators on F using rewrite systems (Baader
and Nipkow, 1998) in the spirit of Bergman (1978). The integro-differential operators F[∂,

r
]

are defined as the K -algebra generated by the symbols ∂ and
r

, the “functions” f ∈ F and
the multiplicative “functionals” ϕ ∈ M(F), modulo the rewrite rules given in Table 1. We
will use the variables f, g for elements of F and the variables ϕ,ψ, χ for elements of M(F).
Every integro-differential operator can be written as a sum of “monomials”, every monomial as
a coefficient times a “term”.

In the rules of Table 1 as well as in the rest of this paper, we use the notation U · f for the
action of U on a function f , where U is an element of the free algebra in the above generators.
It is an easy matter to check that the rewrite rules of Table 1 are fulfilled in (F, ∂,

r
), so we may

regard · as an action of F[∂,
r
] on F . In particular, f · g now denotes the product of functions

f, g ∈ F .
We remark that Table 1 is to be understood as including implicit rules for

r r
,
r
∂ and

r
ϕ by

substituting f = 1 in the rules for
r

f
r

,
r

f ∂ and
r

f ϕ, respectively. Moreover, one obtains the
derived rule e

r
= 0 from the definition of the evaluation e. Note that F[∂] is a subalgebra of

F[∂,
r
] with the same induced action on F .

Example 12. The analytic polynomials of Rosenkranz (2005, p. 176) are also an important
special case of integro-differential operators (the restriction to K = C imposed there is not
essential). They are constructed on top of an analytic algebra (F, ∂,

r
∗
,
r
∗
) with evaluations

f 7→ f← and f 7→ f→, as explained in Example 10. As usual, we can express one integral
using the other, yielding either −

r
∗
= (1−→)

r
∗ or −

r
∗
= (1−←)

r
∗
. Choosing randomly the

first alternative, we work with the integro-differential algebra (F, ∂,
r
∗). Up to notational details,

the analytic polynomials over (F, ∂,
r
∗
,
r
∗
) are then the subalgebra of F[∂,

r
∗
] generated by the

operators

D = ∂, L = ←,
A =

r
∗
, R = →,

B =
r
∗
,= (1−←)

r
∗
d f e = f,

using the same names as in the cited article. We use also the abbreviation F = A + B for the
operator of definite integration.
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Table 1
Rewrite rules for integro-differential operators

f g → f · g ∂ f → ∂ · f + f ∂
r

f
r
→ (

r
· f )

r
−

r
(
r
· f )

ϕψ → ψ ∂ϕ → 0
r

f ∂ → f −
r
(∂ · f )− (e · f ) e

ϕ f → (ϕ · f ) ϕ ∂
r
→ 1

r
f ϕ → (

r
· f ) ϕ

Note that for analytic polynomials, the multiplication operators d f e are restricted to basis
elements f ∈ F ; similar restrictions could be made here. The point is that a system of normal
forms on F[∂,

r
] presupposes a canonical simplifier on the free algebra generated by ∂ and

r
,

the functions f ∈ F and the functionals ϕ ∈ M(F). Expansion with respect to fixed bases of
F and M(F) provides such a canonical simplifier, but there may also be others. In Rosenkranz
(2005), we have implemented a ground simplifier via such a basis expansion (where F was given
by the exponential polynomials). In the present paper, we take the viewpoint that the free algebra
is equipped with some canonical simplifier (the “ground simplifier”), and the confluence result
of the following proposition has to be understood relative to such a ground simplifier.

Proposition 13. The rewrite system of Table 1 is Noetherian and confluent.

Proof. By the Diamond Lemma 1.2 from Bergman (1978), it suffices to ensure the following
two facts: First we must construct a partial well-order> on the word monoid in the generators of
F[∂,

r
] such that > is compatible with the monoid structure and the rewrite system in Table 1.

Second we have to prove that all ambiguities of the rewrite system are resolvable. For defining
the partial well-order, we put ∂ > f for all functions f and extend this to words by the graded
lexicographic construction. The resulting partial order is clearly well-founded (since it is on the
generators) and compatible with the monoid structure (by its grading). It is also compatible with
the rewrite system because all rules reduce the word length except for the Leibniz rule, which is
compatible because ∂ > f .

For proving that the ambiguities of Table 1 are resolvable, note first that we have no inclusion
ambiguities while there are exactly 14 overlap ambiguities. For overlapping rulesww1 → p1 and
w2w→ p2 to be resolvable, their S-polynomial p2w1−w2 p1 must reduce to zero. This is indeed
the case, as one can check by an easy calculation (using also the axioms of integro-differential
algebras for F). As a representative example, let us reassure ourselves that the S-polynomial
from the rules for ww1 =

r
f ∂ and w2w =

r
g
r

does indeed reduce to

(
r
· g)

r
f ∂ −

r
(
r
· g) f ∂ −

r
g f +

r
g
r

f ′ +
r

g (e · g) e

= (
r
· g) f − (

r
· g)

r
f ′ − (

r
· g) (e · f ) e− (

r
· g) f +

r
∂ · ((

r
· g) · f )

+ (e · ((
r
· g) · f ) e−

r
(g · f )+ (

r
· g)

r
f ′ −

r
(
r
· g) f ′ + (e · f )(

r
· g) e

=
r
∂ · ((

r
· g) · f )+ (e · ((

r
· g) · f ) e−

r
(g · f )−

r
(
r
· g) f ′

=
r
(g · f )+

r
(
r
· g) f ′ + 0−

r
(g · f )−

r
(
r
· g) f ′

= 0,

as it should. �

In other words, the polynomials given by the difference between the left-hand and right-hand
sides of Table 1 form a two-sided noncommutative Gröbner basis. For the theory of Gröbner
bases, we refer the reader to Buchberger (1965, 1970, 1998), for its noncommutative extension
to Mora (1986), Mora (1994) and Ufnarovski (1998).
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Comparing the analytic polynomials in Rosenkranz (2005, p. 183) with the rewrite system of
Table 1, we would like to emphasize the gain in simplicity and economy: Despite their higher
generality, the integro-differential operators of F[∂,

r
] require just 9 instead of 36 identities!

Consequently, their confluence proof (resolving 14 overlaps) can still be produced by hand,
while the automatically generated confluence proof for the analytic polynomials (resolving 233
overlaps) contains 2000 lines; see Rosenkranz (2005, p. 184f) for a small fragment of it.

Having a Noetherian and confluent rewrite system, every integro-differential operator has a
unique normal form (Baader and Nipkow, 1998, p. 12). In order to describe these normal forms
explicitly, it is useful to single out a particular portion of the operators that will also turn out to
play a distinguished role in specifying boundary conditions (see Section 5).

Definition 14. The elements of the right ideal

S(F) =M(F)F[∂,
r
]

are called Stieltjes boundary conditions over F ; if there is no danger of ambiguity, we will
henceforth just speak of “boundary conditions”.

We will now describe the normal forms in F[∂,
r
], starting with a simple observation on

reducibility (in general not describing normal forms), which is afterwards used for characterizing
the normal forms of boundary conditions.

Lemma 15. Every integro-differential operator in F[∂,
r
] can be reduced to a linear

combination of monomials f ϕ
r

gψ∂ i , where i ≥ 0 and each of f, ϕ,
r
, g, ψ may also be absent.

Proof. Call a monomial consisting only of functions and functionals “algebraic”. Using the left
column of Table 1, it is immediately clear that all such monomials can be reduced to f or ϕ
or f ϕ. Now let w be an arbitrary monomial in the generators of F[∂,

r
]. By using the middle

column of Table 1, we may assume that all occurrences of ∂ are moved to the right, so that
all monomials have the form w = w1 · · ·wn∂

i with i ≥ 0 and each of w1, . . . , wn either a
function, a functional or

r
. We may further assume that there is at most one occurrence of

r
among the w1, . . . , wn . Otherwise the monomials w1 · · ·wn contain

r
w̃

r
, where each w̃ = f ϕ

is an algebraic monomial. But then we can reduce
r
w̃

r
= (

r
f ϕ)

r
= (

r
· f )ϕ

r

by using the corresponding rule of Table 1. Applying these rules repeatedly, we arrive at algebraic
monomials left and right of

r
(or just a single algebraic monomial if

r
is absent). �

Proposition 16. Every boundary condition of S(F) has the normal form∑
ϕ∈M(F)

(∑
i∈N

aϕ,i ϕ∂ i
+ ϕ

r
fϕ

)
with aϕ,i ∈ K and fϕ ∈ F almost all zero.

Proof. By Lemma 15, every boundary condition of S(F) is a linear combination of monomials
having the form

w = χ f ϕ
r

gψ∂ i or w = χ f ϕ∂ i (9)

where each of f, g, ϕ, ψ may also be missing. Using the left column of Table 1, the prefix χ f ϕ
can be reduced to a scalar multiple of a functional, so we may as well assume that f and ϕ are not
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present; this finishes the right-hand case of (9). For the remaining case w = χ
r

gψ∂ i , assume
first that ψ is present. Then we have

χ (
r

gψ) = χ (
r
· g) ψ = (χ

r
· g) χψ = (χ

r
· g) ψ,

so w is again a scalar multiple of ψ∂ i , and we are done. Finally, assume we have w = χ
r

g∂ i . If
i = 0, this is already a normal form. Otherwise we obtain

w = χ (
r

g∂) ∂ i−1
= (χ · g) χ∂ i−1

− χ
r

g′∂ i−1
− (e · g) e∂ i−1,

where the first and the last summand are in the required normal form, while the middle
summand is to be reduced recursively, eventually leading to a middle term in normal form
±χ

r
g′∂0
= ±χ

r
g′. �

The Stieltjes boundary conditions have the additional benefit of allowing a simple description
of the normal forms for all integro-differential operators. Just as we obtain the differential
operators F[∂] ⊂ F[∂,

r
] with their usual normal forms, we write also F[

r
] ⊂ F[∂,

r
] for

the subalgebra of integral operators, generated by the functions and
r

modulo the Baxter rule
(uppermost in the right column of Table 1). Using Lemma 15, it is clear that the normal forms of
integral operators are linear combinations of f

r
g with f, g ∈ F .

Finally, we write F[e] for the left F-submodule generated by S(F) and call them Stieltjes
boundary operators (briefly “boundary operators”). Note that F[e] includes S(F) as well as
all finite dimensional projectors P along Stieltjes boundary conditions. The latter can all be
described as follows: If u1, . . . , un ∈ F and β1, . . . , βn ∈ S(F) are biorthogonal in the sense
that βi (u j ) = δi j , then

P =
n∑

i=1

ui βi , (10)

is the projector onto [u1, . . . , un] along [β1, . . . , βn]
⊥; see for example Köthe (1969, p. 71)

and Regensburger and Rosenkranz (in press, Prop. 2). From the representation (10) it is
immediately clear that P ∈ F[e]. All elements of F[e] have the normal form (10), except that
the (u j ) need not be biorthogonal to the (βi ).

It turns out now that every monomial of an integro-differential operator is either a differential
operator or an integral operator or a boundary operator.

Proposition 17. Up to ordering the summands, every normal form of F[∂,
r
] with respect to the

rewrite system of Table 1 can be written uniquely as a sum T + G + B having the following
normal-form summands: a differential operator T ∈ F[∂], an integral operator G ∈ F[

r
], and

a boundary operator B ∈ F[e].

Proof. Inspection of Table 1 confirms that all integro-differential operators having the described
sum representation T + G + P are indeed in normal form. Let us now prove that every
integro-differential operator of F[∂,

r
] has such a representation. It is sufficient to consider its

monomials w. If w starts with a functional, we obtain a boundary condition by Proposition 16;
so assume this is not the case. From Lemma 15 we know that

w = f ϕ
r

gψ∂ i or w = f ϕ∂ i ,
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where each of ϕ, g, ψ may be absent. But w ∈ F[e] unless ϕ is absent, so we may actually
assume

w = f
r

gψ∂ i or w = f ∂ i .

The right-hand case yields w ∈ F[∂]. If ψ is present in the other case, we may reduce
r

gψ to
(
r
· g) ψ , and we obtain again w ∈ F[e]. Hence we are left with w = f

r
g∂ i , and we may

assume i > 0 since otherwise we have w ∈ F[
r
] immediately. But then we can reduce

w = f (
r

g∂) ∂ i−1
= f

(
g −

r
(∂ · g)− (e · g) e

)
∂ i−1

= ( f g) ∂ i−1
− f

r
(∂ · g) ∂ i−1

− (e · g) f e ∂ i−1,

where the first term is obviously in F[∂] and the last one in F[e]. The middle term may be
reduced recursively until the exponent of ∂ has dropped to zero, leading to a term in F[

r
]. �

4. Initial value problems

Up to now we have not discussed the existence of solutions for differential equations, except
for two particularly simple cases: the homogeneous differential equation u(n) = 0 whose solution
space is given by [1, x, . . . , xn−1

] as stated in (8), and the inhomogeneous equation u′ = f withr
f as particular solution. In order to have some finer control on which differential equations we

want to have solutions, we will allow specifying the coefficients of the pertinent linear differential
operators. (In differential Galois theory, one usually works with differential fields, where one can
study extensions in a much more convenient manner. As we have seen above, though, this route
is not accessible for us here.)

Definition 18. A differential subalgebra F0 ≤ F is called saturated for a differential algebra
F if dim Ker(T ) = n for every monic T ∈ F0[∂] with deg T = n and if all nonzero solutions
u of u′ = au, with a ∈ F0, are invertible in F . In this context, we call F the ground algebra
and F0 the coefficient algebra. If F0 coincides with F , we simply speak of a saturated integro-
differential algebra.

Some remarks on this definition are in order. First of all, we point out that we need F0
to be differentially closed such that we can multiply within F0[∂], which will be needed for
multiplying boundary problems in Section 6. The first condition on solvability ensures that
homogeneous equations T u = 0 have a fundamental system with the appropriate number of
solutions, while the second condition means that exponentials behave as usual. Note also that F
is an ordinary differential algebra as soon as it possesses a saturated coefficient algebra.

Not every integro-differential algebra has a saturated coefficient algebra; e.g. the polynomial
algebra (K [x], ∂,

r
) does not. We do not know any useful criteria for settling this question.

However, there are several important examples of integro-differential algebras with saturated
coefficient algebras:

Example 19. The prototypical example is furnished by C∞[a, b] where [a, b] is a finite interval
ofR. As a coefficient algebra, one may take either C∞[a, b] itself or any differential subalgebra
like R or C or C[x]. Similarly, one may take analytic functions Cω

[a, b] and its differential
subalgebras. Less demanding but practically important, the exponential polynomials, as defined
in Rosenkranz (2005, p. 176), can be taken as a ground algebra with C as a coefficient algebra.
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Example 20. For any field K of characteristic 0, the formal power series K [[z]] are a saturated
integro-differential algebra, with derivation and integration defined as usual. This may also be
inferred from the next example by the isomorphism described there.

Example 21. Let K be an arbitrary field (note that we are explicitly including the case of positive
characteristic in this example). Then the algebra H(K ) Hurwitz series (Keigher, 1997) over K
is defined as the K -vector space of infinite K -sequences with the multiplication defined as

(an) · (bn) =

( n∑
i=0

(
n
i

)
ai bn−i

)
n

for all (an), (bn) ∈ H(K ). If one introduces derivation and integration through

∂ (a0, a1, a2, . . . ) = (a1, a2, . . . ),r
(a0, a1, . . . ) = (0, a0, a1, . . . ),

the Hurwitz series form an integro-differential algebra (H(K ), ∂,
r
), as explained by Keigher

and Pritchard (2000) and Guo (2002).
Note that as an additive group, H(K ) coincides with the formal power series K [[z]], but its

multiplicative structure differs: We have an isomorphism
∞∑

n=0

an zn
7→ (n! an)

from K [[z]] to H(K ) if and only if K has characteristic zero. The point is that one can integrate
every element of H(K ), whereas the formal power series z p−1 does not have an antiderivative in
K [[z]] if K has characteristic p.

Defining the exponential function exp = (1, 1, 1, . . . ), we obtain immediately ∂ exp = exp.
One can introduce a composition f ◦g for f, g ∈ H(K )whenever g has vanishing constant term,
and the usual chain rule is satisfied for this composition (Keigher and Pritchard, 2000). Then the
first-order homogeneous equation u′ = au with a ∈ H(K ) is solved by

u = c exp ◦ (
r

a),

which is easily seen to be invertible in H(K ). By Corollary 4.3 in Keigher and Pritchard
(2000), we know also that all monic homogeneous differential equations of order n have an
n-dimensional kernel. Hence H(K ) is a saturated integro-differential algebra.

Throughout the rest of this paper, we assume that (F, ∂,
r
) is an integro-differential algebra

with a saturated coefficient algebra F0. As before, we write e for its evaluation. Having integrals,
it is natural to expect that we can also solve inhomogeneous equations. As we shall see now, it is
always possible to find a particular solution, but we can be more specific than that.

We formulate the initial value problem for a monic differential operator T ∈ F0[∂] and
character η ∈M(F) as follows: Given a forcing function f ∈ F , find u ∈ F such that

T u = f

ηu = ηu′ = · · · = ηu(n−1)
= 0,

(11)

where deg T = n. Problems of this kind can be solved uniquely.

Proposition 22. For every monic T ∈ F0[∂] and η ∈ M(F), the initial value problem of the
form (11) has a unique solution u ∈ F for given f ∈ F .
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Proof. We can use the usual technique of reformulating (11) as a system of linear first-order
differential equations with companion matrix A ∈ Fn×n

0 ; then we apply the familiar variation-
of-constants formula, as described e.g. by Coddington and Levinson (1955, p. 74). To this end,
we pick a fundamental system u1, . . . , un ∈ F for T and compute the Wronskian matrix

W =


u1 . . . un
u′1 . . . u′n
...

. . .
...

u(n−1)
1 . . . u(n−1)

n

 .
Observe that d = det W satisfies the first-order differential equation d ′ = ad, where a is the
trace of A ∈ F0; see for example Exercise 1.14.5 in van der Put and Singer (2003), but note
that we do not need a differential field. Since F0 is saturated for F , the determinant d must be
invertible and hence W a regular matrix.

By Proposition 1 and Corollary 11, the operator −
r
= (1 − η)

r
is the integral having the

evaluation η = 1 − −
r
∂ . We extend the action of the operators −

r
, ∂, η componentwise to Fn .

Setting now

û = (W−
r

W−1) f̂

with f̂ = (0, . . . , 0, f )> ∈ Fn , one may readily check that û ∈ Fn is a solution of the first-order
system û′ = Aû + f̂ with initial condition ηû = 0. Writing u for the first component of û, we
have a solution of (11).

For proving uniqueness, assume u is a solution of (11) for f = 0; we must show u = 0.
We may expand u = c1u1 + · · · + cnun in terms of the fundamental system u1, . . . , un with
suitable coefficients c1, . . . , cn ∈ K . Then the initial conditions of (11) may be summarized by
η(W c) = 0 with the coefficient vector c = (c1, . . . , cn)

>
∈ K n . But η(W c) = η(W )c because

η is linear, and det η(W ) = η(det W ) because it is moreover multiplicative. Since det W ∈ F is
invertible, this implies that η(W ) ∈ K n×n is regular, so c = η(W )−10 = 0 and u = 0. �

As mentioned after Example 10, every integro-differential algebra (F, ∂,
r
) comes with a

distinguished character: the evaluation η = e. Hence we may speak of the initial value problem
associated with a monic T ∈ F0[∂]. If u ∈ F is the unique solution to such an initial value
problem with forcing function f , we obtain an operator T�

: F → F with u = T� f , which we
shall call the fundamental right inverse for T . The notation and terminology are in accordance
with Rosenkranz (2005), where the evaluation e : C∞[a, b] → C∞[a, b] is given by u 7→ u(a).
We observe also that T� is a particular case of a Green’s operator.

Proposition 23. For every monic T ∈ F0[∂], the fundamental right inverse can be realized as
an integro-differential operator T�

∈ F[∂,
r
].

Proof. Inspecting the proof of Proposition 22, one can see that u may in fact be obtained from
f by the operation of an integro-differential operator from F[∂,

r
]. This holds in particular for

the initial value problem with η = e. �

5. Boundary problems

The main purpose of F[∂,
r
] is to provide a unified language for expressing boundary

problems as well as their solutions. As explained in Section 1, a boundary problem of order
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n is typically formulated as follows: Given a forcing function f ∈ F , we have to find u ∈ F
such that

T u = f,

β1u = · · · = βnu = 0,
(12)

for a monic differential operator T ∈ F0[∂] with deg T = n and boundary conditions
β1, . . . , βn ∈ F∗. Clearly we have T ∈ F[∂,

r
], but also β1, . . . , βn ∈ F[∂,

r
] if we restrict

ourselves to the (relatively large) class of Stieltjes boundary conditions (Definition 14). The
solution is usually expressed as u = G f , where G : F → F is the so-called Green’s operator of
the boundary problem (12). As we shall see in Theorem 26, the Green’s operator G can also be
expressed as the action of an element in F[∂,

r
].

We think of the boundary conditions β1, . . . , βn ∈ F∗ of (12) as specifying a space of
admissible functions

A = {β1, . . . , βn}
⊥
≤ F .

Obviously we may replace the boundary conditions β1, . . . , βn ∈ F∗ by other boundary
conditions β̃1, . . . , β̃n ∈ F∗ such that β̃i = ci1β1+· · ·+cinβn for a regular matrix (ci j ) ∈ K n×n ,
leading to the same space of admissible functions A = {β̃1, . . . , β̃n}

⊥. This means that the
admissible functions may be described invariantly as A = B⊥ in terms of B = [β1, . . . , βn] =

[β̃1, . . . , β̃n]. Such a finite dimensional subspace B ≤ F∗ will be called a space of boundary
conditions.

The operators . . .⊥ on F and F∗ create an order-reversing lattice isomorphism (a fortiori
a Galois connection) between the modular lattices of finite codimensional subspaces of F and
finite dimensional subspaces of F∗. Specifically, we have

B⊥ = {u ∈ F | ∀β∈B β(u) = 0}

for the space of functions satisfying the boundary conditions in B and

A⊥ = {β ∈ F∗ | ∀u∈A β(u) = 0}

for the space of boundary conditions satisfied by the functions in A. The lattice isomorphism
provides crucial relations for treating boundary problems (Section 6), specifically

(B1 ∩ B2)
⊥
= B⊥1 + B⊥2 and (B1 + B2)

⊥
= B⊥1 ∩ B⊥2 (13)

for finite dimensional subspaces B1,B2 ≤ F∗ and

K u B⊥ = F ⇔ K⊥ u B = F∗ (14)

for finite dimensional subspaces K ≤ F and finite codimensional subspaces B ≤ F∗. We are
thus in a similar situation to in algebraic geometry, where affine varieties correspond to subspaces
of F while radical ideals correspond to subspaces of F∗. (Our forthcoming article Regensburger
and Rosenkranz (in press) provides an abstract approach along these lines.)

For our present purposes, however, we are interested in an algorithmic treatment of boundary
conditions and their associated spaces of admissible functions. As indicated above, this can be
achieved by working with Stieltjes boundary conditions—they are wide enough for practical
applications while allowing convenient implementation of the operations expressed in the above
identities. Our notion of Stieltjes boundary conditions is naturally motivated by the classical
setting obtained by setting F = C∞[a, b] in Example 12.
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In a traditional boundary problem (Stakgold, 1979, p. 203), one prescribes only a so-called
two-point boundary condition

βu =
n−1∑
i=0

ai u(i)(a)+ bi u(i)(b)

with a0, . . . , an−1, b0, . . . , bn−1 ∈ C. Obviously, we may view

β =

n−1∑
i=0

ai L Di
+ bi RDi

as an element of F[∂,
r
] since L , R ∈ M(F). In a general integro-differential algebra F ,

we define a point condition as a linear combination of conditions having the form ϕ∂ i with
ϕ ∈M(F).

In the literature Brown and Krall (1974, 1977), one also considers boundary conditions of the
form

βu =
n−1∑
i=0

ai u(i)(a)+ bi u(i)(b)+
∫ b

a
f (ξ) u(ξ) dξ

under the name “Stieltjes boundary conditions”. Here the sum part gives a point condition as
before, while the integral kernel f ∈ F is used for prescribing an integral condition. Note that
such boundary conditions are in the normal form described by Proposition 16, which is the reason
for the terminology in Definition 14. We call a Stieltjes boundary condition global if f 6= 0.

There are at least three reasons for considering Stieltjes boundary conditions: First of all,
they are interesting in themselves because certain boundary problems are naturally expressed
in terms of global side conditions (for example, specifying the heat radiated through the
boundary). This in also true for regularizing ill-posed problems and computing their generalized
Green’s function (Rosenkranz, 2005, p. 191). A second reason for introducing Stieltjes boundary
conditions will become manifest in Section 7: Factoring a boundary problem leads to factor
problems with global conditions, even for a problem having only point conditions (see
Example 28). Finally, a third advantage of Stieltjes boundary conditions is that they have a natural
algebraic characterization by Definition 14.

We write Bn for the set of all subspaces B = [β1, . . . , βn] ≤ F∗ generated by n linearly
independent Stieltjes boundary conditions β1, . . . , βn ∈ S(F); note that [] = O is the only
element of B0. Then B =

⋃
n Bn is closed under the operation + of constructing the sum of

vector spaces, thus yielding an abelian monoid (B,+), which we call the monoid of boundary
conditions. Specifically, the sum of an m-dimensional and an n-dimensional space of boundary
conditions gives

[β1, . . . , βm] + [β̃1, . . . , β̃n] = [β1, . . . , βm, β̃1, . . . , β̃n] = [γ1, . . . , γk],

with dimension k ≤ m + n. In order to compute linearly independent boundary conditions
γ1, . . . , γk , we can apply the following evident strategy.

Proposition 24. There is an algorithm for computing a basis β1, . . . , βn ∈ S(F) for an arbitrary
B ∈ B given by generators γ1, . . . , γm ∈ S(F).
Proof. Expand each of γ1, . . . , γm in the K -basis of normal-form monomials as given by
Proposition 16. Although the number of such basis elements is infinite, the expansions of
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γ1, . . . , γm will only use finitely many of them, say, m1, . . . ,mr . This yields an m × r matrix
(ai j ) over K such that γi = ai1m1+· · ·+air mr for all i ∈ {1, . . . ,m}. Reducing the matrix (ai j )

to row echelon and discarding the zero rows leads to the desired K -basis β1, . . . , βn of B. �

Let us write Dn for the set of all monic T ∈ F0[∂] with deg T = n, setting D =
⋃

n Dn .
In this paper, we will only be concerned with boundary problems (12) that are regular in the
sense that they have a unique solution u for each forcing function f . Below we reformulate the
condition of regularity directly in terms of the differential operator and the space of boundary
conditions.

Definition 25. A boundary problem of order n is a pair (T,B) with T ∈ Dn and B ∈ Bn ; it is
called regular if Ker(T )uB⊥ = F . We write Pn for the set of all regular boundary problems of
order n, setting P =

⋃
n Pn .

As explained in Regensburger and Rosenkranz (in press), the requirement of the direct sum
is equivalent to Ker(T ) ∩ B⊥ = O and also to Ker(T ) + B⊥ = F since we have insisted
on deg T = dimB in our current setting. It is moreover equivalent to regularity in the sense
discussed above and to the following algorithmic criterion: If u1, . . . , un is any basis of Ker(T )
and β1, . . . , βn any basis of B, the problem (T,B) is regular iffβ1(u1) · · · β1(un)

...
. . .

...

βn(u1) · · · βn(un)

 (15)

is regular in K n×n . This test may be found in Kamke (1967, p. 184) for the special case
of two-point boundary conditions, but it generalizes even to the abstract setting described
in Regensburger and Rosenkranz (in press). Since in this paper we consider only regular
boundary problems, we will suppress the attribute “regular”.

Note that we do not require well-posedness. Following Hadamard, a well-posed
problem (Engl et al., 1996, p. 86) must be regular as well as stable (meaning that the solution u
depends continuously on the data f ). Our approach is purely algebraic, so we do not care about
stability (which would first of all require a topology on F). For example, the following boundary
problem in F = C∞[0, 1] is regular but not well-posed, at least not when in the common setting
of the Banach space (F, ‖·‖∞): Given f , find u such that u′−u = f and u′′(0) = 0. In this case,
the solution exists and is unique; in fact, it is given by u(x) =

∫ x
0 f (ξ) dξ−( f (0)+ f ′(0)) ex , so

the Green’s operator is ex
− ex L − ex L D. Incidentally, this example illustrates another unusual

feature of our setting—we do not restrict the derivatives in the boundary conditions to orders
below the order of the differential equation (even though it will often be reasonable to make such
a restriction).

The Green’s operator G of a boundary problem (T,B) is specified by the two requirements

T G = 1 and Im(G) = B⊥.
If deg T = n, the space of boundary conditions B can be described by n basis elements
β1, . . . , βn , and we can rewrite this in the traditional form (12). Then the Green’s operator G
is given by the mapping f 7→ u. Since every boundary problem (T,B) has a unique Green’s
operator G in this sense, we can introduce the notation (T,B)−1 for it.

In Rosenkranz (2005), we have explained how to compute from a fundamental system for T
the Green’s operator of a two-point boundary problem (T,B) for the analytic algebra C∞[a, b]
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Table 2
Outline for computing Green’s operators

Input: (T,B) ∈ P with bases {u j } of Ker(T ) and {βi } of B
Output: G ∈ F [∂,

r
] such that G = (T,B)−1

Determine T�
∈ F [∂,

r
] as in Proposition 23, using {u j }

Determine projector P ∈ F [e] as in (16), using {u j } and {βi }

Compute G = (1− P) T� in F [∂,
r
]

of Example 12. This result generalizes to our present setting; see Table 2 for an outline of the
computation and Example 33 a sample problem (Green’s operator for the left factor).

Theorem 26. Every boundary problem (T,B) ∈ P has a Green’s operator that can be written
as an integro-differential operator G ∈ F[∂,

r
].

Proof. The decomposition method explained in Rosenkranz (2005) is also valid in our case;
based on the algebraic generalized inverse (Nashed and Votruba, 1976; Engl and Nashed, 1981),
it even carries over to the general setting described in Regensburger and Rosenkranz (in press).
Thus we have

G = (1− P) T�,

where P is the projector onto Ker(T ) along B⊥, and T� is the fundamental right inverse of
T . From Proposition 23 we know that T�

∈ F[∂,
r
]. (In fact, we could take any right inverse

of T , but T� is a canonical choice.) For computing the projector in the form (10), we choose
a fundamental system u1, . . . , un for T . If B is given by a basis β1, . . . , βn ∈ S(F), we can
change to a new basis β̃1, . . . , β̃n that is biorthogonal to u1, . . . , un by setting

(β̃1, . . . , β̃n)
>
= B−1(β1, . . . , βn)

>,

where B is the matrix (15). Then

P =
n∑

i=1

ui β̃i ∈ F[e] ⊆ F[∂,
r
] (16)

is the desired projector, and we have G = (1− P) T�
∈ F[∂,

r
]. �

The factorization method described in Section 7 provides an alternative approach to
computing Green’s operators. The crucial point will be that multiplying boundary problems
corresponds to composing their Green’s operators in reverse order (see Proposition 27). In the
case of differential operators with constant coefficients, one can express any Green’s operator as
a product of first-order Green’s operators, which can be described by a simple formula.

6. Multiplying boundary problems

Using actions, a semi-direct product may be defined for monoids just as for groups; the
resulting structure is again a monoid (Cohn, 1982, p. 277). Unlike for groups, one has to
distinguish semi-direct products (for left actions) and reverse semi-direct products (for right
actions); see Eilenberg (1976) and also Regensburger and Rosenkranz (in press).
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We define a right action as follows. Every integro-differential operator U ∈ F[∂,
r
] acts on

B as

B ·U = {β ◦U | β ∈ B};
if B is generated by n conditions γ1, . . . , γn , this gives

[γ1, . . . , γn] ·U = [γ1 ◦U, . . . , γn ◦U ].

For a differential operators T ∈ F0[∂], a basis β1, . . . , βn of B is transformed into a basis
β1 ◦ T, . . . , βn ◦ T of B · T since T has a right inverse like T�.

The resulting reverse semi-direct product D n B = (D ×B, ·) then has the multiplication
defined by

(T1,B1) · (T2,B2) = (T1T2,B1 · T2 + B2). (17)

The neutral element under this multiplication is given by the degenerate boundary problem
(1, O), which is regular by definition. (Written out in the classical notation, this is the following
“problem”: Given f ∈ F , find u ∈ F such that u = f without further boundary conditions!)

As mentioned after Theorem 26, we can compute Green’s operators from the constituent
Green’s operators in a factorization, and in Section 7 we will present a method for producing such
factorizations from a factorization of the differential operator. But of course this presupposes that
the product of boundary problems corresponds to the composition of their Green’s operators in
reverse order. Let us write G for the monoid generated by all Green’s operators for boundary
problems in P.

Proposition 27. The boundary problems P ⊆ D ×B form a submonoid of D nΦ B, and the
transformation (T,B) 7→ (T,B)−1 is an anti-isomorphism from P to G. In other words, every
Green’s operator corresponds to exactly one boundary problem, and we have

(P1P2)
−1
= P−1

2 P−1
1

for all P1,P2 ∈ P.

Proof. From the remark above we know already (1, O) ∈ P. By the definition (17) of the
multiplication, we have

(T1,B1)(T2,B2) = (T1T2,B1 · T2 + B2).

We first prove that the right-hand boundary problem is regular and that its Green’s operator is
given by G2G1. Clearly we have

T G = (T1T2)(G2G1) = T1(T2G2)G1 = T1G1 = 1,

so G2G1 is a section of T1T2. Hence Ker(T1T2)u Im(G1G2) = F , and it remains to show

Im(G2G1) = (B1 · T2 + B2)
⊥.

Consider first u = G2G1 f . We have β(u) = 0 for all β ∈ B2 since Im(G2) = B⊥2 , and
β(T2u) = β(G1 f ) = 0 for all β ∈ B1 since Im(G1) = B⊥1 , so u ∈ (B1 · T2 +B2)

⊥. Conversely,
assume u ∈ (B1 · T2 + B2)

⊥. Then u ∈ (B1 · T2)
⊥ and u ∈ B⊥2 by (13). The latter condition

means u = G2v for some v, while the former condition implies v ∈ B⊥1 ; hence v = G1 f and
u = G2G1 f for some f .
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Now for the uniqueness of the Green’s operators. Consider two boundary problems
(T,B), (T̃ , B̃) ∈ P with the same Green’s operator G. Then we obtain from T G = 1 and
T̃ G = 1 that (T − T̃ )G = 0, so T − T̃ vanishes on the infinite dimensional space Im(G) ≤ F .
Assume now T 6= T̃ for a contradiction. Then T − T̃ is a nonzero differential operator over a
saturated coefficient algebra F0, so it has a finite dimensional kernel and cannot vanish on all of
Im(G). Hence we have indeed T = T̃ . Finally, we have also B⊥ = Im(G) = B̃⊥ and therefore
B = B̃. �

Let us carry out a simple multiplication in the monoid (P, ·), working with the analytic
polynomials of Example 12 over the ground algebra F = C∞[0, 1].

Example 28. We claim that

(D, [F]) · (D, [L]) = (D2, [L , R]). (18)

Indeed, we have [F] · D = [F D] = [AD + B D] = [(1 − L) + (−1 + R)] = [R − L] and
[F] · D + [L] = [L , R], so (18) follows. Written in classical notation, we have multiplied the
boundary problems

u′ = f∫ 1
0 u(ξ) dξ = 0

·
u′ = f
u(0) = 0 =

u′′ = f
u(0) = u(1) = 0 .

We see at this point that global conditions are necessary for the converse process: If we want to
factor the boundary problem (see Section 7) on the right-hand side, we cannot have two-point
boundary conditions in the left factor since it is unique (Proposition 31).

7. Factoring boundary problems

In this section we will study how to split boundary problems into smaller ones. In fact, it
turns out that every factorization of a differential operator can be “lifted” to the level of boundary
problems (Theorem 32).

Definition 29. A boundary problem (T2,B2) ∈ P is called a right factor of a boundary problem
(T,B) ∈ P if T2 is a right factor of T and B2 a subspace of B.

Proposition 30. Let (T,B) ∈ P be a boundary problem and T = T1T2 a factorization of its
differential operator. Then (T,B) has a right factor (T2,B2) ∈ P.

Proof. Set n = deg T1 and m = deg T2. Choose a basis

u1, . . . , um, um+1, . . . , um+n ∈ F
of Ker(T ) such that u1, . . . , um is a basis of Ker(T2), and choose any basis

β1, . . . , βm+n ∈ S(F)
of B. Since (T,B) is a regular problem, the matrix

B =

 β1(u1) . . . β1(um) β1(um+1) . . . β1(um+n)
...

. . .
...

...
. . .

...

βm+n(u1) . . . βm+n(um) βm+n(um+1) . . . βm+n(um+n)
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is regular. Hence we may use row operations to obtain a matrix with a regular upper left m × m
block and zeros below. (We could reduce the matrix B to row echelon form, but this is more than
we need at this point.) These operations are realized by left-multiplying B with a suitable matrix
P ∈ GL(K ,m + n) such that the upper left is transformed into a regular matrix

B2 =

 β̃1(u1) . . . β̃1(um)
...

. . .
...

β̃m(u1) . . . β̃m(um)


with new boundary conditions

β̃i =

m+n∑
j=1

Pi jβ j (i = 1, . . . ,m).

But the regularity of B2 means that (T2,B2) ∈ P with B2 = [β̃1, . . . , β̃m] ≤ B. �
A refined analysis of Proposition 30 leads to a full classification of all right factors (T2,B2) ∈

P of a given boundary problem (T,B) ∈ P; see Regensburger and Rosenkranz (in press) for
the detailed statement and proof in an abstract setting. The bottom line is that there is a bijection
between right factors of (T,B) and direct summands of Ker(T2) in Ker(T ). In detail, every right
factor (T2,B2) corresponds to L2 = B⊥2 ∩ Ker(T ), while every direct summand L2 corresponds
to (T2,B2) with B2 = B ∩ L⊥2 . One can also show that (T2,B2) is regular iff

Ker(T2)
⊥
∩ B u B2 = B, (19)

using the preservation of direct sums (14).
When referring to P2 = (T2,B2) as a right factor of P = (T,B), we are actually anticipating

that there is also a left factor P1 = (T1,B1) such that their product yields P . This is indeed the
case, as we will see in Proposition 31. But what is immediately clear is that if P1 exists, it is
uniquely determined by P alone. Indeed, we know from Proposition 27 that G = G2G1, where
G, G1, G2 denote the Green’s operators respectively of P , P1, P2. But this implies G1 = T2G
and hence B1 = Im(T2G)⊥.

Apart from the existence question, the disturbing feature of the relation B1 = Im(T2G)⊥

is that it presupposes knowledge of the Green’s operator G. This defeats the plan of using
factorization for determining the Green’s operator from those of its factors. The next proposition
remedies this flaw: it turns out that all we need is an arbitrary right inverse H2 of the differential
operator T2. Of course we take H2 = G2, but this still needs the computation of a Green’s
operator (albeit of a smaller size). A more reasonable choice is H2 = T�

2 , thus reducing the task
of computing Green’s operators to initial value problems. (The fundamental right inverse is a
canonical choice here, but in specific settings it may be algorithmically advantageous to choose
other right inverses of T2.)

Proposition 31. Given (T,B) ∈ P with T = T1T2, there is a unique (T1,B1) ∈ P such that
every right factor (T2,B2) ∈ P of (T,B) satisfies (T,B) = (T1,B1) · (T2,B2). Moreover, we
have

B1 = (Ker(T2)
⊥
∩ B) · H2,

where H2 is any right inverse of T2 and B1 = B · G2 where G2 is the Green’s operator of any
right factor (T2,B2).
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Proof. We have already seen that if (T1,B1) exists, it is unique with B1 = Im(T2G)⊥. Since T2G
is a right inverse of T1, we have also Ker(T1)uIm(T2G) = F . But this means (T1,B1) ∈ P if we
can just ensure that B1 has a basis of Stieltjes boundary conditions. And this follows immediately
once we have proved that

Im(T2G)⊥ = (Ker(T2)
⊥
∩ B) · H2 (20)

since when B is generated by Stieltjes boundary conditions, its intersection with Ker(T2)
⊥ is

generated by certain linear combinations of them, while right-multiplication by H2 still yields
Stieltjes boundary conditions by the definition of S(F).

For proving (20), assume first β(T2Gu) = 0 for all u ∈ F . Setting β̃ = β ◦ T2, we have
β = β̃ ◦ H2, and it suffices to show β̃ ∈ Ker(T2)

⊥ and β̃ ∈ B = Im(G)⊥. But the former
is immediate from the definition of β̃, and the latter follows since β̃(Gu) = β(T2Gu) = 0 by
hypothesis. Conversely, let us assume β̃ ∈ Ker(T2)

⊥
∩B and show β̃ ◦ H2 ∈ Im(T2G)⊥. Indeed,

we have

(β̃ ◦ H2)(T2Gu) = β̃(H2T2Gu) = β̃
(
Gu
)
− β̃

(
(1− H2T2)Gu

)
= 0

because the left summand vanishes by the hypothesis β̃ ∈ B = Im(G)⊥ and the right summand
by the hypothesis β̃ ∈ Ker(T2)

⊥ and the fact that 1− H2T2 is a projector onto Ker(T2).
Next let us prove the product (T,B) = (T1,B1) · (T2,B2). Using (20), it suffices to ensure the

relation

(Ker(T2)
⊥
∩ B) · H2T2 = Ker(T2)

⊥
∩ B (21)

since the regularity of (T2,B2) is equivalent to Ker(T2)
⊥
∩BuB2 = B by (19). For proving (21),

we apply the stronger result that β 7→ β ◦ H2T2 leaves Ker(T2)
⊥
∩ B pointwise invariant, which

follows from the fact that 1− H2T2 is a projector onto Ker(T2).
Finally, we prove B1 = B ·G2. Substituting G2 for H2 in the generic representation of B1, we

show

B · G2 = (Ker(T2)
⊥
∩ B) · G2.

Since (T2,B2) is regular, we can substitute Ker(T2)
⊥
∩BuB2 for B in (19) in the left-hand side,

and it remains to show that B2 · G2 = 0. But this follows from Im(G2) = B⊥2 . �

The constructive method for computing B1 = (Ker(T2)
⊥
∩ B) · H2 is the same as in the

proof of Proposition 30. Using the row-operation matrix P ∈ GL(K ,m + n) constructed there
(the original version creating zeros only in the lower left block), we compute the new boundary
conditions

β̃i =

m+n∑
j=1

Pi jβ j (i = m + 1, . . . ,m + n)

to obtain a basis β̃m+1 ◦ H2, . . . , β̃m+n ◦ H2 of B1.
Putting together Proposition 30 and Proposition 31, we have now established the following

Factorization Theorem for Boundary Problems.

Theorem 32. Given a boundary problem (T,B) ∈ P, every factorization T = T1T2 of the
differential operator can be lifted to a factorization (T,B) = (T1,B1) · (T2,B2) of the boundary
problem with (T1,B1), (T2,B2) ∈ P and B2 ≤ B.
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We conclude this section with an example of a fourth-order boundary problem arising in
mechanics; see Kamke (1967, p. 525).

Example 33. Using the language of analytic polynomials (see Example 12), we consider the
boundary problem P = (D4

+ 4, [L , R, L D, R D]), in traditional formulation

u′′′′ + 4u = f,
u(0) = u(1) = u′(0) = u′(1) = 0.

We employ the natural factorization D4
+ 4 = (D2

− 2i)(D2
+ 2i). Using the basis functions

u±± = e±1±i for the kernel of D4
+ 4, we choose the boundary conditions for the right

factor D2
+ 2i in such a way that its Green’s operator G2 has a convenient formulation (this

is not necessary in principle but keeps expressions shorter). By the generic second-order formula
from Stakgold (1979, p. 195), also derived in Rosenkranz (2005, p. 196), we are led to the right
factor P2 = (D2

+ 2i, [(i − 1) L − L D, (1− i) R − RD]) or

u′′ + 2i u = f,
(i − 1) u(0)− u′(0) = (1− i) u(1)− u′(1) = 0

in traditional formulation.
Boundary problem P2 can now be solved easily by the generic second-order formula.

Alternatively, one could also apply the algorithm from Table 2 or a factorization into first-order
problems as explained at the end of Section 5. In any case, one arrives at the Green’s operator

G2 =
1+ i

4

(
du+−eA du−+e + du−+eB du+−e

)
,

acting on a function f ∈ C∞[0, 1] according to

G2 f (x) =
1+ i

4

(∫ x

0
e(1−i)(x−ξ) f (ξ) dξ +

∫ 1

x
e(i−1)(x−ξ) f (ξ) dξ

)
.

We use the Green’s operator G2 of boundary problem P2 for determining the boundary
conditions of the (unique!) left factor P1 in the factorization P = P1P2 according to
Proposition 31. One may easily verify that P1 = (D2

− 2i, [Fdu+−e, Fdu−+e]) or

u′′ − 2i u = f∫ 1
0 e(1−i)ξ f (ξ) dξ =

∫ 1
0 e(i−1)ξ f (ξ) dξ = 0

(22)

in traditional formulation.
Since this is not a two-point boundary problem, let us go through the algorithm of Table 2 in

detail. The first step is to determine the fundamental right inverse of D2
− 2i . A straightforward

computation yields

H1 =
i − 1

4

(
du−−e A du++e − du++e A du−−e

)
.

Next we compute the projector P onto Ker(D2
− 2i) along [Fdu+−e, Fdu−+e]⊥. Using

the representation (16), we compute a basis (û+−, û−+) biorthogonal to (Fdu+−e, Fdu−+e),
obtaining P = dû+−e F du+−e+dû−+e F du−+e. Carrying out the computation (which involves
four definite integrals and inverting a 2× 2 matrix) leads to
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Table 3
Coefficients for G1

u−− u−+ u+− u++

a−− (1+ i)(e2
− e2i ) 2i(1− e2) 2(e2i

− 1) (1− i)(2− e2
− e2i )

b−− (1+ i)(e2
− e2i ) 2i(1− e2) 2(e2i

− 1) (1− i)(e−2
+ e−2i

− 2)
a++ (1− i)(e−2

+ e−2i
− 2) 2(1− e−2i ) 2i(e−2

− 1) (1+ i)(e−2i
− e−2)

b++ (1− i)(2− e2i
− e2) 2(1− e−2i ) 2i(e−2

− 1) (1+ i)(e−2i
− e−2)

Table 4
Coefficients for G

u−− u−+ u+− u++

a−− i(e2i
− e2) (1− i)(1− e2) (1+ i)(1− e2i ) e2

+ e2i
− 2

b−− i(e2i
− e2) (1− i)(1− e2) (1+ i)(1− e2i ) 2− e−2

− e−2i

a−+ (1− i)(1− e2) e2
− e−2i i(2− e2

− e−2i ) (1+ i)(e−2i
− 1)

b−+ (1− i)(1− e2) e2
− e−2i i(e−2

+ e2i
− 2) (1+ i)(e−2i

− 1)
a+− (1+ i)(1− e2i ) i(e−2

+ e2i
− 2) e2i

− e−2 (1− i)(e−2
− 1)

b+− (1+ i)(1− e2i ) i(2− e2
− e−2i ) e2i

− e−2 (1− i)(e−2
− 1)

a++ 2− e−2
− e−2i (1+ i)(e−2i

− 1) (1− i)(e−2
− 1) i(e−2

− e−2i )

b++ e2
+ e2i

− 2 (1+ i)(e−2i
− 1) (1− i)(e−2

− 1) i(e−2
− e−2i )

û+− =
(e2
− 1) u−− − (e−2i

− 1)i u++
∆

,

û−+ =
(e2i
− 1)i u−− − (e−2

− 1) u++
∆

,

where ∆ = cos 2 + cosh 2 − 2. Then we compute the Green’s operator of boundary problem
P1 as G1 = (1 − P) H1. Using the normalization engine for analytic polynomials described
in Rosenkranz (2005), we arrive at

G1 =
1

8∆

(
du−−e A da−−e + du−−e B db−−e + du++e A da++e + du++e B db++e

)
,

where each of a−−, b−−, a++, b++ is a linear combination u−−, u−+, u+−, u++ as indicated in
Table 3.

According to Proposition 27, the Green’s operator G of the full boundary problem P is
given by G2G1. Its explicit form, obtained by noncommutative multiplication and subsequent
normalization, is given here for reference; often one might prefer the factored representation in
terms of G2 and G1. We have

G =
1+ i
32∆

(
du−−e A da−−e + · · · + du++e B db++e

)
,

similar to G1 in structure, but now with four additional summands coming from u−+ and
u+−. The eight functions a−−, . . . , a++ are again linear combinations of the type before, with
coefficients given in Table 4.

36 I



M. Rosenkranz, G. Regensburger / Journal of Symbolic Computation 43 (2008) 515–544 541

8. Conclusion

Factoring a differential equation reduces the order and thus aids in solving the given
equation. Since differential equations usually come together with boundary conditions, they
must be incorporated in an additional step (typically viewed as external to differential algebra).
The theory presented in this paper extends the factorization techniques for linear ordinary
differential equations in such a way that the boundary conditions become an integral part,
leading to an algorithmic machinery for factoring and solving boundary problems over integro-
differential algebras. The implementation of these algorithms will be described in a subsequent
paper.

Let us now discuss some possibilities for extending our approach into various directions:
partial differential equations, systems of linear ordinary differential equations, difference
equations, polynomial boundary conditions, semilinear boundary problems, dual pairings and
duality theory, analytical aspects, and localization.

In this paper, we have restricted ourselves to ordinary differential equations (and thus to
ordinary integro-differential algebras in the sense of Definition 8). This is convenient since –
relative to given fundamental systems – it allows us to compute Green’s operators in closed form.
But the concept of multiplying (and hence factoring) boundary problems, as defined in (17), may
be transferred to a more general setting that allows for infinitely many “boundary conditions”;
see Regensburger and Rosenkranz (in press).

It can in particular be applied to linear partial differential equations, where one can exploit
suitable results about factoring linear partial differential operators (Grigoriev and Schwarz, 2007,
2005, 2004; Tsarev, 1998). As a prototype (Regensburger and Rosenkranz, in press), we have
factored the one-dimensional inhomogeneous wave equation on a bounded interval into two
first-order “boundary problems”. Along these lines, we plan to develop symbolic algorithms
for first-order partial differential equations (typical factor problems) in non-trivial geometries.
Since factorization will normally end up with (symbolically) irreducible boundary problems, it
becomes more important to address stability issues: Well-posed boundary problems should be
factored into well-posed blocks (Engl et al., 1996), if possible.

Going into a different direction, one can also apply our methodology of multiplying and
factoring boundary problems to systems of linear ordinary differential equations. We expect that
the solution theory (now using “Green’s matrices” instead of Green’s functions) as well as the
algorithms will essentially carry over to this setting.

Everything considered in this paper was directed towards the continuous case of linear
differential equations, but we expect the discrete case of linear difference equations to be tractable
in principle by the same methods, except for the well-known complications arising from a skew
Leibniz rule and a Baxter axiom with weight unity instead of zero; see Example 1.6 in Guo
(2002). As pointed out in Section 2, the concept of integro-differential algebras generalizes
naturally to this situation (Guo and Keigher, 2007).

By contrast, the restriction to linear differential equations seems to be quite rigid: we do not
see how to translate our ideas to nonlinear differential equations. What could be considered,
though, is the case of linear differential equations with polynomial boundary conditions, a case
that is also of interest in applications. (A classical example is given by the heat equation with
radiation on the boundary, described by the Stefan–Boltzmann law: The normal derivative of the
temperature is proportional to its fourth power.) Although the solution operator of such a problem
is necessarily nonlinear, we hope that one can adapt some of our ideas by handling the boundary
conditions through ideals instead of linear subspaces.
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In this article, we have worked with the (algebraic) dual of the vector space structure of the
underlying differential algebra. We think that our approach could in principle be transferred
to a setting with a dual pairing instead of the canonical bilinear form; this would include
important topological vector spaces like Ck and L p. Of course, this requires a modification of
the composition structure, leading to a category rather than a monoid of boundary problems as
pointed out in Regensburger and Rosenkranz (in press). The advantage might be that one gains
topological insights relating various operators (like the differential and Green’s operators) and
spaces (like images and kernels).

Speaking of duality, one should also mention that the usual duality theory of linear boundary
problems (Coddington and Levinson, 1955, Chapter 11) can be transferred to “classical” Stieltjes
boundary conditions (on real- or complex-valued functions); see for example Brown (1975). The
idea is that every boundary problem should have a dual or “adjoint” problem whose solution
operator is the “transpose” of the original problem. The adjoint problem is often useful for
characterizing certain aspects of a given primal problem (e.g. the solvability criterion for the
Fredholm alternative).

We have not yet exploited the factored representation of Green’s operators for characterizing
Green’s functions (possibly restricted to the well-posed case to avoid distributions). This may
be done from two different perspectives: From an algebraic viewpoint, one might proceed in a
manner similar to the Galois theory of linear ordinary differential equations; from an analytic
viewpoint, the singular value decomposition would be of interest.

Finally, we mention that we have also treated singular boundary problems, where one needs
a modified Green’s function/operator as in the example from Section 3.5 in Rosenkranz (2005).
This leads to a localization in the algebra of Green’s operators—differential operators appear
as the “reciprocals” of suitable integral operators. In this manner, one obtains a noncommutative
generalization of the Mikusiński calculus that allows a symbolic treatment of boundary problems
just like the ordinary Mikusiński calculus does for initial value problems (Mikusiński, 1959).
These ideas will be discussed in a future paper.
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ABSTRACT
We propose two algebraic structures for treating integral
operators in conjunction with derivations: The algebra of
integro-differential polynomials describes nonlinear integral
and differential operators together with initial values. The
algebra of integro-differential operators can be used to solve
boundary problems for linear ordinary differential equations.
In both cases, we describe canonical/normal forms with al-
gorithmic simplifiers.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation—simplification of expres-
sions; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—algebraic algorithms

General Terms
Theory, Algorithms

Keywords
Integral operators, integro-differential algebras, noncommu-
tative Gröbner bases, Green’s operators, linear boundary
value problems

1. INTRODUCTION
While differential operators are studied extensively in sym-

bolic computation, this cannot be asserted about integral
operators. In the former case, one uses two fundamental
structures for transferring analysis to algebra: “differential
operators” and “differential polynomials”; both of these can
act on suitable function spaces (the former linearly and the
latter nonlinearly). In this paper, we propose two analogous
algebraic structures for treating integral operators (along
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with differential operators): “integro-differential operators”
and “integro-differential polynomials”; both of these are ex-
tensions of the corresponding differential structures. In Sec-
tion 2, we review some notions about integro-differential al-
gebras needed for these constructions.

The integro-differential polynomials are introduced here
for the first time. Their construction is explained in Sec-
tion 3, the computational approach in Section 4. While mod-
eling nonlinear integral operators, the most important use
of the integro-differential polynomial ring F{u} over a given
integro-differential algebra F is probably to describe exten-
sions of integro-differential algebras in a constructive fash-
ion. In practice, one can start with the integro-differential
algebra F0 of exponential polynomials, adjoin a solution of
differential equations (with initial values) by passing to a
quotient F1 of F0{u}, and iterate this procedure.

The notion of integro-differential operators has been intro-
duced in [23], where it is used for multiplying and factoring
BVPs (= linear boundary value problems for ordinary dif-
ferential equations). In fact, one of the main applications of
integro-differential operators is that they describe the differ-
ential equation, boundary conditions and solution operator
(Green’s operator) of a BVP in uniform language. In [23]
we have constructed a monoid on BVPs isomorphic to the
compositional structure of their Green’s operators, studied
in [21] from an abstract viewpoint. In this paper, we will
review their construction and main properties in Section 5
and focus on computational aspects in Section 6.

For both integro-differential polynomials and operators,
the crucial instrument for an algorithmic treatment is of
course the usage of standard representatives, but they arise
in fairly different contexts: In the former case, where we
prefer to speak of canonical forms, we employ tools from
universal algebra to build a canonical simplifier for the ap-
propriate polynomial concept. In the latter case, where we
shall use word normal forms, our approach is to construct
a confluent rewrite system (equivalently: a noncommutative
Gröbner basis).

2. INTEGRO-DIFFERENTIAL ALGEBRAS
Our starting point is a commutative differential algebra

(F , ∂) over a field K, so ∂ : F → F is a K-linear map satis-
fying the Leibniz rule

∂(fg) = f ∂(g) + g ∂(f). (1)

For convenience, we may assume K ≤ F , and we write f ′

as a shorthand for ∂(f). Furthermore, we will assume that
K has characteristic zero and Q ≤ K, hence F is what is
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sometimes called a Ritt algebra [14, p. 12]. The algebra of
differential operators over F is denoted by F [∂] as in [27].

For inhomogeneous differential equations Tu = f with
T ∈ F [∂], the solution operators (mapping f ∈ F to u ∈ F)
are integral operators. The simplest equation is u′ = f , and
its solution operators

r
are exactly the sections (i.e.K-linear

right inverses) of the differential operator ∂ so that

∂
r

= 1. (2)

Note that derivations need not have sections (for example
in the algebra of univariate differential polynomials, the in-
determinate cannot be a derivative).

The characterization of sections follows from Linear Al-
gebra, see [19, p. 17] or [21]: Every section

r
: F → F of

the derivation ∂ : F → F corresponds to a unique projector
P : F → F with

P = 1 −
r
∂ (3)

and to a unique direct sum decomposition F = C ∔ I of
K-vector spaces with

C = Ker(∂) = Im(P ) and I = Im(
r
) = Ker(P ).

Moreover, if
r

is any fixed section of ∂, every projector P
with Im(P ) = Ker(∂) induces a section (1 −P )

r
, and every

section of ∂ arises uniquely in this way.
We refer to the elements of I = Im(

r
) as initialized (with

respect to
r
), while those of C = Ker(∂) are usually called

the constants (with respect to ∂).
As a standard example, we take F = C∞[a, b] where dif-

ferentiability in the endpoints is understood in the sense
of one-sided derivatives. The initialized functions are those
that can be written as F (x) =

r x

α
f(ξ) dξ for f ∈ C∞[a, b]

and an initialization point α ∈ [a, b]; hence F is the unique
antiderivative of f that fulfills the initial condition F (α) = 0.

For solving inhomogeneous differential equations of higher
order, one must expect to iterate the section

r
. While this

would in general lead to nested integrals, we know from the
classical C∞ setting that the Green’s operator can always
be expressed via the Green’s function [26] by a single inte-
gration. To capture this behavior, we need an identity for
resolving nested integrals (eventually leading to the rewrite
rule for

r
f
r

in Table 1). Such an identity is given by the
so-called Baxter axiom (of weight zero), asserting

r
f ·

r
g =

r
f
r
g +

r
g
r
f (4)

for all f, g ∈ F . Note that we apply the following convention
in this paper: An integral like

r
f
r
g should be interpreted

as
r
(f

r
g), unless we use · as on the left-hand side above.

Obviously (4) is an algebraic version of integration by
parts, written in a way that does not involve the deriva-
tion. (For the integro-differential polynomials, the role of
the Baxter axiom is more subtle: From the left to right,
it “flattens” products of nested integrals; in the other direc-
tion, it is used for “integrating out”coefficient functions—see
Section 4.) A weight-zero Baxter algebra (F ,

r
) is then a K-

algebra F with a K-linear operation
r

fulfilling the Baxter
axiom (4); we refer to [11, 2, 24] for more details.

What we shall actually use is the differential Baxter ax-
iom, which requires

r
fg = f

r
g −

r
f ′r g (5)

for all f, g ∈ F . Note that this is what most people do when
they actually apply integration by parts. Variant (4) follows

immediately by substituting
r
f for f in (5), and often both

versions are equivalent (see after Definition 11).
We can also characterize what makes the differential Bax-

ter axiom stronger than the pure one: A section
r

of ∂ fulfills
the differential Baxter axiom (5) iff it fulfills the pure Baxter
axiom (4) and the homogeneity condition

r
cf = c

r
f (6)

for all c ∈ C and f ∈ F . In fact, (6) implies that
r

: F → F
is C-linear and not only K-linear.

We refer to [23] for the proof of the equivalence and for an
example of a differential algebra with a section that satisfies
the pure Baxter axiom but not its differential form. To
exclude such cases we will insist that integral operators must
satisfy the differential Baxter axiom.

Definition 1. Let F be a differential algebra over a field
K. A section

r
of ∂ is called an integral if it satisfies the

differential Baxter axiom (5). In this case, we call (F , ∂,
r
)

an integro-differential algebra.

As an example, take F = C∞[a, b] with its usual deriva-
tion ∂ and integral operators

r ∗
: f 7→

Z x

a

f(ξ) dξ and
r
∗ : f 7→

Z b

x

f(ξ) dξ.

Then both (F , ∂,
r ∗

) and (F , ∂,−
r
∗) are integro-differential

algebras. By contrast, the operator

f 7→
Z b

a

Z x

τ

f(ξ) dξ dτ,

is just a section for ∂, but not an integral.
In the above example, the projectors P ⋆ : f 7→ f(a) and

P⋆ : f 7→ f(b) corresponding to the respective integral oper-
ators

r ∗
and

r
∗ are multiplicative (see (7) below), whereas

the projector
r b

a
for the third operator is not. This is true

in general—we can characterize integrals by their projectors
or images as detailed in [23]: A section

r
: F → F of the

derivation ∂ : F → F is an integral iff I = Im(
r
) is an ideal

of F iff P = 1 −
r
∂ is multiplicative, meaning

P (fg) = P (f)P (g) (7)

for all f, g ∈ F . Using the homogeneity condition (6), this
implies also

r
fg′ = fg −

r
f ′g − P (f)P (g) (8)

as an equivalent formulation (corresponding to the rewrite
rule for

r
f∂ in Table 1) of the differential Baxter axiom (5).

Similar structures are introduced under the name differen-
tial Rota-Baxter algebras in the recent article [12]. A crucial
difference is that they only require the section axiom (2)
for connecting derivation and integral, but not the differen-
tial Baxter axiom (5). They construct free objects in more
general categories where the algebras are over unital commu-
tative rings rather than fields, they may be noncommuative,
and the weight can be an arbitrary scalar.

3. THE ALGEBRA OF INTEGRO-
DIFFERENTIAL POLYNOMIALS

In this section, we introduce the algebra of integro-differ-
ential polynomials obtained by adjoining one indeterminate
function to an integro-differential algebra. This is a special
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case of the general construction of polynomials in universal
algebra. See for example [1] for the basic notions in universal
algebra that we use in the following and [7, 13, 16] for details
on polynomials in universal algebra.

The idea of the construction is as follows. Let V be a
variety defined by a set E of identities or “laws” over a sig-
nature Σ. Let A be a fixed “coefficient domain” from the
variety V, and let X be a set of “variables” or “indetermi-
nates”. Then all terms in the signature Σ with constants
(henceforth called “coefficients”) in A and variables in X
represent the same polynomial if their equality can be de-
rived in finitely many steps from the identities in E and the
operations in A. The set of all such terms TΣ(A∪X) modulo
this congruence ≡ is an algebra in V, called the polynomial
algebra (for V) in X over A, denoted by AV [X].

The polynomial algebra AV [X] contains A as a subalge-
bra, and A ∪X is a generating set. As in the case of poly-
nomials for commutative rings, we have the substitution ho-
momorphism in general polynomial algebras. Let B be an
algebra in V. Then given a homomorphism ϕ1 : A → B and
a map ϕ2 : X → B, there exists a unique homomorphism

ϕ : AV [X] → B

such that ϕ(a) = ϕ1(a) for all a ∈ A and ϕ(x) = ϕ2(x) for
all x ∈ X.

In order to compute with polynomials one can use an ef-
fective canonical simplifier [7], that is, a computable map

σ : TΣ(A ∪X) → TΣ(A ∪X)

such that

σ(T ) ≡ T and S ≡ T ⇒ σ(S) = σ(T )

for all terms S, T ∈ TΣ(A ∪ X). The representatives in
R := Im(σ) are called canonical forms. Canonical simpli-
fiers correspond uniquely to so-called systems of canonical
forms, i.e. a set of terms

R ⊆ TΣ(A ∪X)

such that for every T ∈ TΣ(A∪X) one can compute a canon-

ical form R ∈ R with T ≡ R and such that R 6= R̃ ⇒ R 6≡ R̃
for R, R̃ ∈ R. In other words, for every polynomial in AV [X]
represented by a term T one can compute a term R ∈ R
representing the same polynomial, with different terms in R
representing different polynomials, see [16, p. 23].

As a well-known example take the polynomial ring R[x] in
one indeterminate x over a commutative ring R. The set of
all terms of the form anx

n + . . .+a0 with coefficients ai ∈ R
and an 6= 0 together with 0 is a system of canonical forms
for R[x]. One usually defines the polynomial ring directly
in terms of these canonical forms. Polynomials for groups,
bounded lattices and Boolean algebras are discussed in [16]
along with systems of canonical forms.

Let us now consider the variety V of integro-differential
algebras. Its signature Σ contains (besides the ring opera-
tions): the derivation ∂, the integral

r
, the family of unary

“scalar multiplications” (·λ)λ∈K ; for convenience we also in-
clude the projection P . The identities E are (besides those
of a K-algebra and the K-linearity of the operators ∂,

r
, P ):

the Leibniz rule (1), the section axiom (2), the definition of
the projection (3), and the differential Baxter axiom (5).

Definition 2. Let F be an integro-differential algebra.
Then FV [u] is called the algebra of integro-differential poly-
nomials in u over F and denoted it by F{u} in analogy to
differential polynomials.

We will also use the following identities following from E
and describing the basic interactions between the operations
in F : the pure Baxter axiom (4), the multiplicativity of the
projection (7), the identities

P 2 = P, ∂P = 0, P
r

= 0,
r
P (f)g = P (f)

r
g, (9)

and the variant (8) of the differential Baxter axiom connect-
ing all three operations. Moreover, we use also the shuffle
identity [25, 20] obtained from iterating the Baxter axiom

r
f1

r
. . .

r
fm ·

r
g1

r
. . .

r
gn =

X r
h1

r
. . .

r
hm+n, (10)

where the sum ranges over all shuffles of (f1, . . . , fm) and
(g1, . . . , gn). By construction of the polynomial algebra, all
these identities hold also for F{u}.

We will use f, g for denoting coefficients in F and V for
terms in TΣ(F ∪ {u}). As for differential polynomials, we
write un for the nth derivative of u. We use the multi-index
notation

uβ =

∞
Y

i=0

uβi
i

for a sequence β in N with only finitely many nonzero en-
tries. The order of a differential monomial uβ is the highest
derivative appearing in uβ or −∞ if β = 0. Moreover, we
write V (0) for P (V ) and

u(0)α =
∞
Y

i=0

ui(0)
αi .

for a multi-index α.

4. CANONICAL FORMS FOR INTEGRO-
DIFFERENTIAL POLYNOMIALS

Our goal is to find a system of canonical forms for integro-
differential polynomials. As a first step, we describe a system
of terms that is sufficient for representing every polynomial,
but not in a unique (canonical) way.

Lemma 3. Every polynomial in F{u} can be represented
by a finite sum of terms of the form

fu(0)αuβr
f1u

γ1
r
. . .

r
fnu

γn , (11)

where each multi-index as well as n may be zero.

Proof. By induction on the structure of terms, using
the identities of integro-differential algebras and the above
mentioned consequences (except the differential variants of
the Baxter axiom).

Note that for terms only involving the derivation, (11)
gives already the usual canonical form for differential poly-
nomials. With the aid of Lemma 3, we can now determine
the constants in F{u}.

Proposition 4. Every constant in F{u} can be repre-
sented as a finite sum

P

α cαu(0)
α with constants cα in F.
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Proof. By the identity
r
∂ = 1−P , a term V represents

a constant in F{u} iff P (V ) ≡ V . Since V is congruent to
a finite sum of terms of the form (11) and since Im(P ) = C,
the identities for P imply that V is congruent to a finite sum
of terms of the form cαu(0)

α.

It is immediately clear that terms of the form (11) cannot
be canonical forms for general integro-differential polynomi-
als since for example f

r
gu and λ−1f

r
λgu with λ ∈ K rep-

resent the same polynomial. This can be solved by choosing
a basis B for F containing 1.

A second problem for canonical forms comes from the fact
that we can integrate certain differential polynomials using
integration by parts (8). For example, the terms

r
fu′ and

fu−
r
f ′u− f(0)u(0) represent the same polynomial. More

generally, we have the following identity.

Lemma 5. We have

r
V u

βk
k uk+1

≡ 1

βk + 1

“

V uβk+1
k −

r
V ′uβk+1

k − V (0)uk(0)βk+1
”

(12)

where k, βk ≥ 0.

Proof. Using (8) and the Leibniz rule, we see that

r
V uβk

k uk+1 =
r
(V uβk

k )(uk)′

≡ V u
βk+1
k −

r
V ′uβk+1

k −βk

r
V u

βk
k uk+1 −V (0)uk(0)βk+1,

and the equation follows.

In particular, if V = fuβ0
0 . . . u

βk−1

k−1 , then V ′ and hence
also the right-hand side of (12) contains only differential
monomials with order at most k. So if the highest deriva-
tive in the differential monomial uβ of order k + 1 appears
linearly, the term

r
fuβ is congruent to a sum of terms in-

volving only differential monomials of order at most k. This
motivates the following classification of differential mono-
mials; confer also [4, 10].

Definition 6. A monomial (11), with uβ having order
k, is said to have depth n and order k. It is called quasicon-
stant if β = 0, quasilinear if k > 0 and the highest derivative
appears linearly; otherwise it is called functional.

Definition 7. We write R for the set of all K-linear
combinations of terms of the form

bu(0)αuβr
b1u

γ1
r
. . .

r
bnu

γn , (13)

where b, b1, . . . , bn ∈ B, the multi-indices α, β as well as n
may be zero, and uγ1 , . . . , uγn are functional.

As we will see, R forms a system of canonical forms for
F{u}. The easier part of this claim is that every polynomial
has such a representation.

Proposition 8. Every polynomial in F{u} can be repre-
sented by a term in R.

Proof. Using basis expansions and theK-linearity of the
integral, we can represent with Lemma 3 every polynomial
in F{u} as a K-linear combination of terms of the form

bu(0)αuβr
b1u

γ1
r
. . .

r
bnu

γn , (14)

where the multi-indices and n can also be zero.

With basis expansions and the identity
r
f
r
V ≡

r
f ·

r
V −

r
V

r
f,

coming from the pure Baxter axiom (4), we can achieve that
every multi-index γk in (14) is nonzero (induction on depth).
Using Lemma 5, one sees that a term

r
b1u

γ1 is congruent
to a sum of terms involving only integral terms with func-
tional differential monomials (induction on order). Finally
one shows (induction on depth and order) that this also
holds for terms of the form

r
b1u

γ1
r
. . .

r
bnu

γn .

The proposition then follows by basis expansions and the
K-linearity of the integral.

It remains to show that each term in R represents a dif-
ferent polynomial. To this end, let 〈R〉 be the free vector
space over the set of terms (13). In order to distinguish the
basis vectors of 〈R〉 from the corresponding terms in R, we
denote them by

〈bu(0)αuβr
b1u

γ1
r
. . .

r
bnu

γn〉. (15)

If b, b1, . . . , bn are no basis vectors, (15) is to be understood
as an abbreviation for the corresponding basis expansion.
We equip the free vector space 〈R〉 with the structure of an
integro-differential algebra. The operations are defined on
the basis vectors mimicking the corresponding operations in
TΣ(F ∪ {u}), and reducing to congruent terms in R.

The multiplication in 〈R〉 is introduced in stages. Let J

and J̃ range over pure integral terms
r
b1u

γ1
r
. . .

r
bnu

γn ,

including 1 for n = 0. The product of a term 〈bu(0)αuβ〉
with a general term 〈b̃u(0)α̃uβ̃ J̃〉 is defined as

〈bb̃ u(0)α+α̃uβ+β̃J̃〉.
Corresponding to the shuffle identity (10), we define the

product 〈
r
buγJ〉〈

r
b̃uγ̃ J̃〉 of pure integrals recursively as

〈
r
buγ〉 ⋆ 〈J〉〈

r
b̃uγ̃ J̃〉 + 〈

r
b̃uγ̃〉 ⋆ 〈J̃〉〈

r
buγJ〉,

where ⋆ denotes the operation of nesting integrals (multi-
plication binds stronger than ⋆); the base case is given by
the neutral element 1. With this product, the pure integral
terms form a subalgebra isomorphic to the shuffle algebra so
that · is associative and commutative. Finally, the product

of two general basis vectors 〈bu(0)αuβJ〉 and 〈b̃u(0)α̃uβ̃J̃〉 is

given by multiplying 〈bu(0)αuβ〉〈b̃u(0)α̃uβ̃〉 with 〈J〉〈J̃〉.
The derivation of basis vector is defined through the Leib-

niz rule, using also the identities ∂P = 0, ∂
r

= 1 and basis
expansions.

The integral of a basis vector is defined recursively (first
by depth and then by order), based on the classification of
Definition 6. In the quasiconstant case, we define

r
〈bu(0)αJ〉 = 〈

r
b〉〈u(0)αJ〉 −

r
〈J ′〉

r
〈bu(0)α〉,

where J ′ is J with the integral removed (zero for J = 1).
For a quasilinear basis vector

〈bu(0)αV u
βk
k uk+1J〉 with V = uβ0

0 . . . u
βk−1

k−1 ,

we set s = βk + 1 and define the integral by

s
r
〈bu(0)αV u

βk
k uk+1J〉

= 〈bu(0)αV us
kJ〉 − 〈u(0)α〉

r
〈bV J〉′〈us

k〉 − 〈bV uαus
kJ〉(0);

the third summand is absent unless J = 1.
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In the functional case, we use
r
〈bu(0)αuβJ〉 = 〈u(0)αr

buβJ〉,
as a definition for the integral.

For showing that 〈R〉 is an integro-differential algebra, we
have to verify the axioms: First of all we see that it is a
commutative K-algebra by our previous remark about the
shuffle product. The Leibniz rule and the section axiom fol-
low immediately from the definition. The only difficult task
is to prove the differential Baxter axiom. An easy calcula-
tion shows that

r
〈u(0)α〉〈R〉 = 〈u(0)α〉

r
〈R〉.

Proposition 4 then implies that
r

is homogeneous over the
constants in 〈R〉. By the observation before (6), it suffices
therefore to verify the pure Baxter axiom. The proof is
lengthy (using inductions over depth and order, with case
distinctions according to the definition of the integral) and
will be presented in a subsequent publication.

Proposition 9. With the operations defined as above,
〈R〉 is an integro-differential algebra.

The integro-differential algebra 〈R〉 provides the key for
showing that all terms in R represent different polynomials
of F{u}.

Theorem 10. The terms in R constitute a system of ca-
nonical forms for F{u}, provided that basis expansion in F
is computable.

Proof. Since 〈R〉 is an integro-differential algebra, there
exists a unique substitution homomorphism

ϕ : F{u} → 〈R〉
such that ϕ(f) = 〈f〉 for all f ∈ F and ϕ(u) = 〈u〉. Let

π : R → F{u}
denote the restriction of the canonical epimorphism associ-
ated with ≡. Then ϕ ◦ π is injective since it maps R ∈ R
to 〈R〉 ∈ 〈R〉 and surjective by Proposition 8. We conclude
that π is also bijective, so R is indeed a system of canonical
forms.

5. THE ALGEBRA OF INTEGRO-
DIFFERENTIAL OPERATORS

As explained in the Introduction, one important appli-
cation of integro-differential polynomials is the adjunction
of new elements to an initially given integro-differential al-
gebra F ; this issue will be broached in a future paper. If
F is ordinary (see Definition 11 below), we can thus en-
sure that a given homogeneous differential equation Tu = 0
with monic T ∈ F [∂] is dimensionally adequate, meaning
dimK Ker(T ) = deg T . This is the prerequisite for finding
the Green’s operator of the corresponding inhomogeneous
equation Tu = f ; see [23] for a detailed description of the
solution method. Its groundwork consists of adding and
multiplying integro-differential operators, and this is what
we shall consider here.

Before giving the construction of integro-differential op-
erators, we will explicitly restrict ourselves to ordinary dif-
ferential equations in the following sense. Note that in the
following definition our terminology deviates from [15, p. 58],
where it only refers to having a single derivation.

Definition 11. A differential algebra F over a field K is
called ordinary if dimK Ker(∂) = 1. An integro-differential
algebra (F , ∂,

r
) is called ordinary if (F , ∂) is ordinary.

As a consequence, the solution space of a homogeneous
differential equation Tu = 0 with monic T ∈ F [∂] is now
finite-dimensional, so we can indeed enforce dimensional ad-
equacy by adjunction. (The notion of saturated integro-
differential algebra [23] postulates dimensional adequacy for
every monic T ∈ F [∂].)

Clearly we have K = C in an ordinary differential algebra
F , which is thus an algebra over its own field of constants.
But then a section is automatically homogeneous over C, so
the pure Baxter axiom (4) and its differential version (5)
coincide. Moreover, one knows from Linear Algebra that
a projector P onto a one-dimensional subspace [w] of a K-
vector space V can be written as P (v) = ϕ(v)w with a
functional ϕ that can be made unique by the normalization
ϕ(w) = 1. If V is a K-algebra, a projector onto K = [1]
is canonically described by the functional ϕ with ϕ(1) = 1.
This holds in particular in an ordinary differential algebra,
where the projectors (3) corresponding to sections of the
derivation can be regarded as normalized functionals.

In an ordinary integro-differential algebra F , the normal-
ized functional corresponding to the integral

r
is moreover

multiplicative, as explained at the end of Section 2. We call
this multiplicative functional

e = 1 −
r
∂ (16)

its evaluation. The terminology stems from the standard
example F = C∞[a, b], where e is a point evaluation (see
below Definition 1). The multiplicative functionals on an
algebra are known as its characters (note that all characters
are normalized). We write M(F) for the vector space of
all characters on an ordinary integro-differential algebra F ,
including the evaluation e as a distinguished character.

Let F be a fixed ordinary integro-differential algebra over
a field K with evaluation e. The variables f, g are used for
elements of F , the variables ϕ, ψ for elements of M(F). We
introduce now an algebra of operators on F using rewrite
systems [1] in the spirit of [3].

fg → f · g ∂f → ∂ · f + f∂

ϕψ → ψ ∂ϕ → 0

ϕf → (ϕ · f)ϕ ∂
r

→ 1
r
f
r

→ (
r

· f)
r

−
r

(
r

· f)r
f∂ → f −

r
(∂ · f) − (e · f) er

fϕ → (
r

· f)ϕ

Table 1: Rewrite System for F [∂,
r
]

Definition 12. The integro-differential operators F [∂,
r
]

are defined as the K-algebra generated by the symbols ∂ andr
, the “functions” f ∈ F and the multiplicative “functionals”
ϕ ∈ M(F), modulo the rewrite system of Table 1.

In the rules of Table 1, we use the notation U · f for the
action of U on an element f ∈ F , where U is an element of
the free algebra in the above generators. It is an easy matter
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to check that the rewrite rules of Table 1 are fulfilled in F ,
so we may lift · to an action of F [∂,

r
] on F . In particular,

f · g now denotes the product in F .
We remark that Table 1 is to be understood as including

implicit rules for
r r

,
r
∂ and

r
ϕ by substituting f = 1 in

the rules for
r
f
r
,
r
f∂ and

r
fϕ, respectively. Moreover, one

obtains the derived rule e
r

= 0 from the definition of the
evaluation e. Note also that F [∂] ⊆ F [∂,

r
], with the same

induced action on F .

Theorem 13. The rewrite system for F [∂,
r
] in Table 1

is convergent.

In other words, the polynomials given by the difference
between the left-hand and right-hand sides of Table 1 form
a two-sided noncommutative Gröbner basis. The proof is
given in [23]. For the theory of Gröbner bases, we refer
to [5, 6], for its noncommutative extension to [17, 18].

6. NORMAL FORMS FOR INTEGRO-
DIFFERENTIAL OPERATORS

Having a convergent rewrite system, every integro-differ-
ential operator has a unique normal form [1, p. 12]. To
compute such normal forms we also need a canonical simpli-
fier on the free algebra generated by ∂ and

r
, the functions

f ∈ F and the functionals ϕ ∈ M(F); one possibility is by
basis expansion in F . Here we summerize the description of
the normal forms on F [∂,

r
] obtained in [23].

We first consider operators in the right ideal

S(F) = M(F) F [∂,
r
],

which we call Stieltjes boundary conditions over F or“bound-
ary conditions” for short. Every such boundary condition
has the normal form

X

ϕ∈M(F)

 

X

i∈Naϕ,i ϕ∂
i + ϕ

r
fϕ

!

with aϕ,i ∈ K and fϕ ∈ F almost all zero. We write
F [e] for the left F-submodule generated by S(F) and call
them Stieltjes boundary operators or “boundary operators”
for short.

With the rule for ∂f of Table 1 it is clear that the dif-
ferential operators F [∂] ⊂ F [∂,

r
] have their usual normal

forms. Analogously, we write F [
r
] ⊂ F [∂,

r
] for the subal-

gebra of integral operators, generated by the functions andr
modulo the rule for

r
f
r

of Table 1; one sees immediately
that that their normal forms are linear combinations of f

r
g

with f, g ∈ F .

Theorem 14. Up to ordering the summands, every nor-
mal form of F [∂,

r
] with respect to the rewrite system of

Table 1 can be written uniquely as a sum T + G + B with
T ∈ F [∂] and G ∈ F [

r
] and B ∈ F [e].

We can use integro-differential operators for specifying
and solving boundary problems. Since space is limited,
we can only state the main results here; for details and
complete proofs, we must again refer to [23]. We formu-
late the boundary problem for a monic differential operator
T ∈ F [∂] with deg T = n and Stieltjes boundary conditions
β1, . . . , βn ∈ S(F) as follows.

Given a forcing function f ∈ F , find u ∈ F such that

Tu = f,

β1u = . . . = βnu = 0.
(17)

We call the boundary problem regular if there is a unique u ∈
F for every f ∈ F ; this implies in particular that β1, . . . , βn

are linearly independent over K.
The first step in solving (17) is to consider the correspond-

ing initial value problem based on a character η ∈ M(F),
where one replaces the boundary conditions β1, . . . , βn by
η, η∂, . . . , η∂n−1. Note that one may in particular choose
η = e, evaluating in the initialization point. The main idea
of solving initial value problems is of course an adaption of
the familiar variation-of-constants formula (see for example
in [9, p. 74] for systems and [9, p. 87] for scalar differential
equations).

Proposition 15. Let T ∈ F [∂] be a monic differential
operator with deg T = n such that Tu = 0 has a fundamental
system of solutions u1, . . . , un ∈ F. If W is its Wronskian
matrix and d = detW is invertible in F, the initial value
problem Tu = f based on η ∈ M(F) has the unique solution

u =
n
X

i=1

ui(1 − η)
r
d−1 dif (18)

for every forcing function f ∈ F. Here di = detWi, where
Wi is the matrix obtained from W by replacing the ith col-
umn by the nth unit vector.

Proof. We can use the usual technique of reformulating
Tu = f as a system of linear first-order differential equations
with companion matrix A ∈ Fn×n. The integral operator

−
r

= (1 − η)
r

is a section of ∂ with corresponding projector 1 − −
r
∂ = η.

Since η is multiplicative, we know from Section 2 that −
r

is
an integral. We extend the action of the operators −

r
, ∂, η

componentwise to Fn. Setting now

û = W−
r
W−1 f̂

with f̂ = (0, . . . , 0, f)⊤ ∈ Fn, one may readily check that

û ∈ Fn is a solution of the first-order system û′ = Aû + f̂
with initial condition ηû = 0. Writing u for the first com-
ponent of û, we have a solution of the initial value problem
Tu = f based on η ∈ M(F). Using Cramer’s rule to com-
pute the nth column of W−1, we see that

W−1 f̂ = d−1f (d1, . . . , dn)⊤,

and (18) follows since the first row of W is (u1, . . . , un).
For proving uniqueness, assume Tu = 0 along with the

initial conditions ηu = . . . = ηu(n−1) = 0. Let

u = c1u1 + . . .+ cnun

with coefficients in K. Then the initial conditions yield
η(Wc) = 0 with c = (c1, . . . , cn)⊤ ∈ Kn. But η(Wc) =
η(W )c because η is linear, and det η(W ) = η(detW ) be-
cause it is moreover multiplicative. Since detW ∈ F is
invertible, this implies that η(W ) ∈ Kn×n is regular, so
c = η(W )−10 = 0 and u = 0.

The above proposition hinges on two conditions: The first
has already been discussed and can be satisfied by adjunc-
tion. The second condition needs an invertible Wronskian d.
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This could also be enforced by a suitable localization of F ,
as for Picard-Vessiot rings [27, p. 12]. But in many appli-
cations, this condition will come out naturally: The Wron-
skian d is always an exponential over F since it satisfies the
differential equation d′ = ad, where a is the trace of the
companion matrix A.

Since every integro-differential algebra F comes with the
evaluation η = e as a distinguished character, we can speak
of the initial value problem associated with a monic T ∈
F [∂]. Then the map T� : F → F described by the assign-
ment f 7→ u in (18) simplifies to

T� =

n
X

i=1

ui

r
d−1 di. (19)

We call T� ∈ F [∂,
r
] the fundamental right inverse of T .

Note that (19) can be further simplified if T has constant
coefficients; see [22].

The next step in solving (17) is to compute the projector
onto Ker(T ) = [u1, . . . , un] along

[β1, . . . , βn]⊥ = {u ∈ F | β1u = . . . = βnu = 0},
which can be achieved as follows: Change from the basis
β1, . . . , βn of [β1, . . . , βn] to a new basis β̃1, . . . , β̃n over K

biorthogonal to u1, . . . , un in the sense that β̃i(uj) = δij .
Then the projector can be determined as

P = u1β̃1 + . . .+ unβ̃n ∈ F [e].

See [23] for further details.
We can now put everything together for determining the

Green’s operator G : f 7→ u of (17). The point is that T�

solves the initial value problem, while 1−P “translates” the
initial conditions e, e∂, . . . , e∂n−1 to the required boundary
conditions β1, . . . , βn.

Theorem 16. Let T ∈ F [∂] be monic with deg T = n
and β1, . . . , βn ∈ S(F) such that the boundary problem (17)
is regular. If the conditions of Proposition 15 are satisfied,
the Green’s operator of (17) is given by

G = (1 − P )T� ,

where P is the projector onto Ker(T ) along [β1, . . . , βn]⊥.

Proof. Let u1, . . . , un be a fundamental system for T .
We have TG = TT� − PT� = 1 − 0 since P annihilates
u1, . . . , un. Thus u = Gf satisfies the differential equation
Tu = f of (17).

For ensuring the boundary conditions of (17), we prove
βiG = 0 for i = 1, . . . , n. But we have even βi(1 − P ) = 0
because 1 − P projects onto [β1, . . . , βn]⊥.

In analysis, the Green’s operator G is usually written as
an integral operator with the bivariate Green’s function as
its kernel. As remarked in Section 2, this is the effect of the
Baxter axiom. Hence the abstract version of a Green’s func-
tion is the Green’s operator G ∈ F [∂,

r
] written in its nor-

mal form. In the classical C∞[a, b] setting, there is indeed a
straight-forward correspondence between normal forms and
Green’s functions [22].

7. CONCLUSION
We have presented two algorithmic tools for studying inte-

gration from an algebraic operator perspective. The integro-
differential polynomials, introduced for the first time in this

paper, enjoy a rich structure that deserves further analysis.
Specifically, their quotient algebras are relevant in view of
adjunctions (see at the beginning of Section 5). Unlike the
integro-differential polynomials, the integro-differential op-
erators are an algebraic model of linear operators, based on
the (noncommutative) compositional structure. Their nor-
mal forms are much easier to describe since one can fall back
on Gröbner basis methods. We can benefit from both in
the study of differential equations—particularly when con-
sidered with boundary conditions.
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Abstract Motivated by boundary problems for linear differential equations, we define
an abstract boundary problem as a pair consisting of a surjective linear map (“differential
operator”) and an orthogonally closed subspace of the dual space (“boundary conditions”).
Defining the composition of boundary problems corresponding to their Green’s operators in
reverse order, we characterize and construct all factorizations of a boundary problem from a
given factorization of the defining operator. For the case of ordinary differential equations,
the main results can be made algorithmic. We conclude with a factorization of a boundary
problem for the wave equation.
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1 Introduction

To motivate our algebraic setting and terminology, we begin with two illustrative examples
for boundary problems, one for ordinary and one for partial differential equations. The goal is
to determine the operator mapping the right-hand side (“forcing function”) of the differential
equation to its solution, subject to the given boundary conditions. It is known as Green’s
operator [26], since it is the integral operator induced by the Green’s function. This name
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was introduced by Neumann [16] and Riemann [18, Sect. 23] in honor of the mathematician
Green (1793–1841), who invented the concept in [8, p. 12].

The first example is a classical two-point boundary value problem on a finite interval; see
for example Stakgold [23]. Writing V for the complex vector space C∞[0, 1], we consider
the following problem: given f ∈ V , find u ∈ V such that

u′′ = f,
u(0) = u(1) = 0.

(1.1)

Let D : V → V denote the usual derivation and L , R ∈ V ∗ the two linear functionals
L : f �→ f (0) and R : f �→ f (1). Note that u is annihilated by any linear combination of
these two functionals so that problem (1.1) can be described by (D2, [L , R]), where [L , R]
is the subspace of the dual space generated by L and R.

Based on an operator approach first presented in [20], a symbolic method for computing
Green’s operators for regular two-point boundary problems with constant coefficients was
given in [19]. We describe a symbolic framework treating boundary problems for arbitrary
linear ordinary differential equations in [21]. A crucial step is the computation of normal
forms using a suitable noncommutative Gröbner basis that reflects the essential interactions
between certain basic operators. Gröbner bases were introduced by Buchberger in [2,3].

As a second example consider the following boundary problem for the wave equation on
the domain Ω = R × R≥0, now writing V for C∞(Ω): Given f ∈ V , find u ∈ V such that

utt − uxx = f,
u(x, 0) = ut (x, 0) = 0.

(1.2)

Note that we use the terms “boundary condition/problem” in the general sense of linear
conditions. (Usually one calls the above problem an initial value problem; for a genuine
boundary problem we refer to the end of the paper. We prefer the term “boundary problem”
to the more common expression “boundary value problem” since the latter would suggest
that boundary conditions are always point evaluations, while we will also need integral
conditions.)

The boundary conditions in (1.2) can be expressed by the infinite family of linear
functionals Lx : u �→ u(x, 0), Mx : u �→ ut (x, 0) with x ∈ R, so we can represent the
boundary problem by (∂2

t − ∂2
x , [Lx , Mx ]x∈R). The space [. . .] here denotes the orthogonal

closure (see Appendix A.1 for details) of the subspace generated by the boundary conditions:
Since u is annihilated by the Lx and Mx , it is also annihilated by all functionals in [Lx , Mx ],
for example the functionals u �→ ∫ x

0 u(η, 0) dη for x ∈ R.
Abstracting from the above examples, we define a boundary problem as a pair consisting

of a surjective linear map and an orthogonally closed subspace of the dual space. Every
finite-dimensional vector space of the dual is orthogonally closed (like the boundary condi-
tions in the first example), but we need the notion of orthogonal closure to deal with infinite
dimensional vector spaces (as in the second example) if we are to remain in an algebraic
setting.

It would be interesting to extend our results such that additional topological assumptions
on the vector spaces and operators are taken into account. For example, it should be possible
to use a dual pairing [13] instead of a vector space and its algebraic dual. For an approach
along these lines, see Wyler [26], dealing with generalized Green’s operators.

One motivation for us was that understanding algebraic aspects of boundary problems
is important for treating boundary problems by symbolic computation, where one usually
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considers manipulations of the operators that are independent of the spaces they act on.
Since the surjective linear map may also be a matrix differential operator, this approach can
be extended to boundary problems for systems of linear differential equations.

In the abstract setting, computing the Green’s operator of a boundary problem means
determining the right inverse of the defining operator corresponding to the kernel comple-
ment given by the space of boundary conditions. Going back from a Green’s operator to its
boundary problem can be interpreted as solving a suitably defined dual boundary problem.

The crucial step in our approach consists in the passage from a single problem to a
compositional structure on boundary problems, defined in such a way that it corresponds to
the composition of the Green’s operators in reverse order. As we will see, the computation
of Green’s operators can then be seen as an anti-isomorphism between boundary problems
and dual boundary problems.

Our main result in this paper is the description of factorizations in this compositional
structure: given a boundary problem, we characterize and construct all possible factoriza-
tions along a given factorization of the defining operator. By the above anti-isomorphism,
this also yields a method for factoring Green’s operators.

In the setting of differential equations, factoring boundary problems allows us to split
a problem of higher order into subproblems of lower order, provided we can factor the
differential operator. For the latter, we can exploit algorithms and results about factoring
ordinary [11,17,22,24] and partial differential operators [9,10,25]. The factor problems can
then be dealt with by symbolic, numerical or hybrid methods. For numerical or hybrid meth-
ods one has to consider stability issues [6]: a given well-posed problem should be factored
such that the lower-order problems are well-posed.

The paper is organized as follows: in Sect. 2, we introduce abstract boundary problems
and dual boundary problems. The composition of boundary problems with the above anti-
isomorphism is described in Sect. 3. We consider the question of factoring boundary prob-
lems in Sect. 4. For endomorphisms, we give in Sect. 5 an interpretation of the composition
as a semidirect product of monoids. In Sect. 6, we focus on operators with finite dimensional
kernel, where all the main constructions can be made algorithmic. This includes in particular
boundary problems for ordinary differential equations, treated from a symbolic computa-
tion perspective in [21]. We conclude in Sect. 7 with computing factorizations and Green’s
operators for (1.1) and (1.2).

In the appendix, we recall and develop various auxiliary results from linear algebra. In
Appendix A.1 we treat the duality between subspaces of a vector space and orthogonally
closed subspaces of its dual. The relation between orthogonality and the transpose is dis-
cussed in Appendix A.2. Left and right inverses are covered in Appendix A.3, the dimension
arguments needed for finitely many boundary conditions in Appendix A.4.

2 Boundary problems and Green’s operators

A boundary problem is given by a pair (T, F), where T : V → W is a surjective linear map
between vector spaces V, W and F ⊆ V ∗ an orthogonally closed subspace of boundary
conditions. We say that u ∈ V is a solution of (T, F) for a given w ∈ W , if

T u = w and f (u) = 0 for all f ∈ F
or equivalently u ∈ F⊥. A boundary problem (T, F) is regular if F⊥ is a complement of
K = Ker T so that V = K � F⊥. Then there exists a unique right inverse G : W → V of
T with Im G = F⊥, see Appendix A.3. We call G the Green’s operator for the boundary

123

III 51



126 G. Regensburger, M. Rosenkranz

problem (T, F). Since T Gw = w and Gw ∈ F⊥, we see that the Green’s operator maps
every right-hand side w ∈ W to its unique solution u = Gw ∈ V . Hence we say that G
solves the boundary problem (T, F), and we use the notation

G = (T, F)−1.

Conversely, if there exists a right inverse G of T for a boundary problem (T, F) such that
Im G = F⊥, it is regular by (A.17). Since orthogonality preserves direct sums, we see that
(T, F) is regular iff

V ∗ = F � K ⊥. (2.1)

By Proposition A.6, we have

Ker G∗ = (Im G)⊥ = F⊥⊥ = F and Im T ∗ = (Ker T )⊥ = K ⊥ (2.2)

for a regular boundary problem (T, F). Given any right inverse G̃ of T , we know with Lemma
A.8 that the Green’s operator for a regular boundary problem (T, F) is given by

G = (1 − P)G̃, (2.3)

where P is the projection with Im P = K and Ker P = F⊥.
If T is invertible, then (T, 0) is the only regular boundary problem for T , and its Green’s

operator is (T, 0)−1 = T −1. In particular, we have

(1, 0)−1 = 1 (2.4)

for the identity operator.
A dual boundary problem is given by a pair (K , G), where G : W → V is an injective

linear map and K ⊆ V a subspace of dual boundary conditions. We say that g ∈ V ∗ is a
solution of (K , G) for a given h ∈ W ∗ if

G∗g = h and g(v) = 0 for all v ∈ K

or equivalently g ∈ K ⊥. A dual boundary problem (K , G) is regular if K is a complement
of I = Im G so that V = K � I . Then there exists a unique left inverse T : V → W of
G with Ker T = K , see Appendix A.3. We call T the dual Green’s operator for the dual
boundary problem (K , G). Since G∗T ∗ = 1 and Im T ∗ = K ⊥ by Proposition A.6, we see
that G∗T ∗h = h and T ∗h ∈ K ⊥, and so T ∗ maps every right-hand side h ∈ W ∗ to its unique
solution g = T ∗h. Hence we say that T solves the dual boundary problem (K , G), and we
use the notation

T = (K , G)−1.

Conversely, if there exists a left inverse T of G for a dual boundary problem (K , G) such
that Ker T = K , it is regular by (A.17). Given any left inverse T̃ of G, we know with Lemma
A.10 that the dual Green’s operator for a regular dual boundary problem (K , G) is given by
T = T̃ (1 − P), where P is the projection with Im P = K and Ker P = I .

If G is invertible, then (0, G) is the only regular dual boundary problem with G and its
dual Green’s operator is (0, G)−1 = G−1. In particular, we have

(0, 1)−1 = 1 (2.5)

for the identity operator.
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For fixed vector spaces V and W we denote the set of all regular (dual) boundary problems
respectively by

R = {(T, F) | T : V → W, (T, F) regular}
and

R∗ = {(K , G) | G : W → V, (K , G) regular}.
We can interpret the bijection (A.20) between left and right inverses in terms of boundary and
dual boundary problems. The main part is always solving a (dual) regular boundary problem,
that is, computing its (dual) Green’s operator. Note that for boundary problem we specify a
complement of the kernel by an orthogonally closed subspace of the dual space.

Proposition 2.1 The map

R → R∗

(T, F) �→ (
Ker T, (T, F)−1)

is a bijection between the sets of regular (dual) boundary problems, and

R∗ → R

(K , G) �→ (
(K , G)−1, (Im G)⊥

)
.

is its inverse.

Proof Clear with Proposition A.11. 
�

3 Composing boundary problems

Let (T1, F1) and (T2, F2) be boundary problems with T1 : V → W and T2 : U → V . We
define the composition of (T1, F1) and (T2, F2) by

(T1, F1) ◦ (T2, F2) = (T1T2, T ∗
2 (F1) + F2). (3.1)

Proposition 3.1 The composition of boundary problems is again a boundary problem.

Proof The composition of surjective maps is surjective. We must show that T ∗
2 (F1) + F2 is

an orthogonally closed subspace of U∗. But from Corollary A.5 we know that the transpose
maps orthogonally closed subspaces to orthogonally closed subspaces and from Proposition
A.3 that the sum of two orthogonally closed subspaces is orthogonally closed.


�
The composition of boundary problems is associative. Moreover, we have

(1V , 0) ◦ (T, F) = (T, F) and (T, F) ◦ (1W , 0) = (T, F)

with T : V → W and 0 the zero-dimensional vector space. So all boundary problems of vec-
tor spaces over a fixed field form a category with objects the vector spaces and morphisms
the boundary problems.

The next proposition tells us that the composition of boundary problems preserves
regularity, and the corresponding Green’s operator is the composition of Green’s operators
in reverse order. Hence the regular boundary problems form a subcategory of the category
of all boundary problems. We denote the category of regular boundary problems by R.
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Proposition 3.2 Let (T1, F1) and (T2, F2) be regular boundary problems with Green’s oper-
ators G1 and G2. Then the composition

(T1, F1) ◦ (T2, F2) = (T, F)

is regular with Green’s operator G2G1 so that

((T1, F1) ◦ (T2, F2))
−1 = (T2, F2)

−1 ◦ (T1, F1)
−1.

Moreover, the sum

F = T ∗
2 (F1) � F2 (3.2)

is direct.

Proof We have

T1T2G2G1 = T11G1 = T1G1 = 1

so that G2G1 is a right inverse of T1T2. Since Ker G∗
1 = F1 and Ker G∗

2 = F2 by (2.2), we
have with Proposition A.6 and (A.21)

(Im G2G1)
⊥ = Ker (G2G1)

∗ = Ker G∗
1G∗

2 = T ∗
2 (F1) � F2.

The proposition now follows by the characterization of regular boundary problems through
Green’s operators. 
�

Note that with (A.15) and (A.5) we see that

T ∗
2 (F⊥⊥

1 ) + F⊥⊥
2 = (T ∗

2 (F1) + F2)
⊥⊥

for arbitrary (not necessarily orthogonally closed) subspaces F1 and F2. If the boundary con-
ditions are given by the orthogonal closure of arbitrary subspaces F1 and F2, the composition
of two boundary problems is equal to

(
T1, F⊥⊥

1

) ◦ (
T2, F⊥⊥

2

) = (
T1T2, (T

∗
2 (F1) + F2)

⊥⊥)
. (3.3)

We will use this observation for boundary problems with partial differential equations in
Sect. 7.

Let now (K2, G2) and (K1, G1) be dual boundary problems with G2 : V → U and
G1 : W → V . We define the composition of (K2, G2) and (K1, G1) by

(K2, G2) ◦ (K1, G1) = (K2 + G2(K1), G2G1). (3.4)

Obviously, the composition is again a dual boundary problem. It is associative, and we have

(0, 1W ) ◦ (K , G) = (K , G) and (K , G) ◦ (0, 1V ) = (K , G)

with G : W → V . So all dual boundary problems of vector spaces over a fixed field form a
category.

As we will see, also for dual boundary problems the composition of two regular
problems is again regular. Hence the regular dual boundary problems form a subcatego-
ry of the category of all dual boundary problems. We denote the category of regular dual
boundary problems by R∗.
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Proposition 3.3 Let (K2, G2) and (K1, G1) be regular dual boundary problems with dual
Green’s operators T2 and T1. Then the composition

(K2, G2) ◦ (K1, G1) = (K , G)

is regular with dual Green’s operator T1T2 so that

((K2, G2) ◦ (K1, G1))
−1 = (K1, G1)

−1 ◦ (K2, G2)
−1.

Moreover, the sum K = K2 � G2(K1) is direct.

Proof We have

T1T2G2G1 = T11G1 = T1G1 = 1

so that T1T2 is a left inverse of G2G1. By (A.21), we have

Ker(T1T2) = G2(K1) � K2

with K1 = Ker T1 and K2 = Ker T2. The proposition follows now by the characterization of
regular dual boundary problems through dual Green’s operators. 
�

Summing up, we see that solving regular (dual) boundary problems gives an anti-isomor-
phism between the categories of regular (dual) boundary problems, justifying our terminology
for dual boundary problems.

Theorem 3.4 The contravariant functor

F : R → R∗

(T, F) �→ (
Ker T, (T, F)−1)

is an anti-isomorphism between the categories of regular (dual) boundary problems, and

F∗ : R∗ → R
(K , G) �→ (

(K , G)−1, (Im G)⊥
)
.

is its inverse.

Proof By (2.4) and (2.5), we have F(1) = 1 as well as F∗(1) = 1. Hence F and F∗ are
contravariant functors by Propositions 3.2 and 3.3. Finally, F F∗ = 1 and F∗F = 1 by
Proposition 2.1. 
�

4 Factoring boundary problems

Let (T, F) be a boundary problem with T : U → W and assume that we have a factorization

(T1, F1) ◦ (T2, F2) = (T, F) (4.1)

into boundary problems with T1 : V → W and T2 : U → V . By definition (3.1), this means
that we have a factorization

T = T1T2

for the defining operators and a sum

F = T ∗
2 (F1) + F2
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for the boundary conditions. In this section, we characterize all possible factorizations of a
boundary problem into two boundary problems. In particular, we show that if (T, F) is reg-
ular and a factorization T = T1T2 is fixed, there exists a unique regular left factor (T1, F1),
and we describe all right factors (T2, F2).

Given a factorization T = T1T2 with surjective linear maps T1 and T2, we construct all
corresponding factorizations into (regular) boundary problems. The boundary conditions for
the factor problems can be described in terms of the boundary conditions F and the factor-
ization T = T1T2. More precisely, we need K2 = Ker T2 and an arbitrary right inverse of T2,
which we denote in this section by H2. We begin without any assumption on the regularity.

Lemma 4.1 Let (T1, F1) ◦ (T2, F2) = (T, F). Then

T ∗
2 (F1) ⊆ F ∩ K ⊥

2 (4.2)

and

T ∗
2 H∗

2 (F̃1) = F̃1 (4.3)

for any F̃1 ⊆ K ⊥
2 .

Proof Note that Im T ∗
2 = K ⊥

2 by Proposition A.6 and T ∗
2 (F1) ⊆ T ∗

2 (F1) + F2 = F . For
the second equation observe that T ∗

2 H∗
2 is a projection with Im T ∗

2 H∗
2 = Im T ∗

2 = K ⊥
2 by

(A.16). 
�
Proposition 4.2 Let T = T1T2 be a factorization with surjective linear maps T1 and T2. Let

F̃1 ⊆ F ∩ K ⊥
2 and F2 ⊆ F

be orthogonally closed subspaces such that F = F̃1 + F2, and F1 = H∗
2 (F̃1). Then

(T1, F1) ◦ (T2, F2) = (T, F)

is a factorization of (T, F).

Proof By Corollary A.5, we know that F1 = H∗
2 (F̃1) is orthogonally closed, and so (T1, F1)

is a boundary problem. Using (4.3), we observe

(T1, F1) ◦ (T2, F2) = (T1T2, T ∗
2 H∗

2 (F̃1) + F2) = (T, F̃1 + F2) = (T, F),

and the proposition is proved. 
�
Let now (T, F) be regular with Green’s operator G, and assume that we have a factoriza-

tion T = T1T2 with T1 and T2 surjective. Then T2G is a right inverse of T1 since

T1T2G = T G = 1.

So (T1, (Im T2G)⊥) is a regular boundary problem. We can describe its boundary conditions
without G only in terms of F and T2 with a right inverse H2.

Lemma 4.3 Let (T, F) be regular with Green’s operator G and let T = T1T2 be a factor-
ization with surjective linear maps T1 and T2. Then

(Im T2G)⊥ = H∗
2 (F ∩ K ⊥

2 ),

and (T1, H∗
2 (F ∩ K ⊥

2 )) is regular with Green’s operator T2G.
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Proof Using Proposition A.6 and (A.22), we obtain

(Im T2G)⊥ = Ker (T2G)∗ = Ker G∗T ∗
2 = H∗

2 (Ker G∗ ∩ Im T ∗
2 ).

From (2.2) we know that Ker G∗ = F and Im T ∗
2 = K ⊥

2 . 
�
The following theorem tells us that given a regular boundary problem (T, F) and a fac-

torization T = T1T2, there is a unique regular left factor described by the previous lemma.

Theorem 4.4 Let (T, F) be regular and T = T1T2 a factorization with surjective linear
maps T1 and T2. Then

(T1, F1) ◦ (T2, F2) = (T, F)

is a factorization with (T1, F1) regular iff

F1 = H∗
2 (F ∩ K ⊥

2 )

and F2 ⊆ F is an orthogonally closed subspace such that

F = (F ∩ K ⊥
2 ) + F2.

Moreover, if (T1, F1) is regular, its Green’s operator is T2G.

Proof Let (T1, F1) ◦ (T2, F2) = (T, F) with (T, F) and (T1, F1) regular. Writing F̄1 =
H∗

2 (F ∩ K ⊥
2 ), we see with Equation (4.2) that F1 ⊆ F̄1. Since (T1, F1) is regular by assump-

tion and (T1, F̄1) by the previous lemma, we have

F1 � K ⊥
1 = F̄1 � K ⊥

1 = V ∗

by (2.1), so that F1 and F̄1 have a common complement. Using modularity, we see that

F1 = F1 + (K ⊥
1 ∩ F̄1) = (F1 + K ⊥

1 ) ∩ F̄1 = F̄1 = H∗
2 (F ∩ K ⊥

2 ).

By (4.3), we have T ∗
2 (F1) = T ∗

2 H∗
2 (F ∩ K ⊥

2 ) = F ∩ K ⊥
2 , and so

F = (F ∩ K ⊥
2 ) + F2.

Conversely, we know by the previous lemma that (T1, H∗
2 (F ∩ K ⊥

2 )) is regular, and
(T1, H∗

2 (F ∩ K ⊥
2 )) ◦ (T2, F2) = (T, F) by Proposition 4.2. 
�

Finally, assume that all boundary problems in the factorization (4.1) are regular with
corresponding Green’s operators G, G1 and G2. Then we have the factorizations

T = T1T2 and G = G2G1,

by Proposition 3.2, and a direct sum of the boundary conditions

F = T ∗
2 (F1) � F2

by (3.2). Since T2G = T2G2G1 = G1, we know from Lemma 4.3 that F1 = H∗
2 (F ∩ K ⊥

2 ).
By (4.3), we obtain T ∗

2 (F1) = F ∩ K ⊥
2 so that

F = (F ∩ K ⊥
2 ) � F2.

We write P̄(V ∗) for the lattice of orthogonally closed subspaces of V ∗; see Appendix A.1 in
the appendix. With the following proposition relating complements, subspaces and orthog-
onality, we can characterize all regular problems (T2, F2) with F2 ⊆ F .
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Proposition 4.5 Let K2 ⊆ K ⊆ V be subspaces and F ⊆ V ∗ an orthogonally closed
subspace such that

V = K � F⊥.

Then we have a bijection

{F2 ∈ P̄(V ∗) | F2 ⊆ F and V = K2 � F⊥
2 }

∼= {V2 ∈ P(V ) | K = V2 � K2}
given by

F2 �→ F⊥
2 ∩ K and V2 �→ F ∩ V ⊥

2 . (4.4)

Moreover,

V = K2 � F⊥
2 iff F = (F ∩ K ⊥

2 ) � F2,

for orthogonally closed subspaces F2 ⊆ F .

Proof Let F2 ⊆ F be orthogonally closed such that V = K2 � F⊥
2 . We obtain

K = V ∩ K = (K2 + F⊥
2 ) ∩ K = K2 + (F⊥

2 ∩ K ),

and the sum is direct since K2 ∩ F⊥
2 = 0, so F⊥

2 ∩ K is a complement of K2 in K . Since
F ∩ K ⊥ = 0, we have

F ∩ (F⊥
2 ∩ K )⊥ = F ∩ (F2 + K ⊥) = F2 + (F ∩ K ⊥) = F2.

Conversely, let V2 be a subspace such that K = V2�K2. Since V = K �F⊥ and (F∩V ⊥
2 )⊥ =

F⊥ + V2, we have

V = K + F⊥ = K2 � (F⊥ + V2) = K2 � (F ∩ V ⊥
2 )⊥.

Moreover, note that

(F ∩ V ⊥
2 )⊥ ∩ K = (V2 + F⊥) ∩ K = V2 + (F⊥ ∩ K ) = V2

since F⊥ ∩ K = 0.
Now let F2 ⊆ F be orthogonally closed such that V = K2 � F⊥

2 . Let V2 = F⊥
2 ∩ K .

Then we know from above that K = V2 � K2, so

V = K � F⊥ = V2 � K2 � F⊥.

Since orthogonality preserves direct sums, we obtain

V ∗ = (F ∩ K ⊥
2 ) � V ⊥

2 .

So we have

F = F ∩ V ∗ = F ∩ ((F ∩ K ⊥
2 ) + V ⊥

2 ) = (F ∩ K ⊥
2 ) + (F ∩ V ⊥

2 ),

and the sum is direct since (F ∩ K ⊥
2 ) ∩ V ⊥

2 = 0. Since we also know from above that
F ∩ V ⊥

2 = F2, the first part of the equivalence is proved.
Conversely, let F2 be an orthogonally closed subspace such that

F = (F ∩ K ⊥
2 ) � F2.
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Then (F ∩ K ⊥
2 ) ∩ F2 = 0 and hence by passing to the orthogonal

V = K2 + F⊥ + F⊥
2 = K2 + F⊥

2 ,

the latter since F⊥
2 ⊇ F⊥. Moreover, note that

F⊥ = (F ∩ K ⊥
2 )⊥ ∩ F⊥

2 = (F⊥ + K2) ∩ F⊥
2 = F⊥ + (K2 ∩ F⊥

2 ).

Since K ∩ F⊥ = 0, we obtain

0 = K ∩ (F⊥ + (K2 ∩ F⊥
2 )) = (K ∩ F⊥) + (K2 ∩ F⊥

2 ) = K2 ∩ F⊥
2 .

Hence V = K2 � F⊥
2 , and the proposition is proved. 
�

Corollary 4.6 Let (T, F) be regular and T2 surjective with Ker T2 ⊆ Ker T . Then (4.4)
defines a bijection between

{F2 ⊆ F | (T2, F2) regular}
and complements of Ker T2 in Ker T . Moreover, (T2, F2) is regular iff F2 is an orthogonally
closed complement of (F ∩ K ⊥

2 ) in F .

The following corollary allows us to compute the boundary conditions for the unique
regular left factor if we have the Green’s operator for a regular right factor.

Corollary 4.7 Let (T, F) be regular and T2 surjective with Ker T2 ⊆ Ker T . Then

G∗
2(F) = G∗

2(F ∩ K ⊥
2 )

if G2 is the Green’s operator for (T2, F2) regular with F2 ⊆ F .

Proof If G2 = (T2, F2)
−1 with F2 ⊆ F , then

F = (F ∩ K ⊥
2 ) � F2,

by the previous corollary. Since Ker G∗
2 = F2 by (2.2), this implies G∗

2(F) = G∗
2(F ∩ K ⊥

2 ).

�

Summing up, we can now characterize and construct all possible factorizations of a regular
boundary problem into two regular boundary problems given a factorization of the defining
operator.

Theorem 4.8 Let (T, F) be regular and T = T1T2 a factorization with surjective linear
maps T1 and T2. Then

(T1, F1) ◦ (T2, F2) = (T, F)

is a factorization with (T2, F2) regular iff

F1 = H∗
2

(
F ∩ K ⊥

2

)

and F2 ⊆ F is an orthogonally closed subspace such that

F = (F ∩ K ⊥
2 ) � F2.

In particular, the left factor (T1, F1) is necessarily regular.
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Proof Let (T1, F1) ◦ (T2, F2) = (T, F) with (T, F) and (T2, F2) regular. Let G2 be the
Green’s operator for (T2, F2). Since Ker G∗

2 = F2 by (2.2) and F = T ∗
2 (F1) + F2, we

obtain G∗
2(F) = F1. With the previous corollary this yields

F1 = G∗
2(F ∩ K ⊥

2 ),

and so (T1, F1) is regular by Lemma 4.3. The theorem follows with Corollary 4.6 and
Theorem 4.4. 
�

5 A monoid of boundary problems

In this section, we consider boundary problems with endomorphisms; this case is also the basis
for the symbolic computation treatment in [21]. Having endomorphisms, the composition of
boundary problems (3.1) and dual boundary problems (3.4) coincides with the multiplication
in a reverse semidirect product of suitably defined monoids and actions. Moreover, the con-
travariant functors from Theorem 3.4 between regular (dual) boundary problems specialize
to anti-isomorphisms between the submonoids of regular (dual) boundary problems.

Given a monoid action, one can define the semidirect product of monoids just as for groups.
In contrast to groups, one must distinguish between left and right actions and accordingly
define the multiplication for semidirect products.

We recall the definitions. Let M and N be monoids. Following a convention introduced
by Eilenberg [5], which also fits perfectly with our application, we write the product in M
additively (without assuming commutativity in general). Given a left action of N on M ,
denoted by n ·m, and specified by a homomorphism ϕ : N → End M , the semidirect product
M �ϕ N is the set M × N with the multiplication “from the left”

(m1, n1)(m2, n2) = (m1 + n1 · m2, n1n2) = (m1 + ϕn1(m2), n1n2).

One verifies that this multiplication is associative with identity (0, 1), so the semidirect
product M �ϕ N is indeed a monoid.

Analogously, given a right action of N on M , denoted by m · n, and specified by an anti-
homomorphism ϕ : N → End M , the reverse semidirect product N �ϕ M is the set N × M
with the multiplication “from the right”

(n1, m1)(n2, m2) = (n1n2, m1 · n2 + m2) = (n1n2, ϕn2(m1) + m2).

Again N �ϕ M is a monoid with identity (1, 0).
Let now V be a vector space and L(V ) the monoid of endomorphisms with respect to com-

position. The subspace lattice of V is denoted by P(V ), and L(V ) acts on it from the left by
A ·V1 = A(V1), so we have a homomorphism ϕ : L(V ) → End P(V ) with ϕA(V1) = A(V1).
The multiplication in the semidirect product P(V ) �ϕ L(V ) is

(V1, A1)(V2, A2) = (V1 + A1(V2), A1 A2),

which is exactly the definition (3.4) of the composition of dual boundary problems. Writing
H for the submonoid of all injective endomorphisms, we see that the semidirect product
P(V ) �ϕ H is the monoid of dual boundary problems. The regular dual boundary problems
form a submonoid

R∗ = {(K , G) ∈ P(V ) × H | (K , G) regular}
since the composition of two regular dual boundary problems is regular by Proposition 3.3.
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We now discuss the situation for boundary problems. By Proposition A.3, the sum of
two orthogonally closed subspaces is orthogonally closed, so P̄(V ∗) is an additive monoid.
We know from Corollary A.5 that the transpose maps orthogonally closed subspaces to
orthogonally closed subspaces. Hence L(V ) acts on P̄(V ∗) from the right via the trans-
pose F · A = A∗(F), and we have the anti-homomorphism ϕ : L(V ) → End P̄(V ∗) with
ϕA(F) = A∗(F). The multiplication in the reverse semidirect product L(V ) �ϕ P̄(V ∗) is

(A1, F1)(A2, F2) = (A1 A2, A∗
2(F1) + F2),

which is the definition (3.1) of the composition of boundary problems. Writing S for the
submonoid of all surjective endomorphisms, the reverse semidirect product S �ϕ P̄(V ∗) is
the monoid of boundary problems. The regular boundary problems form a submonoid

R = {(T, F) ∈ S × P̄(V ∗) | (T, F) regular}
since the composition of two regular boundary problems is regular by Proposition 3.2.

Solving regular (dual) boundary problems gives an anti-isomorphism between the
monoids of regular (dual) boundary problems. More precisely, we have the following re-
sult as a special case of Theorem 3.4.

Proposition 5.1 The map

R → R∗

(T, F) �→ (
Ker T, (T, F)−1)

is an anti-isomorphism between the monoids of regular (dual) boundary problems, and

R∗ → R

(K , G) �→ (
(K , G)−1, (Im G)⊥

)
.

is its inverse.

Given a submonoid S1 of all surjective endomorpisms S, we can consider the monoid of
boundary problems S1 � P̄(V ∗) with linear maps in S1. We can also restrict the boundary
conditions to a submonoid F of P̄(V ∗) if F is closed under S1 in the sense that

T ∗(F) ∈ F for all T ∈ S1 and F ∈ F,

so that S1 acts on F . In all such cases, the regular boundary problems form a submonoid. As
an example, take the submonoid of surjective endomorphisms with finite dimensional kernel
with finite dimensional subspaces of boundary conditions.

Analogously, we can consider submonoids of all injective endomorphisms and restrict the
dual boundary conditions to suitable submonoids of P(V ). The corresponding dual problems
for the previous example are injective endomorphisms with finite codimensional image with
finite dimensional subspaces as dual boundary conditions.

Note that with the results from Sect. 4, given a factorization in S1, we can construct all
factorizations of a (regular) boundary problem into (regular) boundary problems with arbi-
trary boundary conditions. If we restrict the boundary conditions to a submonoid F , we have
to check whether the constructed boundary conditions are again in F .
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6 Finitely many boundary conditions

In this section, we specialize some results and discuss algorithmic aspects for boundary
problems where the corresponding linear maps have finite dimensional kernels and the spaces
of boundary conditions are finite dimensional. Note that this includes boundary value prob-
lems for (systems of) ordinary differential equations and systems of partial differential equa-
tions with finite dimensional solution space.

More precisely, we consider boundary problems (T, F) where T : V → W ,

dim K < ∞ and F = [ f1, . . . , fn]
with K = Ker T . We can rewrite the condition that u ∈ V is a solution of the boundary
problem (T, F) for a given w ∈ W in the following traditional form

T u = w,

f1(u) = · · · = fn(u) = 0.

By Corollary A.17, a necessary condition for the regularity of (T, F) is

dim Ker T = dim F,

meaning that we have the “correct” number of boundary conditions. Moreover, we get the
following algorithmic regularity test for boundary problems (to be found in Kamke [12,
p. 184] for the special case of two-point boundary conditions).

Proposition 6.1 A boundary problem (T, F) with dim Ker T = dim F is regular iff the
matrix

⎛
⎜⎝

f1(u1) · · · f1(un)
...

. . .
...

fn(u1) · · · fn(un)

⎞
⎟⎠

is regular, where the fi and u j are any basis of respectively F and Ker T .

Let T be a fixed surjective linear map. By (2.3), given any right inverse G̃ of T , the Green’s
operator for a regular boundary problem (T, F) is given by G = (1 − P)G̃, where P is the
projection with Im P = K and Ker P = F⊥. If T has a finite dimensional kernel with basis
u1, . . . , un , we can easily describe the projection P in terms of a basis f1, . . . , fn of F . Since
the matrix B = ( fi (u j )) is regular by the previous proposition, we can define

( f̃1, . . . , f̃n)t = B−1( f1, . . . , fn)t .

Then the ( f̃i ) and (u j ) are biorthogonal, and P : V → V defined by

v �→
n∑

i=1

〈v, f̃i 〉ui

is the projection with Im P = K and Ker P = F⊥ by Lemma A.1.
Given a factorization T = T1T2 and a right inverse H2 of T2, we know from Theorem 4.8

how to construct all possible factorizations of a regular boundary problem (T, F) into two
regular problems. The boundary conditions for the left factor (T1, F1) are uniquely given by

F1 = H∗
2 (F ∩ K ⊥

2 ),
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and all regular boundary problems (T2, F2) correspond to direct sums

F = (F ∩ K ⊥
2 ) � F2.

In the following, we discuss how all such factorizations can be computed by linear algebra
if T has a finite dimensional kernel.

Let (T, F) be regular, K = Ker T , K2 = Ker T2, and f1, . . . , fm+n a basis of F . Choose
a basis

u1, . . . , um, um+1, . . . , um+n

of K such that u1, . . . , um is basis of K2, and let

B =
⎛
⎜⎝

f1(u1) . . . f1(um) f1(um+1) . . . f1(um+n)
...

. . .
...

...
. . .

...

fm+n(u1) . . . fm+n(um) fm+n(um+1) . . . fm+n(um+n)

⎞
⎟⎠ . (6.1)

Since B is regular, we can perform row operations corresponding to a regular matrix P such
that

P B =
(

B2 C
0 D

)
(6.2)

is a block matrix, where B2 is a regular m × m matrix. Let

( f̃1, . . . , f̃m, f̃m+1, . . . , f̃m+n)t = P ( f1, . . . , fm+n)t , (6.3)

that is,

f̃i =
m+n∑

j=1

Pi j f j ,

and F2 = [ f̃1, . . . , f̃m]. Then we have obviously [ f̃m+1, . . . , f̃m+n] ⊆ F ∩ K ⊥
2 and since

dim(F ∩ K ⊥
2 ) = codim(F⊥ + K2) = n, they are equal. So

F = (F ∩ K ⊥
2 ) � F2

is a direct sum. Conversely, it is clear that any such direct sum given by bases F2 =
[ f̃1, . . . , f̃m] and F ∩ K ⊥

2 = [ f̃m+1, . . . , f̃m+n] with P as in (6.3) gives a block matrix
as in (6.2). By Theorem 4.8, we know that

(T, F) = (T1, F1) ◦ (T2, F2)

is a factorization into regular boundary problems with

F1 = [H∗
2 ( f̃m+1), . . . , H∗

2 ( f̃m+n)] and F2 = [ f̃1, . . . , f̃m]. (6.4)

Note that if H2 is the Green’s operator for a regular right factor (T2, F2) with F2 ⊆ F ,
we have H∗

2 (F) = H∗
2 (F ∩ K ⊥

2 ) by Corollary 4.7. So we can compute the uniquely deter-
mined boundary conditions F1 simply by applying H∗

2 to the boundary conditions F ; see the
examples in Sect. 1.
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7 Examples for differential equations

Let us now illustrate our algebraic approach to abstract boundary problems in the concrete
setting of differential equations, taking up the examples posed in Sect. 1.

We want to factor the two-point boundary problem (D2, [L , R]) of (1.1) into two regular
problems with T1 = T2 = D. The indefinite integral A = ∫ x

0 is the Green’s operator for the
regular right factor (D, [L]). By Corollary 4.7, the boundary conditions for the unique left
factor are

A∗[L , R] = [0, R A] = [R A],
where R A = � 1

0 is the definite integral. So we obtain the factorization

(D, [R A]) ◦ (D, [L]) = (D2, [L , R])
or

u′ = f∫ 1
0 u(ξ) dξ = 0

◦ u′ = f
u(0) = 0

= u′′ = f
u(0) = u(1) = 0

in the notation from Sect. 1. Note that the boundary condition for the left factor is an integral
condition. Such conditions are not considered in the classical setting of two-point boundary
problems but are known in the literature as Stieltjes boundary conditions [1]. We check this
factorization by multiplying the two boundary problems according to Definition (3.1). Note
that

(D, [R A]) ◦ (D, [L]) = (D2, [D∗(R A), L])
and D∗(R A) = R AD = ∫ 1

0 D = L − R so that

[D∗(R A), L] = [L − R, R] = [L , R],
as we expect.

To illustrate the method from the previous section, we factor the boundary problem
(D2, [L D, R]). We use again the indefinite integral A = (D, [L])−1 as a right inverse
of D, but for this boundary problem it is not a Green’s operator for a regular right factor
since L �∈ [L D, R]. Hence we cannot simply apply A∗ to the boundary conditions as we did
before since this would give us two conditions

A∗[L D, R] = [L D A, R A] = [L , R A]
for a first-order problem. So we have to proceed as described in the previous section. A
suitable basis for Ker D2 is 1, x . Evaluating the boundary conditions L D, R on 1, x yields

(
0 1
1 1

)
,

for the matrix B from (6.1). Swapping the first and the second row gives a block triangular
matrix as in (6.2). So by (6.4), the boundary condition is given by A∗(L D) = L for the left
factor and by R for the right factor, and we obtain the factorization

(D, [L]) ◦ (D, [R]) = (D2, [L D, R]).
See [21] for a general discussion on solving and factoring boundary problems for ordinary
differential equations in an algorithmic context.
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As an example of a boundary problem for a partial differential equation, we return to the
wave equation (1.2) from Sect. 1. We write it as

W = (∂2
t − ∂2

x , [u(x, 0), ut (x, 0)]),
where u(x, 0) and ut (x, 0) are short for the functionals u �→ u(x, 0) and u �→ ut (x, 0),
respectively, and [. . .] denotes the orthogonal closure of the subspace generated by these
functionals with x ranging over R. The Green’s operator for W is given by

G f (x, t) = 1

2

t∫

0

x+(t−τ)∫

x−(t−τ)

f (ξ, τ ) dξ dτ, (7.1)

as can be found in the literature [23, p. 485]. We show that one can determine G by con-
structing a factorization of W along the factorization

∂2
t − ∂2

x = (∂t − ∂x )(∂t + ∂x ).

A regular right factor is given by

W2 = (∂t + ∂x , [u(x, 0)]).
In general, choosing boundary conditions in such a way that they make up a regular boundary
problem for a given first-order right factor of a linear partial differential operator amounts to
a geometric problem involving the characteristics. The Green’s operator for W2 can easily
be computed as

G2 f (x, t) =
x∫

x−t

f (ξ, ξ − x + t) dξ

and can be used for finding the boundary conditions for the uniquely determined left factor

W1 = (∂t − ∂x , G∗
2[u(x, 0), ut (x, 0)]) = (∂t − ∂x , [u(x, 0)])

by Corollary 4.7. One can verify the factorization W = W1 ◦ W2, taking into account (3.3).
The Green’s operator for W1 is analogously given by

G1 f (x, t) =
x+t∫

x

f (ξ, x − ξ + t) dξ,

and all we have to do now is to compute the composite

G2G1 f (x, t) =
x∫

x−t

2τ−x+t∫

τ

f (ξ, 2τ − ξ − x + t) dξ dτ,

which is the Green’s operator for W by Theorem 4.8. Since G and G2G1 solve the same
regular boundary problem, we know that G = G2G1, as one may also verify directly by a
change of variables.

The above methodology can also be transferred to the computationally more involved case
of the wave equation on the bounded interval [0, 1], succinctly expressed in our notation by

V = (∂2
t − ∂2

x , [u(x, 0), ut (x, 0), u(0, t), u(1, t)])
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with x ranging over [0, 1]. In a similar fashion, one can find a factorization V = V1 ◦V2 with

V1 = (∂t − ∂x , [u(x, 0),

∫ 1

max (1−t,0)

u(ξ, ξ + t − 1) dξ ]),
V2 = (∂t + ∂x , [u(x, 0), u(0, t)]).

Unlike in the unbounded case, the Green’s operator for V involves a finite sum whose upper
bound depends on the argument (x, t). These complications are reflected in the Green’s
operator for the left factor V1, whose computation leads to a simple functional equation. A
systematic investigation of partial differential equations with integral boundary conditions is
a subject of future work.
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Appendix

A.1 Orthogonally closed subspaces

In this section, we summarize the results needed for orthogonally closed subspaces of a
vector space and its dual. The notation should remind of the analogous well-known results
for Hilbert spaces. See for example Conway [4] and Lang [14, pp. 391–394] for the Banach
space setting.

First we recall the notion of orthogonality for a bilinear map of modules. Let M and N be
left modules over a commutative ring R and b : M × N → R be a bilinear map. Two vectors
x ∈ M and y ∈ N are called orthogonal with respect to b if b(x, y) = 0. Let X⊥ denote
the set of all y ∈ N that are orthogonal to X for a fixed bilinear map b. This is obviously a
submodule of N , which we call the orthogonal of X . We define orthogonality on the other
side in the same way.

It follows directly from the definition that for any subsets X1, X2 ⊆ M we have

X1 ⊆ X2 ⇒ X⊥
1 ⊇ X⊥

2 and X1 ⊆ X⊥⊥
1 . (A.1)

These statements hold analogously for subsets of N . Let P(M) denote the projective geome-
try of a module M , that is, the poset of all submodules (ordered by inclusion). Then the two
properties (A.1) for orthogonality imply that we have an order-reversing Galois connection
between the projective geometries P(M) � P(N ) defined by

M1 �→ M⊥
1 and N1 �→ N⊥

1 . (A.2)

Hence we know in particular that S⊥ = S⊥⊥⊥ for any submodule S of M or N . Moreover,
the map S �→ S⊥⊥ is a closure operator: an extensive (S ⊆ S⊥⊥), order-preserving and
idempotent self-map. We call a submodule S orthogonally closed if S = S⊥⊥. The Galois
connection restricted to orthogonally closed submodules is an order-reversing bijection. For
further details and references on Galois connections we refer to Erné et al. [7].

We now consider the canonical bilinear form V × V ∗ → k of a vector space V over
a field k and its dual V ∗ defined by (v, f ) �→ f (v) and the induced orthogonality on the
subspaces. We use the notation 〈v, f 〉 for f (v).
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Let V1 ⊆ V be a subspace. Using the fact that any basis of a subspace can be extended
to a basis for V , we see that for any vector v ∈ V that is not in V1 there is a linear form
f ∈ V ∗ with f (v1) = 0 for all v1 ∈ V1 and f (v) = 1. It follows immediately that every
subspace of V is orthogonally closed with respect to the canonical bilinear form V ×V ∗ → k.
Furthermore, we have a natural isomorphism

V ⊥
1

∼= (V/V1)
∗.

Indeed, each f ∈ V ⊥
1 defines a linear form on V/V1 since it vanishes on V1, and it is easy to

see that this gives an isomorphism between V ⊥
1 and (V/V1)

∗. This implies in particular that

dim V ⊥
1 = codim V1 if codim V1 < ∞.

In the following, we consider subspaces of the dual vector space V ∗. We first recall some
results for biorthogonal systems. Two families (vi )i∈I of vectors in V and linear forms ( fi )i∈I

in V ∗ are called biorthogonal or said to form a biorthogonal system if

〈vi , f j 〉 = δi j =
{

1, if i = j,

0, if i �= j .

For a biorthogonal system (vi )i∈I and ( fi )i∈I we can easily compute the coefficients of a
linear combination v = ∑

aivi with finitely many ai ∈ k nonzero. Applying f j , we obtain

〈v, f j 〉 =
∑

ai 〈vi , f j 〉 = a j .

Evaluating a linear combination f = ∑
a j f j at vi gives analogously

〈vi , f 〉 =
∑

a j 〈vi , f j 〉 = ai .

This implies in particular that the vi and fi are linearly independent. Moreover, we can easily
compute projections onto finite dimensional vector spaces from a biorthogonal system. One
can show the following lemma and proposition for finite biorthogonal systems; for details
see Köthe [13, pp. 71–72].

Lemma A.1 Let (v1, . . . , vn) ∈ V and ( f1, . . . , fn) ∈ V ∗ be biorthogonal. Let V1 =
[v1, . . . , vn] and F1 = [ f1, . . . , fn] be their linear spans. Then P : V → V defined by

v �→
n∑

i=1

〈v, fi 〉vi

is a projection with Im P = V1 and Ker P = F⊥
1 so that V = F⊥

1 � V1 and codim F⊥
1 = n.

Moreover, for any f ∈ F⊥⊥
1 we have

f =
n∑

i=1

〈vi , f 〉 fi ,

so that F1 is orthogonally closed.

Proposition A.2 Let f1, . . . , fn ∈ V ∗. Then the fi are linearly independent iff there exist
v1, . . . , vn ∈ V such that (vi ) and ( fi ) are biorthogonal.
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We conclude with the previous lemma that every finite dimensional subspace of V ∗ is
orthogonally closed. But if V is infinite dimensional, there are always linear subspaces, and
indeed hyperplanes in V ∗, that are not orthogonally closed; see e.g. [13, p. 71]. Nevertheless,
since all subspaces of V are orthogonally closed, we have via the Galois connection (A.2) an
order-reversing bijection between P(V ) and the poset of all orthogonally closed subspaces
of V ∗, which we denote by P̄(V ∗).

Recall that the projective geometry P(V ) of any vector space V is a complete comple-
mented modular lattice with the join and meet respectively defined as the sum and intersection
of subspaces. Modularity means that

V1 + (V2 ∩ V3) = (V1 + V2) ∩ V3

for all V1, V2, V3 ∈ P(V ) with V1 ⊆ V3.
Using (A.1) one can show that P̄(V ∗) is a complete lattice with the meet defined as the

intersection and the join defined as the orthogonal closure of the sum of subspaces. Hence
the Galois connection (A.2) is an order-reversing lattice isomorphism between the complete
lattices P(V ) and P̄(V ∗). Therefore P̄(V ∗) is also a complemented modular lattice.

Let V1, V2 ∈ P(V ) and F1, F2 ∈ P̄(V ∗). Since the meet in P̄(V ∗) is the set-theoretic
intersection, we know that

(V1 + V2)
⊥ = V ⊥

1 ∩ V ⊥
2 and (F1 ∩ F2)

⊥ = F⊥
1 + F⊥

2 . (A.3)

The sum of infinitely many orthogonally closed subspaces is in general not orthogonally
closed when V is infinite dimensional. But using the fact that P̄(V ∗) is a modular lattice, one
can show the following proposition [13, p. 72].

Proposition A.3 The sum of two orthogonally closed subspaces is orthogonally closed.

Hence we have also

(V1 ∩ V2)
⊥ = V ⊥

1 + V ⊥
2 and (F1 + F2)

⊥ = F⊥
1 ∩ F⊥

2 . (A.4)

Equations (A.3) and (A.4) imply that orthogonality preserves algebraic complements, that
is, for direct sums

V = V1 � V2 and V ∗ = F1 � F2,

we have

V ∗ = V ⊥
1 � V ⊥

2 and V = F⊥
1 � F⊥

2 .

Every subspace has a complement, hence every orthogonally closed subspace of the dual
has an orthogonally closed complement. So if we disregard completeness, the Galois con-
nection (A.2) is an order-reversing lattice isomorphism between the complemented modular
lattices P(V ) ∼= P̄(V ∗) with join and meet defined as sum and intersection.

Moreover, for arbitrary (not necessarily orthogonally closed) subspaces F1 and F2 of V ∗
we have

F⊥⊥
1 + F⊥⊥

2 = (F1 + F2)
⊥⊥. (A.5)

Using the fact that taking the double orthogonal is a closure operator, we see namely that
F⊥⊥

1 + F⊥⊥
2 ⊆ (F1 + F2)

⊥⊥; the reverse inclusion follows since the left hand side of (A.5)
is orthogonally closed by Proposition A.3. If ⊥⊥ were the closure operator of a topology,
(A.5) would mean that the sum is continuous and closed.
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We have already seen that if codim V1 < ∞ and dim F1 < ∞, then

codim V1 = dim V ⊥
1 and dim F1 = codim F⊥

1 . (A.6)

So we can also consider the restriction of the Galois connection to finite codimensional sub-
spaces of V and finite dimensional subspaces of V ∗. This yields an order-reversing lattice
isomorphism between modular lattices.

A.2 The transpose

Let V and W be vector spaces over a field k and A : V → W a linear map. We recall some
basic properties of the transpose or dual map A∗ : W ∗ → V ∗ defined by h �→ h ◦ A. Hence

〈Av, h〉W = 〈v, A∗h〉V for all v ∈ V, h ∈ W ∗ (A.7)

with the canonical bilinear forms on W and V , respectively. The map A �→ A∗ from L(V, W )

to L(W ∗, V ∗) is linear. It is injective since for every nonzero w ∈ W there exists a linear form
h ∈ W ∗ with h(w) �= 0. For finite dimensional vector spaces, it is also surjective. We have
(AB)∗ = B∗ A∗ for linear maps A ∈ L(U, V ) and B ∈ L(V, W ). Since 1V

∗ = 1V ∗ , this
implies that if A is left (respectively right) invertible, A∗ is right (respectively left) invertible,
so if A is invertible, also A∗ is invertible with (A∗)−1 = (A−1)

∗
. Moreover, the map A �→ A∗

is an injective k-algebra anti-homomorphism from L(V ) to L(V ∗).
In the following, we discuss the relations between the image of subspaces under a linear

map, its transpose, and orthogonality. From (A.7) it follows immediately that the orthogonal
of the image of a subspace V1 ⊆ V is

A(V1)
⊥ = (A∗)−1(V ⊥

1 ). (A.8)

Since V ⊥ = 0, we have in particular (Im A)⊥ = Ker A∗. Hence Ker A∗ is orthogonally
closed. Taking the orthogonal, we obtain from (A.8)

A(V1) = (A∗)−1(V ⊥
1 )⊥,

since every subspace of a vector space is orthogonally closed with respect to the canonical
bilinear form. In particular, we have Im A = (Ker A∗)⊥. For orthogonally closed subspaces
F1 ⊆ V ∗, we obtain

A(F⊥
1 ) = (A∗)−1(F1)

⊥. (A.9)

Now we consider the images under the transpose. Again we see immediately with (A.7)
that

A∗(H1)
⊥ = A−1(H⊥

1 ) (A.10)

for subspaces H1 ⊆ W ∗. Since (W ∗)⊥ = 0, we have in particular (Im A∗)⊥ = Ker A. Taking
the orthogonal, we obtain from (A.10)

A∗(H1) ⊆ A∗(H1)
⊥⊥ = A−1(H⊥

1 )⊥. (A.11)

Note that in general we have a proper inclusion, as one can see by taking the identity map and
a subspace that is not orthogonally closed since the right-hand side is orthogonally closed.
But we do have equality for orthogonally closed subspaces. In the Banach space setting,
identity (A.13) comes in the context of the Closed Range Theorem [27, p. 205] and holds
only for operators with closed range.
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Proposition A.4 We have

A∗(W ⊥
1 ) = A−1(W1)

⊥ (A.12)

for subspaces W1 ⊆ W . In particular,

Im A∗ = (Ker A)⊥, (A.13)

and the image of A∗ is orthogonally closed.

Proof With (A.11) and the fact that every subspace a vector space is orthogonally closed
with respect to the canonical bilinear form, we know the inclusion ⊆. Conversely, let f ∈
A−1(W1)

⊥. Then

f (v1) = 0 for all v1 ∈ V such that Av1 ∈ W1.

So in particular f (Ker A) = 0. We have to find a h ∈ W ⊥
1 such that f = A∗h. We

define h̃ : Im A → K by h̃(Av) = f (v). Then h̃ is well-defined. If Av1 = Av2, then
v1 − v2 ∈ Ker A. Hence f (v1) = f (v2) since f (Ker A) = 0. Moreover, note that

h̃(Im A ∩ W1) = 0.

We have to extend h̃ to a linear map h : W → K such that h vanishes on W1. To this end, let
Ĩ1 and W̃1 be complements of Im A ∩ W1 in Im A and W1, respectively, so that

Im A = (Im A ∩ W1) � Ĩ1 and W1 = (Im A ∩ W1) � W̃1.

Then one sees that we have a direct sum

Im A + W1 = (Im A ∩ W1) � Ĩ1 � W̃1.

Let P : Im A + W1 → Im A defined by

P(w̄ + w̃1) = w̄ where w̄ ∈ Im A and w̃1 ∈ W̃1.

Then P is a linear map with Ker P = W̃1. We set h = h̃ ◦ P . Then h is defined on Im A+W1.
We extend h arbitrarily to a linear form on W and denote it again by h. By definition h = h̃
on Im A, and so f = A∗h. We have to verify that h ∈ W ⊥

1 . Let w1 ∈ W1 and

w1 = w̄1 + w̃1 with w̄1 ∈ Im A ∩ W1 and w̃1 ∈ W̃1.

Then

h(w1) = h̃(Pw1) = h̃(w̄1) = 0

since h̃(Im A ∩ W1) = 0, and the proposition is proved. 
�
We know from Appendix A.1 that the Galois connection (A.2) gives an isomorphism

between P(W ) and the orthogonally closed subspaces P̄(W ∗). So the previous proposition
implies

A∗(H1) = A−1(H⊥
1 )⊥ (A.14)

for orthogonally closed subspaces H1 ⊆ W ∗. Since the right hand side is orthogonally closed,
we obtain the following corollary.
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Corollary A.5 The transpose gives an order-preserving map

P̄(W ∗) → P̄(V ∗)
H1 �→ A∗(H1)

between orthogonally closed subspaces.

Moreover, using (A.14) and (A.10), we see that

A∗(H⊥⊥
1

) = A−1(H⊥
1 )⊥ = A∗(H1)

⊥⊥ (A.15)

for an arbitrary subspace H1 ⊆ W ∗, which means that A∗ is “closed” and “continuous” in
the hypothetical topological interpretation mentioned after (A.5).

Finally, we sum up all the identities for the image of subspaces of a linear map and its
transpose and orthogonality in the following proposition.

Proposition A.6 Let V and W be vector spaces over a field k and A : V → W a linear map.
Then we have

A(V1)
⊥ = (A∗)−1(V ⊥

1 ), A(F⊥
1 ) = (A∗)−1(F1)

⊥,

A∗(H1)
⊥ = A−1(H⊥

1 ), A∗(W ⊥
1 ) = A−1(W1)

⊥,

for subspaces V1 ⊆ V , H1 ⊆ W ∗, W1 ⊆ W and orthogonally closed subspaces F1 ⊆ V ∗.
In particular, we have

(Im A)⊥ = Ker A∗, Im A = (Ker A∗)⊥,

(Im A∗)⊥ = Ker A, Im A∗ = (Ker A)⊥,

for the image and kernel of A and A∗.

Proof See (A.8), (A.9), (A.10), and (A.12). 
�

A.3 Left and right inverses

In this section, we recall and discuss some results for left and right inverses and their relation
to projections, complements and inverse images.

Let V and W be vector spaces over a field k. Let T : V → W and G : W → V be linear
maps such that T G = 1. Then T is surjective and G injective, respectively, and GT is a
projection with

Ker GT = Ker T and Im GT = Im G, (A.16)

so that

V = Ker T � Im G. (A.17)

Conversely, we can begin with a given surjective or injective linear map and a complement
of the kernel and image, respectively, and ask if there exists a corresponding right or left
inverse. This is a special case of algebraic generalized inverses as in Nashed and Votruba
[15]. We discuss the results for both cases.

Let first T : V → W be a surjective linear map with K = Ker T and I a complement of
K in V , so that

V = K � I.
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Let P be the projection with Im P = K and Ker P = I . Then by [15, Theorem 1.20] there
exists a unique linear map G : W → V with

T G = 1, GT = 1 − P, and GT G = G.

Lemma A.7 The equation GT = 1 − P characterizes G uniquely.

Proof The third equation above is obviously redundant, and we show that the first follows
from the second. We get for w = T v

T Gw = T GT v = T (v − Pv) = T v = w

since Im P = Ker T . So T G = 1 since T is surjective. 
�
We can also say that given a complement I of K = Ker T , there exists a unique right

inverse G with Im G = I . So we have a bijection

{I ∈ P(V ) | V = K � I } ∼= {G ∈ L(W, V ) | T G = 1} (A.18)

between the set of complements of K in V and the set of right inverses of T . Moreover, all
right inverses can be described in terms of a fixed one.

Lemma A.8 Given any right inverse G̃ of T , the right inverse corresponding to the comple-
ment I is given by

G = (1 − P)G̃,

where P is the projection with Im P = K and Ker P = I .

Let now G : W → V be an injective linear map with I = Im G and K a complement of
I in V , so that

V = K � I.

Let P be the projection with Im P = K and Ker P = I . Since Im(1 − P) = Ker P = I ,
there exists by [15, Theorem 1.20] a unique linear map T : V → W with

GT = 1 − P, T G = 1, and T GT = T .

Lemma A.9 The equation GT = 1 − P characterizes T uniquely.

Proof Note first that since G is injective Ker T = Ker GT = Ker(1 − P) = K . Therefore
T GT = T − T P = T , which is the third equation above, and hence T G = (T G)2 is a
projection. We show that Ker T G = 0, and so T G is the identity. Let T Gw = 0. Then

GT Gw = (1 − P)Gw = 0,

so that Gw = PGw. Since Ker P = Im G, this implies Gw = 0, and thus w = 0 because
G is injective. 
�

We can also say that given a complement K of I = Im G, there exists a unique left inverse
T with Ker T = K . So we have a bijection

{K ∈ P(V ) | V = K � I } ∼= {T ∈ L(V, W ) | T G = 1} (A.19)

between the set of complements of I in V and the set of left inverses of G. Analogously as
above one can describe all left inverses in terms of a fixed one.
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Lemma A.10 Given any left inverse T̃ of G, the left inverse corresponding to the complement
K is given by

T = T̃ (1 − P),

where P is the projection with Im P = K and Ker P = I .

Summing up, the bijections (A.18) and (A.19) yield with Lemma A.7 and A.9 the follow-
ing proposition.

Proposition A.11 We have a bijection

{(T, I ) | T : V → W surjective, I ∈ P(V ) with V = Ker T � I }
∼= {(K , G) | G : W → V injective, K ∈ P(V ) with V = K � Im G}. (A.20)

Given respectively (T, I ) or (K , G), we obtain G or T with T G = 1 as the solution of

GT = 1 − P,

where P is the projection with

Im P = Ker T, Ker P = I and Im P = K , Ker P = Im G,

respectively.

The following two propositions describe the inverse image of a composition of an arbi-
trary and respectively a surjective or injective linear map in terms of one of its right or left
inverses.

Proposition A.12 Let U, V, W be vector spaces over a field k. Let A ∈ L(V, W ) be arbi-
trary, T ∈ L(U, V ) surjective, G a right inverse of T , and W1 ⊆ W a subspace. Then we
have

(AT )−1(W1) = G(A−1(W1)) � Ker T

for the inverse image of the composite. In particular, we have

Ker AT = G(Ker A) � Ker T (A.21)

for the kernel of the composite and

T −1(V1) = G(V1) � Ker T

for the inverse image.

Proof One inclusion is obvious, since

AT (G(A−1(W1)) + Ker T ) = A(A−1(W1)) + 0 ⊆ W1.

Conversely, let u ∈ (AT )−1(W1). Then T u = v with v ∈ A−1(W1). Hence

T (u − Gv) = T u − v = 0

and therefore u ∈ G(A−1(W1)) + Ker(T ). The sum is direct by (A.17). 
�
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Proposition A.13 Let U, V, W be vector spaces over a field k. Let A ∈ L(V, W ) be arbi-
trary, G ∈ L(U, V ) injective, T a left inverse of G, and W1 ⊆ W a subspace. Then we
have

(AG)−1(W1) = T (A−1(W1) ∩ Im G)

for the inverse image of the composite. In particular, we have

Ker AG = T (Ker A ∩ Im G) (A.22)

for the kernel of the composite and

G−1(V1) = T (V1 ∩ Im G)

for the inverse image.

Proof Let v ∈ A−1(W1)∩ Im G. Since GT is a projection with Im GT = Im G, see (A.16),
we get AGT v = Av ∈ W1, and one inclusion is proved.

Conversely, let u ∈ (AG)−1(W1). Then Gu = v with v ∈ A−1(W1) ∩ Im G. Hence
T Gu = u = T v, and therefore u ∈ T (A−1(W1) ∩ Im G). 
�

Observe that for dim U = dim V < ∞, surjectivity as well as injectivity are of course
equivalent to bijectivity, and the propositions are trivial. In particular, if T or G is an endo-
morphism, the propositions are nontrivial only for an infinite dimensional vector space.

A.4 Dimension and codimension

Recall that for subspaces V1 and V2 of a vector space V we have

dim(V1 + V2) + dim(V1 ∩ V2) = dim V1 + dim V2

and analogously for the codimension

codim(V1 + V2) + codim(V1 ∩ V2) = codim V1 + codim V2.

Note that if V is finite dimensional, the second equation is a consequence from the first and
the equation dim V1 + codim V1 = dim V . For V finite dimensional, we obtain similarly the
equation

codim(V1 + V2) + dim V1 = dim(V1 ∩ V2) + codim V2

relating the codimension of the sum with the dimension of the intersection of two subspaces.
We show that this equation holds for arbitrary vector spaces.

Proposition A.14 We have

codim(V1 + V2) + dim V1 = dim(V1 ∩ V2) + codim V2

for subspaces V1 and V2 of a vector space V .

Proof Let Ṽ1 and Ṽ2 be complements of V1 ∩ V2 in V1 and V2, respectively, so that V1 =
Ṽ1 � (V1 ∩ V2) and V2 = Ṽ2 � (V1 ∩ V2). Then one sees that we have a direct sum

V1 + V2 = Ṽ1 � Ṽ2 � (V1 ∩ V2).
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Let W̃ be a complement of V1 + V2 in V so that

V = (V1 + V2) � W̃ = Ṽ1 � Ṽ2 � (V1 ∩ V2) � W̃ .

Hence codim(V1 + V2) = dim W̃ and codim V2 = dim(W̃ + Ṽ1). Computing the dimension
of the subspace W̃ � Ṽ1 � (V1 ∩ V2) in two different ways, we obtain

codim(V1 + V2) + dim V1 = dim W̃ + dim(Ṽ1 + (V1 ∩ V2))

= dim(V1 ∩ V2) + dim(W̃ + Ṽ1) = dim(V1 ∩ V2) + codim V2,

and the proposition is proved. 
�

If V1 is finite dimensional and V2 finite codimensional, all dimensions and codimensions
in the above proposition are finite, and we obtain the following corollaries.

Corollary A.15 Let V1 and V2 be subspaces of a vector space V with dim V1 < ∞ and
codim V2 < ∞. Then

codim(V1 + V2) − dim(V1 ∩ V2) = codim V2 − dim V1.

In particular, we have dim(V1 ∩ V2) = codim(V1 + V2) iff dim V1 = codim V2.

Corollary A.16 Let V1 and V2 be subspaces of a vector space V with dim V1 < ∞ and
codim V2 < ∞. Then V1 � V2 = V iff V1 ∩ V2 = 0 and dim V1 = codim V2 iff V1 + V2 = V
and dim V1 = codim V2.

So for testing whether two subspaces V1 and V2 with dim V1 = codim V2 < ∞ establish a
direct decomposition V = V1 � V2, we have to check only one of the two defining conditions
V1 ∩ V2 = 0 and V1 + V2 = V .

The hypothesis that the dimensions are finite is necessary. Let k be a field, V = kN, and
consider for example the two subspaces

V1 = {(0, x1, 0, x2, 0, x3, . . .) | (xn) ∈ kN}
V2 = {(0, 0, x1, 0, x2, 0, x3, . . .) | (xn) ∈ kN}.

Then dim V1 = codim V2 = dim V = ∞, V1 ∩ V2 = 0 but codim(V1 + V2) = 1.
We use the following corollary in Sect. 6 as a regularity test for boundary problems with

finite dimensional kernels and boundary conditions.

Corollary A.17 Let V1 = [v1, . . . , vm] be a subspace of a vector space V and F1 =
[ f1, . . . , fn] a subspace of V ∗ with fi and v j linearly independent. Then

V = V1 � F⊥
1

is a direct sum iff m = n and the matrix ( fi (v j )) is regular.

Proof By (A.6), codim F⊥
1 = dim F1, so we know from the previous corollary that V =

V1 � F⊥
1 is a direct sum iff V1 ∩ F⊥

1 = 0 and m = n. Let B = ( fi (v j )) with columns b j .
Now note that B is singular iff there exists a linear combination

∑
λ j b j = 0 with at least

one λ j �= 0 iff there exists a nonzero u = ∑
λ jv j in V1 ∩ F⊥

1 . 
�
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ABSTRACT
We construct the algebra of integro-differential operators
over an ordinary integro-differential algebra directly in terms
of normal forms. In the case of polynomial coefficients,
we use skew polynomials for defining the integro-differential
Weyl algebra as a natural extension of the classical Weyl al-
gebra in one variable. Its normal forms, algebraic properties
and its relation to the localization of differential operators
are studied. Fixing the integration constant, we regain the
integro-differential operators with polynomial coefficients.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation—simplification of expres-
sions; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—algebraic algorithms

General Terms
Theory, Algorithms

Keywords
Integro-differential operators, skew polynomials, Weyl alge-
bra, integro-differential algebra, Baxter algebra.

1. INTRODUCTION
Skew polynomials provide a powerful framework for study-

ing linear differential operators from an algebraic and algo-
rithmic perspective [24, 12, 10]. In this paper, we develop a
related approach for ordinary integro-differential operators,
complementing the development reported in [27].

∗The author was supported by the Austrian Science Foun-
dation (FWF) under the project DIFFOP (P20 336–N18).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’09, July 28–31, 2009, Seoul, Republic of Korea.
Copyright 2009 ACM 978-1-60558-609-0/09/07 ...$5.00.

We have introduced the algebra of integro-differential op-
erators in [28] for a symbolic treatment of linear boundary
problems following [26]. It is based on integro-differential al-
gebras (Section 2), which bring together the usual derivation
structure with a suitable notion of indefinite integration and
evaluation. Integro-differential operators are constructed as
the corresponding operator algebra. They can be applied
for solving boundary problems and for factoring them along
a given factorization of the underlying differential equation.
A prototype implementation of integro-differential operators
in Theorema is presented in [7].

In contrast to our earlier construction, the present treat-
ment of integro-differential operators is directly based on
normal forms (Section 3). This is useful for analyzing the
algebraic structure and developing algorithms. In this con-
text, polynomial coefficients are of particular interest.

We construct an integro-differential analog of the classical
Weyl algebra in one variable—henceforth called the differ-
ential Weyl algebra—as a skew polynomial ring (Section 4).
The integro-differential Weyl algebra has a natural decom-
position into the differential Weyl algebra, the integro Weyl
algebra (Section 5), and the two-sided evaluation ideal. Un-
like its differential part, the integro-differential Weyl algebra
has zero divisors and is neither simple nor Noetherian.

The integro Weyl algebra forms a curious counterpart to
the differential Weyl algebra. Following an analogous con-
struction as a skew polynomial ring, the resulting algebra
is also a Noetherian integral domain, but otherwise exhibits
some striking differences: It is not a simple ring and it lacks
a canonical action on the polynomials but it has a natural
grading.

Compared to the algebra of integro-differential operators,
the integro-differential Weyl algebra has a finer structure,
which can be specialized naturally in two different ways,
either discarding or fixing the evaluation (Section 6). Fac-
toring out the evaluation ideal leads to a localization, where
the “integral” is added as a two-sided inverse of the deriva-
tion. Factoring out a suitable relation choosing the integra-
tion constant, we obtain the algebra of integro-differential
operators.

Some notational conventions: We fix a ground field K of
characteristic 0. The inner direct sum of modules is written
as M = M1 ∔ M2. We use the symbol ≤ for algebraic
substructures. Unless specified otherwise the variables i, j,
k, m, n range over the nonnegative integers.
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2. INTEGRO-DIFFERENTIAL ALGEBRAS
In this section, we summarize basic properties of integro-

differential algebras from [28]. We recall that (F , ∂) is a
differential K-algebra if ∂ : F → F is K-linear map satisfy-
ing the Leibniz rule

∂(fg) = ∂(f) g + f ∂(g). (1)

For convenience, we assume K ≤ F and write f ′ for ∂(f).

Definition 1. Let F be a commutative algebra over a
field K. We call (F , ∂,

r
) an integro-differential algebra if

(F , ∂) is a differential algebra,
r

: F → F is a K-linear
section of ∂, that is,

∂
r

= 1, (2)

and the differential Baxter axiom

(
r
f ′)(

r
g′) = (

r
f ′)g + f(

r
g′) −

r
(fg)′ (3)

holds. Then we call
r
an integral operator for ∂.

We refer to the elements of I = Im(
r
) as initialized, while

those of C = Ker(∂) are usually called constants. Since
r

is
a section of ∂, we have projectors

r
∂ and

P = 1 −
r
∂, (4)

and a direct sum F = C∔I with C = Im(P ) and I = Ker(P ).
Conversely, for every projector P onto a complement of C
there exists a unique section of ∂ such that (4) holds; see for
example [22, p. 17] or [25].

The standard example F = C∞(R) comes from analysis,
where ∂ is the usual derivation and

r
the integral operator

r x

c
: f 7→

Z x

c

f(ξ) dξ.

for c ∈ R. Here (2) is the Fundamental Theorem, while (3)
can be verified either directly or by using the characteriza-
tion of integral operators below. The projector P : f 7→ f(c)
corresponds to a point evaluation. For an algorithmic ap-
proach to constant coefficient ODE, the subalgebra of expo-
nential polynomials is important.

The polynomial ringK[x] with the usual derivation is sim-
ilarly seen to form an integro-differential algebra, with inte-
gral operator

r x

c
: xn 7→ (xn+1−cn+1)/(n+1) for c ∈ K. The

corresponding projector is the evaluation homomorphism
determined by x 7→ c; we call c the constant of integration.

Substituting respectively
r
f for f and

r
g for g in (3) and

using (1), (2) gives the plain Baxter axiom (of weight zero)
r
f ·

r
g =

r
(f

r
g) +

r
(g

r
f), (5)

which is obviously an algebraic version of integration by
parts (corresponding to the rewrite rule for

r
f
r

in Table 1).
A Baxter algebra (F ,

r
) is then a K-algebra F with a K-

linear operation
r

fulfilling the Baxter axiom (5); we refer
to [14, 2, 29] for more details.

Substituting
r
g for g in (3), one obtains with (1), (2) the

following one-sided variant of the differential Baxter axiom
r
fg = f

r
g −

r
(f ′r g), (6)

which we used in [28] for the definition of integro-differential
algebras. In the commutative case, both versions of the Bax-
ter axiom are equivalent, but (3) has the advantage that it
generalizes to noncommutative algebras over rings and Bax-
ter operators with nonzero weight. Compare to the setting

in [15], where a similar structure was introduced indepen-
dently under the name of differential Rota-Baxter algebras.
They only require (2) and the Baxter axiom (5) rather than
its differential variant (3).

One can characterize what makes (3) stronger than (5). A
section

r
of ∂ is an integral operator if and only if it is also

C-linear. Moreover, we can characterize the integral opera-
tors among sections by requiring the projector in (4) to be
multiplicative. Another equivalent formulation of the differ-
ential Baxter axiom (corresponding to the usual integration
by parts and the identity for

r
f∂ in Table 1) is

r
fg′ = fg −

r
f ′g − P (f)P (g), (7)

following from C-linearity of
r

and multiplicativity of P .
In the rest of the paper, we focus on ordinary differen-

tial equations. Thus we call an (integro-)differential algebra
ordinary if dimK Ker(∂) = 1. Note that this terminology de-
viates from [17, p. 58], where it only refers to having a single
derivation. In an ordinary differential algebra F , we clearly
have K = C, so F is an algebra over its field of constants.
A section is then automatically C-linear, so the pure Baxter
axiom (5) and its differential version (3) are equivalent.

In this case, the corresponding projector is a character

e = 1 −
r
∂ (8)

since it is multiplicative (by the above characterization of
integral operators) and its image is C = K. We write M(F)
for the set of all characters on (F , ∂,

r
), including in partic-

ular the evaluation e.

3. THE ALGEBRA OF INTEGRO-
DIFFERENTIAL OPERATORS

In analogy to differential operators over a differential alge-
bra, it is natural to consider the algebra of linear operators
over an integro-differential algebra. In [28] we defined the
algebra of integro-differential operators as the quotient of
the free algebra in the corresponding operators modulo the
parametrized equations in Table 1. We showed that they
form an infinite two-sided noncommutative Gröbner basis
(or a Noetherian and confluent rewrite system [1]) and de-
termined the corresponding normal forms. (See also [27]
for a summary.) For the theory of Gröbner bases, we refer
to [5, 6], for its noncommutative extension to [3, 21]. In this
section, we want to define the algebra of integro-differential
operators directly in terms of their normal forms.

Let F be an ordinary integro-differential algebra over K.
In the following, the variables f, g are used for elements of
F and ϕ, ψ for characters in M(F). Moreover, we use U • f
for the action of U on f , where U is a combination of ∂,

r
,

functions in F and characters in M(F). In particular, we
have ∂ • f for the derivation,

r
• f for the integral operator

and ϕ•f for the application of characters, while g•f denotes
the product in F .

We remark that Table 1 is to be understood as including
implicit equations for

r r
,
r
∂ and

r
ϕ by substituting f = 1

in the equations for
r
f
r
,
r
f∂ and

r
fϕ, respectively. More-

over, one obtains the equation e
r

= 0 from the definition of
the evaluation e.

For defining the algebra of integro-differential operators in
terms of normal forms, we use the fact [28, Prop. 17] that
every integro-differential operator can be uniquely written as
a sum of a differential, an integral, and a so-called boundary
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gf = g • f ∂f = f∂ + ∂ • f
ϕψ = ψ ∂ϕ = 0

ϕf = (ϕ • f)ϕ ∂
r

= 1
r
f
r

= (
r

• f)
r

−
r

(
r

• f)r
f∂ = f −

r
(∂ • f) − (e • f) er

fϕ = (
r

• f)ϕ

Table 1: Relations for Integro-differential Operators

operator. Since all these operators form subalgebras, we first
describe them separately, and then the interaction between
them. It is clear that the normal forms constitute an algebra
isomorphic to the algebra of integro-differential operators in
the sense of [28].

Moreover, for simplicity we take the evaluation e as the
only character. For F = C∞[a, b], this amounts to consid-
ering only initial conditions, but the approach can be ex-
tended by using the normal forms for Stieltjes boundary
conditions [28, Def. 14].

We first recall the well-known algebra of differential op-
erators F [∂] over F . It is defined as sums of terms of the
form f∂i with the usual addition or, more abstractly, as the
free left F-module generated by the ∂i. The multiplication
is determined by viewing F as a subalgebra of F [∂] and by
using the equation

∂ · f = f∂ + ∂ • f (9)

coming from the Leibniz rule (1).
Clearly, sums of terms of the form f

r
g represent linear

integral operators. But they cannot be normal forms since,
by linearity, f

r
λg and λf

r
g with λ ∈ K represent the same

operator. This can be solved by choosing a K-basis B for
F . We additionally require 1 ∈ B so that we can represent
integral operators of the form f

r
. Moreover, we use in the

following the convention that f
r
g is to be understood as an

abbreviation for the corresponding basis expansion if g is
not a basis element.

We define the algebra of integral operators F [
r
] over F

as sums of terms of the form f
r
b with b ∈ B (or as the free

left F-module generated by the
r
b). The multiplication is

based on the equation
r
b ·

r
= (

r
• b)

r
−

r
(
r

• b) (10)

corresponding to the Baxter axiom (5). Note that F [
r
] does

not contain F ; it is an algebra without unit element.
We define the algebra of boundary operators F [e] as sums

of terms of the form fe∂i. Their product is determined by

e∂i · fe∂j = (e∂i • f) e∂j , (11)

which is a result of the Leibniz rule and the equations ∂e =
0, ef = (e • f)e, e2 = e. Also F [e] does not contain F .

The additive structure on integro-differential operators is
then constructed as the direct sum

F [∂,
r
] = F [∂] ⊕ F [

r
] ⊕ F [e].

We regard the summands as being embedded in F [∂,
r
].

The multiplication within the summands is given by (9),
(10), and (11). It remains to define the multiplication be-

tween different summands. To start with, multiplying a dif-
ferential operator with an integral operator is given by

∂ · f
r
b = f • b+ (∂ • f)

r
b,

corresponding to (1) and (2). So we have F [∂] F [
r
] ⊂ F [∂]+

F [
r
]. The multiplication in the reverse order is based on

r
b · f∂ = b • f −

r
(∂b • f) − (eb • f) e,

corresponding to the variant of the Baxter axiom (7), so that
F [

r
] F [∂] ⊂ F [∂] + F [

r
] + F [e].

The equations for multiplying a boundary operator from
either side with a differential or integral operator are

∂i · fe∂j = (∂i • f)e∂j ,

e∂i · f∂j =
i

X

k=0

(e • fk)e∂j+k,

r
b · fe∂i = (

r
b • f)e∂i,

e∂i · f
r
b =

i−1
X

l=0

(e • gl)e∂
l,

where ∂if =
Pi

k=0 fk∂
k and

Pi
k=1 fk∂

k−1b =
Pi−1

l=0 gl∂
l

as differential operators in F [∂]. Besides the rules used
for (11), this involves the rule

r
fe = (

r
• f)e. So we have

F [∂] F [e], F [e] F [∂] ⊂ F [e] as well as F [
r
] F [e], F [e] F [

r
] ⊂

F [e] in these cases.
Since by the above definitions multiplying a boundary op-

erator with any integro-differential operator gives a bound-
ary operator, we see that F [e] is the ideal in F [∂,

r
] gener-

ated by the evaluation e, which we call the evaluation ideal
of F [∂,

r
]. Here and in the following an ideal always means

a two-sided ideal. So we have

F [∂,
r
] = F [∂] ∔ F [

r
] ∔ (e) (12)

as a direct sum of F-modules or K-vector spaces.
In the rest of this paper we will deal with the important

special case F = K[x] from a skew polynomial perspective.
Using the natural K-basis (xk) yields a natural K-basis for
all normal forms. In this case the above construction can
be simplified substantially. We know from the Weyl algebra
that the Leibniz rule (9) reduces to ∂ · x = x∂ + 1 and one
can verify (compare Lemma 11) that

r
·
r

= x
r

−
r
x suffices

to derive (10) for all polynomials. This is the basis for the
skew polynomial construction in the following section.

4. THE INTEGRO-DIFFERENTIAL
WEYL ALGEBRA

For analyzing rings of formal differential operators it is
convenient to view them as skew polynomial rings. Special-
izing the coefficients to K[x], one is led to the corresponding
Weyl algebra. Our goal is to gain a skew polynomial per-
spective on the above ring F [∂,

r
] for F = K[x]. In this

context, we write ℓ instead of
r

to avoid confusion between
iterated integrals ℓm and integrals with upper bounds

r m
.

We recall the construction of skew polynomials [24] [12,
p. 276] [10]. Let A be a (noncommutative) ring without
zero divisors, ξ an indeterminate, σ : A → A an injective
endomorphism (also known as “twist”) and δ : A → A a σ-
derivation. The skew polynomial ring A[ξ;σ, δ] consists of
the elements a0 + a1ξ + · · · + anξ

n with a0, . . . , an ∈ A.
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While the addition is defined termwise, the multiplication
is determined by the rule

ξa = σ(a) ξ + δ(a).

It is well-known that A[ξ;σ, δ] is an integral domain since
the usual degree equality deg fg = deg f+deg g is valid. We
write A[ξ; δ] for A[ξ; 1, δ].

We concentrate for a moment on the integral operators.
One is tempted to take A = K[x] and ξ = ℓ. But the
Baxter axiom requires ℓx = xℓ−ℓ2, in violation of the degree
requirement. The way out is to reverse the adjunction of x
and ℓ, thus picking A = K[ℓ] for the coefficient ring and
ξ = x for the indeterminate. (In the case of the differential
Weyl algebra, the order of adjunction does not matter: This
is the point of the well-known automorphism x ↔ −∂, which
does not carry over to its integro counterpart)

We choose a coefficient ring A that includes both ∂ and
ℓ so that A[x; δ] yields in one stroke integro-differential op-
erators that are “almost” isomorphic to K[x][∂,

r
]. It turns

out that A[x; δ] has a finer structure than K[x][∂,
r
]; their

relations will be studied in Section 6.
The coefficient ring A should contain all K-linear com-

binations of ∂ and ℓ, taking into account that ∂ℓ = 1. Its
derivation δ is set up so as to ensure the relations ∂x−x∂ = 1
and xℓ− ℓx = ℓ2 when A[x; δ] is introduced.

Definition 2. The algebra K〈∂, ℓ〉 is the quotient of the
free algebra K〈D,L〉 modulo the ideal (DL − 1). We write
∂ and ℓ for the corresponding residue classes. We define a
derivation δ on K〈∂, ℓ〉 by δ(∂) = −1 and δ(ℓ) = ℓ2.

Note that δ is well-defined: Defining first a derivation on
the free algebra by δ(D) = −1 and δ(L) = L2, one sees
immediately that δ(DL − 1) = (DL − 1)L, so the passage
to the quotient is legitimate.

The algebra K〈∂, ℓ〉 is studied by N. Jacobson [16] from
the general perspective of one-sided inverses in rings. His
results imply immediately that K〈∂, ℓ〉 is neither (left or
right) Artinian nor (left or right) Noetherian. Extending
this approach, L. Gerritzen [13] describes the right mod-
ules and derivations on K〈∂, ℓ〉; using his classification [13,
Prop. 7.1], we have δ = −∂0. Some of the following results
(without the differential structure—see below) can be found
in their papers. Their approach is based on representation
theory, while our treatment is based on a more algorithmic
normal form perspective.

We shall now establish a decomposition of K〈∂, ℓ〉 that is
akin to (12). For this goal, observe that the monomials ℓi∂j

form a K-basis of K〈∂, ℓ〉 since they are normal forms with
respect to the Gröbner basis DL− 1.

In analogy to Equation (8) and [16], we define

e = 1 − ℓ∂ and eij = ℓie∂j .

The eij satisfy the multiplication table for matrix units; see
for example [16] and [18, Ex. 21.26]. The eij together with
the pure ∂ and ℓ monomials form another K-basis. Indeed,
iterating ℓi+1∂j+1 = −eij + ℓi∂j , we obtain

ℓi+1∂j+1 =

(

ℓi−j − Pj
k=0 eij for i > j,

∂j−i − Pi
k=0 eij for i ≤ j.

Hence ∂j , ℓi, and eij generate K〈∂, ℓ〉 over K. Using the
relation eij = ℓi∂j − ℓi+1∂j+1, one sees that they are also
linearly independent because the ℓi∂j are.

We note also that the K-vector space generated by the
eij is the ideal (e) since ℓeij = ei+1,j and ∂eij = ei−1,j for
i > 0 and ∂e0j = 0; analogously for multiplication on the
right. Confer also [16, 13]. In analogy to F [∂,

r
], we refer

to (e) as the evaluation ideal of K〈∂, ℓ〉.

Proposition 3. We have

K〈∂, ℓ〉 = K[∂] ∔ K[ℓ]ℓ∔ (e)

as a direct sum of K-vector spaces, where K[∂] is a differ-
ential subring of K〈∂, ℓ〉 while K[ℓ]ℓ is a differential subring
without unit and (e) is a δ-ideal.

Proof. We have already seen the decomposition part.
All three summands are obviously closed under addition,
multiplication and the first one also under derivations. For
the second note that δ(q) = dq

dℓ
ℓ2 ∈ K[ℓ]ℓ for all q ∈ K[ℓ]ℓ.

The third summand is closed under δ since

δ(e) = −δ(ℓ)∂ − ℓδ(∂) = −ℓ2∂ + ℓ = ℓe ∈ (e).

This completes the proof since δ is a derivation.

Since ∂e = ∂ − ∂ = 0 and eℓ = ℓ − ℓ = 0, we obtain also
∂i+1eij = 0 and eijℓ

j+1 = 0, so every element of (e) is both
a left and and a right zero-divisor. The following minimality
property of the evaluation ideal was also noted in [16].

Lemma 4. Every nonzero ideal in K〈∂, ℓ〉 contains (e).

Proof. Assume I is an ideal and 0 6= f ∈ I . Write now
f = p + q + e where p ∈ K[∂], q ∈ K[ℓ]ℓ and e ∈ (e) as in
Propostion 3. Assume first p 6= 0. For a sufficiently high
k ≥ 0 we may assume that ∂kf ∈ K[∂] since ∂keij = 0 for
k > i while q just gets “shifted” into K[∂]. We may assume
∂kf is monic. Now let e∂m be the term with highest ∂-
power in e∂kf ∈ I . Then e∂kfℓm = e ∈ I since e∂nℓm = 0
for m > n. If p = 0 but q 6= 0 we may reason analogously
by first looking at fℓk for a suitable k.

Therefore, assume now p = q = 0 and e 6= 0. Let k
be maximal such that ekj occurs in e. Then we have ∂kf =
∂ke ∈ eK[∂]\{0} since all terms eij with i < k vanish but the
terms ekj do not. By the same argument as above e ∈ I .

The lattice of differential ideals turns out to be particu-
larly simple.

Proposition 5. The only proper δ-ideal of K〈∂, ℓ〉 is (e).

Proof. We have already seen in Proposition 3 that (e)
is a δ-ideal. Suppose that I 6= 0 is another δ-ideal. By
Lemma 4 we have (e) ⊆ I . Assume there exists f = p+ q+
e ∈ I\(e) where p ∈ K[∂], q ∈ K[ℓ]ℓ and e ∈ (e) as above,
but with either p or q unequal to zero. Using the same trick
as before, we can find k ≥ 0 such that ∂kf ∈ K[∂]\{0}. Now,
if ∂m is the leading term of ∂kf , we have δm(∂kf) ∈ K since
K has characteristic 0. Hence I = K〈∂, ℓ〉.

We consider for a moment K[∂], the subring of polynomi-
als in ∂. The derivation δ extends uniquely to the Laurent
polynomials K[∂, ∂−1] if we view them as the localization of
K[∂] by ∂. Intuitively, another way of getting the Laurent
polynomials is making ℓ also a left inverse of ∂ in K〈∂, ℓ〉.
That would mean to set e = 1 − ℓ∂ = 0. It turns out that
the intuition is right in this case; compare [13, Prop. 2.6] for
the algebraic part.
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Proposition 6. The map

K〈∂, ℓ〉/(e) ∼−→ K[∂, ∂−1]

defined by ∂ + (e) 7→ ∂ and ℓ + (e) 7→ ∂−1 is a differential
isomorphism.

Proof. The map ϕ given by ℓi∂j 7→ ∂j−i is a well-defined
K-vector space homomorphism from K〈∂, ℓ〉 to K[∂, ∂−1].
We claim that it is also a differential ring homomorphism.
Since it is additive, we need to check this just for basis ele-
ments of K〈∂, ℓ〉: We have ϕ(ℓi∂j · ℓk∂m) = ϕ(ℓi+k−j∂m) =
∂j+m−i−k = ϕ(ℓi∂j)ϕ(ℓk∂m), assuming k ≥ j. The com-
putation for j > k is almost the same. We have further-
more ϕ(δ(ℓi∂j)) = ϕ(iℓi+1∂j − jℓi∂j−1) = (i − j) ∂j−i−1 =
δ(∂j−i) = δ(ϕ(ℓi∂j)).

We compute the kernel of ϕ by considering the basis that
corresponds to the decomposition in Proposition 3. The
basis vectors ℓi and ∂j are sent to nonzero elements (even
basis elements) in K[∂, ∂−1]. On the other hand, we have
ϕ(eij) = ϕ(ℓi∂j − ℓi+1∂j+1) = 0 for all i, j. Hence we con-
clude kerϕ = (e), and by the First Isomorphism Theorem
the claim follows.

Using Proposition 6 and Lemma 4 together with the Third
Isomorphism Theorem—see for instance [11, Thm. 1.23]—
we see that the ideals of K〈∂, ℓ〉 are completely described
by the ideals in K[∂, ∂−1]. This is a principal ideal domain
by [4, Th. 2.18].

The main purpose of this section is to define the integro-
differential analog of the differential Weyl algebra. As noted
before Lemma 4, K〈∂, ℓ〉 is not an integral domain. One can
nevertheless introduce the skew polynomials as before (even
with non-injective twists); see [11, Sec. 5.2], [20, Sec. 1.1.2],
[18, Ex. 1.9]. Consequently the skew polynomials have zero
divisors, and the degree equality must be replaced by the
inequality deg fg ≤ deg f + deg g. The crucial point is that
the normal forms are unique as before.

Definition 7. The integro-differential Weyl algebra is
given by the skew polynomial ring K〈∂, ℓ〉[x; δ] and is de-
noted by A1(∂, ℓ).

Any infinite ascending chain I1 < I2 < · · · of left ideals
in A yields the infinite ascending chain RI1 < RI2 < · · ·
of left ideals in R = A[ξ; δ]; similarly for right ideals and
for descending chains. Consequently A1(∂, ℓ) is also neither
(left or right) Artinian nor (left or right) Noetherian. The
latter is in stark contrast to the differential Weyl algebra, as
the following proposition is.

Over a Q-algebra A, simplicity of skew polynomial rings
can be decided by the following practical characterization
from [18, Th. 3.15]. The ring A[ξ; δ] is simple if and only if
A has no nontrivial δ-ideals and δ is not an inner derivation.
Otherwise, the skew polynomials with coefficients in a δ-
ideal of A form an ideal in A[ξ; δ]. Since we have seen in
Proposition 3 that (e) is a nontrivial δ-ideal in K〈∂, ℓ〉, we
can use this criterion to see that the integro-differential Weyl
algebra—unlike its differential companion—is not simple.

Proposition 8. The ring A1(∂, ℓ) is not simple.

Proof. It remains to prove that δ is not an inner deriva-
tion. For assume δ = [p, ·] for some p ∈ K〈∂, ℓ〉. Application
to ∂ yields −1 = [p, ∂]. ButK〈∂, ℓ〉/(e) being a commutative
ring, every commutator of K〈∂, ℓ〉 lies in the ideal (e). Thus
we obtain −1 ∈ (e), in contradiction to Proposition 3.

5. THE INTEGRO WEYL ALGEBRA
For comparing A1(∂, ℓ) with the construction in Section 3,

it is useful to investigate the subring of integral operators.

Definition 9. The subring of A1(∂, ℓ) consisting of skew
polynomials with coefficients in K[ℓ] is called the integro
Weyl algebra and denoted by A1(ℓ).

Obviously we have A1(ℓ) = K[ℓ][x; δ], with the derivation
δ restricted to K[ℓ]. In the same fashion, the differential
Weyl algebra A1(∂) = K[∂][x; δ] is the subring of A1(∂, ℓ)
consisting of skew polynomials with coefficients in K[∂].

Note that—unlike its integro-differential companion—the
integro Weyl algebra is indeed an integral domain since K[ℓ]
is. It provides an interesting and natural example of an Ore
algebra, which to our knowledge has not been studied in the
literature [10, 19].

At first sight, A1(ℓ) seems to be very similar to A1(∂),
but we shall soon realize that appearances are deceptive. To
start with, recall that A1(∂) has a canonical action on K[x]
in the following sense: If x ∈ A1(∂) acts by multiplication
and ∂ ∈ A1(∂) as a derivation, then ∂ • f = f ′ yields the
usual differentiation. The corresponding statement for A1(ℓ)
would require x ∈ A1(ℓ) to act by multiplication and ℓ ∈
A1(ℓ) as a Baxter operator. But this admits any integrals
ℓ • f =

r x

c
f with arbitrary c ∈ K. We will come back

to this in Section 6. Another important difference to the
differential case is that A1(ℓ) comes with a natural grading
(by total degree in x and ℓ).

For comparing A1(ℓ) ≤ A1(∂, ℓ) with the corresponding
summand K[

r
] ≤ F [∂,

r
], it is necessary to consider differ-

entK-bases for A1(ℓ). The construction of skew polynomials
comes with the basis (ℓixj), which we shall call the left basis
(since the coefficients appear to the left of the indetermi-
nate). It is an easy exercise to determine the transition to
the corresponding right basis (xjℓi).

Lemma 10. We have the identities

xnℓm =
n

X

k=0

(−m)k nk

k!
(−1)k ℓm+kxn−k, (13)

ℓmxn =

n
X

k=0

(−m)k nk

k!
xn−kℓm+k, (14)

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Proof. Applying the Leibniz rule in both directions, one
shows by induction that

xnf =
n

X

k=0

„

n
k

«

δk(f) xn−k,

fxn =
n

X

k=0

„

n
k

«

(−1)k xn−k δk(f)

for all f ∈ K[ℓ]. Setting f = ℓm and applying
`

n
k

´

= nk/k!,

the claim follows since δk(ℓm) = (−1)k (−m)k ℓm+k.

The formulae in Lemma 10 are written in such a way
that the similarity to the corresponding formulae for A1(∂)
becomes apparent. In fact, Equation (1.4) of [30] coincides
with (13) if we allow m ∈ Z and identify ℓ with ∂−1. These
heuristic observations are made precise in Section 6 by the
isomorphism of Proposition 16.
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While the left and right bases of A1(ℓ) are special to the
skew polynomial setting, the general ring of integral oper-
ators F [

r
] from Section 3 has the K-basis (b̃

r
b). In the

present setting, this leads to the mid basis (xm, xmℓxn). As
we shall see immediately, its role as a K-basis is justified by
the following commutator relation.

Lemma 11. We have [xn, ℓ] = n ℓxn−1ℓ.

Proof. The case n = 0 being trivial, we prove the iden-
tity for arbitrary n + 1. Substituting m = 1 in (13) and
multiplying with (n+ 1) ℓ from the left yields

(n+ 1) ℓxnℓ =
n

X

k=0

(n+ 1)k+1 ℓk+2xn−k

= −ℓxn+1 +

n+1
X

k=0

(n+ 1)k ℓk+1xn−k+1;

we conclude by substituting (n+1, 1) for (n,m) in (13).

Corollary 12. The monomials (xm) and (xmℓxn) form
a K-basis of A1(ℓ).

Proof. In analogy to the differential Weyl algebra, one
sees immediately that A1(ℓ) is isomorphic to the free K-
algebra in X and L modulo the ideal generated by XL −
LX − L2. Lemma 11 implies that the polynomials

LXnL− (n+ 1)−1 [Xn+1, L]

belong to the ideal. They form a Gröbner basis with re-
spect to the following admissible order [31, p. 268]: Words
are compared in L-degree, then in total degree, and finally
lexicographically (letters ordered either way). A routine cal-
culation shows that the overlaps LXnLXmL are resolvable.
The residue classes of the monomials Xn and XmLXn form
a K-basis of the quotient ring [31, Thm. 7].

The transition between the left/right basis and the mid
basis is governed by the following formulae.

Lemma 13. We have the identities

xmℓxn =
m

X

k=0

m!

k!
ℓm−k+1xk+n, (15)

xmℓxn =
n

X

k=0

n!

k!
(−1)n−kxm+kℓn−k+1, (16)

ℓm+1 =

m
X

k=0

(−1)k

k! (m− k)!
xm−kℓxk (17)

for changing between the left/right and the mid basis.

Proof. For proving the first formula, it suffices to set
n = 0. Substituting (m, 1) for (n,m) in (13), one obtains
Equation (15) after an index transformation. Analogously,
one proves the second formula with m = 0 by substituting
1 for m in (14).

We prove the third formula by induction. The base case
m = 0 is trivial, so assume (17) for m ≥ 0. Multiplying it
with ℓ from the right and using Lemma 11 yields

ℓm+2 =
m

X

k=0

(−1)k

(k + 1)! (m− k)!
(xm+1ℓ− xm−kℓxk+1).

After expanding the parenthesis and extracting xm+1ℓ, one
is left with the simple binomial sum

m
X

k=0

(−1)k

(k + 1)! (m− k)!
=

1

(m+ 1)!
,

so we obtain

1

(m+ 1)!
xm+1ℓ+

m+1
X

k=1

(−1)k

k! (m− k + 1)!
xm−k+1ℓxk

=
m+1
X

k=0

(−1)k

k! (m− k + 1)!
xm−k+1ℓxk

for ℓm+2, which is indeed (17) for m+ 1.

We note that (17) can be regarded as an algebraic ver-
sion of the well-known Cauchy formula for repeated integra-
tion [23, p. 38].

In view of the transition formulae (15) and (17), one can
use the K-basis (xmℓxn) of A1(ℓ)ℓ for setting up a con-
crete isomorphism (of algebras without unit) toK[x][

r
] with

its K-basis (xm
r
xn). Confer Theorem 20 for an analogous

statement for the full integro-differential Weyl algebra.
As for A1(∂, ℓ), we see that A1(ℓ) is not a simple ring by

the following characterization of the δ-ideals in K[ℓ].

Lemma 14. An ideal I ≤ K[ℓ] is a nontrivial δ-ideal if
and only if I = (ℓn) with n > 0.

Proof. Since δ(ℓn) = nℓn+1, ideals generated by ℓn are
obviously δ-ideals. Conversely, let I = (q) be a nontrivial
δ-ideal with q =

Pn
i=k aiℓ

i ∈ K[ℓ] a polynomial of degree
n > 0 and order k, meaning ak 6= 0. Hence δ(q) = rq for
some r ∈ K[ℓ] so that

δ(q) =

n
X

i=k

aii ℓ
i+1 = r

n
X

i=k

ai ℓ
i

with r = b1ℓ + b0. Equating the coefficients of ℓk and ℓn+1

implies respectively b0 = 0 and b1 = n, the latter sinceK has
characteristic 0. If k < n, equating the coefficients of ℓk+1

implies (n − k)ak = 0, in contradiction to our assumption
on the characteristic of K.

Proposition 15. The ring A1(ℓ) is not simple.

Proof. By the previous lemma there are nontrivial δ-
ideals in K[ℓ]. Since δ cannot be an inner derivation, the
claim follows as in Proposition 8 from [18, Th. 3.15].

6. LOCALIZATION AND EVALUATION
By the construction of A1(∂, ℓ), we have set up ℓ as an

integral that is a right inverse for ∂. This still leaves some
ambiguity for the choice of ℓ, which we will now remove.
There are two extreme possibilities: When we require ℓ to
be a two-sided inverse, we obtain a localization. On the
other hand, we may insist ℓ to be a proper integral by fixing
the integration constant; this leads us back to the ring of
integro-differential operators K[x][∂,

r
].

Let us start with the localization. Extending the deriva-
tion to the Laurent polynomial ring K[∂, ∂−1] as in Propo-
sition 6, we form the skew polynomial ring K[∂, ∂−1][x; δ].
Of course, we may also localize K[ℓ] to obtain K[ℓ, ℓ−1][x; δ]
by using an analogous construction. These two rings are
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naturally isomorphic, as we will now prove. In the follow-
ing proofs, we will make use of the universal property of
skew polynomial rings [9, Prop. 3.6] [20, §1.2.5] that allows
to lift differential homomorphisms from coefficients to skew
polynomials.

Proposition 16. The map

K[∂, ∂−1][x; δ] ∼−→ K[ℓ, ℓ−1][x; δ]

induced by ∂ 7→ ℓ−1 is an isomorphism.

Proof. The map ϕ induced by ∂ 7→ ℓ−1 is a differen-
tial homomorphism between K[∂, ∂−1] and K[ℓ, ℓ−1] since
δ(ϕ(∂)) = δ(ℓ−1) = −ℓ2/ℓ2 = −1 = ϕ(δ(∂)). By the univer-
sal property, its extension to K[∂, ∂−1][x; δ] is also a homo-
morphism, and it is clearly bijective.

The following lemma allows to transfer the skew polyno-
mial structure across quotients as in the commutative case,
compare also [9, Prop. 3.15].

Lemma 17. Let (R, δ) be a differential ring and I ≤ R a
differential ideal. Then

(R/I)[x; δ̃] ∼= R[x; δ]/(I)

as rings where (I) denotes the ideal generated by I in R[x; δ]

and δ̃ is the derivation induced by δ.

Proof. The proof is as in the commutative case. First we
note that (I) consists exactly of the skew polynomials with
coefficients in I . The canonical map R → R/I is a differen-
tial epimorphism and extends therefore to an epimorphism
R[x; δ] → (R/I)[x; δ̃] by the universal property. Its kernel
are all skew polynomials whose coefficients are in I .

The next step is to explore the relation between A1(∂, ℓ)
and K[∂, ∂−1][x; δ]. It is very natural—the latter arises from
the former by making ℓ also a left inverse of ∂.

Theorem 18. We have

A1(∂, ℓ)/(e) ∼= K[∂, ∂−1][x; δ]

as rings.

Proof. In Proposition 6 we have proved that there exists
an isomorphism ϕ : K〈∂, ℓ〉/(e) → K[∂, ∂−1]. Using again
the universal property, there is a corresponding isomorphism
ϕ̃ between the skew polynomial rings (K〈∂, ℓ〉/(e))[x; δ̃] and

K[∂, ∂−1][x; δ], where δ̃ denote the derivative induced by δ.
The claim now follows from Lemma 17.

We note that the localization can also be applied in the
setting of Section 3 by factoring out (e), leading to the iso-
morphism F [∂,

r
]/(e) ∼= F [∂] ∔ F [

r
].

For reconstructing the ring K[x][∂,
r
] of Section 3 from

A1(∂, ℓ), we need a decomposition analogous to (12). Since
the decomposition in Proposition 3 carries over coefficient-
wise to A1(∂, ℓ), we obtain

A1(∂, ℓ) = A1(∂) ∔ A1(ℓ)ℓ∔ (e), (18)

where (e) is the evaluation ideal in A1(∂, ℓ). Note that this
ideal consists of the skew polynomials with coefficients in
(e) ⊆ K〈∂, ℓ〉 as observed before Proposition 8.

The key tool for fixing the integration constant c ∈ K
is the following refinement of the above decomposition. In

analogy to the spaceK[x][e] introduced in Section 3, we con-
sider the K-vector space B ≤ A1(∂, ℓ) with basis (xke∂j).
Note that here and in the following we make use of the right
basis (xk∂i, xkℓi, xkeij) of A1(∂, ℓ).

Lemma 19. In A1(∂, ℓ), we have for every c ∈ K the de-
composition

(e) = B ∔ (η),

and (xkℓiη∂j) is a K-basis for (η), where η = ex− ce.

Proof. One can easily see ex = (x − ℓ)e. This implies
ℓi−1η = xℓi−1e − iℓie − cℓi−1e ∈ (η) and hence

xkeij +
c

i
xkei−1,j − 1

i
xk+1ei−1,j ∈ (η)

for i ≥ 1. This allows to replace xkeij by terms with smaller
powers of ℓ, eventually eliminating all occurrences of ℓ. This
means that every element in (e) may be represented as K-
linear combination of elements of the form xke0j = xke∂j

and some element in (η).
We write ηij for ℓiη∂j and H for the K-vector space gen-

erated by xkηij . Obviously H is is a subspace of (η). The
product of an element xkηij by ∂ or ℓ from the right is again
in H . By Lemma 10 and by the Leibniz rule we may com-
mute products of the form ℓxk and ∂xk, so left multiplication
by ℓ and ∂ does not leave H either. Finally, H is also closed
under right multiplication by x since ηx = (x − ℓ)η. Hence
H is an ideal, which implies H = (η).

For proving directness assume
X

m,n

amnx
ke0n =

X

i,j,k

bijkx
kηij (19)

for suitable amn, bijk ∈ K. Converting the right-hand side to
the basis (xkeij) by xkηij = xk+1eij −(i+1)xkei+1,j −cxkeij

and choosing i maximal, we see that the terms bijk must all
vanish because (xkeij) is a K-basis and the left-hand side
does not contain terms of the form ei+1,j . Repeating this
for smaller i, it follows that the sum is direct. Using the
same argument with 0 as the left-hand side, we conclude
that (xkηij) is a K-basis of (η).

Using the direct sum from Lemma 19, it is now immediate
to draw the connection to the ring K[x][∂,

r
] of Section 3.

Theorem 20. If
r
is an integral operator for the standard

derivation ∂ on K[x], we have

A1(∂, ℓ)/(ex− ce) ∼= K[x][∂,
r
]

with c = e • x ∈ K as the constant of integration.

Proof. Using Lemma 19 and (18) we see that

A1(∂, ℓ)/(η) = A1(∂) ∔ A1(ℓ)ℓ∔ B.

As K-bases we can choose (xk∂i), the mid basis (xmℓxn)
and (xke∂j), respectively. They map directly to the corre-
sponding basis elements in K[x][∂,

r
] detailed in Section 3.

This yields a K-linear isomorphism.
For proving that it is also an isomorphism of K-algebras,

it suffices to verify that all identities in Table 1 are satis-
fied. The first six are immediate, for the

r
f
r

rule one uses
Lemma 11, for the remaining two rules one can apply the
identity ℓxke ≡ (xk+1 − ck+1)/(k+1) modulo (ex− ce).
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An alternative proof of Theorem 20 takes the detour via
the free algebra K〈D,L,X〉. Using its construction, one
can show that A1(∂, ℓ)/(ex − ce) is isomorphic to the free
algebra modulo the four relations DL = 1, XD = DX − 1,
XL = LX + L2, and (1 − LD)X = c(1 − LD). It remains
to prove that these four relations generate the identities of
Table 1, which is laborious but straightforward.

7. CONCLUSION
The integro-differential Weyl algebra exhibits an inter-

esting algebraic structure that deserves further study. En-
coding integro-differential operators in a skew polynomial
setting, it allows to recast our algebraic approach to linear
boundary problems in a new language. We hope this will ad-
vance the algorithmic treatment of various operations [28],
for example the computation of Green’s operators and the
factorization into lower-order problems.

The current formulation is still very limited in scope. Since
we have taken only one character (necessarily the evalua-
tion), boundary problems—both their formulation and their
solution—are restricted initial value problems. Adjoining
more characters in a skew polynomial setting will be an in-
teresting task.

A more challenging extension concerns the transition from
ODE to PDE, analogous to the classical Weyl algebra in
several variables. As reported in [25], our algebraic setup
(including the factorization) extends to boundary problems
for PDE; the task is now to develop an algorithmic frame-
work for relevant classes of such boundary problems. The
skew polynomial approach initiated here could provide an
appropriate vantage point.
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Abstract. We describe a symbolic framework for treating linear bound-
ary problems with a generic implementation in the Theorema system. For
ordinary differential equations, the operations implemented include com-
puting Green’s operators, composing boundary problems and integro-
differential operators, and factoring boundary problems. Based on our
factorization approach, we also present some first steps for symbolically
computing Green’s operators of simple boundary problems for partial
differential equations with constant coefficients. After summarizing the
theoretical background on abstract boundary problems, we outline an
algebraic structure for partial integro-differential operators. Finally, we
describe the implementation in Theorema, which relies on functors for
building up the computational domains, and we illustrate it with some
sample computations including the unbounded wave equation.

Keywords: Linear boundary problem, Green’s operator, Integro-
Differential Operator, Ordinary Differential Equation, Wave Equation.

1 Introduction

Due to their obvious importance in applications, boundary problems play a dom-
inant role in Scientific Computing, but almost exclusively in the numerical seg-
ment. It is therefore surprising that they have as yet gained little attention in
Symbolic Computation, neither from a theoretical perspective nor in computer
algebra systems.

In applications [1, p. 42] one is “concerned not only with solving [the boundary
problem] for specific data but also with finding a suitable form for the solution
that will exhibit its dependence on the data.” In our work, we focus on linear
boundary problems (and will henceforth suppress the attribute “linear”). For us,
a boundary problem is thus a differential equation with a symbolic right-hand
side, supplemented by suitable boundary conditions. Solving it means to deter-
mine its Green’s operator, namely the integral operator that maps the right-hand
side to the solution. For a symbolic approach to boundary problems, one has to
develop a constructive algebraic theory of integral operators and an algorithmic
framework for manipulating boundary conditions.

V.P. Gerdt, E.W. Mayr, and E.V. Vorozhtsov (Eds.): CASC 2009, LNCS 5743, pp. 269–283, 2009.
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Such a development was initiated in [2], leading to a symbolic method for
computing Green’s operators of regular two-point boundary problems with con-
stant coefficients [3]. We extended these results to a differential algebra setting
in [4], where we also developed a factorization method applicable to boundary
problems for ordinary differential equations (ODEs). A more abstract view on
boundary problems and a general factorization theory is described in [5], includ-
ing in particular partial differential equations (PDEs).

In this paper, we describe a prototype implementation in Theorema [6], cur-
rently based on a raw interface that will be improved in the future. It provides
generic algorithms for various operations on boundary problems and integro-
differential operators for ODEs (Section 5), exemplified in (Appendix A): com-
puting Green’s operators, composing boundary problems and integro-differential
operators, and factoring boundary problems. The computations are realized by
a suitable noncommutative Gröbner basis that reflects the essential interactions
between certain basic operators. Gröbner bases were introduced by Buchberger
in [7]. For an introduction to the theory, we refer to [8], for its noncommutative
extension to [9].

Moreover, for PDEs we present some first steps for making the abstract setting
of [5] algorithmic. We develop an algebraic language for encoding the integro-
differential operators appearing as Green’s operators of some simple two-dimen-
sional Dirchlet problems for PDEs with constant coefficients (Section 4). Using
our generic factorization approach, this allows to find the Green’s operator of
higher-order boundary problems by composing those of its lower-order factors.
This idea is exemplified for the unbounded wave equation with a sample com-
putation (Appendix A).

For the broader audience of Scientific Computing, we summarize the necessary
theoretical background on abstract boundary problems, omitting all technical
details and illustrating it for the case of ODEs (Section 2). After explaining
the composition and factorization of boundary problems (Section 3), we outline
the algebraic structures used for encoding ordinary as well as partial integro-
differential operators (Section 4).

For motivating our algebraic setting of boundary problems, we consider first
the simplest two-point boundary problem. Writing F for the real or complex
vector space C∞[0, 1], it reads as follows: Given f ∈ F , find u ∈ F such that

u′′ = f,
u(0) = u(1) = 0.

(1)

Let D : F → F denote the usual derivation and L, R the two linear functionals
L : f �→ f(0) and R : f �→ f(1). Note that u is annihilated by any linear combi-
nation of these functionals so that problem (1) can be described by (D2, [L, R]),
where [L, R] is the subspace generated by L, R in the dual space F∗ .

As a second example, consider the following boundary problem for the wave
equation on the domain Ω = R × R≥0, now writing F for C∞(Ω): Given f ∈ F ,
find u ∈ F such that
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utt − uxx = f,
u(x, 0) = ut(x, 0) = 0.

(2)

Note that we use the terms “boundary condition/problem” in the general sense
of linear conditions. The boundary conditions in (2) can be expressed by the
infinite family of linear functionals βx : u �→ u(x, 0), γx : u �→ ut(x, 0) with x
ranging over R. So we can represent the boundary problem again by a pair
consisting of the differential operator D2

t −D2
x and the (now infinite dimensional)

subspace generated by βx and γx in F∗.
For ensuring a unique representation of boundary conditions, we take the

orthogonal closure of this subspace, which we denote by [βx, γx]x∈R. This is the
space of all linear functionals vanishing on the functions annihilated by βx, γx.
Every finite dimensional subspace is orthogonally closed, but here, for example,
the functionals u �→

∫ x

0
u(η, 0) dη and u �→ ux(x, 0) for arbitrary x ∈ R are in

the orthogonal closure but not in the space generated by βx and γx. We refer
to [10] or [5, App. A.1] for details on the orthogonal closure.

Some notational conventions. We use the symbol ≤ for algebraic substruc-
tures. If T : F → G is a linear map and B ≤ G∗, we write B · T for the subspace
{β ◦ T | β ∈ B} ≤ F∗. For a subset B ⊆ F∗ the so-called orthogonal is defined
as B⊥ = {u ∈ F | β(u) = 0 for all β ∈ B}.

2 An Algebraic Formulation of Boundary Problems

In this section, we give a summary of the algebraic setting for boundary prob-
lems exposed in [5], see also there for further details and proofs. We illustrate
the definitions and statements for ODEs on a compact interval [a, b] ⊆ R. In
this setting, most of the statements can be made algorithmic relative to solving
homogeneous linear differential equations (and the operations of integration and
differentiation).

A boundary problem is given by a pair (T, B), where T : F → G is a surjective
linear map between vector spaces F , G and B ≤ F∗ is an orthogonally closed
subspace of homogeneous boundary conditions. We say that u ∈ F is a solution of
(T, B) for a given f ∈ G if Tu = f and u ∈ B⊥. Note that have restricted ourselves
to homogeneous conditions because the general solution is then obtained by
adding a “particular solution” satisfying the inhomogeneous conditions. While
for ODEs, this amounts to a simple interpolation problem, the treatment of
PDEs is more involved.

In the ODE setting, T = Dn+cn−1D
n−1+· · ·+c1D+c0 is a monic differential

operator of order n with coefficients ci ∈ G. For the spaces F , G we could for
example choose F = G = C∞[a, b] or F = Cn[a, b] and G = C[a, b], as real
or complex vector spaces. The differential operator T is surjective since every
inhomogeneous linear differential equation has a solution in F , e.g. given by the
formula (3) below. The solution space of the homogeneous equation, KerT , has
dimension n, so we require dim B = n, and we assume that B is given by a
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basis β1, . . . , βn. Then the boundary problem reads as follows: Given f ∈ G, find
u ∈ F such that

Tu = f,
β1(u) = · · · = βn(u) = 0.

The boundary conditions can in principle be any linear functionals. In partic-
ular, they can be point evaluations of derivatives or also more general boundary

conditions of the form β(u) =
∑n−1

i=0 ai u(i)(a) + bi u(i)(b) +
∫ b

a v(ξ)u(ξ) dξ with
v ∈ F , known in the literature [11] as “Stieltjes boundary conditions”. Integral
boundary conditions also appear naturally when we factor a boundary prob-
lem along a given factorization of the differential operator (Section 3), and they
appear in the normal forms of integro-differential operators (Section 4).

A boundary problem (T, B) is regular if for each f ∈ G there exists exactly
one solution u of (T, B). Then we call the linear operator G : G → F that maps
a right-hand side f to its unique solution u = Gf the Green’s operator for
the boundary problem (T, B), and we say that G solves the boundary problem
(T, B). Since TGf = f , we see that the Green’s operator for a regular boundary
problem (T, B) is a right inverse of T , determined by the property ImG = B⊥.
Therefore we use the notation G = (T, B)−1 for the Green’s operator.

Regular boundary problems can be characterized as follows. A boundary prob-
lem is regular iff B⊥ is a complement of KerT so that F = KerT � B⊥ as a
direct sum. For ODEs we have the following algorithmic regularity test (compare
[12, p. 184] for the special case of two-point boundary conditions): A boundary
problem (T, B) for an ODE is regular iff the evaluation matrix B = (βi(uj)) is
regular, where the βi and uj are any basis of respectively B and KerT .

Given any right inverse G̃ of a surjective linear map T : F → G, the Green’s
operator for a regular boundary problem (T, B) is given by G = (1−P )G̃, where
P is the projector with ImP = KerT and KerP = B⊥. Using this observation,
we outline in the following how the Green’s operator can be computed in the
ODE setting.

Let (T, B) be a regular boundary problem for an ODE of order n with B =
[β1, . . . , βn], and let u1, . . . , un be a fundamental system of solutions. We first
compute a right inverse of the differential operator T . This can be done by the
usual variation-of-constants formula (see for example [13, p. 87] for continuous
functions or [14] in a suitable integro-differential algebra setting): Let W =
W (u1, . . . , un) be the Wronskian matrix and d = detW . Moreover, let di =
detWi, where Wi is the matrix obtained from W by replacing the ith column
by the nth unit vector. Then the solution of the initial value problem Tu = f ,
u(a) = u′(a) = · · · = u(n−1)(a) = 0 is given by

u(x) =
n∑

i=1

ui(x)
� x

a
di(ξ)/d(ξ) f(ξ) dξ. (3)

The integral operator T � : f �→ u defined by (3) is a right inverse of T , which we
also call the fundamental right inverse. Computing the projector P : F → F with
Im P = [u1, . . . , un] and KerP = [β1, . . . , βn]⊥ is a linear algebra problem, see
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for example [5, App. A.1]: Let B be the evaluation matrix B = (βi(uj)). Since

(T, B) is regular, B is invertible. Set (β̃1, . . . , β̃n)t = B−1(β1, . . . , βn)t. Then the
projector P is given by u �→ ∑n

i=1 β̃i(u)ui. Finally, we compute

G = (1 − P )T � (4)

to obtain the Green’s operator for (T, B).

3 Composing and Factoring Boundary Problems

In this section we discuss the composition of boundary problems corresponding
to their Green’s operators. We also describe how factorizations of a boundary
problem along a given factorization of the defining operator can be characterized
and constructed. We refer again to [5] for further details. In the following, we as-
sume that all operators are defined on suitable spaces such that the composition
is well-defined.

Definition 1. We define the composition of boundary problems (T1, B1) and
(T2, B2) by (T1, B1) ◦ (T2, B2) = (T1T2, B1 · T2 + B2).

So the boundary conditions from the first boundary problem are “translated” by
the operator from the second problem. The composition of boundary problems
is associative but in general not commutative. The next proposition tells us that
the composition of boundary problems preserves regularity.

Proposition 1. Let (T1, B1) and (T2, B2) be regular boundary problems with
Green’s operators G1 and G2. Then (T1, B1) ◦ (T2, B2) = (T, B) is regular with
Green’s operator G2G1 so that ((T1, B1) ◦ (T2, B2))

−1 = (T2, B2)
−1 ◦ (T1, B1)

−1.

The simplest example of composing two boundary (more specifically, initial
value) problems for ODEs is the following. Using the notation from the In-
troduction, one sees that (D, [L]) ◦ (D, [L]) = (D2, [LD] + [L]) = (D2, [L, LD]).

Next we write the wave equation (2) as P = (D2
t −D2

x, [u(x, 0), ut(x, 0)]), where
u(x, 0) and ut(x, 0) are short for the functionals u �→ u(x, 0) and u �→ ut(x, 0),
respectively, with x ranging over R, and [. . .] denotes the orthogonal closure of
the subspace generated by these functionals. For boundary problems with PDEs,
we usually have to describe the boundary conditions as the orthogonal closure
of some subspaces that we can describe in finite terms. As detailed in [5], we can
still compute the composition of two such problems since taking the orthogonal
closure commutes with the operations needed for computing the boundary con-
ditions for the composite problem (precomposition with a linear operator and
sum of subspaces).

Using this observation, we can compute P as the composition of the two
boundary problems P1 = (Dt − Dx, [u(x, 0)]) and P2 = (Dt + Dx, [u(x, 0)]) as
follows. By Definition 1, we see that P1 ◦ P2 equals

(D2
t − D2

x, [ut(x, 0) + ux(x, 0)] + [u(x, 0)]) = (D2
t − D2

x, [u(x, 0), ut(x, 0)]), (5)
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where the last equality holds since u(x, 0) = 0 for x ∈ R implies also ux(x, 0) = 0
for x ∈ R, showing that ux(x, 0) is in the orthogonal closure [u(x, 0)].

In the following, we assume that for a boundary problem (T, B) we have
a factorization T = T1T2 of the defining operator with surjective linear maps
T1, T2. In [5], we characterize and construct all factorizations (T, B) = (T1, B1) ◦
(T2, B2) into boundary problems along the given factorization of T . We show in
particular that if we factor a regular problem into regular problems, the left factor
(T1, B1) is unique, and we can choose for the right factor (T2, B2) any subspace
B2 ≤ B that makes the problem regular. Moreover, if G2 is the Green’s operator
for some regular right factor (T2, B2), the boundary conditions for the left factor
can be computed by B1 = B · G2. Factoring boundary problems for differential
equations allows us to split a problem of higher order into subproblems of lower
order, provided we can factor the differential operator. For the latter, we can
exploit algorithms and results about factoring ordinary [15,16,17] and partial
differential operators [18,19].

For ODEs we can factor boundary problems algorithmically as described in [5]
and in an integro-differential algebra setting in [4]. There we assume that we are
given a fundamental system of the differential operator T and a right inverse
of T2. As we will detail in the next paragraph, we can also compute boundary
conditions B2 ≤ B such that (T2, B2) is a regular right factor, given only a
fundamental system of T2. We can then compute the left factor as explained
above. This can be useful in applications, because it still allows us to factor
a boundary problem if we can factor the differential operator and compute a
fundamental system of only one factor. The remaining lower order problem can
then be solved by numerical methods (and we expect that the integral conditions
B1 = B · G2 may be beneficial since they are stable).

Let now (T, B) be a boundary problem of order m + n with boundary condi-
tions [β1, . . . , βm+n]. Let T = T1T2 be a factorization into factors of respective
orders n and m, and let u1, . . . , um be a fundamental system for T2. We compute
the “partial” (m + n)× m evaluation matrix B̃ = βi(uj). Since (T, B) is regular,

the full evaluation matrix is regular and hence the columns of B̃ are linearly in-
dependent. Therefore computing the reduced row echelon form yields a regular
matrix C such that CB̃ =

(
Im
0

)
, where Im is the m × m identity matrix. Let

now (β̃1, . . . , β̃m+n)t = C(β1, . . . , βm+n)t and B2 = [β̃1, . . . , β̃m]. Then (T2, B2)
is a regular right factor since its evaluation matrix is Im by our construction.
See Appendix A for an example.

As a first example, we factor the two-point boundary problem (D2, [L, R])
from the Introduction into two regular problems along the trivial factorization
with T1 = T2 = D. The indefinite integral A =

∫ x

0
is the Green’s operator for the

regular right factor (D, [L]). The boundary conditions for the unique left factor

are [LA, RA] = [0, RA] = [RA], where RA =
� 1

0 is the definite integral. So we
obtain (D, [RA]) ◦ (D, [L]) = (D2, [L, R]) or in traditional notation

u′ = f∫ 1

0 u(ξ) dξ = 0
◦ u′ = f

u(0) = 0
=

u′′ = f
u(0) = u(1) = 0

.
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Note that the boundary condition for the left factor is an integral (Stieltjes)
boundary condition.

As an example of a boundary problem for a PDE, we factor the wave equa-
tion (2) along the factorization D2

t −D2
x = (Dt−Dx)(Dt+Dx). In Appendix A, we

show that one can use this factorization to determine algorithmically its Green’s
operator. The boundary problem P2 = (Dt +Dx, [u(x, 0)]) is a regular right fac-
tor. In general, choosing boundary conditions in such a way that they make up
a regular boundary problem for a given first-order right factor of a linear PDE
amounts to a geometric problem involving the characteristics; compare also Sec-
tion 4. The Green’s operator for P2 is G2f(x, t) =

∫ x

x−t
f(ξ, ξ −x+ t) dξ. We can

compute the boundary conditions for the left factor by [u(x, 0)·G2, ut(x, 0)·G2] =
[0, u(x, 0)] = [u(x, 0)] so that P1 = (Dt − Dx, [u(x, 0)]) is the desired left factor.
In (5) we have already verified that P1 ◦ P2 = P .

4 Representation of Integro-differential Operators

For representing ordinary boundary problems as well as their Green’s opera-
tors in a single algebraic structure, we have introduced the algebra of integro-
differential operators F [∂,

�
] in [4], see also [14] for a summary. It is based on

integro-differential algebras, which bring together the usual derivation struc-
ture with a suitable notion of indefinite integration and evaluation. The integro-
differential operators are defined as a quotient of the free algebra in the cor-
responding operators (derivation, integration, evaluation, and multiplication)
modulo an infinite parametrized Gröbner basis. See Section 5 for more details
and an implementation. Alternatively, integro-differential operators can also be
defined directly in terms of normal forms [20].

Let us now turn to the treatment of partial differential equations. We are cur-
rently forging an adequate notion of integro-differential operators for describing
the Green’s operators of an interesting class of PDEs, just as F [∂,

�
] can be used

for ODEs. In the remainder of this section we can only give a flavor (and a small
test implementation) of how integro-differential operators for PDEs might look
like in a simple case that includes the unbounded wave equation (2).

We construct a ring R of integro-differential operators acting on the function
space F = C∞(R×R); for simplicity we neglect here the restriction to R×R≥0.
The ring R is defined as the free C-algebra in the following indeterminates given
with their respective action on a function f(x, t) ∈ F .

Name Indeterminates Action

Differential operators Dx, Dt fx(x, t), ft(x, t)

Integral operators Ax, At

� x

0
f(ξ, t) dξ,

� t

0
f(x, τ ) dτ

Evaluation operators Lx, Lt f(0, t), f(x, 0)

Substitution operators
(

a b
c d

)
∈ GL(R, 2) f(ax + bt, cx + dt)
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Similar to the identities governing F [∂,
�
], described in [4], various relations

among the above operators can now be encoded in a quotient of R. We will only
sketch the most important relations, focusing on those that are needed for the
sample computations. (In a more complete setup, the indeterminates should also
be chosen in a more economical way. For example, it is possible to subsume the
evaluations under the substitutions if one allows all affine transformations by
adding translations and singular matrices.)

First of all, we can transfer all relations from F [∂,
�
] that involve D, A and

L, once for the corresponding x-operators and once for the corresponding t-
operators. Furthermore, each x-operator commutes with each t-operator. For
example, we have DxAx = 1 but DxAt = AtDx. For normalizing such commu-
tative products, we write the x-operators left of the t-operators. Our strategy
for normal forms is thus similar to the case of F [∂,

�
], the only new ingredient

being the substitutions: We will move them to the left as much as possible.
Since substitutions operate on the arguments, it is clear that we must reverse

their order when multiplying them as elements of R. But the most important
relations are those that connect the substitutions with the integro-differential
indeterminates: The chain rule governs the interaction with differentiation, the
substitution rule with integration. While the former gives rise to the identities

DxM = a MDx + c MDt and DtM = b MDx + dMDt

for a matrix M =
(

a b
c d

)
, the relation between M and integrals is a bit subtler.

If M is an upper triangular matrix (so that c = 0 and a �= 0), the substitution
rule yields

AxM = 1
a (1 − Lx)MAx,

and if M is a lower triangular matrix (so that b = 0 and d �= 0) similarly
AtM = 1

d(1 − Lt)MAt.
But there are no such identities for pushing

(
1 0
c 1

)
left of Ax or

(
1 b
0 1

)
left of

At; we leave them in their place for the normal forms. For treating the general
case, we make use of a variant of the Bruhat decomposition [21, p. 349], writing
M ∈ GL(R, 2) as

(
a b
c d

)
=

(
1 0

c/a 1

) (
a b
0 (ad−bc)/a

)
if a �= 0 and

(
a b
c d

)
=

(
b 0
d c

) (
0 1
1 0

)

if a = 0. Alternatively, we may also use
(

a b
c d

)
=

(
1 b/d
0 1

) (
(ad−bc)/d 0

c d

)
if d �= 0 and(

a b
c d

)
=

(
b a
0 c

) (
0 1
1 0

)
if d = 0. The former decomposition is applied in deriving

the rule for Ax, which reads

Ax

(
a b
c d

)
= 1

a (1 − Lx)
(

a b
0 (ad−bc)/a

)
Ax

(
1 0

c/a 1

)

if a �= 0 and otherwise Ax

(
0 b
c d

)
= 1

c (1 − Lx)
(

0 b
c d

)
At. Analogously, the latter

decomposition yields the rule for At as

At

(
a b
c d

)
= 1

d (1 − Lt)
(

(ad−bc)/d 0
c d

)
At

(
1 b/d
0 1

)

if d �= 0 and otherwise At

(
a b
c 0

)
= 1

b (1 − Lt)
(

a b
c 0

)
Ax.

According to the rules above, an R-operator like Ax

(
1 0
k 1

)
is in normal form.

Also Ax

(
1 0
k 1

)
Ax is a normal form, describing an area integral. For interpreting
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it geometrically, it is convenient to postmultiply it with the reverse shear, ob-
taining thus the integral operator Tk =

(
1 0

−k 1

)
Ax

(
1 0
k 1

)
Ax. One can easily verify

that Tkf(x, t) represents the integral of f taken over the triangle with vertices
(x, t), (0, y) and (0, t − kx). This is the triangle delimited by the y-axis, the hor-
izontal through (x, y), and the slanted line through (x, t) with slope k. Similar
interpretations can be given for products involving At.

Finally, we need some rules relating substitutions with evaluations. Here the
situation is analogous to the integrals: We can move “most” of the substitutions
to the left of an evaluation, but certain shears remain on the right. In detail, we
have the rules

Lx

(
a b
c d

)
=

(
1 0
0 d

)
Lx

(
1 b/d
0 1

)
if d �= 0 Lx

(
a b
c 0

)
=

(
0 b
1 0

)
Lt otherwise

and

Lt

(
a b
c d

)
=

(
a 0
0 1

)
Lt

(
1 0

c/a 1

)
if a �= 0 Lt

(
0 b
c d

)
=

(
0 1
c 0

)
Lx otherwise.

As before, certain products remain as normal forms, for example Lx

(
1 k
0 1

)
. Such

an operator acts on a function f ∈ F as f(kt, t), collapsing the bivariate function
f to the univariate restriction along the diagonal line x = kt.

The language of R-operators is not very expressive, but enough for our modest
purposes at this point—expressing the boundary problem (2) and computing its
Green’s operator. Let us first look at the general first-order boundary problem
with constant coefficients, prescribing homogeneous Dirichlet conditions on an
arbitrary line. Fixing the parameters a, b, c, k ∈ R, it reads as follows:

a ux + b ut = f
u(kt + c, t) = 0

(6)

Here (a, b)t determines the direction (and speed) of the ground characteristics,
while x = kt + c gives the line of boundary values. Of course this excludes the
horizontal lines t = const, which would have to be treated separately, in a com-
pletely analogous manner. Since (in this paper) we are interested only in regular
boundary problems, the characteristics must have a transversal intersection with
the line of boundary values. Hence we stipulate that a − kb �= 0. Moreover, we
will also assume a �= 0; for otherwise one may switch the x- and t-coordinates. A
straightforward computation (or a suitable computer algebra system) gives now

u(x, y) =
1

a

∫ x

X

f(ξ, b
a (ξ − x) + t) dξ with X =

ac + (at − bx)k

a − bk
.

This solution for the general case can be reduced to (a, b)t = (1, 0)t and k = 0
by first rotating (a, b) into horizontal position, then normalizing it through x-
scaling, and finally shearing the line of boundary values into vertical position.
This yields the factorization

u(x, y) =
( 1/K −k/K

−b/L a/L

)
·
� x

c/K ·
( a kL/K

b L/K

)
f(x, y), (7)
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where K = a − bk and L = a2 + b2. This is almost an R-operator, except that
we have only allowed Ax =

� x

0
and its t-analog, so we cannot express

� x

c/K

unless we allow more evaluations such that we could write the required integral

as Ax − L
c/K
x Ax, where Lξ

x acts on a function g(x, y) as g(ξ, y).
While it would be straightforward to incorporate such evaluations by adding

suitable relations, it is enough for our purposes to restrict the line of boundaries:
We require it to pass through the origin so that c = 0. In this case we have of
course

� x

c/K = Ax, and (7) shows that we can indeed write the Green’s operator

in the R language.

5 Implementation in Theorema

As explained in Sections 2 and 4, we compute the Green’s operator of a boundary
problem for an ODE as an integro-differential operator. These operators are
realized as noncommutative polynomials (introduced by a generic construct for
monoid algebras), taken modulo an infinite parametrized Gröbner basis.

As coefficients we allow either standard polynomials or—more generally—
exponential polynomials. Informally speaking, an exponential polynomial is a
linear combination of terms having the form xneλx, where n is a natural and λ a
complex number. Both the standard and the exponential polynomials can again
be generated as an instance of the monoid algebra, respectively using N and
N × C as a term monoid. In this way, we have complete algorithmic control over
the coefficient functions (modulo Mathematica’s simplifier for constants); see
also [22]. Alternatively, we can also take as coefficients all functions representable
in Mathematica and let it do the operations on them.

We describe now briefly the representation of integro-differential operators
and the implementation of the main algorithms solving, composing and factor-
ing boundary problems. The implementation will soon be available at the website
www.theorema.org. It is based on Theorema [6], a system designed as an inte-
grated environment for doing mathematics, in particular proving, computing,
and solving in various domains of mathematics. Its core language is higher-order
predicate logic, containing a natural programming language such that algorithms
can be coded and verified in a unified formal frame.

We make heavy use of functors, introduced and first implemented in Theorema
by Buchberger. The general idea—and its use for structuring those domains in
which Gröbner bases can be computed—is described in [23,24], where one can
also find references to original and early papers by Buchberger on the subject.
For a general discussion of functor programming, see also [25].

Functors are a powerful tool for building up hierarchical domains in mathe-
matics in a modular and generic way that unites elegance and formal clarity. In
Theorema, the notion of a functor is akin to functors in ML, not to be confused
with the functors of category theory. From a computational point of view, a The-
orema functor is a higher-order function that produces a new domain (carrier
and operations) from given domains: operations in the new domain are defined
in terms of operations in the underlying domains. Apart from this computational
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aspect, functors also have an important reasoning aspect—a functor transports
properties of the input domains to properties of the output domain, for example
by “conservation theorems”.

The MonoidAlgebra is the crucial functor that builds up polynomials, starting
from the base categories of fields with an ordering and ordered monoids. We
construct first the free vector space V over a field K generated by the set of words
in an ordered monoid W via the functor FreeVecSpc[K,W]. Then we extend this
domain by introducing a multiplication using the corresponding operations in K

and W as follows.

MonoidAlgebra�K, W� � where�V � FreeVecSpc�K, W�,

Functor�P, any�c, d, f, g, Ξ, Η, m
�
, n

�
�,

� � ��

��� linear operations from V ��

�� multiplication ��

���
P
g � ��

f�
P
�� � ��

��c, Ξ�, m
�
��

P
��d, Η�, n

�
� � 		c�

K
d, Ξ �

W
Η

 �

P
��c, Ξ���

P
�n

�
� �

P
�m

�
��

P
��d, Η�, n

�
�

��

For building up the integro-differential operators over an integro-differential al-
gebra F of coefficient functions, FreeIntDiffOp[F,K] constructs an instance of
the monoid algebra with the word monoid over the infinite alphabet consisting
of the letters ∂ and

�
along with a basis of F and all multiplicative characters

corresponding to evaluations at points in K.

Definition�"IntDiffOp", any��, K�,
IntDiffOp��, K� � where�� � FreeIntDiffOp��, K�, � � GreenSystem��, K�

QuotAlg�GBNF��, ����
�

The GreenSystem functor contains the encoding of the rewrite system described
in Table 1 of [4,14], representing a noncommutative Gröbner basis. The nor-
mal forms with respect to total reduction modulo infinite Gröbner bases are
introduced in the GBNF functor, while the QuotAlg functor creates the quotient
algebra from the corresponding canonical simplifier.

In Appendix A, we present a few examples of boundary problems for ODEs
whose Green’s operators are computed using (4), which now takes on the follow-
ing concrete form in Theorema code.

GreensOp
P

�F, �� � 1
�

	
�
Proj

P
��, F� �

�
RightInv

P
�F�

Here B is the vector of boundary conditions and F the given fundamental system
of solutions.

In a way similar to the integro-differential operators F [∂,
�
] for ODEs, we

have also implemented the integro-differential operators R for the simple PDE
setting outlined in Section 4. Using the same functor hierarchy, we added the
corresponding rules for the operators Dx, Dt, Ax, At, Lx, Lt and the substitution
operators defined by matrices in GL(R, 2). Moreover, we implemented the com-
putation of Green’s operators for first-order boundary problems (7). With the
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factorization (5) we can then compute the Green’s operator for the unbounded
wave equation (Appendix A).

6 Conclusion

The implementation of our symbolic framework for boundary problems allows
us in particular to solve boundary problems for ODEs from a given fundamental
system of the corresponding homogeneous equations. Given a factorization of
the differential operator and a fundamental system of one of the factors, we
can also factor boundary problems into lower order problems. In both cases it
would be interesting to investigate the combination with numerical approaches
to differential equations and boundary problems. For example, how can we use
a fundamental system coming from a numerical algorithm or how can numerical
methods be adapted to deal with integral boundary conditions?

The current setting for PDEs is of course still very limited and should only be
seen as a starting point for future work. But in combination with our factoriza-
tion approach, we believe that it can be extended to include more complicated
problems. For example, the wave equation on the bounded interval [0, 1], which
in our notation reads as P = (D2

t − D2
x, [u(x, 0), ut(x, 0), u(0, t), u(1, t)]) with x

ranging over [0, 1] and t over R≥0, can be factored [5] into P = P1 ◦ P2 with

P1 = (Dt − Dx, [u(x, 0),
� 1

max (1−t,0)u(ξ, ξ + t − 1) dξ])

and P2 = (Dt + Dx, [u(x, 0), u(0, t)]). The more complicated structure of the
Green’s operator for P (it involves a finite sum with an upper bound depending
on its argument) is reflected in the Green’s operator for the left factor P1. Its
computation leads in this case to a simple functional equation, but a systematic
approach to compute and represent Green’s operators for PDEs with integral
boundary conditions still needs to be developed. In a generalized setting including
the bounded wave equation, we would also have to allow for more complicated
geometries: as a first step bounded intervals and then also arbitrary convex sets.
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A Sample Computations

Let us again consider example (1). By our implementation, we obtain the Green’s
operator for the boundary problem with the corresponding Green’s function.
As noted in [3], the Green’s function provides a canonical form for the Green’s

operator. In the following, we use the notation Au =
∫ x

0
u(ξ) dξ, Bu =

∫ 1

x
u(ξ) dξ,

Lu = u(0), Ru = u(1), and A1f(x, t) =
∫ x

0
f(ξ, t) dξ.

Compute�AsGreen
�

�GreensOp
�

�D2, ���1, ��"�", 0����, ��1, ��"�", 1��������

�A x � x B � x A x � x B x

Compute�GreensFct
��

�GreensOp
�

�D2, ���1, ��"�", 0����, ��1, ��"�", 1��������

� �Ξ � x Ξ � Ξ � x

�x � x Ξ � x � Ξ

As explained in Section 3, we can factor (1) along a factorization of the differ-
ential operator, given a fundamental system for the right factor. Here is how
we can compute the boundary conditions of the left and right factor problems,
respectively.

Compute�AsGreen
�

�Factorize
��

�D, D, ���1, ��"�", 0����, ��1, ��"�", 1�����, ���1, ��������

��A � B�, �L��
We consider as a second example the fourth order boundary problem [4, Ex. 33]:

u′′′′ + 4u = f,
u(0) = u(1) = u′(0) = u′(1) = 0.

(8)

Factoring the boundary problem along D4 + 4 = (D2 − 2i)(D2 + 2i), we obtain
the following boundary conditions for the factor problems.

Compute�AsGreen
�

�Factorize
��

�D2 	 2
�, D2 � 2
�,

���1, ��"�", 0����, ��1, ��"�", 1����, ��1, ��"�", 0�, "�"���, ��1, ��"�", 1�, "�"����,

���1, ��"��", �0, 	1 � ������, ��1, ��"��", �0, 1 � �	1�
����������

��A ��Complex��1,1�	 x � B ��Complex��1,1�	 x, A ��Complex�1,�1�	 x � B ��Complex�1,�1�	 x
, �L, R�

With our implementation we can also compute its Green’s operator and verify
the solution presented in [4].

The final example for ODEs is a third order boundary problem with expo-
nential coefficients.

u′′′ − (ex + 2)u′′ − u′ + (ex + 2)u = f,
u(0) = u(1) = u′(1) = 0.

(9)

Here we use as coefficient algebra all functions representable in Mathematica.
The Green’s operator is computed as follows.
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Compute�GreensOp
�

����1, mma�x���, ��1, mma�	x���, ��	1, mma�x 
	x��, �1, mma�x����,

���1, ��"�", 0����, ��1, ��"�", 1����, ��1, ��"�", 1�, "�"������

��1 � �	�2 ��1 � ��x  A � ��1 � �	�2 ��1 � ��x  B � ��1	 ��1 � �	�2 ��1 � ��x���1	 x A �

��1	 ��1 � �	�2 ��1 � ��x���1	 x B �
1

2
�
1

2
 ��1 � �	�2  ��1 x A �

1

2
 ��1 � �	�2 ��1 x B �

�1

2
 ��1 � �	�2 �x A �

�1

2
 ��1 � �	�2 �x B � ��1 � �	�2 ��1 � ��x  A ��2 x �

��2	 ��1 � �	�2 ��1 � ��x  A ��1 x � ��1	 ��x  B ��1 �x���2	 x � ��1 � �	�2 ��1 � ��x  B ��2 x �

��2	 ��1 � �	�2 ��1 � ��x  B ��1 x � ��1	 ��1 � �	�2 ��1 � ��x���1	 x A ��2 x � 2 ��1 � �	�2 ��1 � ��x���1	 x A ��1 x �

��x���1	 x B ��1 �x���2	 x � ��1	 ��1 � �	�2 ��1 � ��x���1	 x B ��2 x � 2 ��1 � �	�2 ��1 � ��x���1	 x B ��1 x �

1 �
1

2
 ��1 � ��1 � �	�2�  ��1 x A ��2 x � ��1 � ��1	 ��1 � �	�2� ��1 x A ��1 x �

1

2
 ��1 � ��1 � �	�2� ��1 x B ��2 x � ��1	 ��1 � �	�2 ��1 x B ��1 x �

�1

2
�
1

2
 ��2 � �	 ��1 � �	�2 �  �x A ��2 x �

��1 � �	�2 �x A ��1 x �
1

2
 ��2 � �	 ��1 � �	�2 � �x B ��2 x � ��1 � �	�2 �x B ��1 x

As a last example, we return to the boundary problem for the wave equation (2).
With Proposition 1 and using the factorization (5), we can compute the Green’s
operator for (2) simply by composing the Green’s operators of the first-order
problems P1 = (Dt − Dx, [u(x, 0)]) and P2 = (Dt + Dx, [u(x, 0)]). Relative to
the setting in Section 4, we switch the x- and t-coordinates.

Compute�GreensOp
�

�1, 	1, 0��
�
GreensOp

�

�1, 1, 0��

��1, ��mat, ��1, 0�, ��1, 1���, A1, �mat, ��1, 0�, �2, 1���, A1, �mat, ��1, 0�, ��1, 1������
Interchanging again t and x, this corresponds in the usual notation to G1f(x, t) =∫ t

0 f(ξ, −ξ + x + t) dξ and G2f(x, t) =
∫ t

0 f(ξ, ξ + x − t) dξ, which yields

G2G1f(x, t) =

∫ t

0

∫ τ

0

f(ξ, 2τ − ξ + x − t) dξ dτ

for the Green’s operator of the unbounded wave equation (2).
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1. Introduction

We consider the collective renewal risk model introduced
by SparreAndersen (1957) that describes the amount of free capital
U(t) at time t in an insurance portfolio by

U(t) = u+ ct −
N(t)∑
k=1

Xk.

Here N(t) is a renewal process that counts the number of claims
incurred during the time interval (0, t], the constant c is the
premium rate and the random variables (Xk)k≥0 denote the claim
sizes that occur at random times (Tk)k≥0, with τk = Tk − Tk−1 i.i.d.
random variables denoting the k-th interclaim (or inter-arrival)
time (T0 = 0). The initial surplus (after the claim at time 0 is paid)
is given by u ≥ 0. Moreover, (Xk)k≥0 and (τk)k≥1 are assumed to
be independent. Ruin occurs when the surplus process becomes
negative for the first time, so the time of ruin is given by

Tu = inf{t | U(t) < 0}

and the ruin probability of a company having initial capital u is
given by

ψ(u) = P(Tu <∞ | U(0) = u).

The net profit condition cE(Tk) > E(Xk) is imposed to ensure that
ψ(u) < 1 for all u ≥ 0.

∗ Corresponding author.
E-mail addresses: hansjoerg.albrecher@unil.ch (H. Albrecher),

corina.constantinescu@oeaw.ac.at (C. Constantinescu), gpirsic@gmail.com
(G. Pirsic), georg.regensburger@oeaw.ac.at (G. Regensburger),
markus.rosenkranz@oeaw.ac.at (M. Rosenkranz).

Denoting by f (x, y, t | u) the joint probability density function
of the surplus immediately before ruin U(Tu−), the deficit at ruin
|U(Tu)| and the time of ruin Tu, we have∫
∞

0

∫
∞

0

∫
∞

0
f (x, y, t | u)dxdydt = ψ(u).

Letw(x, y) be a penalty function, nonnegative for x ≥ 0, y ≥ 0.
Then for u ≥ 0, the expected discounted penalty function (also
called Gerber–Shiu function) is defined by

m(u) = E
(
e−δTu w(U(Tu−), |U(Tu)|) 1Tu<∞ | U(0) = u

)
=

∫
∞

0

∫
∞

0

∫
∞

0
e−δt w(x, y) f (x, y, t | u)dxdydt,

where δ > 0 is a discount rate.
Since the introduction of this function in the compound Poisson

model in the papers of Gerber and Shiu (1997, 1998), there has
been a vast literature on its analysis and extensions tomore general
models. Li and Garrido (2004) and Gerber and Shiu (2005)were the
first to investigate the Gerber–Shiu function in renewal models.
In this paper we will concentrate on a new method for deriving
explicit expressions for m(u) in the case of renewal models. In
the renewal context, explicit expressions are usually restricted
to models where the claim size distribution and in particular
the interclaim distribution are (a subclass of) distributions with
rational Laplace transform (which includes Erlang and phase-type
distributions as well asmixtures of these); see alsoWillmot (1999)
and Li andGarrido (2005b). Ourmethod is perfectly suitable for this
class of distributions.
The established methods for deriving explicit expressions for

functions arising in risk theory (e.g. ruin probability, Laplace
transform of the time to ruin, Gerber–Shiu function) are either
based on defective renewal equations or integral equations

0167-6687/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2009.02.002
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(Volterra of second kind). Specifically, starting with the defective
renewal equation satisfied by the Gerber–Shiu function, Lin and
Willmot (2000) propose a solution expressed in terms of the
tail of a compound geometric distribution. For particular claim
sizes (combinations of exponentials, mixture of Erlangs) they
derive explicit analytic solutions for this distribution. In Willmot
(2007) this defective renewal equation method is adapted to
the analysis of renewal risk models with arbitrary distributions.
Another strategy, based on the defective renewal equation, was
suggested in the classical compound Poissonmodel by Drekic et al.
(2004). They useMathematica to obtain themoments of the time to
ruin, based on the systemof defective renewal difference equations
derived by Lin and Willmot (2000). In this paper, we introduce an
algebraic operator approachwith symbolic techniques for deriving
explicit expressions for Gerber–Shiu functions. These techniques
are easy to implement, and their further analysis can draw on the
full potential of current computer algebra systems.
In general renewal models,m(u) can alternatively be expressed

as the solution of a Volterra integral equation of the second kind
and hence as a Neumann series, see Gerber and Shiu (1998). Under
the further assumption that the interclaim times have rational
Laplace transform, the integral equation can be transformed into
an integro-differential equation (IDE) with suitable boundary
conditions. For the solution of the IDE, due to its convolution
structure, Laplace transforms are often the key tool to derive
explicit solutions; see e.g. Cheng and Tang (2003), Albrecher and
Boxma (2005) and Li and Garrido (2005b). Landriault and Willmot
(2008) obtain explicit expressions for the Laplace transform
that can be inverted back by partial fractions, for arbitrary
interclaim times and Coxian claim sizes. However, explicitly
inverting the Laplace transform is in general difficult. Li and
Garrido (2004) solved the IDE for Erlang(n) [E(n)] (sum of n
independent exponential random variables) interclaim times by
repeatedly integrating the integro-differential equation satisfied
by the Gerber–Shiu function.
In the present paper, we want to advocate an alternative

approach to derive explicit expressions for the Gerber–Shiu
function in renewal models. For interclaim time distributions
with rational Laplace transform—or equivalently if the interclaim
density satisfies a linear ordinary differential equations (LODE)
with constant coefficients—we first use the systematic approach
of Constantinescu (2006) to transform the integral equation
for m(u) into an integro-differential equation. If the claim size
distribution also has a rational Laplace transform, the IDE can
be further reduced to a linear boundary value problem with
appropriate boundary conditions (Section 2). Evaluating the IDE
and its derivatives at 0 and imposing regularity conditions at∞,
we supplement the differential equation with sufficiently many
boundary conditions so that the Gerber–Shiu function is uniquely
determined. This program considerably extends the approach
of Chen et al. (2007), who derived a LODE for m(u) in a Poisson
jump-diffusion process with phase-type jumps and solved it
explicitly for penalty functions that depend only on the deficit at
ruin.
Having arrived at a linear boundary problem, we employ the

symbolicmethod developed in Rosenkranz (2005) and Rosenkranz
and Regensburger (2008) for computing the integral operator
(Green’s operator) that maps the penalty function to the corre-
sponding Gerber–Shiu function; see Section 3 for a brief descrip-
tion of this approach. Based on an algebraic operator framework,
this method uses noncommutative Gröbner bases for transform-
ing integro-differential and boundary operators to normal forms.
Whereas the classical version of this method works only for

boundary value problems on compact intervals, we extend the
approach to problems on the positive half-line in Section 4. There
we consider operators on functions vanishing at infinity, which is
the appropriate setup for our purposes.

In Section 5 we present the solution of the boundary value
problem in terms of the Green’s operator. The method relies on
the factorization of the differential operator using the roots of the
Lundberg fundamental equation. This factorization is then lifted to
the level of boundary value problems: One can iteratively solve a
sequence of first-order boundary value problemswith appropriate
boundary conditions. It turns out that there is a crucial difference
between the roots with positive and negative real part and that
there are natural links to the so-called Dickson–Hipp operator.
Altogether, this approach allows one to compute the Gerber–Shiu
function up to quadratures.
In previous papers e.g. Li and Garrido (2004) and Chen

et al. (2007), the boundary conditions of the IDE are computed
recursively in terms of derivatives ofm(u) at zero. In Section 6, we
use an integrating factormethodwith different integration bounds
and exploit the Vandermonde-type structure of the resulting
matrix for directly deriving an explicit expression for each of these
boundary values. This in turn makes it possible to arrive at a
fully explicit formula for m(u) in terms of the penalty function.
An illustration of our method for E(n) interclaim times with E(m)
claim sizes is given in Section 7. The method also covers more
general models like the case of renewal risk models perturbed by
a Brownian motion treated in Section 8. We conclude in Section 9
by discussing possible extensions of this approach.

2. Reduction to a boundary value problem

Consider T1 to be the epoch of the first claim. Since ruin cannot
occur in the interval (0, T1), by the standard renewal argument
of Feller (1971, p. 183–184) one has

m(u) = E
(
e−δT1m(u+ cT1 − X1)

)
=

∫
∞

0
e−δt fτ (t)

(∫ u+ct

0
m(u+ ct − y)

+

∫
∞

u+ct
w(u+ ct, y− u− ct)

)
fX (y)dydt, (1)

for any claim size density fX and interclaim time density fτ . Due to
the net profit condition, themodel satisfies the regularity condition

lim
u→∞

m(u) = 0. (2)

Define the polynomial

pτ (x) = xn + an−1xn−1 + · · · + a0, (3)

where aj are real numbers for j = 0, 1, . . . , n, and a0 6= 0.
Assume that fτ satisfies a linear ordinary differential equationwith
constant coefficients, compactly written in operator notation as

pτ

(
d
dt

)
fτ (t) = 0, (4)

where ddt is the differentiation operator. For convenience, we con-
sider those LODE representations of fτ with almost homogeneous
initial conditions

f (k)τ (0) = 0 (k = 0, . . . , n− 2),

f (n−1)τ (0) = a0.
(5)

The Laplace transform of such a distribution is a rational function
that has only a constant as the numerator.
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Remark 1. One can express any densitywhich is a convolution of n
exponential densitieswith parametersλi in the aboveway, namely
the polynomial (3) is

pτ (x) =
n∏
i=1

(x+ λi), (6)

with almost homogenous initial conditions (5). In the special case
of exponentials with the same parameter λ, this is an Erlang(n)
density fτ (t) = 1

(n−1)!λ
ntn−1e−λt , satisfying Eq. (4) with almost

homogenous initial conditions (5) and polynomial

pτ (x) = (x+ λ)n. (7)

Under assumption (4) one cannowuse the technique of integration
by parts as in Theorem 3 of Constantinescu (2006, Sec. 3.2) to
obtain from (1) the integro-differential equation

p∗τ

(
c
d
du
− δ

)
m(u) = a0

∫ u

0
m(u− y)dFX (y)+ a0 ω(u), (8)

where the derivatives ofm are assumed to exist and to be bounded.
Here ω(u) =

∫
∞

u w(u, y− u)dFX (y) and

p∗τ (x) = (−1)
nxn + (−1)n−1an−1xn−1 + · · · + a0,

where p∗τ (
d
dt ) denotes the adjoint operator of the operator pτ (

d
dt )

defined through
〈
pτ ( ddt )f , g

〉
=
〈
f , p∗τ (

d
dt )g

〉
with 〈f , g〉 =

∫
∞

0 f (x)
g(x)dx together with (5). In addition to the model regularity
condition (2), we will derive in Section 6 the initial values Mi
(i = 0, . . . , n−1) of the IDE (8) through a variation of the classical
integrating factor method of Gerber and Shiu (1998), obtaining

m(0) = M0,m′(0) = M1, . . . ,m(n−1)(0) = Mn−1. (9)

Together with (2), these boundary conditions make the boundary
value problem regular.

Remark 2. Note that the same analysis also works for the case
in which the boundary conditions are not of homogeneous type
(as for instance would be the case for a mixture of Erlangs). In
that case the Laplace transform of fτ has a polynomial numerator
of lower degree than of the polynomial in the denominator. As a
consequence, one obtains further integral terms on the right-hand
side of (8), leading to a slightly more cumbersome procedure.

Define the polynomial

pX (x) = xn + bn−1xn−1 + · · · + b0. (10)

If moreover the claim size density fX satisfies a LODEwith constant
coefficients

pX

(
d
dy

)
fX (y) = 0,

and (for simplicity) almost homogeneous boundary conditions

f (k)X (0) = 0 (k = 0, . . . , n− 2),

f (n−1)X (0) = b0,

then the Gerber–Shiu function satisfies a well-posed boundary
value problem, namely the LODE

pX

(
d
du

)
p∗τ

(
c
d
du
− δ

)
m(u)

= a0b0m(u)+ a0pX

(
d
du

)
ω(u) (11)

together with boundary conditions (2) and (9). The characteristic
equation

pX (s)p∗τ (cs− δ)− a0b0 = 0 (12)

of (11) is the Lundberg fundamental equation of this model. Since
both the claim sizes and the inter-arrival times have rational
Laplace transforms, we know by the results in Li and Garrido
(2005a) and Landriault and Willmot (2008) that this equation has
exactly n roots with positive andm roots with negative real part as
long as δ > 0. Note that we exclude the limiting case δ = 0, which
is equivalent to having 0 as a solution of the Lundberg equation;
see Section 5 for a brief discussion of this case.

3. An algebraic operator approach for boundary value prob-
lems

In order to solve the boundary value problem for (11)
we will employ the symbolic computation approach developed
in Rosenkranz and Regensburger (2008) and Rosenkranz (2005).
As this approach is targeted at boundary value problems for LODE
in general differential algebras, we have to extract and adapt the
parts needed for our present purposes.
As we can restrict ourselves to LODE with constant coefficients,

we first consider two-point boundary value problems on a compact
interval [a, b]: Given a forcing function f (x) ∈ C[a, b], find a
solution g(x) ∈ Cn[a, b] of

(Dn + cn−1Dn−1 + · · · + c1D+ c0) g = f ,
β1(g) = · · · = βn(g) = 0,

(13)

where D = d
dx , ci are real numbers and the boundary con-

ditions βi are linear combinations of g(a), . . . , g(n−1)(a) and
g(b), . . . , g(n−1)(b).
Note that the boundary conditions in (13) are homogeneous. As

one easily sees, the solution for the general case of inhomogeneous
boundary conditions is given by the solution of (13) plus the
particular solution of the simple boundary value problem with
inhomogeneous boundary conditions but f = 0.
The boundary value problem (13) is called regular if for

every f there exists a unique g or equivalently if the associated
homogeneous problem only has the trivial solution. This can be
checked by testing whether the matrix formed by evaluating
the boundary conditions on a fundamental system is regular; for
details see Kamke (1967, p. 184). In this case, there is a well-
defined operator G: C[a, b] → Cn[a, b] mapping f 7→ g , known
as the Green’s operator of (13). While G is usually represented
by its associated Green’s function (Stakgold, 2000), the operator
formulation is more practical in the present setting.
An essential feature of the symbolic operator calculus is

that it allows one to compose two boundary value problems
(in particular those of the form (13)) such that the composite
Green’s operator is given by the composition of the constituent
Green’s operators. For solving boundary value problems, the other
direction is more important: Any factorization of the underlying
differential operator can be lifted to a factorization of boundary
value problems. Since we are dealing with differential operators
with constant coefficients, we can actually achieve a factorization
into first-order boundary value problems. For more details on
composing and factoring boundary value problems for LODE,
we refer again to Rosenkranz and Regensburger (2008). The
theory is developed in an abstract algebraic setting, including
in principle also boundary value problems for linear partial
differential equations, in Regensburger and Rosenkranz (2009).
In the present setting, we can describe the first-order Green’s

operators as follows. Writing

A =
∫ x
a , B =

∫ b
x , and F =

∫ b
a = A+ B,
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and

Aσ = eσ xAe−σ x, Bρ = eρxBe−ρx, and Fσρ = eσ xFe−ρx

for ρ, σ ∈ C, the basic first-order boundary value problems, with
respect to each of the end points of the interval, (D − σ) g =
f , g(a) = 0 and (D − ρ) g = −f , g(b) = 0, have respectively Aσ
and Bρ as their Green’s operators as one can see by the fundamental
theorem of calculus. Written as operator identities, this means in
particular that{
(D− σ)Aσ = 1,
(D− ρ)Bρ = −1,

(14)

so Aσ and−Bρ are right inverses of respectively D − σ and D − ρ
on C[a, b]. By Rosenkranz (2005, Table 1), we obtain furthermore
for any ρ̃, σ̃ ∈ C{
(σ − σ̃ ) AσAσ̃ = Aσ − Aσ̃
(ρ̃ − ρ) BρBρ̃ = Bρ − Bρ̃
(ρ − σ) AσBρ = Aσ + Bρ − Fσρ

(15)

on C[a, b]; the first two are called resolvent identities (Yosida,
1995). For the extension to non-compact intervals in Section 4
we mention an alternative, purely algebraic, way to derive (15),
namely as a consequence of conditions that will be simpler to
establish in the more general case:

Lemma 1. The identities (15) are algebraic consequences of{Aσ (D− σ)Aσ̃ = Aσ̃
Bρ(D− ρ)Bρ̃ = −Bρ̃
Aσ (D− σ)Bρ = Bρ − Fσρ

(16)

and the identities (14).

Proof. By (14),we haveAσ = Aσ (D−σ̃ )Aσ̃ = Aσ (σ−σ̃+D−σ)Aσ̃ ,
which equals (σ − σ̃ ) AσAσ̃ + Aσ̃ because of (16); analogously for
the other two identities of (15). �

4. Operators on functions vanishing at infinity

In the next section, we need the case a = 0 and b = ∞. So we
consider the Banach algebra (C0, ‖·‖∞) of all continuous functions
f : [0,∞) → C vanishing at infinity (Conway, 1990, p. 65). The
subalgebra of C0 consisting of n-times continuously differentiable
functions is denoted by Cn0 . The following proposition makes
precise in how far the situation on C[a, b] carries over toC0; confer
also Butzer and Berens (1967, Prop. 1.3.12) for the case of bounded
uniformly continuous functions on R.

Proposition 2. For ρ∈C with Re(ρ)>0, we have continuous inte-
gral operators

A−ρ, Bρ, e−ρxA, Be−ρx:C0 → C10 (17)

with norm bounded by 1/Re(ρ), and the identities (14) and (15) are
valid for all ρ, ρ̃, σ , σ̃ ∈ C with Re(ρ), Re(ρ̃) > 0 and Re(σ ),
Re(σ̃ ) < 0.

Proof. Let η = Re(ρ). We first check that the operators (17) map
C0 into C0. For A−ρ we use that

|A−ρ f (x)| ≤ e−ηx
∫ y

0
eηξ |f (ξ)|dξ + e−ηx

∫ x

y
eηξ |f (ξ)|dξ

for all f ∈ C0 and x ≥ y ≥ 0. Fixing ε > 0, the first summand
is smaller than ε/2 for x ≥ x0(ε, y) because η > 0. Since f ∈ C0,
we have |f (ξ)| < εη/2 for all ξ ≥ y0(ε), so the second summand
is smaller than ε/2 for x ≥ y0(ε) and y = y0(ε). Thus we obtain
|A−ρ f (x)| < ε for all x ≥ max{y0(ε), x0(ε, y0(ε))}. Using a

similar argument as for the second summand, we obtain Bρ f ∈ C0.
One immediately checks that e−ρxA and Be−ρx map even bounded
functions into C0.
Next we verify that the operators are continuous. The norm

bound for A−ρ follows from |A−ρ f (x)| ≤ e−ηx ‖f ‖∞
∫ x
0 e

ηξdξ and
e−ηx

∫ x
0 e

ηξdξ ≤ 1/η; similarly for e−ρxA and Be−ρx. For Bρ we use
the representation

Bρ f (x) =
∫
∞

0
e−ρξ f (ξ + x)dξ (18)

and the fact that
∫
∞

0 e
−ηξdξ = 1/η.

Nowwe turn to differentiability and identities (14). For A−ρ this
follows immediately from the fundamental theorem of calculus.
Using representation (18), the difference quotient (Bρ f (x + h) −
Bρ f (x))/h is given by

eρh − 1
h

∫
∞

h
e−ρξ f (ξ + x)dξ −

1
h

∫ h

0
e−ρξ f (ξ + x)dξ,

which converges to ρ Bρ f (x) − f (x) as h → 0. Finally, e−ρxAf is
differentiable again by the fundamental theorem and Be−ρxf =
e−ρxBρ f is differentiable because Bρ f is by what we have just seen.
It remains to prove the identities (15) and (16); by Lemma 1 it

suffices to show the latter. These are an easy consequence of the
fact that

Aσ (D− σ)f (x) = f (x)− eσ xf (0) and Bρ(D− ρ)f (x) = −f (x)

for all f ∈ C10 . The identity for Aσ carries over from the bounded
case and is even valid on C1[0,∞), the one for Bρ follows from the
representation (18) and integration by parts. �

Remark 3. Note that Bρ also appears in the literature as the
Dickson–Hipp operator (Dickson and Hipp, 2001; Li and Garrido,
2004), and the second equation of (15) is also used in these papers.
The crucial contribution of the present result is the third equation
of (15), i.e. the interaction between the Dickson–Hipp operator Bρ
and its counterpart Aσ .

We write E0 ⊂ C0 for the subalgebra of exponential polynomials
spanned by xje−ρx with Re(ρ) > 0.

Proposition 3. The subalgebra E0 is dense in C0, and the opera-
tors (17)map E0 into itself.

Proof. Density follows from the Stone–Weierstrass Theorem for
locally compact spaces (Conway, 1990, p. 147). For proving that
the operators (17) map E0 into itself, one uses induction on j and
integration by parts. �

Note that—by the same reasoning—the operators Aρ and Bρ also
map E0 into itself if Re(ρ) = 0 but they are no longer continuous.
This proposition provides an alternative approach to proving

the identities (14) and (15): Since E0 is dense in C0 and the
operators are continuous, it suffices to prove them for exponential
polynomials—this can be done by an elementary computation and
induction on j. Density arguments of this type could also be useful
for generalizing to larger function spaces like Lp or spaces based on
regular variation (Bingham et al., 1987).

5. Solving boundary value problems on the half-line

For computing the Gerber–Shiu function, themethod described
in Section 2 leads to a boundary value problem on the half-line. In
fact, we can rewrite Eq. (11) as

Tm = f , (19)
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with

T = pX

(
d
du

)
p∗τ

(
c
d
du
− δ

)
− a0b0

and f (u) = a0 pX

(
d
du

)
ω(u),

initial values m(i)(0) = Mi, and regularity condition m(∞) = 0.
As noted earlier (beginning of Section 3), it suffices to consider
the corresponding homogeneous boundary conditions and incor-
porate the boundary values in specific settings afterwards (Sec-
tions 7 and 8).
So let us now consider the general boundary value problem on

the half-line with homogeneous boundary conditions,

Tg = f ,

g(0) = · · · = g(m−1)(0) = 0 and g ∈ C0,
(20)

where the forcing function f is required to vanish at infinity.
We assume that the characteristic equation of T has dis-

tinct roots, which we divide into ρ1, . . . , ρn with positive and
σ1, . . . , σm with negative real part (for the case of roots with zero
real part see the discussion at the end of the section). Thuswe have
the differential operator T = TρTσ with

Tρ = (D− ρ1) · · · (D− ρn) and Tσ = (D− σ1) · · · (D− σm).

Note that in order to have a regular boundary value problem, it is
sufficient to prescribem initial conditions even though the order of
T ism+n. This is due to the regularity condition g∈C0: The general
solution g of the associated homogeneous differential equation
Tg = 0 is a linear combination of eρjx and eσix, where all terms with
positive roots must vanish and the remaining m coefficients are
determined by them conditions at zero.
The crucial point is that it is possible to factor this boundary

value problem along T = TρTσ into the regular boundary value
problems

Tσ g = h,
g(0) = · · · = g(m−1)(0) = 0 and Tρh = f ,

h ∈ C0
(21)

with forcing function f ∈ C0.

Lemma 4. The boundary value problems (21) have

Gσ = Aσ1 · · · Aσm =
m∑
i=1

aiAσi and

Gρ = (−1)n Bρ1 · · · Bρn =
n∑
j=1

bjBρj

with

ai =
m∏

k=1,k6=i

(σi − σk)
−1 and

bj = −
n∏

k=1,k6=j

(ρj − ρk)
−1

as their Green’s operators, so g = Gσh and h= Gρ f , where
∏1
k=1,k6=1

= 1.

Proof. Let us first prove the identity for Gσ by induction (the case
for Gρ is analogous). The base case m = 1 is trivial, so assume the
identity form− 1. Then (15) yields

Aσ1 · · · Aσm−1Aσm =
m−1∑
i=1

aiAσi −
(m−1∑
i=1

m∏
k=1,k6=i

(σi − σk)
−1
)
Aσm

and we are done since the parenthesis is equal to−am by the well-
known partial fraction formula.
By Proposition 2, the Green’s operators Gρ and Gσ mapC0 toCm0

and Cn0 , respectively, and (14) yields TσGσ = 1 and TρGρ = 1. It
remains to check that Gσ f satisfies the initial conditions. For that
we prove for all i < m the identity

DiGσ =
i∑
l=0

hi−l(σ1, . . . , σl+1) Aσl+1 · · · Aσm , (22)

where hi−l denotes the complete homogeneous symmetric polyno-
mial of degree i−l in the indicated variables (Stanley, 1999, p. 294);
the claim then follows because Aσ1 f (0), . . . , Aσm f (0) = 0. The
base case i = 0 is trivial, so assume (22) for i − 1. Using DAσl+1 =
1+ σl+1 Aσl+1 from (14), this gives

DiGσ =
i−1∑
l=0

hi−l−1(σ1, . . . , σl+1)DAσl+1 · · · Aσm

=

i−1∑
l=1

(
hi−l(σ1, . . . , σl)+ σl+1hi−l−1(σ1, . . . , σl+1)

)
× Aσl+1 · · · Aσm + σ

i
1 Aσ1 · · · Aσm + Aσi+1 · · · Aσm

after a little rearrangement. But the parenthesized factor in the
sum simplifies to hi−l(σ1, . . . , σl+1), while the outlying summands
also have the right factors hi−0(σ1) = σ i1 and hi−i(σ1, . . . , σj+1) =
1, respectively. �

Theorem 5. The boundary value problem (20) has the Green’s
operator

GσGρ =
m∑
i=1

n∑
j=1

cij(Aσi + Bρj − Fσiρj)

=

m∑
i=1

n∑
j=1

cij
(
eσixA(e−σix − e−ρjx)+ (eρjx − eσix)Be−ρjx

)
where cij = aibj (ρj − σi)−1, i.e. g = GσGρ f .

Proof. Let f ∈ C0. From Proposition 2 we know that G = GσGρ
maps f into Cm+n0 . By the previous lemma, Gf satisfies the
differential equation and the initial conditions. For proving that G
has the indicated sum representations, we use again Lemma 4, the
identities (15) and the definition of Fσiρj . �

If some of the ρj have zero real part, the above Green’s
operator G no longer maps C0 into itself, so the boundary value
problems (20) cannot be expected to have a solution for all f ∈ C0.
But if Gf ∈ C0, it is the unique solution of (20); by the observations
after Proposition 3, this is particularly true for f ∈ E0.

6. Initial values for E(n) risk processes

The next step for solving the boundary value problem for (19)
is to determine the initial values Mi of (9). We consider the case
of E(n) distributed interclaim times (under assumption that m
has bounded derivatives). Using (7) in the integro-differential
equation (8), we obtain(
−c
d
du
+ (λ+ δ)

)n
m(u) = λn

∫ u

0
m(u− y)dFX (y)+ λnω(u)

(23)

with the corresponding Lundberg fundamental equation

(−cz + (λ+ δ))n − λn f̂X (z) = 0, (24)
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where f̂X (z) = E(e−zX ) is the Laplace transform of fX (u). Eq. (24)
has exactly n solutions ρi (i = 1, . . . , n) with positive real part,
according to Li and Garrido (2004).
We will use a similar integrating factors technique as the one

proposed in Gerber and Shiu (1998) and arrive at a system of
linear equations in the initial values that we can solve explicitly.
A different choice of the integration bounds will simplify some
steps compared to a related approach of Li and Garrido (2004). The
change of variables and order of integration used in Gerber and
Shiu (1998) is then not necessary here. Let usmultiply (23) by e−ρiu
for each i = 1, . . . , n, and then integrate from u = ∞ to u = x to
arrive at
n∑
j=0

(
n
j

)
(−c)j(λ+ δ)(n−j)

∫ x

∞

e−ρium(j)(u)du

= λn
∫ x

∞

e−ρiu
∫ u

0
m(u− y)dFX (y)du+ λn

∫ x

∞

e−ρiuω(u)du.

Now we use integration by parts together with

lim
u→∞

e−ρium(j)(u) = 0 (j = 0, . . . , n, i = 1, . . . , n)

to obtain∫ x

∞

e−ρium(j)(u)du =
j−1∑
k=0

e−ρixρki m
(j−k−1)(x)+ ρ ji Ii(x),

where Ii(x) =
∫ x

∞

e−ρium(u)du.

Then evaluating each equation at x = 0, we note that the left-hand
side and the right-hand side terms pertaining to Ii(0) cancel due
to (24) evaluated at z = ρi. Also we see that in the right-hand side
the second integral is actually −ω̂(ρi), the Laplace transform of ω
evaluated at ρi. We obtain a system of n equations in n unknown
variablesm(k)(0)
n∑
j=1

(
n
j

)
(−c)j(λ+ δ)n−j

j−1∑
k=0

ρki m
(j−k−1)(0) = −λnω̂(ρi)

for k = 0, . . . , n− 1. Collecting and rearranging the terms, we get
n−1∑
k=0

m(k)(0)
n−k−1∑
j=0

(
n
j

)(
−
λ+ δ

c

)j
ρ
(n−k−1)−j
i︸ ︷︷ ︸

pn−k−1(ρi)

= −

(
−
λ

c

)n
ω̂(ρi), (25)

for i = 1, . . . , n. Note that the polynomials

pk(x) =
k∑
j=0

(
n
k− j

)(
−
λ+ δ

c

)k−j
xj (26)

appearing in the coefficients ofm(n−k−1)(0) are monic of degree k.
We express the system in matrix form Ax = b asp0(ρ1) · · · pn−1(ρ1)...

. . .
...

p0(ρn) · · · pn−1(ρn)


m

(n−1)(0)
...

m(0)(0)


= −

(
−
λ

c

)nω̂(ρ1)...
ω̂(ρn)

 .
According to Cramer’s rule, the solution of this system of equations
is of the form

m(k)(0) =
det(Bn−1−k)
det(A)

(k = 0, . . . , n− 1), (27)

where Bk is the n × n matrix obtained from A by replacing the
(k+ 1)-th column of A by the right-hand side b.
The following result generalizes the formula for m(0) given

in Gerber and Shiu (2005, Eq. 8.1).

Proposition 6. The k-th derivative of the expected discounted
penalty function evaluated at zero has the form

m(k)(0) = (−1)k
(
λ

c

)n n∑
i=1

ω̂(ρi) S(ρ ′i , k)∏
l=1,...,n;
l6=i

(ρl − ρi)
, (28)

for k = 0, . . . , n− 1, where ρ ′i = (ρ1, . . . , ρi−1, ρi+1, . . . , ρn) and

S(ρ ′i , k) =
k∑
j=0

(
−
λ+ δ

c

)j (n− 1+ j
j

)
ek−j(ρ ′i ),

with ek the elementary symmetric polynomials of degree k.

Proof. According to Krattenthaler (1999), the determinant of the
matrix A is the same as the Vandermonde determinant Vn =
Vn(ρ1, . . . , ρn) so

det(A) =
∏

1≤i<j≤n

(ρj − ρi).

We will show that the determinant of Bk is the product of a
Vandermonde determinant and a linear combination of symmetric
polynomials in the ρi and ω̂(ρi). Expanding along the (n − k)-th
column, one gets

det(Bn−1−k) =
n∑
i=1

(−1)i+n−kbi det(Ai,n−k),

where Ai,k is the (n−1)×(n−1)matrix obtained from A by remov-
ing the i-th row and the k-th column. By applying Corollary A.2 of
the Appendix to the matrix Ai,k and observing that

q(x) =
(
1−

λ+ δ

c
x
)n
−

(
1+

(
−
λ+ δ

c
x
)n)

,

we obtain

det(Ai,n−k) = Vn−1(ρ ′i )
k∑
j=0

djek−j(ρ ′i ),

where

dj =
[
xj
] (−1)j + ((1− λ+δ

c x)
n
−
(
1+

(
−
λ+δ
c x
)n))j+1

(1− λ+δ
c x)

n −
(
−
λ+δ
c x
)n

and [xj] f (x) = f (j)(0)/j! denotes the coefficient of xj of a power
series f (x). We will show below that

dj =
(
−
λ+ δ

c

)j (n− 1+ j
j

)
. (29)

Inserting the resulting formula for the determinant Ai,k into the
expansion of det(Bk) in Cramer’s rule, we get

m(k)(0) =
(
−
λ

c

)n n∑
i=1

(−1)i+n−k+1ω̂(ρi)
Vn−1(ρ ′i )
Vn

k∑
j=0

djek−j(ρ ′i ),

which after cancelation of the Vandermode terms leads to the
result stated.
It remains to show Eq. (29). From Eq. (34) we get that (−1)jdj =

[xj]
∑j
m=0(−q(x))

m. Since j < n we can safely add terms of order
at least n to q(x). We do this and replace q(x)with (1− λ+δ

c x)
n
−1.
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Inserting the modified q(x) and expanding the expression, we
obtain
j∑

m=0

(−q(x))m =
j∑

m=0

(−1)m
((
1−

λ+ δ

c
x
)n
− 1

)m
=

j∑
m=0

m∑
l=0

(m
l

)
(−1)l

nl∑
h=0

(
nl
h

)(
−
λ+ δ

c
x
)h

=

nm∑
h=0

(
−
λ+ δ

c
x
)h j∑

m=0

m∑
l=0

(−1)l
(m
l

)(nl
h

)
,

so that dj =
(
λ+δ
c

)j∑j
m=0

∑m
l=0(−1)

l
(m
l

) ( nl
j

)
. Rearranging and

using the simple binomial identities of Graham et al. (1989, 5.10
and 5.14), we can simplify the double sum to

j∑
l=0

(−1)l
(
nl
j

) j∑
m=0

(m
l

)
=

j∑
l=0

(−1)l
(
j+ 1
l+ 1

)(
nl
j

)

=

j+1∑
l=0

(−1)l+1
(
j+ 1
l

)(
n(l− 1)
j

)
+

(
−n
j

)

= (−1)j
(
n− 1+ j
j

)
−

j+1∑
l=0

(−1)l
(
j+ 1
l

)(
n(l− 1)
j

)
.

Finally, the last sum vanishes due to Graham et al. (1989, 5.42)
since it is the (j+ 1)-th difference of

(
n(l−1)
j

)
as a polynomial in l,

which is only of degree j. �

Since the Gerber–Shiu function is the unique solution of (19), it
has the form

m(u) = GσGρ f (u)+mp(u),

where GσGρ is given in Theorem 5 and mp(u) is the particular
solution obtained as a linear combination of the eσiu, with factors
determined by the initial values from Proposition 6.

7. Explicit solution for E(n) risk processes with E(m) claims

Let us now specialize the differential equation (11) for the
Gerber–Shiu function to the case of Erlang(n, λ) interclaim times
and Erlang(m, µ) claim sizes, with discount rate δ > 0. From the
previous section we get n boundary conditions. As described in
Section 5 one in fact needs m boundary conditions, so we assume
m ≤ n (otherwise, one can derive the remaining conditions by
evaluating higher derivatives of the integro-differential equation
(23)). We obtain a boundary value problem for the differential
equation Tm = f with D = d

du , where

T = (D+ µ)m (−c D+ λ+ δ)n − λnµm,

f (u) =
λnµm

(m− 1)!
(D+ µ)m

∫
∞

u
w(u, y− u) ym−1e−µydy (30)

and boundary conditions (2) and (9). To apply the results from
Section 5, we can choose any sufficiently smooth penalty function
w(x, y) such that limu→∞ f (u) = 0. By Proposition 3 this includes
all bivariate exponential polynomials whose terms xiyjeαxeβy
satisfy α < β < µ.
Since the characteristic equation for T is the Lundberg funda-

mental equation, we know from the general results mentioned in
Section 2 that it has n roots ρ1, . . . , ρn with positive real part and
m roots σ1, . . . , σm with negative real part. So we have the factor-
ization

T = TρTσ = (D− ρ1) · · · (D− ρn)(D− σ1) · · · (D− σm),

and Theorem 5 gives us the Green’s operator for the corresponding
homogeneous boundary value problem.
Writing f̂ for the Laplace transform of f and using the definition

of the corresponding operators, we obtain from Theorem 5 the
explicit form of the Gerber–Shiu function

m(u) =
m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫
∞

u
eρj(u−ξ)

)

× f (ξ)dξ − f̂ (ρj)eσiu
)
+mp(u) (31)

with

cij = −
m∏

k=1,k6=i

(σi − σk)
−1

n∏
k=1,k6=j

(ρj − ρk)
−1 (ρj − σi)

−1.

With the initial values from formula (28) the computation of the
particular solution mp satisfying the inhomogeneous boundary
conditions reduces to solving a system of linear equations,
obtained from imposing the condition that the particular solution
satisfies these given initial conditions, i.e. (mp)(i)(0) = Mi. As
remarked in Section 5, formula (31) remains valid for suitable f also
in the limiting case δ = 0, which is equivalent to having 0 among
the ρ1, . . . , ρn.
So the problem of computing the Gerber–Shiu function for a

given penalty function is reduced to quadratures: Since symbolic
algorithms for evaluating one-dimensional integrals are very
powerful (Bronstein, 2005) and easily accessible in current
computer algebra systems, one will often obtain an explicit
expression for the Gerber–Shiu function. Otherwise one can resort
to standard numerical methods for obtaining approximations.
In the particular case n = 2,m = 1 one has

T = (D+ µ) (−c D+ λ+ δ)2 − λ2µ,

f (u) = λ2µ (D+ µ)
∫
∞

u
w(u, y− u) e−µydy.

After calculating the particular solution using the initial value from
Proposition 6, we obtain the Gerber–Shiu function in the explicit
form

m(u) =
eσu

ρ1 − ρ2

(
f̂ (ρ1)
ρ1 − σ

−
f̂ (ρ2)
ρ2 − σ

−

(
λ

c

)2(
ω̂(ρ1)− ω̂(ρ2)

))

−
1

ρ1 − ρ2

∫
∞

u

(
1

ρ1 − σ
eρ1(u−ξ) −

1
ρ2 − σ

eρ2(u−ξ)
)
f (ξ) dξ

+
1

ρ1 − σ

1
ρ2 − σ

∫ u

0
eσ(u−ξ) f (ξ)dξ,

where one should recall that ρ1, ρ2 are the positive roots and σ
is the negative root of the fundamental Lundberg equation. For
example, when w(x, y) = xjyk with j and k positive integers, one
obtains
∆µk

k!λ2
m(u) = −

ρ2 − σ

(ρ1 + µ)j

×

(
jΓ
(
j, (ρ1 + µ)u

)
eρ1u +

j!
c2

(ρ1 − σ
ρ1 + µ

− c2
)
eσu
)

+
ρ1 − σ

(ρ2 + µ)j

(
jΓ
(
j, (ρ2 + µ)u

)
eρ2u +

j!
c2

(ρ2 − σ
ρ2 + µ

− c2
)
eσu
)

−
ρ1 − ρ2

(σ + µ)j

(
jΓ
(
j, (σ + µ)u

)
− j!

)
eσu,

where ∆ = (ρ1 − ρ2)(ρ1 − σ)(ρ2 − σ) is the square root of
the discriminant associated to the fundamental Lundberg equation
and Γ (a, x) =

∫
∞

x t
a−1e−tdt is the incomplete Gamma function.

This formula extends Eq. (3.8) of Cheng andTang (2003) and similar
exampleswith n = 2 fromLi andGarrido (2004, 2005b) andGerber
and Shiu (2005).
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8. Explicit solution for the classical perturbed risk model

For the case of an Erlang(n, λ) risk model perturbed by a
Brownian motion, the Gerber–Shiu function satisfies an integro-
differential equation as given in Constantinescu (2006)(
−
σ̃ 2

2
d2

du2
− c

d
du
+ λ+ δ

)n
m(u)

= λn
∫ u

0
m(u− x)fX (x)dx+ λnω(u), (32)

where σ̃ is the diffusion coefficient. Since the differential operator
of this equation has constant coefficients, the method introduced
in this paper applies. As before, for claimdistributionswith rational
Laplace transform, the equation reduces to a LODE. For instance, in
the case of E(m, µ) claim sizes, this LODEhas the same form Tm = f
with D = d

du , with

T = (D+ µ)m
(
−
σ̃ 2

2
D2 − c D+ λ+ δ

)n
− λnµm,

and f (u) as in (30) and the appropriate boundary conditions. The
characteristic equation for T is again the fundamental Lundberg
equation.
Also in this case we can derive explicit expressions for the

Gerber–Shiu function. To exemplify, we consider the well-known
case of a compound Poisson process perturbed by a Brownian
motionwith exponential claim sizes, E(1,λ)–E(1,µ) in the notation
introduced here. Then the LODE is of order three, with

T = (D+ µ)
(
−
σ̃ 2

2
D2 − c D+ λ+ δ

)
− λµ

and

f (u) = λµ (D+ µ)
∫
∞

u
w(u, y− u) e−µydy.

The initial value at zero m(0) = w(0, 0) is in this case simply
the penalty function evaluated at zero. Since according to Li and
Garrido (2005a), in the case of a compound Poisson risk model
perturbed by a Brownian motion, the Lundberg equation has only
one positive solution that we will denote ρ, we can apply the
integrating factor technique only once. It yields the linear equation

σ̃ 2

2
m′(0)+

(
ρ
σ̃ 2

2
+ c

)
m(0) = λω̂(ρ), (33)

which we can solve for m′(0). With these initial values, we can
compute the particular solution and Eq. (31) leads to

m(u) = −
1

(ρ − σ1)(ρ − σ2)

∫
∞

u
eρ(u−ξ)f (ξ)dξ

−
f̂ (ρ)
σ2 − σ1

(
eσ1u

ρ − σ1
−
eσ2u

ρ − σ2

)
+

1
σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ − σ1
−
eσ2(u−ξ)

ρ − σ2

)
f (ξ)dξ

+
1

σ2 − σ1

(
[σ2m(0)−m′(0)]eσ1u + [−σ1m(0)+m′(0)]eσ2u

)
as an explicit expression for theGerber–Shiu function. This formula
generalizes Eq. (4.6) of Chen et al. (2007) for the case of exponential
claim sizes and Example 1 of Li andGarrido (2005a) for exponential
inter-arrival times.

9. Conclusion

We have shown that the link between symbolic computation
and risk theory can be mutually fruitful and can be utilized to
identify fully explicit expressions for the Gerber–Shiu function in
general renewalmodels in terms of the employed penalty function.
In the presented approach, Laplace transforms only enter in a very
restricted form:

• Only the Laplace transform of the penalty (not of the
Gerber–Shiu function) is computed. This has the advantage that
one does not need artificial analyticity conditions onm.
• Moreover, the Laplace transform of the penalty is only
evaluated at ρ1, . . . , ρn, the positive solutions of the Lundberg
equation, for computing the boundary values.
• No inverse Laplace transform is involved. This is in contrast to
manyprevious papers that give explicit formulae for the Laplace
transform of the Gerber–Shiu function, which often cannot be
inverted in closed form.

In principle, the symbolic method introduced in this paper can
be extended tomodels that include investment aswell as tomodels
with interclaim time densities that satisfy ODEs with polynomial
coefficients as long as the spectral structure of the Lundberg
fundamental equation is still tractable. This will be pursued in
future research. The factorization approach for boundary value
problems generalizes in principle also to partial differential
equations (Regensburger and Rosenkranz, 2009), which in the
context of risk theory means that more general models including
onemore variable could be considered. Finally, themethodmay be
applicable in boundary value problems that occur in other contexts
in risk theory.
The formulas developed in this paper can easily be imple-

mented in a computer algebra system, which in turn allows to
quickly perform (quantitative and graphical) sensitivity analysis of
the corresponding discounting penalty functions with respect to
parameter and penalty changes.
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Appendix. A generalized vandermonde determinant

For computing the initial values in Proposition 6 we are led to
consider the n× n alternant matrix

A =

p0(x1) · · · pn−1(x1)...
. . .

...
p0(xn) · · · pn−1(xn)


with polynomials pi(x) = ai,ixi + · · · + ai,0 with ai,i = 1. In the
special case pi(x) = xi this is the usual Vandermonde matrix with
the determinant Vn in the indeterminates x1, . . . , xn, but det A =
Vn holds in general (Krattenthaler, 1999, Prop. 1).
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We want to compute the (k, l) minor of A, the determinant of
the (n− 1)× (n− 1)matrix Ak,l obtained by deleting the k-th row
and the l-th column. It suffices to consider

An,l =


p0(x1) · · · pl−1(x1) pl+1(x1) · · · pn−1(x1)
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

p0(xn−1) · · · pl−1(xn−1) pl+1(xn−1) · · · pn−1(xn−1)


since

A(x1, . . . , xn)k,l = A(x1, . . . , xk−1, xk+1, . . . , xn, xk)n,l.

For pi(x) = xi it is known (Heineman, 1929) that det An,l/Vn−1
yields the elementary symmetric polynomial en−1−l in x1, . . . , xn−1.

Proposition A.1. We have

det An,l
Vn−1

= en−1−l

+

n−1∑
j=l+1

(∑
J

(−1)j+l+maj1,j2aj2,j3 · · · ajm,jm+1

)
en−1−j,

where the inner sum ranges over J = (j1, . . . , jm+1) such that m ≥ 1
and j = j1 > · · · > jm+1 = l.

Proof. Writing xj for the column vector (xj1, . . . , x
j
n−1)

T, the
determinant of the matrix

An,l =

(
0∑
r=0

a0,rxr · · ·

l−1∑
r=0

al−1,rxr
l+1∑
r=0

al+1,rxr · · ·

n−1∑
r=0

an−1,rxr
)

is given by multilinearity as

0∑
r0=0

· · ·

l−1∑
rl−1=0

l+1∑
rl+1=0

· · ·

×

n−1∑
rn−1=0

cr det(xr0 , . . . , xrl−1 , xrl+1 , . . . , xrn−1)

with cr = a0,r0 · · · al−1,rl−1al+1,rl+1 · · · an−1,rn−1 . Observe that for
the first l indices r0, . . . , rl−1 there always exist some i < j < l
such that ri = rj unless ri = i for all i < l. Since the determinant
vanishes for the cases ri = rj and the pi are monic (i.e., ai,i = 1),
the determinant reduces to
l+1∑
rl+1=l

· · ·

n−1∑
rn−1=l

al+1,rl+1 · · · an−1,rn−1

× det(x0, . . . , xl−1, xrl+1 , . . . , xrn−1)

where rl+1, . . . , rn−1 can be restricted to mutually distinct indices.
We view the indices as the permutations r: {l, . . . , n −

1} → {l, . . . , n − 1} satisfying rs ≤ s for s > l; note
that rl is determined as the index omitted in rl+1, . . . , rn−1. By
the monotonicity condition on r , all cycles without l in the
cycle representation of r are trivial: If we have a nontrivial
cycle (j1 . . . jm+1), with jm+1 6= l we are led to the
contradiction j1> rj1 = j2> · · · > jm+1 > rjm+1= j1. Consequently
r either possesses only one nontrivial cycle (j1 . . . jm+1) with
j1 > · · · > jm+1 = l, unless r is the identity. Since the pi are monic,
the factor of the determinant ∆r occurring in the above sum is
given by aj1,j2 · · · ajm,jm+1 in the former and by 1 in the latter case.
For finding∆r , we use row expansion for computing

(−1)l+n−1∆r = det
(
x0 · · · xl−1 xl xrl+1 · · · xrn−1
0 · · · 0 1 0 · · · 0

)
.

This determinant is the result of r acting on the columns of the
determinant

det
(
x0 · · · xj−1 xj xj+1 · · · xn−1

0 · · · 0 1 0 · · · 0

)
= (−1)j+n−1en−1−j Vn−1

according to the abovementioned result on Vandermondeminors.
Since r as a cycle of lengthm+ 1 has sign (−1)m, this yields

∆r = (−1)j+l+men−1−j Vn−1,

which proves the formula. �

Note that the inner sum in Proposition A.1 can also be inter-
preted as ranging over all ordered subsets of {l, . . . , j} containing
l and j. It can be simplified further in the following special case,
which we use in Section 6. We give two representations, one in
terms of compositions and the other using generating functions.
Here we use the customary notation [xi] f (x) for the coefficient of
xi in a power series f (x).

Corollary A.2. If pi(x) = a0xi + · · · + ai, a0 = 1, the formula in
Proposition A.1 simplifies to

det An,l
Vn−1

= en−1−l +
n−1∑
j=l+1

(−1)j−l

×

(∑
m≥1

(−1)m
∑
d1,...,dm

ad1 . . . adm

)
en−1−j,

where the inner sum ranges over d1, . . . , dm > 0 such that d1+· · ·+
dm = j− l. Using generating functions, we have also

det An,l
Vn−1

=

n−1−l∑
j=0

([
xj
] (−1)j + q(x)j+1

1+ q(x)

)
en−1−l−j,

where q(x) = a1x+ · · · + an−1xn−1.

Proof. Applying the above remark to the case ai,j = ai−j, the inner
sum in Proposition A.1 gives∑
j>j2>···>jm>l

(−1)maj−j2aj2−j3 · · · ajm−1−jmajm−l

=

∑
d1,...,dm>0,∑
i
di=j−l

(−1)mad1 . . . adm

for j > l, since the differences d1 = j− j2, d2 = j2 − j3, . . . , dm =
jm − l can take arbitrary nonnegative values, provided they sum
up to j − l. Now the first formula follows by multiplying with
(−1)j+l = (−1)j−l.
For the second formula observe that the sum over the

compositions of j − l that appears within the bracket of the first
formula is equal to the coefficient of xj−l in the product
m∏
i=1

(
a1x+ · · · + an−1xn−1

)
= q(x)m,

form ≤ j− l; form > j− l the sum over the composition is empty.
Note that this even covers the cases m = 0, for which the term is
zero except for j− l = 0, when it becomes one. The stated formula
then follows by

(−1)j−l
j−l∑
m=0

[xj−l](−q(x))m = (−1)j−l[xj−l]
1− (−q(x))j−l+1

1+ q(x)

= [xj−l]
(−1)j−l + q(x)j−l+1

1+ q(x)
. � (34)
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As a final remark note that the determinant takes an even
simpler form if the pi are not ‘reversed’ as they are in the previous
corollary.

Corollary A.3. If pi(x)=aixi+· · ·+a0, the formula in PropositionA.1
simplifies to

det An,l
Vn−1

= en−1−l +
n−1∑
j=l+1

(
al

j−1∏
k=l+1

(ak − 1)
)
en−1−j,

Proof. The proof proceeds in a similar way as for the previous
corollary. Here we have the case ai,j = aj, so the inner sum in
Proposition A.1 evaluates to∑
{j2,...,jm}⊆{l+1,...,j−1},

j>j2>···>jm>l

(−1)maj2 · · · ajmajm+1 = al
j−1∏
k=l+1

(ak − 1),

and the rest follows. �
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Abstract. In this paper we develop a symbolic technique to obtain asymptotic expressions
for ruin probabilities and discounted penalty functions in renewal insurance risk models when the
premium income depends on the present surplus of the insurance portfolio. The analysis is based on
boundary problems for linear ordinary differential equations with variable coefficients. The algebraic
structure of the Green’s operators allows us to develop an intuitive way of tackling the asymptotic
behavior of the solutions, leading to exponential-type expansions and Cramér-type asymptotics.
Furthermore, we obtain closed-form solutions for more specific cases of premium functions in the
compound Poisson risk model.
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1. Introduction. The study of level crossing events is a classical topic of risk
theory and has turned out to be a fruitful area of applied mathematics, as (depending
on the model assumptions) often subtle applications of tools from real and complex
analysis, functional analysis, asymptotic analysis, and also algebra are needed (see,
e.g., [4] for a recent survey).

In classical insurance risk theory, the collective renewal risk model describes the
amount of surplus U(t) of an insurance portfolio at time t by

(1.1) U(t) = u+ c t−
N(t)∑

k=1

Xk,

where c represents a constant rate of premium inflow, N(t) is a renewal process that
counts the number of claims incurred during the time interval (0, t], and (Xk)k≥0 is a
sequence of independent and identically distributed (i.i.d.) claim sizes with distribu-
tion function FX and density fX (also independent of the claim arrival process N(t)).
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Let (τk)k≥0 be the i.i.d. sequence of interclaim times. One of the crucial quantities to
investigate in this context is the probability that at some point in time the surplus in
the portfolio will not be sufficient to cover the claims, which is called the probability
of ruin,

ψ(u) = P (Tu < ∞ | U(0) = u),

where U(0) = u ≥ 0 is the initial capital in the portfolio and

Tu = inf {t ≥ 0 : U(t) < 0 | U(0) = u}.

A related, more general quantity is the expected discounted penalty function, which
penalizes the ruin event for both the deficit at ruin and the surplus before ruin,

Φ(u) = E
(
e−δTu w(U(Tu−), |U(Tu)|) 1Tu<∞ |U(0) = u

)
,

where δ ≥ 0 is a discount rate and the penalty w(x, y) is a bivariate function. (In risk
theory literature, Φ(u) is often referred to as the Gerber–Shiu function; see [8].)

The classical collective risk model is based on the assumption of a constant pre-
mium rate c. However, it is clear that it will often be more realistic to let premium
amounts depend on the current surplus level. In this case, the risk process (1.1) is
replaced by

U(t) = u+

∫ t

0

p(U(s)) ds−
N(t)∑

k=1

Xk.

Hence, in between jumps (claims) the risk process moves deterministically along the
curve ϕ(u, t), which satisfies the partial differential equation

∂ϕ

∂t
= p(u)

∂ϕ

∂u
; ϕ(u, 0) = u.

There are only a few situations for which exact expressions for ψ(u) are known for
surplus-dependent premiums. One such case is the Cramér–Lundberg risk model
(where N(t) is a homogeneous Poisson process with intensity λ), another is the linear
premium function p(u) = c+ εu, which has the interpretation of an interest rate ε on
the available surplus. In the case of exponential claims, it was already shown by [22]
that the probability of ruin then has the form

(1.2) ψ(u) =
λελ/ε−1

μλ/εcλ/ε exp(−μc/ε) + λελ/ε−1Γ(μc
ε ,

λ
ε )

Γ
(μ(c+εu)

ε , λ
ε

)
,

where Γ(η, x) =
∫∞

x tη−1e−tdt is the incomplete gamma function (for extensions to
finite-time ruin probabilities, see [11, 12, 3]). In fact, for the Cramér–Lundberg risk
model with exponential claims and general monotone premium function p(u), one has
the explicit expression

(1.3) ψ(u) =

∫ ∞

u

γ0λ

p(x)
exp {λq(x) − μx} dx,

where 1/γ0 ≡ 1 + λ
∫∞
0
p(x)−1 exp {λq(x) − μx} dx and q(x) ≡

∫ x

0
1

p(y) dy is assumed

finite for x > 0 (see [23]). Since for surplus-dependent premiums the probabilistic
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approach based on random equations does not work, and also the usual analytic
methods lead to difficulties because the equations become too complex, it is a challenge
to derive explicit solutions beyond the one given above.

In this paper we will employ a method based on boundary problems and Green’s
operators to derive closed-form solutions and asymptotic properties of ψ(u) and Φ(u)
under more general model assumptions. For that purpose we will employ the algebraic
operator approach developed in [2]. However, since that approach was restricted to
linear ordinary differential equations (LODEs) with constant coefficients, we will have
to extend the theory to tackle the variable-coefficients equations that occur in the
present context.

In section 2 we derive the boundary problem for the Gerber–Shiu function Φ(u) in
a renewal risk model with claim and interclaim distributions having rational Laplace
transform. For solving it, we employ a new symbolic method, described in section 3.
This allows us to construct integral representations for the solution of inhomogeneous
LODEs with variable coefficients, for given initial values, under a stability condition.
In section 4 we derive a general asymptotic expansion for the discounted penalty
function in the renewal model framework. Subsequently, section 5 is dedicated to
the more specific case of compound Poisson risk models with exponential claims,
for which we have second-order LODEs. More specifically, in section 5.1 we derive
exact solutions for a generic premium function p(u). Further, in section 5.2, we
consider some interesting particular cases of p(u). In section 5.3 we identify the
necessary conditions a premium function should satisfy so that the asymptotic analysis
is possible and the assumptions necessary for the asymptotic results in section 4 are
validated. We will end by giving concrete examples of such premium functions and
their asymptotics.

Throughout the paper we will assume that U(t) → ∞ a.s. This assumption is
satisfied, for example, when p(u) > EX/Eτ + ς for some ς > 0 and sufficiently large
u; see, e.g., [4].

2. Deriving the boundary problem. Assume that the distribution of the
interclaim time of the renewal process N(t) has rational Laplace transform. For
simplicity of notation, we assume further that the rational Laplace transform has a
constant numerator. Then its density fτ satisfies a LODE with constant coefficients

(2.1) Lτ

(
d

dt

)
fτ (t) = 0

and homogeneous initial conditions f
(k)
τ (t) = 0 (k = 0, . . . , n− 2), where

Lτ (x) = xn + αn−1x
n−1 + · · · + α0.

Using the method of [6], we can then derive an integro-differential equation for Φ(u),

(2.2) L∗
τ

(
p(u)

d

du
− δ

)
Φ(u) = α0

(∫ u

0

Φ(u − y) dFX(y) + ω(u)

)
,

where L∗
τ is the adjoint operator of Lτ defined through

L∗
τ (x) = Lτ (−x) = (−x)n + αn−1(−x)n−1 + · · · + α0.

Assume now that the claim size distribution also has a rational Laplace transform,
so that its density fX satisfies another such LODE,

(2.3) LX

(
d

dy

)
fX(y) = 0
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with initial conditions f
(k)
X (x) = 0 (k = 0, . . . ,m− 2), where

LX(x) = xm + βm−1x
m−1 + · · · + β0.

Then the integro-differential equation (2.2) becomes a LODE with variable coefficients
of order m+ n, namely

(2.4) TΦ(u) = g(u)

with differential operator

(2.5) T = LX

(
d

du

)
L∗

τ

(
p(u)

d

du
− δ

)
− α0β0

and right-hand side

g(u) = α0 LX

(
d

du

)
ω(u),

where ω(u) ≡
∫∞

u
w(u, y − u) fX(y) dy. For δ = 0 and w = 1, (2.4) reduces to the

well-known equation for the probability of ruin.
The equations hold for sufficiently regular functions p. In the special case p(u) ≡ c

one recovers the LODE with constant coefficients whose characteristic polynomial is
of degree n+m and corresponds to Lundberg’s equation. It is known that, for δ > 0,
this polynomial has m solutions σi, with negative real part, and n solutions ρi, with
positive real part; see, for example, [14, 13]. In [2], we have derived

(2.6) Φ(u) = γ1e
σ1u + · · · + γme

σmu +Gg(u),

where the γi are determined by the initial conditions and

(2.7) Gg(u) ≡
m∑

i=1

n∑

j=1

cij

(∫ u

0

eσi(u−ξ) +

∫ ∞

u

eρj(u−ξ) − eσiu

∫ ∞

0

e−ρj(ξ)

)
g(ξ) dξ

defines Green’s operator for the inhomogeneous LODE (2.4) with homogeneous bound-
ary conditions, where

cij = −
m∏

k=1,k �=i

(σi − σk)−1
n∏

k=1,k �=j

(ρj − ρk)−1 (ρj − σi)
−1.

The boundary conditions for (2.4) consist of the initial conditions Φ(k)(0)(k = 0, . . . ,m
− 1), determined from the integro-differential equation, and the stability condition
Φ(∞) = 0, provided by the model assumptions.

Analogous to the constant coefficients case, we assume the existence of a funda-
mental system for (2.4) with m stable solutions si(u) and n unstable solutions rj(u).
Here a solution f(u) is called stable if f(u) → 0 and unstable if f(u) → ∞ as u → ∞.
We write t1, . . . , tm+n for the complete sequence of solutions s1, . . . , sm, r1, . . . , rn,
and we assume furthermore that the successive Wronskians wk ≡ W [t1, . . . , tk] for
k = 1, . . . ,m+ n are all nonzero on the half-line R+ = [0,∞). Under these assump-
tions, the algebraic operator approach developed for the constant coefficients case [2]
will be extended to the surplus-dependent premium case in section 3, and the general
solution of (2.4) then has the form

Φ(u) = γ1s1(u) + · · · + γmsm(u) +Gg(u),
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where the γi are determined by the initial values and Gg(u) is again the Green’s
operator for the inhomogeneous LODE (2.4) with homogeneous boundary conditions,
but this time with nonconstant p(u). As a consequence, the representation (2.7)
is no longer valid, and we will derive a new explicit expression that generalizes it
(Theorem 3.4).

Let us complete this section with a remark about how to check that the fun-
damental system has stable or unstable solutions. Roughly speaking, this amounts
to an asymptotic analysis of the solutions of the homogeneous equation. According
to [7, Chap. 5], one can identify conditions on p(u) that guarantee the existence of
such a fundamental system. These conditions specify the structure of the coefficients,
namely, either they converge (sufficiently fast) to constants—in this case one speaks of
almost constant coefficients—or they diverge to infinity. The canonical form of (2.4)
indicates, of course, that the former case applies for our setting here. However, the
speed of convergence of the coefficients depends crucially on the premium function
p(u). For instance, we will show in Example 5.4 that for p(u) = c eε/u, the LODE
with almost constant coefficients converges to the LODE with constant coefficients
given in [2].

3. Green’s operator approach. In the previous section we have seen that the
core task for computing the Gerber–Shiu function Φ(u) is to determine the Green’s
operator G for the inhomogeneous LODE (2.4) with homogeneous boundary condi-
tions consisting of the initial conditions Φ(k)(0) = 0(k = 0, . . . ,m−1) and the stability
condition Φ(∞) = 0. In this section we will present a symbolic method that allows
us to construct G for a generic LODE with variable coefficients and homogeneous
boundary conditions. In other words, we consider boundary problems of the general
type,

{
T Φ(u) = g(u),

Φ(0) = Φ′(0) = · · · = Φ(m−1)(0) = 0 and Φ(∞) = 0,
(3.1)

where T ≡ Dm+n + cm+n−1(u)D
m+n−1 + · · · + c1(u)D+ c0(u) is a linear differential

operator with variable coefficients (and leading coefficient normalized to unity) and
D ≡ d

du . Under the conditions described in section 2 the solution of (3.1) is unique
and depends linearly on the so-called forcing function g(u). Therefore the assignment
g �→ Φ is a linear operator: the Green’s operator G of (3.1). The following fact derives
immediately from the theory of ordinary differential equations.

Theorem 3.1. The Gerber–Shiu function equals

(3.2) Φ(u) = γ1s1(u) + · · · + γmsm(u) +Gg(u),

where G is Green’s operator for (3.1), and the constants γi can be identified from the
initial conditions.

For describing our new method of constructing an explicit representation of G,
let us recall how this was achieved in [2] for the special case of constant coefficients
ci(u) ≡ ci. We will use the same notation as found there, in particular the basic
operators A =

� u

0
, B =

� ∞
u

, and the definite integral F = A + B =
� ∞

0
. Employing

the basic operators, the crucial idea was to factor the Green’s operator as

(3.3) G = (−1)nAσ1 · · ·AσmBρ1 · · ·Bρn ,

where the factor operators are defined by Aσ ≡ eσxAe−σx and Bρ ≡ eρxBe−ρx with
σi and ρj as described before. So the strategy was to decompose the problem and
tackle the stable exponents with the basic operator A, and the unstable ones with B.
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This idea can be carried over to the general case of (3.1). Using the results of [19],
any Green’s operator can be fully broken down to basic operators if one can factor
the differential operator T into first-order factors. Having a fundamental system
t1, . . . , tm+n = s1, . . . , sm, r1, . . . , rn with successive Wronskians wk(u) �= 0 (k =
1, . . . ,m + n) for u ∈ R+, such a factorization of T can always be achieved by well-
known techniques described, for example, in equation (18) of [15]; see also [17, 24].
Using this factorization, we can break down G in a way similar to (3.3) except that
the Aσi must be replaced by more complicated operators based on A and si, and
similarly the Bρj by suitable operators involving B and rj . We assume m,n > 0
throughout for avoiding degenerate cases.

Proposition 3.2. The Green’s operator of (3.1) is given by G = GsGr, where
Gs = As1 · · ·Asm and Gr = (−1)nBr1 · · ·Brn with

Ati = Asi = wi

wi−1
A wi−1

wi
for 1 ≤ i ≤ m,

Btj = Brj−m =
wj

wj−1
B

wj−1

wj
for m+ 1 ≤ j ≤ m+ n,

setting w0 = 1 for convenience.
Proof. We employ the factorization T = Trn · · ·Tr1Tsm · · ·Ts1 , with the first-order

operators given by

Tti = wi−1

wi
D wi

wi−1
for 1 ≤ i ≤ m,

Ttj = Trj−m =
wj−1

wj
D

wj

wj−1
for m+ 1 ≤ j ≤ m+ n.

It is then clear that G = As1 · · ·Asm(−Br1) · · · (−Brn) is a right inverse of T since
both A and −B are right inverses of D. It remains for us to show that Φ = Gg
satisfies the boundary conditions. Differentiating Φ fewer than m times results in
an expression whose summands all have the form h · (A · · · g) for some functions h;

evaluating any such summand yields h(0) · (
� 0

0
· · · g) = 0, so the homogeneous initial

conditions are indeed satisfied. For showing that the stability condition Φ(∞) = 0 is
also fulfilled we write Φ = As1 g̃ with g̃ ≡ As2 · · ·AsmGrg. Then Φ = s1As

−1
1 g̃ and

hence

Φ(∞) = s1(∞)
� ∞

0 s1(u)
−1g̃(u) du = 0

because s1(∞) = 0 and the integral is assumed to converge.
Note that we assume, in the above proof and henceforth, that all forcing functions

are chosen so that all infinite integrals have a finite value (this will be the case in all
the examples treated here). This is also the reason why the rj are incorporated in
B operators rather than in A operators as for the si. Since we want to focus on the
symbolic aspects here, we shall not elaborate these points further.

Spelled out in detail, we can now write the Green’s operator of (3.1) in the
factored form

G = w1

w0
C1

w0 w2

w2
1
C2

w1 w3

w2
2
C3 · · · Cm+n−1

wm+n−2 wn

w2
m+n−1

Cm+n
wm+n−1

wm+n
,(3.4)

where Ci is A for 1 ≤ i ≤ m and −B for m+ 1 ≤ i ≤ m+ n. Although this already
brings us some way towards a closed form for Φ(u), we would like to collapse the
m+ n integrals of (3.4) into a single integration, just as we did in [2].

To start with, assume for a moment that we did not have any unstable solutions
so that the fundamental system is only s1, . . . , sm. In that case we must dispense with
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the stability condition, imposing only the homogeneous initial conditions in (3.1). The
Green’s operator consists only of A operators, without any occurrence of B. In this
simplified case, how can one collapse the m integral operators C1, . . . , Cm = A in (3.4)
by a linear combination of single integrators (multiplication operators combined with
a single A)? The answer is given by the usual variation-of-constants formula, which
can be rewritten in our operator notation as follows [16, 20].

Proposition 3.3. If s1, . . . , sm is a fundamental system for the homogeneous
equation TΦ = 0, the Green’s operator of (3.1) is given by

(3.5) Gs = s1A
dm,1

wm
+ · · · + smA

dm,m

wm
,

where wm is the Wronskian determinant of s1, . . . , sm and dm,i results from wm by
replacing the ith column by the mth unit vector.

In other words, Φ = Gg is a particular solution of TΦ = g, made unique by
imposing the initial conditions Φ(0) = Φ′(0) = · · · = Φ(m−1)(0) = 0. In our case, the
stability condition Φ(∞) = 0 follows because si(∞) = 0 for all i = 1, . . . ,m. But note
that (3.5) is valid for any fundamental system s1, . . . , sm of T , yielding a particular
solution for the initial value problem (meaning (3.1) without the stability condition).

Let us now turn to the general case, where the fundamental system t1, . . . , tm+n

consists of m ≥ 1 stable solutions s1, . . . , sm and n ≥ 1 unstable solutions r1, . . . , rn.
In that case the Green’s operator has a representation analogous to (3.5) except that
we need B operators in addition to A operators and we have to include definite
integrals F for “balancing” the B against the A operators.

Theorem 3.4. Define the constants

(3.6) αi,j = di,m+j(0)/wm+j−1(0)

for j = 1, . . . , n and i = 1, . . . ,m + n; the functions aj = α1,j s1 + · · · + αm,j sm

for j = 1, . . . , n; and the functions ã1, . . . , ãn by the recursion ã1 = a1, ãj = aj −
αm+1,j ã1 − · · · − αm+j−1,j ãj−1. Then the Green’s operator of (3.1) is given by

(3.7) G =

m+n∑

i=1

ti Ci
di,m+n

wm+n
−

n∑

j=1

ãj F
dm+j,m+n

wm+n
,

where Ci is A for 1 ≤ i ≤ m and −B for m+ 1 ≤ i ≤ m+ n.
The proof of this result is given in the appendix, and there is a more explicit way

of specifying the sequence of functions ã1, . . . , ãn occurring in Theorem 3.4.
Proposition 3.5. The functions ãj in Theorem 3.4 can be computed by solving

the system T ã = a, where T is the lower triangular matrix with entries

Tjk =

⎧
⎪⎨
⎪⎩

αm+k,j for j > k,

1 for j = k,

0 otherwise,

while ã and a are, respectively, columns with entries ã1, . . . , ãn and a1, . . . , an. Hence
we have explicitly ãj = detTj/detT , where Tj is the matrix resulting from T by
replacing its jth column by a.

Proof. We have αm+1,j ã1 + · · · + αm+j−1,j ãj−1 + ãj = aj , for j > 1, by the
definition of the ãj . But this is clearly the jth row of the matrix T ã, while the
recursion base ã1 = a1 provides the first row. The explicit formula is an application
of Cramer’s rule.
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In either form, the functions ã1, . . . , ãn can be readily computed from the given
fundamental system s1, . . . , sm, r1, . . . , rn, and the representation (3.7) provides a
closed form for the Green’s operator of (3.1).

4. Asymptotic results for the renewal risk model. In what follows, we

will write k(u) ∼ l(u) if limu→∞
k(u)
l(u) = 1 for some functions k and l. Assume that

both the interclaim distribution and the claim size distribution have rational Laplace
transform, i.e., their densities satisfy the ODEs (2.1) and (2.3), respectively. Assume
that the solutions of (2.4) are of the form ti(u) ∼ uβi eyiu, i.e.,

(4.1) ti(u) ∼ exp {Aηi(u)} , i = 1, . . . , n+m,

with

(4.2) ηi(u) ∼ yi +
βi

u
, i = 1, . . . , n+m,

and

(4.3) ym < . . . < y1 ≤ 0 < ym+1 < . . . < ym+n

(so the ηi are not asymptotically equivalent).
Remark 4.1. Note that for the premium functions p(u) = c+ εu, p(u) = c+ 1

1+εu
and p(u) = c exp ε/u, the corresponding ti fulfill the conditions (4.1)–(4.3). For
m = n = 1, a more detailed analysis is presented in section 5.3.

Define the constants hk = γk −∑n
j=1 αjk F

dm+j,m+n

wm+n
with γk appearing in (3.2)

and αjk as defined in (3.6). For a permutation ϕ on {1, . . . ,m+ n} we define

πi =

∑
ϕ(i)=n+m(−1)sgnϕ

∏
k �=i y

ϕ(k)
k∑

ϕ(−1)sgnϕ
∏n+m

k=1 y
ϕ(k)
k

,

where sgnϕ denotes the parity of ϕ.
Theorem 4.1. If g(u) ∼ e−νu for ν > −y1, then under (4.1)–(4.3) the asymptotic

expansion

(4.4) Φ(u) ≈
m+1∑

i=1

ϑi(u)

holds, with ϑi(u) = hisi(u) (i = 1, . . . ,m) and

ϑm+1(u) ∼
m+n∑

i=1

πi

yi + ν
g(u).

This is equivalent to saying that limu→∞
Φ(u)−∑k

i=1 ϑi(u)

ϑk+1(u) = 1, for k = 1, . . . ,m.

Proof. Note that by (4.1)–(4.2), t
(k)
i (u) ∼ yk

i e
Aηi(u). Using (3.7) and the Leibniz

formula for the determinant, after some calculations one gets expansion (4.4) with
ϑk(u) = lktk(u) and

ϑm+1(u) =

m+n∑

i=1

πiti(u)Ci
g

ti
(u).

Using l’Hôpital’s rule completes the proof.
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5. Compound Poisson risk process with exponential claims. Let us now
focus on the case of a compound Poisson model (exponential interclaim times with
mean 1/λ) with exponential claim sizes with mean μ and a generic premium function
p(u). The differential equation in (2.4) has order two in this case, so we expect to
have one stable solution s and one unstable solution r. In fact, here we can relax the
notion of an unstable solution, allowing any function where

r(∞) = lim
u→∞

r(u)

exists and is different from zero (so the limit does not necessarily have to be infinity).
The reason for this extension is that the basic argument for the ansatz

Φ(u) = γss(u) + γrr(u)

carries over: Every solution of (2.4) must be of the form (5) since r(u), s(u) forms a
fundamental system. But then the stability condition Φ(∞) = 0 can only be satisfied
if γr = 0 because we require s(∞) = 0. This is why the form (3.2) is still justified in
the special case n = 1 with γ1 = γs. But note that this argument fails when there
are more than two unstable solutions since they can cancel out unless we take some
further precautions (e.g., requiring them to be of the same sign).

5.1. Closed-form solutions for generic premium. For a discount factor δ >
0, the expected discounted penalty function satisfies the second-order LODE

(D + μ) (−p(u)D + δ + λ) Φ(u) − λμΦ(u) = λ(D + μ)ω(u).

Expanding the operators, the equation is equivalent to

(
−p(u)D2 − (μ p(u) + p′(u) − λ− δ)D + δμ

)
Φ(u) = λ(D + μ)ω(u).

Assuming that p(u) �= 0 for all u ≥ 0, this is further equivalent to

(5.1)

(
D2 +

(
μ+

p′(u)
p(u)

− λ+ δ

p(u)

)
D − δμ

p(u)

)
Φ(u) = g(u),

with g(u) = − λ
p(u) (D + μ)ω(u). Furthermore, we assume that p(u) is chosen in such

a way that the associated homogeneous solution has a fundamental system s, r with
one stable solution s and one unstable solution r with Wronskian w = w2 = sr′ − s′r
nonzero on R+. Then the Green’s operator for the boundary problem for the Gerber–
Shiu function Φ is given by Theorem 3.4 with s1 = s and r1 = r, namely

(5.2) Gg(u) =

(
−s(u)

∫ u

0

r(v)
w(v) − r(u)

∫ ∞

u

s(v)
w(v) + r(0)

s(0)s(u)

∫ ∞

0

s(v)
w(v)

)
g(v) dv.

For calculating the full expression

(5.3) Φ(u) = γ s(u) +Gg(u),

we have to determine the constant γ. Evaluating the integro-differential equation
(2.2) at zero, one obtains

−cΦ′(0) + (λ+ δ)Φ(0) = λω(0)
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and therefore

(5.4) γ =
λω(0) + c (Gg)′(0)

(λ+ δ) s(0) − c s′(0)
=
λω(0) + c r(0)s′(0)−r′(0)s(0)

s(0)

∫∞
0

s(v)
w(v) g(v) dv

(λ+ δ) s(0) − c s′(0)

for the required constant. For δ = 0, the LODE (5.1) is of first order in Φ′, and
its associated homogeneous equation has an unstable solution r(u) = 1 and a stable
solution

(5.5) s(u) =

∫ ∞

u

exp

(
−μv + λ

∫ v

0

dy
p(y)

)
dv

p(v)

(cf. [4]). For the fundamental system s, r, the Wronskian is just w = w2 = −s′, and
the Green’s operator (5.2) specializes to

Gg(u) =

(
s(u)

∫ u

0

1
s′(v) +

∫ ∞

u

s(v)
s′(v) − s(u)

s(0)

∫ ∞

0

s(v)
s′(v)

)
g(v) dv

while the constant in Φ(u) = γ s(u) +Gg(u) is now given by

γ =
λω(0) − p(0) s′(0)

s(0)

∫∞
0

s(v)
s′(v) g(v) dv

λs(0) − p(0)s′(0)
.

Thus the Gerber–Shiu function can be written generically as

Φ(u) =
λω(0) − p(0) s′(0)

s(0)

∫∞
0

s(v)
s′(v) g(v) dv

λs(0) − p(0)s′(0)
s(u)

+

(
s(u)

∫ u

0

1
s′(v) +

∫ ∞

u

s(v)
s′(v) − s(u)

s(0)

∫ ∞

0

s(v)
s′(v)

)
g(v) dv

in terms of s(u).
Remark 5.1. For δ = 0 and w = 1, one has g = 0 and ψ(u) = γ s(u), recovering

(1.3) for the ruin probability.

5.2. Closed-form solutions for some particular premium structures.

(A) Linear premium. As discussed in section 1, the linear function p(u) = c+εu
can be interpreted as describing investments of the surplus into a bond with a fixed
interest rate ε > 0; see, for example, [22]. For δ > 0 and p(u) = c + εu, we can
compute a fundamental system for the second-order LODE

(
D2 +

(
μ+ ε

c+εu − λ+δ
c+εu

)
D − δμ

c+εu

)
Φ(u) = − λ

c+εu (D + μ)ω(u)

in the form

(5.6)
s(u) = U

(
δ
ε + 1, λ+δ

ε + 1, μu+ μc
ε

)
(εu+ c)

λ+δ
ε exp(−μu),

r(u) = M
(

δ
ε + 1, λ+δ

ε + 1, μu+ μc
ε

)
(εu+ c)

λ+δ
ε exp(−μu),

where M and U denote the usual Kummer functions as in [1, section 13.1]. For
u → ∞, the estimate in [1, section 13.1.8] yields

(5.7) s(u) = K1 (εu+ c)λ/ε−1 exp(−μu)
(
1 + O( 1

εu+c )
)

→ 0,
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while the estimate in [1, section 13.1.4] yields

(5.8) r(u) = K2 (εu+c)δ/ε
(
1+O( 1

εu+c )
)

= K2 (εu+c)δ/ε +O((εu+c)δ/ε−1) → ∞,

where K1 and K2 are some constants. Hence s is indeed a stable and r an unstable
solution. Using [1, section 13.1.4] one derives the Wronskian

w2 =
Γ( λ+δ

ε )

Γ( δ
ε )

ε(λ+δ)
δ

(
ε
μ

)(λ+δ)/ε
(uε+ c)(λ+δ)/ε−1 exp(−μu+ μc

ε ).

Substituting these expressions in (5.2), we end up with

Gg(u) = Γ(δ/ε+1)
Γ((δ+λ)/(1+ε))

1
ε

(
μ
ε

)(λ+δ)/ε
(εu+ c)(λ+δ)/ε exp(−μu− μc

ε )

×
(

−U(u)

∫ u

0

M(v) −M(u)

∫ ∞

u

U(v) + M(0)
U(0) U(u)

∫ ∞

0

U(v)

)
g(v) dv,

where U(u) and M(u) are Kummer functions appearing on the right hand-side of
(5.6). This, jointly with (5.4), is sufficient to determine the discounted penalty func-
tion in (5.3).

(B) Exponential premium. In general, an exponential premium function leads
to intractable results. However, for

p(u) = c(1 + e−u)

the probability of ruin can be worked out from the expression in section 5.1:

ψ(u) = − (1 + λ
c )F (λ

c , μ; 1 + λ
c ; eu + 1)(1

2e
u + 1

2 )
λ
c

2μF (1 + μ, 1 + λ
c ; 2 + λ

c ; 2)
,

where F (a, b; c; z) = 2F1(a, b; c; z) stands for the hypergeometric function; see, e.g.,
[1].

(C) Rational premium. For a basic rational premium like

p(u) = c+
1

1 + u
,

the exact symbolic form for the probability of ruin can be computed up to quadratures,
namely

ψ(u) =
λ(c+ 1)λ/c2

∫∞
u
e−u(cμ−λ)/c(c+ cu+ 1)−(λ+c2)/c2(1 + u)du

1 + λ(c+ 1)λ/c2
∫∞
0 e−u(cμ−λ)/c(c+ cu+ 1)−(λ+c2)/c2(1 + u)du

.

(D) Quadratic premium. For the quadratic function p(u) = c+ u2, the prob-
ability of ruin can be determined as

ψ(u) =
λ
∫∞

u e−(−λ arctan(x/
√

c)+μx
√

c)/
√

c/(c+ x2) dx

1 + λ
∫∞
0 e−(−λ arctan(x/

√
c)+μx

√
c)/

√
c/(c+ x2) dx

.

5.3. Asymptotic results for generic premium. Assume the LODE

(5.9) Φ(n) + cn−1(u)Φ(n−1) + · · · + c0(u)Φ = 0

has complex coefficients ci(u) continuous on R+ and define its characteristic equation
as

(5.10) yn + cn−1(u) y
n−1 + · · · + c0(u) = 0.

Then the asymptotic behavior of solutions of (5.9) for u → ∞ essentially depends on
the behavior of the roots y1(u), . . . , yn(u) of (5.10) as u → ∞ (see, e.g., [7, section
5.3.1, p. 250]), which will be exploited below.
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5.3.1. Probability of ruin. When δ = 0 and w = 1, the expected discounted
penalty is the probability of ruin. For this quantity we have the following asymptotic
estimate (we use the convention p(∞) = limu→∞ p(u)).

Proposition 5.1.
1. If p(∞) = c, where c is constant, then

ψ(u) ∼ μ

λ
γ exp

(
−μu+ λ

∫ u

0

dw
p(w)

)
, u → ∞.

2. If p(∞) = ∞, then

ψ(u) ∼ μ

λ
γ

1

p(u)
exp

(
−μu+ λ

∫ u

0

dw
p(w)

)
, u → ∞.

Proof. Integration by parts in (5.5) gives

s(u) =
μ

λ

∫ ∞

u

exp

(
−μv + λ

∫ v

0

dw
p(w)

)
dv − 1

λ
exp

(
−μu+ λ

∫ u

0

dw
p(w)

)

with s(0) = μ
λ ĥ(μ) − 1

λ , s
′(0) = − 1

p(0) , where ĥ denotes the Laplace transform of

h(u) = exp(λ
∫ u

0
dw

p(w)). Letting f(u) = 1
λ

∫∞
u exp(−μv + λ

∫ v

0
dw

p(w)) dv, one gets

ψ(u) = γs(u) = μf(u) − f ′(u) = L∗
X

(
d

du

)
f(u),

with γ = λ
λs(0)−p(0)s′(0) . Note that f ′′(u) = μf ′(u)(1 + 1

p(u) ). To prove the first part

of the proposition we need to show that ψ(u) = −μ 1
1+cf

′(u)(1 + o(1)). According

to our previous observation, μf ′(u)−f ′′(u)
−μf ′′(u) = 1

1+p(u) , which completes the proof using

l’Hôpital rule. The second part can be proved similarly.

5.3.2. Expected discounted penalty. We consider two cases of premium func-
tions:

P1. the premium function behaves like a constant at infinity,

(5.11) p(∞) = c, p′(u) = O

(
1

u2

)
;

or
P2. the premium function explodes at infinity, p(∞) = ∞ as

(5.12) p(u) = c+

l∑

i=1

εiu
i, c > 0.

The first case is satisfied by the rational and exponential premium functions. The
second case is satisfied by the linear and quadratic premium functions (see section 5.2).
Consider first the homogeneous equation (5.1) with g = 0, i.e., (2.4) with T given in
(2.5) with

c0(u) = − δμ

p(u)
, c1(u) = μ+

p′(u)
p(u)

− λ+ δ

p(u)
.
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After tedious calculations one can check that in the case (5.11) we have

lim
u→∞

c1(u)√
c0(u)

< ∞

so that Conditions 1) and 2) of [7, p. 252] are satisfied. In the second case, (5.12),
we have

lim
u→∞

c0(u)

c21(u)
= 0

and Conditions 1) and 2’) of [7, p. 254] hold. From [7, p. 252] we hence know that
for both cases (5.11) and (5.12) the asymptotic behavior of the solution of (5.1) is

(5.13) ti(u) ∼ exp

{∫ u

0

(�i(t) + �
(1)
i (t))dt

}
, i = 1, 2,

where

�1 =
−
(
μ+ p′(u)

p(u) − λ+δ
p(u)

)
−
√(

μ+ p′(u)
p(u) − λ+δ

p(u)

)2

+ 4 δμ
p(u)

2

and

�2 =
−
(
μ+ p′(u)

p(u) − λ+δ
p(u)

)
+

√(
μ+ p′(u)

p(u) − λ+δ
p(u)

)2

+ 4 δμ
p(u)

2

are the negative and positive solutions, respectively, of the characteristic equation

(5.14) x2 +

(
μ+

p′(u)
p(u)

− λ+ δ

p(u)

)
x− δμ

p(u)
= 0.

Here �
(1)
1 and �

(1))
2 are defined by

�
(1)
i (u) = − �′

i(u)

2�i(u) +
(
μ+ p′(u)

p(u) − λ+δ
p(u)

) =
�′

i(u)√(
μ+ p′(u)

p(u) − λ+δ
p(u)

)2

+ 4 δμ
p(u)

.

Remark 5.2. Note that if the premium function p(u) satisfies conditions (5.11) and

(5.12), the solutions ti(u) will be of the asymptotic form (4.1), where ηi = �i + �
(1)
i .

In order to complete the asymptotic analysis of Φ(u) for large u, recall that the
Gerber–Shiu function Φ is given by Φ(u) = γs(u)+Gg(u), for a normalizing constant
γ.

Theorem 5.2. Under the assumptions (5.11) and (5.12) regarding the premium
function, the asymptotics of the Gerber–Shiu function are described by

Φ(u) ∼ h1s(u) +K1g(u),

with the exception

Φ(u) ∼ h1s(u) +K2u g(u)
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for the case (5.12) with l = 1. Here h1 = γ −
∫∞
0

s(v)
s′(v)g(v) dv.

Remark 5.3. Moreover, for the particular examples considered here, the structure
of s (and r) is indeed that of the form (4.1)–(4.3) that we had to impose as a condition
in the more general framework.

Proof. First note that for δ = 0, Gg(u) = 0, and thus Φ(u) has the same behavior
as the probability of ruin ψ(u) = γs(u). Evaluating the expression (5.13) at δ = 0,

s(u) ∼ e−μu+λ
∫ u
0

dv
p(v) (μp(u) + p′(u) − λ)

−1

leads to the classical result regarding the probability of ruin (1.3). For δ �= 0, one
needs the asymptotic behavior of Gg(u), which based on (5.2) can be reduced to
analyzing the asymptotic behavior of

q(u) = −s(u)
∫ u

0

r(v)
w(v) g(v)dv − r(u)

∫ ∞

u

s(v)
w(v) g(v)dv,

since the term s(u)
∫∞
0

s(v)
s′(v)g(v) dv behaves as s(u) at infinity. After rewriting

q(u) = −
∫ u

0
r(v)
w(v) g(v)dv

1
s(u)

−
∫∞

u
s(v)
w(v) g(v)dv

1
r(u)

and expanding the Wronskian, one can apply l’Hôpital rule and see that as u → ∞
(after some algebra),

(5.15) q(u) ∼

1
r′(u)
r(u) − s′(u)

s(u)

g(u)

s′(u)
s(u)

−

1
s′(u)
s(u) − r′(u)

r(u)

g(u)

r′(u)
r(u)

.

Using Fedoryuk’s asymptotic expressions (5.13) one more time, one can perform the
analysis along the two cases introduced here. It easy to check that in the first case,
P1, we have

(5.16) s(u) ∼ exp {−k1u} , r(u) ∼ exp {−k2u} ,

where

k1 = −
(
μ− λ+δ

c

)
+

√(
μ− λ+δ

c

)2
+ 4 δμ

c

2

and

k2 = −
(
μ− λ+δ

c

)
−
√(

μ− λ+δ
c

)2
+ 4 δμ

c

2
.

Thus, as limu→∞
s′(u)
s(u) = k1 and limu→∞

r′(u)
r(u) = k2, then

(5.17) h(u) ∼ K1 g(u), u → ∞,

where

K1 =
k1 + k2

k1k2(k2 − k1)
=

μ− λ+δ
c

δμ
c

√(
μ− λ+δ

c

)2
+ 4 δμ

c

.
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The second case, P2, is more complex, producing more intriguing asymptotics. One
can show that in this case

s(u) ∼ h1 u
β e−μu,

with β ∈ R. Note that for l = 1, ε1 = ε one recovers the asymptotics (5.7). One can
also check that

lim
u→∞

s′(u)
s(u)

= −μ,

whereas

r′(u)
r(u)

∼ 1

u
for l = 1, and r(u) ∼ 1 for l > 1,

producing, respectively,

(5.18) q(u) ∼ ug(u) and q(u) ∼ g(u).

Example 5.3. Consider a compound Poisson risk model with premium functions
described by assumptions P1 or P2. Let the penalty be a function of the surplus only,
w(x, y) = e−νx. Since we are in the exponential claims scenario,

g(u) = λμ(D + μ)

∫ ∞

u

w(u − y)e−μy dy = λνe−(ν+μ)u.

Thus, for a linear premium function,

Φ(u) = γs(u) +Gg(u)Φ(u) ∼ h1u
βe−μu + λνue−(ν+μ)u,

with β = λ/ε− 1, whereas for all the other premium functions in the class considered
here,

Φ(u) ∼ h1u
βe−μu + λνe−(ν+μ)u, u → ∞,

with β ∈ R.
Example 5.4. When p(u) = c exp ε/u, one has a differential equation with almost

constant coefficients,
(
D2 +

(
μ− ε

u2
− λ+ δ

c
exp −ε/u

)
D − δμ

c
exp −ε/u

)
Φ(u)

= −λ

c
exp −ε/u(D + μ)ω(u).(5.19)

This is an equation of form (5.9), with coefficients satisfying

(5.20) ck(u) = αk + ak(u), k = 1, 2

with αk constant and
∫∞
1

|ak(u)|du < ∞. Here a1(u) = − ε
u2 + λ+δ

c a(u) and a0(u) =
δμ
c a(u), with a(u) =

∑∞
k=1

(−1)nεn

unn! and thus
∫∞
1

|a(u)|du < ∞, and similarly for a0

and a1. From [5, Thm. 8.1, p. 92] (see also [5, Problem 32, p. 105]) we can hence
conclude that the homogeneous equation has a fundamental system with asymptotics

s(u) = eσu (1 + o(1)) and r(u) = eρu (1 + o(1)) ,
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where σ and ρ are solutions of the equation

x2 +

(
μ− λ+ δ

c

)
x− δμ

c
= 0,

with Re(σ) < 0 and Re(ρ) > 0. Note that these solutions coincide with that of the
constant premium case. Consequently, one has the same asymptotic behavior as when
the premium rate is constant.

Remark 5.4. The above closed-form solutions were worked out for the compound
Poisson model. In principle, similar closed-form solutions are possible for more general
renewal risk models as discussed in sections 2–4, in which case higher-order differen-
tial equations appear (and have a practical meaning). For LODEs with constant
coefficients one can often find closed-form solutions for certain functions of interest
[2]. For equations with variable coefficients, closed-form solutions can be obtained by
our method if explicit fundamental solutions t1, . . . , tm+n of the homogeneous equa-
tion are available (as for the second-order examples treated in this paper). Typically
this will happen for equations with inherent symmetries. But even if this is not the
case, one may always consider numerical approximations for the fundamental solu-
tions t1, . . . , tm+n and then apply the Green’s operator with those approximations
inside. Of course this raises the interesting question of how the error propagates, a
problem somewhat similar to the asymptotic analysis presented earlier.

6. Conclusion. We have provided a symbolic method and a conceptual frame-
work for studying boundary value problems with variable coefficients as they appear
in modeling the surplus level in a portfolio of insurance contracts in classical risk
theory. The approach presented allows a detailed analysis of the asymptotic behavior
of the solutions of these equations under a set of conditions. For the specific case of
the compound Poisson risk model, these conditions were made more explicit in terms
of conditions on the form of p(u). Moreover, several new closed-form solutions were
established within this framework.

Appendix. Proof of Theorem 3.4. The proof of Theorem 3.4 hinges on the
following technical lemma on Wronskian determinants.

Lemma A.1. We have
(di,k+1

wk

)′
= −di,k

wk+1

w2
k

for 1 ≤ i ≤ k < m+ n.

Proof. We have to show di,k+1 w
′
k−d′

i,k+1 wk = di,k wk+1. We note that all expres-
sions in this formula are certain minors of the Wronskian matrix W for t1, . . . , tm+n.
So let us write W i1,...,il

j1,...,jl
for the minor of W resulting from deleting the columns in-

dexed i1, . . . , il and the rows indexed j1, . . . , jl. Then we have wk = W k+1
k+1 , di,k+1 =

(−1)i+k+1W i
k+1, di,k = (−1)i+kW i,k+1

k,k+1, with the derivatives d′
i,k+1 = (−1)i+k+1W i

k

and w′
k = W k+1

k . For the latter, we use the fact that a Wronskian determinant can
be differentiated if one replaces the last row by its derivative; see, for example, [10,
p. 118]. Multiplying by (−1)i+k, it remains for us to show W i

kW
k+1
k+1 −W i

k+1W
k+1
k =

W i,k+1
k,k+1 · detW . But this is a classical determinant formula of Sylvester; see, for

example, [21, p. 1571] or equation (4.49”) in [9].
The preceding lemma is the key tool for removing the nested integrals in (3.7). For

seeing this, note that it can be read backwards as giving the integral of di,k wk+1/w
2
k.

In conjunction with certain operator identities taken from [18], this allows us to col-
lapse expressions of the form A · · ·A or B · · ·B or, at the interface of the two blocks,
A · · ·B.

Proof of Theorem 3.4. Note that the case n = 0 reduces to Proposition 3.3, so we

128 VII



ON SURPLUS-DEPENDENT PREMIUM RISK MODELS 63

may assume n > 0 in what follows. We know from Proposition 3.2 that

G = (−1)nAs1 · · ·AsmBr1 · · ·Brn ,

using the notation employed there. Based on this factorization, we prove (3.7) by
induction on n. In the base case n = 1, applying Proposition 3.3 again yields

G = Gs(−Br1) =

(
m∑

i=1

siA
dm,i

wm

)
wm+1

wm
(−B) wm

wm+1

=
m∑

i=1

siA
(

− dm,i
wm+1

w2
m

)
B wm

wm+1
,

and Lemma A.1 gives (dm+1,i/wm)′ for the expression in parentheses. Now we em-
ploy the identity AfB = A (

� u

0f) + (
� u

0f)B, for arbitrary functions f , from [18].
Substituting the expression in parentheses for f , this gives

A
dm+1,i

wm
+

dm+1,i

wm
B − α1,i F,

so we end up with

G =
m∑

i=1

(
si A

dm+1,i

wm+1
+ si

dm+1,i

wm
B wm

wm+1
− α1,i si F

wm

wm+1

)
.

In the middle, we factor out
∑

i si dm+1,i, which equals −r1 dm+1,m+1 as one sees by
replacing the last row in wm+1 by the first and then expanding along that last row.
But dm+1,m+1 = wm, so the middle sum simplifies to r1 (−B) dm+1,m+1/wm+1 and
may thus be incorporated into the first sum. In the third sum of the above expression,
we factor out

∑
i α1,i si = a1. Thus we finally obtain

G =

m+1∑

i=1

ti Ci
dm+1,i

wm+1
− ã1 F

dm+1,m+1

wm+1
,

which is the desired formula (3.7) for n = 1. Now assume (3.7) for n; we prove it for
n+ 1. Using the induction hypothesis we obtain

G = (−1)nAs1 · · ·AsmBr1 · · ·Brn(−Brn+1)

=

⎛
⎝

m+n∑

i=1

tiCi
di,m+n

wm+n
−

n∑

j=1

ãj F
dm+j,m+n

wm+n

⎞
⎠ wm+n+1

wm+n
(−B) wm+n

wm+n+1

=

m+n∑

i=1

tiCi

(
− di,m+n

wm+n+1

w2
m+n

)
B wm+n

wm+n+1

−
n∑

j=1

ãj F
(

− dm+j,m+n
wm+n+1

w2
m+n

)
B wm+n

wm+n+1
.

As before, we see that Lemma A.1, with n + 1 in place of n, can be applied to the
expressions in the two parentheses, yielding (dm+n+1,i/wm+n)′ for the former and
(dm+n+1,m+j/wm+n)′ for the latter. In addition to the identity for AfB used for the
base case, we now also need the related identities BfB = (

� ∞
u
f)B − B (

� ∞
u
f) and
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FfB = F (
� u

0
f), also to be found in [18]. When we substitute for f , these identities

take on the form

AfB = A
dm+n+1,i

wm+n
+

dm+n+1,i

wm+n
B − αn+1,i F,

BfB = B
dm+n+1,i

wm+n
− dm+n+1,i

wm+n
B

for the first expression and

FfB = F dm+n+1,m+j/wm+n − αn+1,m+j F

for the second. We split the first sum above into the two sums

m∑

i=1

si

(
A

dm+n+1,i

wm+n
+

dm+n+1,i

wm+n
B − αn+1,i F

) wm+n

wm+n+1
,

n∑

j=1

rj
(dm+n+1,m+j

wm+n
B −B

dm+n+1,m+j

wm+n

) wm+n

wm+n+1
.

In the lower-range sum

m∑

i=1

si A
dm+n+1,i

wm+n+1
+

(
m∑

i=1

si dm+n+1,i

)
/wm+nB

wm+n

wm+n+1

−
(

m∑

i=1

αn+1,i si

)
F wm+n

wm+n+1

we can apply the same determinant expansion as before to obtain

m∑

i=1

si A
dm+n+1,i

wm+n+1
+

⎛
⎝−rn+1 −

n∑

j=1

rj
dm+n+1,m+j

wm+n

⎞
⎠ B wm+n

wm+n+1

− an+1 F
wm+n

wm+n+1

=
m∑

i=1

ti Ci
dm+n+1,i

wm+n+1
+ tm+n+1 Cm+n+1

dm+n+1,m+n+1

wm+n+1

−
n∑

j=1

rj
dm+n+1,m+j

wm+n
B wm+n

wm+n+1
− an+1 F

wm+n

wm+n+1
;

in the upper-range sum we get

n∑

j=1

rj
dm+n+1,m+j

wm+n
B wm+n

wm+n+1
+

n∑

j=1

tm+j Cm+j
dm+n+1,m+j

wm+n+1
.

Combining the lower-range with the upper-range sum, the first sum within the latter
cancels with the second sum within the former, yielding

m+n+1∑

i=1

tiCi
dm+n+1,i

wm+n+1
− an+1 F

wm+n

wm+n+1
.
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Now let us tackle the second sum in the above expression for G, namely

−
n∑

j=1

ãj F
(

− dm+j,m+n
wm+n+1

w2
m+n

)
B wm+n

wm+n+1

=

n∑

j=1

ãj

(
αn+1,m+j F − F

dm+n+1,m+j

wm+n

) wm+n

wm+n+1

=

⎛
⎝

n∑

j=1

αn+1,m+j ãj

⎞
⎠ F wm+n

wm+n+1
−

n∑

j=1

ãj F
dm+n+1,m+j

wm+n+1
,

where the expression in parentheses is an+1 − ãn+1 by the definition of the ãj . Alto-
gether we obtain now

G =

m+n+1∑

i=1

tiCi
dm+n+1,i

wm+n+1
−

n∑

j=1

ãj F
dm+n+1,m+j

wm+n+1

−
(
an+1 F

wm+n

wm+n+1
− (an+1 − ãn+1)F

wm+n

wm+n+1

)

=

m+n+1∑

i=1

tiCi
dm+n+1,i

wm+n+1
−

n+1∑

j=1

ãj F
dm+n+1,m+j

wm+n+1
,

which is indeed (3.7) with n+ 1 in place of n.
In concluding this appendix, let us also mention that Theorem 3.4 is also valid if

B is taken to be the operator
� b

x
with finite b ∈ R rather than b = ∞. The reason is

that the operator identities from [18] are also valid in this case (and were actually set
up for this case in the first place).
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Symbolic Scientific Computing: Progress and Prospects, U. Langer and P. Paule, eds.,
Springer-Wien, New York, Vienna, 2012, pp. 273–331.

[21] A. Salem and K. Said, A simple proof of Sylvester’s (determinants) identity, Appl. Math.
Sci. (Ruse), 2 (2008), pp. 1571–1580.
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Abstract: In this paper, we study algorithmic aspects of linear ordinary integro-differential
operators with polynomial coefficients. Even though this algebra is not noetherian and has zero
divisors, Bavula recently proved that it is coherent, which allows one to develop an algebraic
systems theory. For an algorithmic approach to linear systems theory of integro-differential
equations with boundary conditions, computing the kernel of matrices is a fundamental
task. As a first step, we have to find annihilators, which is, in turn, related to polynomial
solutions. We present an algorithmic approach for computing polynomial solutions and the
index for a class of linear operators including integro-differential operators. A generating set for
right annihilators can be constructed in terms of such polynomial solutions. For initial value
problems, an involution of the algebra of integro-differential operators also allows us to compute
left annihilators, which can be interpreted as compatibility conditions of integro-differential
equations with boundary conditions. We illustrate our approach using an implementation in the
computer algebra system Maple. Finally, system-theoretic interpretations of these results are
given and illustrated on integro-differential equations.

1. INTRODUCTION

A standard RLC circuit is governed by the following linear
integro-differential (ID) equation

L
di(t)

dt
+R i(t) +

1

C

∫ t

0

i(s) ds = v(t), (1)

where L is the inductor, R the resistor, C the capacitor,
i the current, and v the voltage source. ID equations is
a class of equations that naturally appear while modeling
natural phenomena and they appear in many applications.

Using operator notation, (1) can be written as:(
L∂ +R+ C−1

r )
i(t) = v(t). (2)

The integral operator is generally eliminated by differ-
entiating once (1) to get the following linear ordinary
differential (OD) equation:

L
d2i(t)

dt2
+R

di(t)

dt
+

1

C
i(t) =

dv(t)

dt
. (3)

If the current source v is constant, we find again the
classical second order OD equation defining a RLC circuit.
Equation (3) was obtained by pre-multiplying (2) by the
differential operator ∂ and using the fundamental theorem
of analysis stating that ∂

r
= id, i.e.,

r
is a right inverse

of ∂. We note that
r

is in general not a two-sided inverse
since applying the operator

r
∂ to a function y, we get∫ t

0

ẏ(s) ds = y(t)− y(0),

? G.R. was supported by the Austrian Science Fund (FWF): J 3030-
N18.

which shows that
r
∂ = id − E, where E denotes the

evaluation at 0. Initial value problems of linear OD systems
can be algebraically investigated using the evaluation E.

Rings of functional operators (e.g., rings of OD operators,
partial differential (PD) operators, differential time-delay
operators, differential difference operators) were recently
introduced in mathematical systems theory. Since many
control linear systems can be defined by means of a
matrix with entries in a skew polynomial ring or in an Ore
algebra of functional operators (i.e., classes of univariate
or multivariate noncommutative polynomial rings) [6], the
classical polynomial approach to linear systems theory
can be generalized yielding a module-theoretic approach
to linear functional systems [9, 16, 17, 24]. Symbolic
computation techniques (e.g., Gröbner basis techniques)
and computer algebra systems can then be used to develop
dedicated packages for algebraic systems theory [7, 15].

Algebras of ordinary ID operators have recently been
studied within an algebraic approach in [1, 2, 3, 4] and
within an algorithmic approach in [20, 21, 22]. The goal
of the latter works is to provide an algebraic and algorith-
mic framework for studying boundary value problems and
Green’s operators.

Even though linear systems of ID equations play an im-
portant role in different domains and applications (e.g.,
PID controllers), it does not seem that they have been
extensively studied by the mathematical systems commu-
nity. For boundary value systems, we refer to [10, 11] and
the references therein. The first purpose of this paper is to
introduce concepts, techniques, and results developed in

5th IFAC Symposium on System Structure and Control
Part of 2013 IFAC Joint Conference SSSC, FDA, TDS
Grenoble, France, February 4-6, 2013
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the above recents works. In particular, we emphasize that
the algebraic structure of the ring of ID operators with
polynomial coefficients

is much more involved (e.g., zero divisors, non noetherian-
ity) than the one of the ring of OD operators with polyno-
mial coefficients (the so-called Weyl algebra). The funda-
mental issue of computing left/right kernel of a matrix of
ID operators has to be solved towards developing a system-
theoretic approach to linear ID systems. The second goal
of this paper is to study this problem for an ID operator
d ∈ I, by investigating the computation of zero divisors
of d, which allows us to compute compatibility conditions
of the inhomogeneous linear ID equation d y = u. Within
a representation approach, we show that this problem is
related to the computation of polynomial solutions of ID
operators, a problem that is studied in detail in this paper.

2. ORDINARY INTEGRO-DIFFERENTIAL
OPERATORS WITH POLYNOMIAL COEFFICIENTS

In what follows, let k be a field a field of characteristic zero
(i.e., containing a subfield isomorphic to Q). The k-algebra
A(k) of OD operators with coefficients in the polynomial
ring k[t] (Weyl algebra) can be defined in the following two
ways (see, e.g., [8]):

(1) Let k〈X〉 be the free associative k-algebra on X =
{T,∆} (i.e., the k-vector space with the basis formed
by all words over X and the multiplication of basis
elements defined by the concatenation). Then A(k) =
k〈X〉/J , where J is the two-sided ideal of k〈X〉 gen-
erated by Ψ := ∆T −T ∆−1, i.e., J = k〈X〉Ψ k〈X〉.
If t (resp., ∂) is the residue class of T (resp., ∆) in
A(k) = k〈t, ∂〉, then using the relation ∂ t = t ∂ + 1,
any element d of A(k) can uniquely be written as a
finite sum

d =
∑

aij t
i ∂j , aij ∈ k,

which is called the normal form of d ∈ A(k).
(2) Let endk(k[t]) be the k-algebra formed by all the k-

endomorphisms of k[t] (i.e., k-linear maps form k[t]
to k[t]). Then, A(k) can also be be defined as the k-
subalgebra of endk(k[t]) generated by the following
three k-endomorphisms

1: tn 7−→ tn,

t : tn 7−→ tn+1,

∂ : tn 7−→ n tn−1,
∀ n ∈ N

defined on the basis (tn)n∈N of k[t]. In particular, they
respectively correspond to the following operators

1 : k[t] −→ k[t]
p 7−→ p,

t : k[t] −→ k[t]
p 7−→ t p,

∂ : k[t] −→ k[t]
p 7−→ ṗ,

(4)
namely, the identity, the multiplication operator, and
the derivation operator on the polynomial ring k[t].

The first definition of A(k) is by generators (T and ∆) and
relations (Ψ). The second one is in terms of representation
theory. We recall that ∂ t = t ∂+ 1 translates the following
Leibniz rule in the operator language:

∂(t y(t)) = t ∂ y(t) + y(t) = (t ∂ + 1) y(t).

Let us now introduce an important ring of ID operators.

Definition 1. The k-algebra of ordinary ID operators with
polynomial coefficients I(k) is defined as the k-subalgebra
of endk(k[t]) generated by 1, t, ∂ as in (4), and by

r
: k[t] −→ k[t]

tn 7−→ tn+1/(n+ 1), ∀n ∈ N.

The algebra I(k), simply be denoted by I in what follows,
was studied in [1, 3] as a generalized Weyl algebra. See
[20] for the construction of I as a factor algebra of a skew
polynomial ring.

Note that the integral operator
r

corresponds to usual

integral p ∈ k[t] 7−→
∫ t

0
p(s) ds ∈ k[t]. In the algebra I, the

fundamental theorem and a version of integration by parts
can respectively be rewritten as:

∂
r

= 1,
r r

= t
r
−

r
t.

Moreover, the evaluation at 0 can be defined as follows:

E = 1−
r
∂ : p ∈ k[t] 7−→ p(0) ∈ k. (5)

The evaluation E can be used to study initial value
problems.

Note that the operator E naturally induces the existence
of zero divisors in I since, for instance, we have:

∂ E = E
r

= E t = 0.

The left annihilator of d ∈ I, namely,

annI(.d) := {e ∈ I | e d = 0},
can be interpreted as compatibility conditions of the inho-
mogeneous ID equation d y(t) = u(t). Indeed, we have:

∀ e ∈ annI(.d), e u(t) = e d y(t) = 0.

If d is not a zero divisor, then d y = u does not admit
compatibility condition of the form e u = 0, where e ∈ I.
Example 2. Let us consider the following trivial example:

r t
0
y(s) ds = u(t).

The compatibility condition u(0) = 0 corresponds to the
left annihilator E of

r
, i.e., E

r
= 0 in I.

Let us consider the following inhomogeneous ID equation:

t2 ÿ(t)− 2 t ẏ(t) + (t+ 2) y(t)

− (3 t/5 + 2)
r t

0
y(s) ds+ 3/5

r t
0
s y(s) ds = u(t). (6)

The left annihilator of the following IO operator

d = t2 ∂2 − 2 t ∂ + (t+ 2)− (3 t/5 + 2)
r

+ 3/5
r
t ∈ I (7)

yields the compatibility conditions of (6). See Example 22.

For the general construction of the algebra of ID opera-
tors FΦ[∂,

r
] defined over an ordinary ID algebra F and

endowed with a set of characters (i.e., multiplicative linear
functionals) Φ, we refer to [21, 22]. We note that the
algebra I can be seen as a special case of this construction
with F = (k[t], ∂,

r
) and Φ = {E}. Hence, I can be defined

as k〈t, ∂,
r
〉 = k〈T,∆, I〉/J , where J is the two sided ideal

of the free algebra k〈T,∆, I〉 generated by:

∆T − T ∆− 1, ∆ I − 1, I I − T I + I T, T − I ∆T.

In particular, we have the following relations in I
∂ t = t ∂ + 1, ∂

r
= 1,

r r
= t

r
−

r
t, E t = 0,

where E = 1−
r
∂.

More generally, we denote the evaluation at α ∈ k by

Eα : p ∈ k[t] 7−→ p(α) ∈ k.
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The corresponding relations are

∀ α, β ∈ k, Eα t = α and Eβ Eα = Eα.

In contrast to [1, 3], this last approach allows one to have
more than one point evaluation, which is crucial for the
study of boundary value problems.

Let Φ ⊆ k. Identifying α ∈ Φ with the evaluation Eα, we
denote by IΦ the algebra of ID operators with polynomial
coefficients endowed with the set of characters Φ. Then,
every ID operator d ∈ IΦ can be uniquely written as a
sum d = d1 + d2 + d3, where d1 =

∑
aij t

i ∂j is an OD
operator, d2 =

∑
bij t

i
r
tj an integral operator, and

d3 =
∑
α∈Φ

(∑
fij t

i Eα ∂
j +

∑
gij t

i Eα
r
tj
)

(8)

a boundary operator, where aij , bij , fij , and gij ∈ k, and
d1, d2, and d3 contain only finitely nonzero summands. See
[21, 20] for details, in particular, for a Gröbner basis of the
defining relations. For α = 0, a boundary operator (8) is
of the form

∑
cij t

i E0 ∂
k since E

r
= 0.

In the following, we discuss some important algebraic
properties of I. First, since the integral operator

r
is a

right but not a left inverse of the derivation ∂, it is known
that the algebra I is necessarily non noetherian [12]. More

explicitly, if
r i

=
r
· · ·

r
denotes the product of i integral

operators, one verifies that eij =
r i

E ∂j satisfy

eij elm = δjl eim, (9)

where δjl = 1 for j = l, and 0 otherwise; see [12] or
[14, Ex. 21.26]. In particular, I contains infinitely many
orthogonal idempotents eii for all i ∈ N, i.e., eii ejj = δij
for all i, j ∈ N. If we introduce ek = e11 + · · · + ekk ∈ I
for k ≥ 1, then using (9), we get eii = eii ek = ek eii
for 1 ≤ i ≤ k, and the increasing sequence {Ik := I ek}k≥1

(resp., {Ik := ek I}k≥1) of principal left (resp., right) ideals
of I is not stationary (see [12]), which proves that I is not
a left (resp., a right) noetherian ring.

The following fundamental result was obtained by Bavula.

Theorem 3. ([1]). The ring I is coherent, i.e., for every
r ≥ 1, and for all d1, . . . , dr ∈ I, the left (resp., right) I-
module S =

{
(e1, . . . , er) ∈ I1×r |

∑r
i=1 ei di = 0

}
(resp.,

S =
{

(e1, . . . , er)
T ∈ Ir×1 |

∑r
i=1 di ei = 0

}
) is finitely

generated as a left (resp., right) I-module.

Linear systems are usually described by means of finite ma-
trices with entries in a certain ring D. As explained in [18],
if D is a coherent ring, an algebraic systems theory can be
developed as if D was a noetherian ring. Hence, Theorem 3
shows that an algebraic systems theory can be developed
over I. In particular, basic module-theoretic operations of
finitely presented left/right I-modules, namely, left/right
I-modules defined by matrices, are finitely presented, and
thus, finitely generated. For more details, see, e.g., [14, 23].
It is shown in [4] that Theorem 3 cannot be generalized for
more than one differential operator, i.e., for In and n > 1
(partial analogues).

Based on the normal forms for generalized Weyl algebras,
it is shown in [3] that I admits the involution θ

θ(∂) =
r
, θ(

r
) = ∂, θ(t) = t ∂2 +∂ = (t ∂+1) ∂, (10)

i.e., an anti-automorphism of D of order two, namely, the
k-linear map θ satisfies the following two properties:

∀ d, e ∈ D, θ(d e) = θ(e) θ(d), θ2(d) = d.

An important consequence is that many algebraic proper-
ties of left I-modules have a right analogue and conversely.

The computation of syzygies, namely, left/right kernel of a
matrix with entries in I is a central task towards developing
an algorithmic approach to linear systems of ID equations
with boundary conditions based on module theory and
homological algebra. See [6, 15, 19] and references therein.
As a first step, we have to find left/right zero divisors of
elements of I. This problem leads, in turn, to computing
polynomial solutions of ordinary ID equations with bound-
ary conditions.

Finally, in [1, 2, 3], various algebraic properties of I and
important results are proven amongst them a classification
of simple modules, an analogue of Stafford’s theorem, and
of the first conjecture of Dixmier.

3. FREDHOLM AND FINITE-RANK OPERATORS

Several properties of Fredholm operators can be studied
in the purely algebraic setting of linear maps on infinite-
dimensional vector spaces. In [1], such properties are used
to investigate I. It turns out that Fredholm operators are
also very useful for an algorithmic approach to operator
algebras. We review some algebraic properties of Fredholm
operators in the following.

Definition 4. A k-linear map f : V −→W between two k-
vector spaces is called Fredholm if it has finite dimensional
kernel and cokernel, where coker f = W/ im f . The index
of a Fredholm operator f is defined by:

indk f = dimk(ker f)− dimk(coker f).

We have the long exact sequence of k-vector spaces ([23])

0 −→ ker f
i−→ V

f−→W
p−→ coker f −→ 0,

i.e., i is injective, ker f = im i, ker p = im f , and p
is surjective. Then, dimk(coker f) gives the number of
independent k-linear compatibility conditions g(w) = 0 on
w for the solvability of the inhomogeneous linear system
f(v) = w (e.g., f is surjective iff coker f = 0), while
dimk(ker f) measures the degrees of freedom in a solution
(v + u is solution for all u ∈ ker f).

Example 5. Viewing the basic operators 1, t, ∂,
r
∈ I as

k-linear maps on k[t], we get:

ker 1 = ker t = ker
r

= 0, ker ∂ = k,
im 1 = im ∂ = k[t], im t = im

r
= k[t] t.

Hence, they are also Fredholm with index:

indk 1 = 0, indk t = indk
r

= −1, indk ∂ = 1.

If V and W are two finite-dimensional k-vector spaces,
then dimk(coker f) = dimk(W )−dimk(im f) and the rank-
nullity theorem yields dimk V = dimk(im f)+dimk(ker f),

indk f = dimk V − dimkW, (11)

i.e., indk f depends only on the dimensions of V and W .

We also recall the index formula for Fredholm operators.

Proposition 6. Let V ′
f−→ V

g−→ V ′′ be k-linear maps
between k-vector spaces. If two of the maps f , g, and g ◦f
are Fredholm, then so is the third, and:

indk(g ◦ f) = indk g + indk f.
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Definition 7. A k-linear map between two k-vector spaces
is called finite-rank if its image is finite-dimensional.

Example 8. Let us consider E = 1 −
r
∂ ∈ I ⊂ endk(k[x]).

It has an infinite-dimensional kernel kerk E = k[t] t, but its
image imk E = k is one-dimensional. More generally, every
boundary operator d3 ∈ IΦ is obviously of finite rank since
its image is contained in the k-vector space of polynomials
with degree less than or equal n, where n is the maximal
index i with a nonzero coefficient fij or gij in (8).

Clearly, composing a finite-rank map with a linear map
from either side gives again finite-rank map and Proposi-
tion 6 shows that the composition of two Fredholm oper-
ators is a Fredholm operator.

Proposition 9. Let V be a k-vector space and A a k-
subalgebra of endk(V ). Then, FA = {a ∈ A | a Fredholm}
forms a monoid and CA = {c ∈ A | c finite-rank} is a
two-sided ideal of A.

In particular, the boundary operators (Φ) ⊂ IΦ form a two-
sided subideal of Cendk(k[t]) generated by the evaluations
Eα ∈ Φ, and all other ID operators IΦ\(Φ) are Fredholm as
we shall see in Proposition 15. More generally, Bavula has
introduced in [1] the notion of (strong) compact-Fredholm
alternative for an arbitrary k-algebra A.

4. POLYNOMIAL SOLUTIONS OF RATIONAL
INDICIAL MAPS AND POLYNOMIAL INDEX

Computing polynomial solutions of linear systems of OD
is well-studied in symbolic computation since it appears
as a subproblem of many important algorithms. See [5]
and the references therein. In this section, we discuss
an algebraic setting and an algorithmic approach for the
computation of polynomial solutions (kernel), cokernel,
and the “polynomial” index for a general class of linear
operators including ID operators.

For computing the kernel and cokernel of a k-linear map
L : V −→ V ′ on infinite-dimensional k-vector spaces V
and V ′, we can use the following simple consequence of
the snake lemma.

Lemma 10. Let L : V −→ V ′ be a k-linear map and
U ⊆ V , U ′ ⊆ V ′ k-subspaces such that L(U) ⊆ U ′. Let
L′ = L|U : U −→ U ′ and L : V/U −→ V ′/U ′ the induced

k-linear map defined by L(π(v)) = π′(L(v)) for all v ∈ V ,
where π : V −→ V/U (resp., π′ : V ′ −→ V ′/U ′) is the
canonical projection onto V/U (resp., V ′/U ′). Then, we
have the following commutative exact diagram:

0 //U

L′

��

// V

L

��

π // V/U

L
��

// 0

0 //U ′ // V ′ π′
// V ′/U ′ // 0.

(12)

If L is an isomorphism, i.e., V/U ∼= V ′/U ′, then:

kerL′ = kerL, cokerL′ ∼= cokerL.

Moreover, if U and U ′ are two finite-dimensional k-vector
spaces, then L is Fredholm and indk L = dimk U−dimk U

′.

Proof. Since L is an isomorphism, applying the standard
the snake lemma (see, e.g., [23]) to (12), we obtain the
following long exact sequence of k-vector spaces

0 −→ kerL′ −→ kerL −→ 0 −→ cokerL′ −→ cokerL −→ 0,

and the statements about the kernel and cokernel follow.
If U and U ′ are two finite-dimensional k-vector spaces,
then so are kerL′ = kerL and cokerL′ ∼= cokerL and
indk L = indk L

′ = dimk U − dimk U
′ by (11).

From an algorithmic point of view, we want to find finite-
dimensional k-subspaces U and U ′, and an algorithmic
criterion for L being an isomorphism on the remaining
infinite-dimensional parts V/U and V ′/U ′.

The cokernel of a k-linear map f : V −→ W between
two finite-dimensional k-vector spaces V and W can be
characterized as follows. Choosing bases of V and W , there
exists a matrix C ∈ km×n such that f(v) = C v for all
v ∈ V ∼= kn. Computing a basis of the finite-dimensional k-
vector space kerCT and stacking the elements of this basis
into a matrix D ∈ km×p, we get kerCT = imD. Then,
coker f ∼= imDT and, more precisely, if π : W −→ coker f
is the canonical projection onto coker f , then the k-linear
map σ : coker f −→ imD defined by σ(π(w)) = Dw for
all w ∈W , is an isomorphism of k-vector spaces.

Let us study when the k-linear map L : V/U −→ V ′/U ′

is an isomorphism. In what follows, we shall focus on the
polynomial case, namely, V = V ′ = k[t]. To do that, let
us introduce the degree filtration of k[t], namely,

k[t] =
⋃
i∈N

k[t]≤i, k[t]≤i =

i⊕
j=0

k tj ,

defined by the finite-dimensional k-vector spaces k[t]≤i
formed by the polynomials of k[t] of degree less than or
equal to i (we set k[t]≤−1 = 0). Note that this filtration
is induced by any basis {pi}i∈N of k[t] with deg pi = i
for all i ∈ N. We recall that the multiplication operator,
derivation, and integral operator are defined by (4), and
we can check that:

(ti ∂j)(tn) =
n!

(n− j)!
tn−j+i,

(ti
r
tj)(tn) =

1

n+ j + 1
ti+j+n+1.

Definition 11. A k-linear map L : k[t] −→ k[t] is called
rational indicial with rational symbol rsym(L) = (s, q) if
there exist a nonzero rational function q ∈ k(n), cn ∈ k∗,
and M ∈ N such that:

∀ n ≥M ≥ −s, L(tn) = cn q(n) tn+s+lower degree terms.

Example 12. The rational symbols of (4) are:

rsym(1) = (0, 1), rsym(t) = (1, 1),

rsym(∂) = (−1, n), rsym(
r

) =

(
1,

1

(n+ 1)

)
.

Operators such as shift, dilation, convolution operators on
k[t] are also rational indicial. The sum of a rational indicial
map and a finite-rank map is also rational indicial with the
same symbol, as one sees, by choosing the bound M large
enough, e.g., for 1 + t3E0, one can take M = 4.

Let us now state a result for the computation of the
kernel and cokernel of rational indicial maps (compare
with Lemma 6.5. of [1]).

Proposition 13. Let L : k[t] −→ k[t] be a k-linear map. Let

−1 ≤ N, −(N + 1) ≤ s, U = k[t]≤N , U ′ = k[t]≤N+s

be such that L(U) ⊆ U ′. Let L′ = L|U : U −→ U ′ be the
induced map. If degL(tn) = n+ s for all n ≥ N + 1, then:
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kerL′ = kerL, cokerL′ ∼= cokerL.

Moreover, L is a Fredholm operator with indk L = −s.

Proof. Let V = V ′ = k[t] and π : V −→ V/U (resp.,
π′ : V ′ −→ V ′/U ′) be the canonical projection onto V/U
(resp., V ′/U ′). Then, L(π(tn)) = π′(L(tn)) for all n ∈ N .

Now, the condition on the degree of the image L(tn) for
n ≥ N shows that L maps the basis {π(tn)}n≥N of V/U
to a basis of V ′/U ′, and thus, defines an isomorphism. The
result then follows from Lemma 10 after noting that:

dimk U − dimk U
′ = N + 1− (N + 1 + s) = −s.

Given a rational indicial operator with rational symbol
(s, q) and bound M , we obtain a bound N for Propo-
sition 13 by computing the largest nonnegative integer
root l of q and taking N = max(l,M). Hence computing
the kernel and cokernel of L : k[t] −→ k[t] reduces to the
same problem for the k-linear map L′ = L|U : U −→ U ′

between two finite-dimensional k-vector spaces, which can
be solved using basic linear algebra techniques. We have
implemented in Maple the computation of kernel and cok-
ernel of rational indicial maps.

Corollary 14. A rational indicial operator with rational
symbol (s, q) is Fredholm with index −s and its kernel
and cokernel can be effectively computed.

We can explicitly compute the rational symbol (s, q) for
d 6∈ (Φ) from its normal form. The following proposition
is a purely algebraic version of an index theorem (compare
with [1, Proposition 6.1]).

Proposition 15. Let d =
∑
aij t

i ∂j+
∑
bij t

i
r
tj+d3 ∈ IΦ

be an ID operator, where d3 ∈ (Φ), such that d 6∈ (Φ).
Then, the k-linear map

Ld : k[t] −→ k[t],

p 7−→ d(p),
(13)

is rational indicial with rational symbol

s = − indk d = max({i−j | aij 6= 0}∪{i+j+1 | bij 6= 0}),
and q(n) =

∑
i−j=s aij

n!
(n−j)! +

∑
i+j+1=s bij

1
n+j+1 .

5. POLYNOMIAL SOLUTION AND ANNIHILATORS

In the proof of Theorem 3, the fact that the left and right
annihilators are finitely generated I-modules is used, for
which a non-constructive argument is given in [1].

Theorem 16. ([1]). If d ∈ I, then the left (resp., right)
annihilator annI(.d) (resp., annI(d.) := {e ∈ I | d e = 0})
of d is a finitely generated left (resp., right) I-module.

We generalize this result to the right annihilator of a
Fredholm operator d ∈ IΦ with more than one evaluation
using a constructive approach. It is based on the fact that
we can identify (as for the Weyl algebra and I) an integro-
differential operator d with the corresponding linear map
Ld on the polynomial ring k[t].

Theorem 17. The k-algebra homomorphism

χ : IΦ −→ endk(k[t])
d 7−→ Ld,

is a faithful representation of IΦ, i.e., χ is injective.

For a proof that χ is injective, we first observe that for
d 6∈ (Φ), the k-linear map Ld is obviously nonzero by

Proposition 15. So, let d ∈ (Φ) be a boundary operator.
By (8), d is a finite k[t]-linear combination of terms of the
form Eα ∂

i and Eα
r
ti, where α ∈ Φ, namely

d =
∑
α∈Φ

(
l∑
i=0

pα,i Eα ∂
i +

m∑
i=0

qα,i Eα
r
ti

)
, (14)

where pα,i, qα,i ∈ k[t].

Lemma 18. The k-linear functionals Eα ∂
i and Eα

r
ti on

k[t] for i ∈ N and α ∈ k are k-linearly independent.

Proof. This can be seen by evaluating Eα ∂
i and Eα

r
ti

on sufficiently many polynomials of the form (t − c)n for
c ∈ k and n ∈ N since

(1) Evaluating Eα1
, . . . , Eαm for distinct α1, . . . , αm ∈ k

on 1, t, . . . , tm−1 gives a Vandermonde matrix.
(2) Evaluating the functionals Eα ∂, Eα ∂

2, . . . , Eα ∂
m at

(t− c), (t− c)2, . . . , (t− c)m, for arbitrary c ∈ k, gives
a upper triangular matrix with diagonal 1, 2!, . . . ,m!.

(3) Evaluating the functionals Eα
r
, Eα

r
t, . . . , Eα

r
tm−1,

for α 6= 0, at 1, (t − c), (t − c)2, . . . , (t − c)m−1 gives
matrices Am with entries

r α
0
xj(x− c)n dx. For α = 1

and c = 0, this is a Hilbert matrix Hm of order
m. It is well-known that Hilbert matrices and all
its submatrices are invertible. One can verify that
detAm is independent of c and is a nonzero multiple
of detHm.

We can therefore apply the following lemma for linear
functionals on arbitrary vector spaces to describe the
image of a finite-rank operator Ld for a d ∈ (Φ) in terms
of its normal form (14).

Lemma 19. Let V be a k-vector space and λ1, . . . , λn ∈ V ∗
k-linear functionals. Then, the λi are k-linearly indepen-
dent iff there exist v1, . . . , vn ∈ V such that:

∀ i, j = 1, . . . , n, λi(vj) = δij .

Proposition 20. Let d ∈ (Φ) as in (14). Then, we have:

imLd =
∑
α∈Φ

l∑
i=0

k pα,i +
∑
α∈Φ

m∑
i=0

k qα,i.

Proof. The inclusion ⊆ is obvious since Eα ∂
i and Eα

r
ti

are functionals. Let Eα ∂
i or Eα

r
ti be a linear func-

tional corresponding to a nonzero summand in (14). By
Lemma 19 with V = k[t], there exists a polynomial
p ∈ k[t] such that (Eα ∂

i)(p) = 1 (resp., (Eα
r
ti)(p) = 1)

and (Eβ ∂
j)(p) = 0 (resp., (Eβ

r
tj)(p) = 0) for all other

functionals corresponding to nonzero summands of (14).
Then, we get Ld(p) = d(p) = pα,i or Ld(p) = d(p) = qα,i,
which proves the reverse inclusion.

In particular, by Proposition 20, we know that Ld = 0
implies d = 0 also for d ∈ (Φ). Hence χ is injective and
Theorem 17 is proved.

To characterize annIΦ(d.), we use the equivalences

d e = 0 ⇔ Ld e = Ld ◦Le = 0 ⇔ imLe ⊆ kerLd. (15)

If d is Fredholm, i.e., d ∈ I \ (Φ), then kerLd is a finite-
dimensional k-vector space, and thus, e has to be finite-
rank. Thus, we have to compute polynomial solutions
of the Fredholm operator d, i.e., kerLd, and then find
generators for all the e’s satisfying imLe ⊆ kerLd.
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Theorem 21. Let Φ ⊂ k. Let d ∈ IΦ be Fredholm with
kerLd =

∑n
i=1 k ri, where ri ∈ k[t]. Then, we have:

annI(d.) =
∑
α∈Φ

n∑
i=1

(ri Eα) IΦ.

If Φ is finite (i.e., only finitely many evaluations points),
then annI(d.) is a finitely generated right I-module.

Proof. Since imLri Eα = k ri ⊆ kerLd, the inclusion ⊇
follows by (15). Conversely, let e ∈ IΦ as in (14) with
d e = 0. Then, by (15) and Proposition 20, we have

imLe =
∑
α∈Φ

l∑
i=0

k pα,i +
∑
α∈Φ

m∑
i=0

k qα,i ⊆ kerLd =

n∑
i=1

k ri.

Hence, every nonzero pα,i and qα,i can be written as a
k-linear combination of the ri’s. The reverse inclusion
then follows by post-multiplying the generators ri Eα with
suitable ∂i or

r
ti.

The computation of the left annihilator annI(.d) (e.g., for
initial value problems) can be solved by computing the
right annihilator annI(θ(d).), where θ is defined by (10),
and then apply θ to each generator of annI(θ(d).).

All necessary steps for computing right and left annihila-
tors have been implemented based on the Maple package
IntDiffOp [13] for ID operators and boundary problems.

Example 22. Let us compute the compatibility conditions
of (6). Note rsym(θ(d)) = (0, n2 − 3n + 2), where θ(d) =
(t2+t−3/5) ∂2−(2 t+1) ∂+2. The largest nonnegative in-
teger root of q is 2. With this bound N for Proposition 13,
we get for the kernel kerLθ(d) = k (t2+3/5)+k (t+1/2). By

Theorem 21, annI(θ(d).) = ((t2 + 3/5) E) I+ ((t+ 1/2) E) I.
Computing the involution of these generators yield the left
annihilator annI(.d) = I (2 E ∂2 +3/5 E)+ I (E ∂+1/2 E) for
(7), which correspond to the compatibility conditions:

2 ü(0) + 3/5u(0) = 0, u̇(0) + 1/2u(0) = 0.
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The concept of integro-differential algebra has been introduced recently in the study of
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© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and goal

Differential algebra [28,33] is the study of differentiation and nonlinear differential equations by purely algebraic means,
without using an underlying topology. It has been largely successful in many important areas like uncoupling of nonlinear
systems, classification of singular components, and detection of hidden equations. There are various implementations
that offer the main algorithms needed for such tasks, for instance the DifferentialAlgebra package in the MapleTM
system [10].

In view of applications, there is one crucial component that does not fit well in differential algebra—the treatment of
initial or boundary conditions. The problem is that the elements of a differential algebra or field are abstractions that cannot
be evaluated at a specific point. For bridging this gap (first in a specific context of two-point boundary problems), a new
framework was set up in [34] with the following features:

• Differential algebras are enhanced by two evaluations (multiplicative functionals to the ground field) and two integral
operators (Rota–Baxter operators), leading to the notion of analytic algebra.

• The usual ring of differential operators is generalized to a ring of integro-differential operators.
• Boundary problems are formulated in terms of the operator ring (differential equations as usual, boundary conditions in

terms of the evaluations).
• The Green’s operator of a boundary problem is computed as an element of the operator ring.

The algebraic framework of boundary problems was subsequently refined and extended by a multiplicative structure with
results on the corresponding factorizations along a given factorization of the differential operator [35,38]. The factorization
approach to boundary problems was applied in [2,3] to find closed-form and asymptotic expressions for ruin probabilities
and associated quantities in risk theory.
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Moreover, it was realized that the algebraic theory of boundary problems is intimately related to the theory of Rota–
Baxter algebras, which can be regarded as an algebraic study of both the integral and summation operators, even though
it originated from the probability study of G. Baxter [7] in 1960. Rota–Baxter algebras have found extensive applications in
mathematics and physics, including quantum field theory and the classical Yang–Baxter equation [4,14,15,18,19,25]. In a
nutshell, the relation with Rota–Baxter algebras is this: In the differential algebra C∞(R), every point evaluation φ gives rise
to a unique Rota–Baxter operator (1−φ)◦


, where


is any fixed integral operator, say f →

 x
0f (ξ) dξ . See also Theorem2.5

below for a more general relation between evaluations and integral operators. We refer to [5,6] for an extensive study on
algebraic properties of integro-differential operators with polynomial coefficients and a single evaluation (corresponding to
initial value problems).

The algebraic approach to boundary problems is currently developed for linear ordinary differential equations although
some effort is under way to cover certain classes of linear partial differential equations [37]. Various parts of the theory have
been implemented, first as external Mathematica R⃝-Theorema reasoner [34], then as internal Theorema code [37,38], and
recently in a MapleTM package with new features for singular boundary problems [29].

1.2. Main results and outline of the paper

Our main purpose in this paper is to explicitly construct free objects in the category of λ-integro-differential algebras,
which is at the heart of the algebraic framework of boundary problems described above. The existence of such free objects
is known from universal algebra via equivalence classes of terms modulo the identities they satisfy [9,12,30] and from
category theory via adjoint functors andmonads; see [31, Chapter VI] and the references therein. But to construct free objects
explicitly in terms of normal forms is often a non-trivial task. In the case of λ-integro-differential algebras, we make use of
the construction of free objects in a structure closely related to the λ-integro-differential algebra, namely the differential
Rota–Baxter algebra. A Rota–Baxter algebra is an algebraic abstraction of a reformulation of the integral by parts formula
where only the integral operator appears. Free commutative Rota–Baxter algebras were obtained in [21,22] in terms of
shuffles and the more general mixable shuffles of tensor powers.

More recently the concept of a differential Rota–Baxter algebrawas introduced [23] by putting a differential operator and
a Rota–Baxter operator of the same weight together such that one is the one side inverse of the other as in the Fundamental
Theorem of Calculus. One advantage of this relatively independent combination of the two operators in a differential Rota–
Baxter algebra is that the free objects can be constructed quite easily by building the free Rota–Baxter algebra on top of the
free differential algebra. Since the axiom of an integro-differential algebra requires more intertwined relationship between
the differential and Rota–Baxter operators, a free integro-differential algebra is a quotient of a free differential Rota–Baxter
algebra. With this as the starting point of our construction of free integro-differential algebras, our strategy is to find an
explicitly defined linear basis for this quotient from the known basis of the free differential Rota–Baxter algebra by tensor
powers. For this purpose we use regular differential algebras as our basic building block for the tensor powers.

In Section 2, we first introduce the concept of an integro-differential algebra of weight λ and study their various
characterizations, especially those in connection with differential Rota–Baxter algebras. In Section 3, we start with recalling
free commutative Rota–Baxter algebras of weight λ and then free commutative differential Rota–Baxter algebras of weight
λ and derive the existence of free commutative integro-differential algebras. The explicit construction of free objects in the
category of λ-integro-differential algebras is carried out in Section 4 (Theorem 4.6) with a preparation on regular differential
algebras and a detailed discussion on the regularity of the differential algebras of differential polynomials and rational
functions.

2. Integro-differential algebras of weight λ

We first introduce the concepts and basic properties related to λ-integro-differential algebras.

2.1. Definitions and preliminary examples

We recall the concepts of a derivation with weight, a Rota–Baxter operator with weight and a differential Rota–Baxter
algebra with weight, before introducing our definition of an integro-differential algebra with weight.

Definition 2.1. Let k be a unitary commutative ring. Let λ ∈ k be fixed.

(a) A differential k-algebra ofweight λ (also called a λ-differential k-algebra) is a unitary associative k-algebra R together
with a linear operator d : R → R such that

d(xy) = d(x)y + xd(y) + λd(x)d(y) for all x, y ∈ R, (1)

and

d(1) = 0. (2)

Such an operator is called a derivation of weight λ or a λ-derivation.

140 IX



458 L. Guo et al. / Journal of Pure and Applied Algebra 218 (2014) 456–473

(b) A Rota–Baxter k-algebra of weight λ is an associative k-algebra R together with a linear operator P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy) for all x, y ∈ R. (3)

Such an operator is called a Rota–Baxter operator of weight λ or a λ-Rota–Baxter operator.
(c) A differential Rota–Baxter k-algebra of weight λ (also called a λ-differential Rota–Baxter k-algebra) is a differential

k-algebra (R, d) of weight λ and a Rota–Baxter operator P of weight λ such that

d ◦ P = idR.

(d) An integro-differential k-algebra ofweightλ (also called aλ-integro-differential k-algebra) is a differentialk-algebra
(R,D) of weight λ with a linear operator Π : R → R such that

D ◦ Π = idR (4)

and

Π(D(x))Π(D(y)) = Π(D(x))y + xΠ(D(y)) − Π(D(xy)) for all x, y ∈ R. (5)

When there is no danger of confusion, we will suppress λ and k from the notations. We will also denote the set of non-
negative integers by N.

Note that we require that a derivation d satisfies d(1) = 0. This follows from Eq. (1) automatically when λ = 0, but is
a non-trivial restriction when λ ≠ 0. In the next section, we give equivalent characterizations of the hybrid Rota–Baxter
axiom (5) and discuss its relation to the Rota–Baxter axiom (3) as well as consequences of the section axiom (4). Note that
the hybrid Rota–Baxter axiom does not contain a term with the weight λ.

We next give some simple examples of differential Rota–Baxter algebras and integro-differential algebras. Aswe shall see
below (Lemma 2.3), the latter are a special case of the former. Further examples will be given in later sections. In particular,
the algebras ofλ-Hurwitz series are integro-differential algebras (Proposition 3.2). By Theorem4.6, every regular differential
algebra naturally gives rise to the corresponding free integro-differential algebra.

Example 2.2. (a) By the First Fundamental Theorem of Calculus

d
dx

  x

a
f (t)dt


= f (x)

and the conventional integration-by-parts formula x

a
f (t)g ′(t)dt = f (t)g(t) − f (a)g(a) −

 x

a
f ′(t)g(t)dt, (6)

(C∞(R), d/dx,
 x
a ) is an integro-differential algebra ofweight 0. Aswe shall see later in Theorem2.5, integration by parts

is in fact equivalent to the hybrid Rota–Baxter axiom (5).
(b) The following example from [23] of a differential Rota–Baxter algebra is also an integro-differential algebra. Let λ ∈ R,

λ ≠ 0. Let R = C∞(R) denote theR-algebra of smooth functions f : R → R, and consider the usual ‘‘difference quotient’’
operator Dλ on R defined by

(Dλ(f ))(x) = (f (x + λ) − f (x))/λ. (7)

Then Dλ is a λ-derivation on R. When λ = 1, we obtain the usual difference operator on functions. Further, the usual
derivation is D0 := limλ→0Dλ. Now let R be an R-subalgebra of C∞(R) that is closed under the operators

Π0(f )(x) = −


∞

x
f (t)dt, Πλ(f )(x) = −λ


n≥0

f (x + nλ).

For example, R can be taken to be the R-subalgebra generated by e−x: R =


k≥1 Re
−kx. Then Πλ is a Rota–Baxter

operator of weight λ and, for the Dλ in Eq. (7),

Dλ ◦ Πλ = idR for all x, y ∈ R, 0 ≠ λ ∈ R,

reducing to the fundamental theorem D0 ◦ Π0 = idR when λ goes to 0. We note the close relations of (R,Dλ, Πλ) to the
time scale calculus [1] and the quantum calculus [27].

The fact that (R,Dλ, Πλ) is actually an integro-differential algebra follows from Theorem 2.5(g) since the kernel of
Dλ is just the constant functions (in the case λ ≠ 0 one uses that R =


k≥1 Re

−kx does not contain periodic functions).
(c) Here is one example of a differential Rota–Baxter algebra that is not an integro-differential algebra [35, Ex. 3]. Let k be a

field of characteristic zero, A = k[y]/(y4), and (A[x], d), where d is the usual derivation with d(xk) = k xk−1. We define
a k-linear map P on A[x] by

P(f ) = Π(f ) + f (0, 0) y2,
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where Π is the usual integral with Π(xk) = xk+1/(k + 1). Since the second term vanishes under d, we see immediately
that d ◦ P = idA[x]. For verifying the Rota–Baxter axiom (3) with weight zero, we compute

P(f )P(g) = Π(f )Π(g) + g(0, 0) y2 Π(f ) + f (0, 0) y2Π(g) + f (0, 0)g(0, 0) y4,
P(fP(g)) = Π(f (Π(g) + g(0, 0) y2)) = Π(f Π(g)) + g(0, 0) y2 Π(f ),
P(P(f )g) = Π((Π(f ) + f (0, 0) y2) g) = Π(Π(f )g) + f (0, 0) y2 Π(g).

Since y4 ≡ 0 and the usual integral Π fulfills the Rota–Baxter axiom (3), this implies immediately that P does also.
However, it does not fulfill the hybrid Rota–Baxter (5) since for example

P(d(x))P(d(y)) = P(1)P(0) = 0

but we obtain

P(d(x))y + xP(d(y)) − P(d(xy)) = P(1)y + xP(0) − P(y) = (x + y2)y − xy = y3.

for the right-hand side.

2.2. Basic properties of integro-differential algebras with weight

We first show that an integro-differential algebra with weight is a differential Rota–Baxter algebra of the same weight.
We then give several equivalent conditions for integro-differential algebras.

Lemma 2.3. Let (R,D) be a differential algebra of weight λ with a linear operator Π : R → R such that D ◦ Π = idR. Denote
J = Π ◦ D.

(a) The triple (R,D, Π) is a differential Rota–Baxter algebra of weight λ if and only if

Π(x)Π(y) = J(Π(x)Π(y)) for all x, y ∈ R, (8)

and if and only if

J(x)J(y) = J(J(x)J(y)) for all x, y ∈ R. (9)

(b) Every integro-differential algebra is a differential Rota–Baxter algebra.

Note that Eq. (8) does not contain a term with λ. Also note Eq. (9) involves only the initialization J and shows in particular
that im J is a subalgebra.

Proof. (a) Using Eq. (1), we see that

D(Π(x)Π(y)) = xΠ(y) + Π(x)y + λxy.

Hence the Rota–Baxter axiom

Π(x)Π(y) = Π(xΠ(y)) + Π(Π(x)y) + λΠ(xy)

is equivalent to Eq. (8). Moreover, substituting D(x) for x and D(y) for y in Eq. (8), we get the identity (9). Since D is onto by
D ◦ Π = idR, we also obtain Eq. (8) from Eq. (9).
(b) Since J ◦ Π = Π ◦ (D ◦ Π) = Π ◦ idR = Π , we obtain Eq. (8) from the hybrid Rota–Baxter axiom (5) by substituting
Π(x) for x and Π(y) for y. �

Wenow give several equivalent conditions for an integro-differential algebra by startingwith a result on complementary
projectors on algebras.

Lemma 2.4. Let E and J be projectors on a unitaryk-algebra R such that E+J = idR. Then the following statements are equivalent:

(a) E is an algebra homomorphism,
(b) J is a derivation of weight −1,
(c) ker E = im J is an ideal and im E = ker J is a unitary subalgebra.

Proof. ((a) ⇔ (b)) It can be checked directly that E(xy) = E(x)E(y) if and only if J(xy) = J(x)y + xJ(y) − J(x)J(y). Further it
follows from E + J = idR that E(1) = 1 if and only if J(1) = 0.
((a) ⇒ (c)) is clear once we see that the assumption of the lemma implies ker E = im J and im E = ker J .
((c) ⇒ (a)) Let x, y ∈ R. Since R = im E ⊕ ker E, we have x = x1 + x2 and y = y1 + y2 with x1 = E(x), y1 = E(y) ∈ im E and
x2, y2 ∈ ker E. Then E(x1y1) = x1y1 since im E is by assumption a subalgebra. Thus

E(xy) = E(x1y1) + E(x1y2) + E(x2y1) + E(x2y2) = x1y1 = E(x)E(y),

where the last three summands vanish assuming that ker E is an ideal. Moreover, 1 ∈ im E implies E(1) = 1. �
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We have the following characterizations of integro-differential algebras.

Theorem 2.5. Let (R,D) be a differential algebra of weight λ with a linear operator Π on R such that D ◦ Π = idR. Denote
J = Π ◦ D, called the initialization, and E = idR − J , called the evaluation. Then the following statements are equivalent:

(a) (R,D, Π) is an integro-differential algebra;
(b) E(xy) = E(x)E(y) for all x, y ∈ R;
(c) ker E = im J is an ideal;
(d) J(xJ(y)) = xJ(y) and J(J(x)y) = J(x)y for all x, y ∈ R;
(e) J(xΠ(y)) = xΠ(y) and J(Π(x)y) = Π(x)y for all x, y ∈ R;
(f) xΠ(y) = Π(D(x)Π(y)) + Π(xy) + λΠ(D(x)y) and Π(x)y = Π(Π(x)D(y)) + Π(xy) + λΠ(xD(y)) for all x, y ∈ R;
(g) (R,D, Π) is a differential Rota–Baxter algebra and Π(E(x)y) = E(x)Π(y) and Π(xE(y)) = Π(x)E(y) for all x, y ∈ R;
(h) (R,D, Π) is a differential Rota–Baxter algebra and J(E(x)J(y)) = E(x)J(y) and J(J(x)E(y)) = J(x)E(y) for all x, y ∈ R.

Remark 2.6. (I) Items (d) and (e) can be regarded as the invariance formulation of the hybrid Rota–Baxter axiom.
(II) Item (f) can be seen as a ‘‘weighted’’ noncommutative version of integration by parts: One obtains it in case of weight

zero by substituting

g for g in the usual formula (6). Thismotivates also the name integro-differential algebra. Clearly,

in the commutative case the respective left and right versions are equivalent.
(III) Since im E = kerD, the identities in Items (g) and (h) can be interpreted as left/right linearity of respectively Π and J

over the constants of the derivation D, restricted to im J in the case of (h). Note again that (g) and (h) do not contain a
term with λ.

Proof. We first note that under the assumption, we have J2 = Π ◦ (D ◦ Π) ◦ D = Π ◦ idR ◦ D = J and so the initialization J
and evaluation E are projectors. Therefore

kerD = ker J = im E and imΠ = im J = ker E, (10)

and

R = kerD ⊕ imΠ

is a direct sum decomposition.
((a) ⇔ (b)). It follows from Lemma 2.4 since the hybrid Rota–Baxter axiom (5) can be rewritten as

J(x)J(y) = J(x)y + xJ(y) − J(xy) for all x, y ∈ R. (11)

((b) ⇔ (c)). It follows from Lemma 2.4, since kerD = ker J = im E is a unitary subalgebra by Eqs. (1) and (2).
((a) ⇒ (e)). We obtain (e) by substituting in Eq. (11) respectively Π(y) for y and Π(x) for x.
((e) ⇔ (d)). Substituting respectively D(y) for y and D(x) for x in (e) gives (d). Conversely, substituting respectively Π(y) for
y and Π(x) for x in (d) gives (e).
((e) ⇔ (f)). It follows from Eq. (1).
((a) ⇒ (g)). By Lemma 2.3, (R,D, Π) is a differential Rota–Baxter algebra. Furthermore, using Eq. (1) and D ◦ E = 0, we see
that

D(E(x)Π(y)) = E(x)y and D(Π(x)E(y)) = xE(y)

and so

J(E(x)Π(y)) = Π(E(x)y) and J(Π(x)E(y)) = Π(xE(y)).

Since we have proved (e) from (a), we can respectively substitute E(x) for x and E(y) for y in (e) to get (g).
((g) ⇔ (h)). Further, from Π(E(x)y) = E(x)Π(y) we obtain

J(E(x)J(y)) = Π(D(E(x)J(y))) = Π(E(x)D(y)) = E(x)J(y),

Conversely, from J(E(x)J(y)) = E(x)J(y) we obtain

Π(E(x)y) = Π(D(E(x)Π(y))) = J(E(x)Π(y)) = J(E(x)J(Π(y))) = E(x)Π(y)

using Π = J ◦ Π and D(E(x)Π(y)) = E(x)y. This proves the equivalence of the first equations in (g) and (h); the same proof
gives the equivalence of the second equations.
((d) ⇒ (c)). This is clear since the identities imply that im J is an ideal.
((h) ⇒ (e)). Note that J(E(x)J(y)) = E(x)J(y) gives

J(xJ(y)) − J(J(x)J(y)) = xJ(y) − J(x)J(y)

and hence J(xJ(y)) = xJ(y) with the Rota–Baxter axiom in the form of Eq. (9). The identity J(J(x)y) = J(x)y follows
analogously. �
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3. Free commutative integro-differential algebras

We first review the constructions of free commutative differential algebra with weight, free commutative Rota–Baxter
algebras and free commutative differential Rota–Baxter algebras. These constructions are then applied in Section 3.3 to
obtain free commutative integro-differential algebras and will be applied in Section 4 to give an explicit construction of free
commutative integro-differential algebras.

3.1. Free and cofree differential algebras of weight λ

We recall the construction [23] of free commutative differential algebras of weight λ.

Theorem 3.1. Let X be a set. Let

∆(X) = X × N = {x(n)
 x ∈ X, n ≥ 0}.

Let k{X} be the free commutative algebra k[∆X] on the set∆X. Define dX : k{X} → k{X} as follows. Letw = u1 · · · uk, ui ∈ ∆X,
1 ≤ i ≤ k, be a commutative word from the alphabet set ∆(X). If k = 1, so that w = x(n)

∈ ∆(X), define dX (w) = x(n+1). If
k > 1, recursively define

dX (w) = dX (u1)u2 · · · uk + u1dX (u2 · · · uk) + λdX (u1)dX (u2 · · · uk).

Further define dX (1) = 0 and then extend dX to k{X} by linearity. Then (k{X}, dX ) is the free commutative differential algebra of
weight λ on the set X.

The use of k{X} for free commutative differential algebras of weight λ is consistent with the notation of the usual free
commutative differential algebra (when λ = 0).

We also review the following construction from [23]. For any commutative k-algebra A, let AN denote the k-module of
all functions f : N → A. We define the λ-Hurwitz product on AN by defining, for any f , g ∈ AN, fg ∈ AN by

(fg)(n) =

n
k=0

n−k
j=0


n
k


n − k

j


λkf (n − j)g(k + j).

We denote the k-algebra AN with this product by DA, and call it the k-algebra of λ-Hurwitz series over A. It was shown
in [23] that DA is a differential Rota–Baxter algebra of weight λ with the operators

D : DA → DA, (D(f ))(n) = f (n + 1), n ≥ 0, f ∈ DA,

Π : DA → DA, (Π(f ))(n) = f (n − 1), n ≥ 1, (Π(f ))(0) = 0, f ∈ DA.

In fact, DA is the cofree differential algebra of weight λ on A. We similarly have

Proposition 3.2. The triple (DA,D, Π) is an integro-differential algebra of weight λ.

Proof. Since (DA,D, Π) is a differential Rota–Baxter algebra, we only need to show thatΠ(E(x)y) = E(x)Π(y) for x, y ∈ DA
by Theorem 2.5. But this is clear since im E = kerD = A and Π is A-linear. �

3.2. Free commutative Rota–Baxter algebras

We briefly recall the construction of free commutative Rota–Baxter algebras. Let A be a commutative k-algebra. Define

X(A) =


k∈N

A⊗(k+1)
= A ⊕ A⊗2

⊕ · · · , (12)

where and hereafter all the tensor products are taken over k unless otherwise stated. Let a = a0 ⊗ · · · ⊗ am ∈ A⊗(m+1) and
b = b0 ⊗ · · · ⊗ bn ∈ A⊗(n+1). Ifm = 0 or n = 0, define

a � b =


(a0b0) ⊗ b1 ⊗ · · · ⊗ bn, m = 0, n > 0,
(a0b0) ⊗ a1 ⊗ · · · ⊗ am, m > 0, n = 0,
a0b0, m = n = 0.

(13)

If m > 0 and n > 0, inductively (onm + n) define

a � b = (a0b0) ⊗


(a1 ⊗ a2 ⊗ · · · ⊗ am) � (1A ⊗ b1 ⊗ · · · ⊗ bn) + (1A ⊗ a1 ⊗ · · · ⊗ am) � (b1 ⊗ · · · ⊗ bn)

+ λ (a1 ⊗ · · · ⊗ am) � (b1 ⊗ · · · ⊗ bn)

. (14)

Extending by additivity, we obtain a k-bilinear map

� : X(A) × X(A) → X(A).
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Alternatively,

a � b = (a0b0) ⊗ (aXλ b),

where ā = a1 ⊗ · · · ⊗ am, b̄ = b1 ⊗ · · · ⊗ bn and Xλ is the mixable shuffle (quasi-shuffle) product of weight λ [19,21,26],
which specializes to the shuffle product X when λ = 0.

Define a k-linear endomorphism PA onX(A) by assigning

PA(a0 ⊗ a1 ⊗ · · · ⊗ an) = 1A ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an,

for all a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗(n+1) and extending by additivity. Let jA : A → X(A) be the canonical inclusion map.

Theorem 3.3 ([21,22]). The pair (X(A), PA), together with the natural embedding jA : A → X(A), is a free commutative
Rota–Baxter k-algebra on A of weight λ. In other words, for any Rota–Baxter k-algebra (R, P) and any k-algebra map ϕ : A → R,
there exists a unique Rota–Baxter k-algebra homomorphism ϕ̃ : (X(A), PA) → (R, P) such that ϕ = ϕ̃ ◦ jA as k-algebra
homomorphisms.

Since � is compatible with the multiplication in A, we will suppress the symbol � and simply denote xy for x� y inX(A),
unless there is a danger of confusion.

Let (A, d) be a commutative differential k-algebra of weight λ. Define an operator dA onX(A) by assigning

dA(a0 ⊗ a1 ⊗ · · · ⊗ an) = d(a0) ⊗ a1 ⊗ · · · ⊗ an + a0a1 ⊗ a2 ⊗ · · · ⊗ an + λd(a0)a1 ⊗ a2 ⊗ · · · ⊗ an (15)

for a0 ⊗ · · ·⊗ an ∈ A⊗(n+1) and then extending by k-linearity. Here we use the convention that dA(a0) = d(a0) when n = 0.

Theorem 3.4 ([23]). Let (A, d) be a commutative differential k-algebra of weight λ. Let jA : A → X(A) be the k-algebra
embedding (in fact a morphism of differential k-algebras of weight λ). The quadruple (X(A), dA, PA, jA) is a free commutative
differential Rota–Baxter k-algebra of weight λ on (A, d).

3.3. The existence of free commutative integro-differential algebras

The free objects in the category of commutative integro-differential algebras of weight λ are defined in a similar fashion
as for the category of commutative differential Rota–Baxter algebras.

Definition 3.5. Let (A, d) be a λ-differential algebra over k. A free integro-differential algebra of weight λ on A is an
integro-differential algebra (ID(A),DA, ΠA) of weight λ together with a differential algebra homomorphism iA : (A, d) →

(ID(A), dA) such that, for any integro-differential algebra (R,D, Π) of weight λ and a differential algebra homomorphism
f : (A, d) → (R,D), there is a unique integro-differential algebra homomorphism f̄ : ID(A) → R such that f̄ ◦ iA = f .

As in Theorem 3.4, let (X(A), dA, PA) be the free commutative differential Rota–Baxter algebra generated by the
differential algebra (A, d). Then by Theorem 2.5, we have

Theorem 3.6. Let (A, d) be a commutative differential k-algebra of weight λ. Let IID be the differential Rota–Baxter ideal ofX(A)
generated by the set

{J

E(x)J(y)


− E(x)J(y)

x, y ∈ X(A)},

where J and E denote the projectors PA ◦ dA and idA − PA ◦ dA, respectively. Let δA (resp. ΠA) denote dA (resp. PA) modulo IID. Then
the quotient differential Rota–Baxter algebra (X(A)/IID, δA, ΠA), together with the natural map iA : A → X(a) → X(A)/IID,
is the free integro-differential algebra of weight λ on A.

Proof. Let a λ-integro-differential algebra (R,D, Π) be given. Then by Theorem 2.5, (R,D, Π) is also a λ-differential Rota–
Baxter algebra. Thus by Theorem 3.4, there is a unique homomorphism f̃ : X(A) → R such that the left triangle of the
following diagram commutes.

(X(A), dA, PA)
π

))RRRRRRRRRRRRR

f̃

��

(A, d)

jA
88qqqqqqqqqqq

f

&&MMMMMMMMMMM (X(A)/IID, δA, ΠA)

f̄

uulllllllllllll

(R,D, Π)

Since (R,D, Π) is a λ-integro-differential algebra, f̃ factors throughX(A)/IID and induces the λ-integro-differential algebra
homomorphism f̄ such that the right triangle commutes. Since iA = π ◦ jA, we have f̄ ◦ iA = f as needed.
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Suppose f̄1 : X(A)/IID → R is also aλ-integro-differential algebra homomorphism such that f̄1◦iA = f . Define f̃1 = f̄1◦π .
Then f̃1 ◦ jA = f . Thus by the universal property ofX(A), we have f̃1 = f̃ . Since π is surjective, we must have f̄1 = f̄ . This
completes the proof. �

4. Construction of free commutative integro-differential algebras

As mentioned in Section 1, in integro-differential algebras the relation between d and Π is more intimate than in
differential Rota–Baxter algebras. This makes the construction of their free objects more complex. Having ensured their
existence in (Section 3.3), we introduce a vast class of differential algebras for which our construction applies (Section 4.1).
Next we present the details of the construction and some basic properties (Section 4.2), leading on to the proof that it yields
the desired free object (Section 4.3). The construction applies in particular to rings of differential polynomials k{u}, yielding
the free object over one generator, and to the ring of rational functions (Section 4.4).

4.1. Regular differential algebras

A free commutative integro-differential algebra can be regarded as a universal way of constructing an integro-differential
algebra from a differential algebra. The easiest way of obtaining an integro-differential algebra from a differential algebra
occurswhen (A, d) already has an integral operatorΠ . Thismeans in particular that d◦Π = idA so that the derivation dmust
be surjective. But often this will not be the case, for example when A = k{u} is the ring of differential polynomials (where u
is clearly not in the image of d). But even if we cannot define an antiderivative (meaning a right inverse for d) on all of A, we
may still be able to define one on d(A) using an appropriate quasi-antiderivative Q . This means we require d(Q (y)) = y
for y ∈ d(A) or equivalently d(Q (d(x))) = d(x) for x ∈ A. For a general operator d, an operator Q with this property
is called an inner inverse of d. It exists for many important differential algebras, in particular for differential polynomials
(Proposition 4.10) and rational function (Proposition 4.12).

Before coming back to differential algebras, we recall some properties of generalized inverses for linear maps on k-
modules; for further details and references see [32, Section 8.1.].

Definition 4.1. Let L : M → N be a linear map between k-modules.

(a) If a linear map L̄ : N → M satisfies L ◦ L̄ ◦ L = L, then L̄ is called an inner inverse of L.
(b) If L has an inner inverse, then L is called regular.
(c) If a linear map L̄ : N → M satisfies L̄ ◦ L ◦ L̄ = L̄, then L̄ is called an outer inverse of L.
(d) If L̄ is an inner inverse and outer inverse of L, then L̄ is called a quasi-inverse or generalized inverse of L.

Proposition 4.2. Let L : M → N be a linear map between k-modules.

(a) If L has an inner inverse L̄ : N → M, then S = L ◦ L̄ : N → N is a projector onto im L and E = idM − L̄ ◦ L : M → M is a
projector onto ker L.

(b) Given projectors S : N → N onto im L and E : M → M onto ker L, there is a unique quasi-inverse L̄ of L such that im L̄ = ker E
and ker L̄ = ker S. Thus a regular map has a quasi-inverse.

Proof. (a) This statement is immediate.
(b) If L is regular, then by Item (a), there are submodules ker E ⊆ M and ker S ⊆ N such that

M = ker L ⊕ ker E, N = im L ⊕ ker S.

Thus L induces a bijection L : ker E → im L. Define L̄ : N → M to be the inverse of this bijection on im L and to be zero on
ker S, then we check directly that L̄ is a quasi-inverse of L and the unique one such that im L̄ = ker E and ker L̄ = ker S. See
also [32, Theorem 8.1.]. �

For a quasi-inverse L̄ of Lwe note the direct sums

M = im L̄ ⊕ ker L and N = im L ⊕ ker L̄.

Moreover, let

J = idM − E and T = idN − S,

then we have the relations

ME := im E = ker L = ker J, MJ := im J = im L̄ = ker E

NS := im S = im L = ker T , NT := im T = ker L̄ = ker S

for the corresponding projectors.
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The intuitive roles of the projectors E and J are similar as in Section 2.2, except that the ‘‘evaluation’’ E is not necessarily
multiplicative and the image of the ‘‘initialization’’ J need not be an ideal. The projector S may be understood as extracting
the solvable part of N , in the sense of solving L(x) = y for x, as much as possible for a given y ∈ N .

Let us elaborate on this. Writing respectively yS = S(y) and yT = T (y) for the ‘‘solvable’’ and ‘‘transcendental’’ part of
y, the equation L(x) = yS is clearly solved by x∗

= L̄(yS) while L(x) = yT is only solvable in the trivial case yT = 0. So the
identity L(x∗) = y − T (y) may be understood in the sense that x∗ solves L(x) = y except for the transcendental part. We
illustrate this in the following example.

Example 4.3. Consider the field C(x) of complex rational functions with its usual derivation d. We take d to be the linear
map L : M → N where M = N = C(x). Any rational function can be represented by f /g with a monic denominator g =

(x − α1)
n1 · · · (x − αk)

nk having distinct roots αi ∈ C. By partial fraction decomposition, it can be written uniquely as

r +

k
i=1

ni
j=1

γij

(x − αi)j
,

where r ∈ C[x] and γij ∈ C. Then for the domain C(x) of d, we have the decomposition

C(x) = ker d ⊕ C(x)J

with ker d = C and

C(x)J =


r +

k
i=1

ni
j=1

γij

(x − αi)j

 r ∈ xC[x], αi ∈ C distinct, γij ∈ C


as the initialized space. For the range C(x) of d, we have the decomposition

C(x) = im d ⊕ C(x)T ,

with

im d =


r +

k
i=1

ni
j=2

γij

(x − αi)j

 r ∈ C[x], αi ∈ C distinct, γij ∈ C


and

C(x)T =


k

i=1

γi

x − αi

αi ∈ C distinct, γi ∈ C


as the transcendental space.

By Proposition 4.2 there exists a unique quasi-inverse Q : C(x) → C(x) of d corresponding to the above decompositions,
which we can describe explicitly. On im d we define Q by setting Q (xk) = xk+1/(k + 1) for k ≥ 0 and Q (1/(x − α)j) =

1/(1 − j)(x − α)j−1 for j > 1, and we extend it by zero on C(x)T . Analytically speaking, the quasi-antiderivative Q acts
as
 x

0 on the polynomials and as
 x

−∞
on the solvable rational functions: Since C(x) is not an integro-differential algebra, it

is not possible to use a single integral operator. The associated codomain projector S = d ◦ Q extracts the solvable part by
filtering out the residues 1/(x−α); their antiderivativeswould need logarithms,which are not available inC(x). The domain
projector E = idC(x) − Q ◦ d is almost like evaluation at 0 but is not multiplicative according to Theorem 2.5 since C(x)J
cannot be an ideal of the fieldC(x). In fact, one checks immediately that E(x ·1/x) = E(1) = 1 but E(x) · E(1/x) = 0 ·0 = 0.

See Proposition 4.12 for the case when d here is replaced by the difference operator or more generally the λ-difference
quotient operator dλ withλ ≠ 0 (Example 2.2).We refer to [11] for details on effectively computing the above decomposition
into solvable and transcendental part of rational functions in the context of symbolic integration algorithms. See also [13]
for necessary and sufficient conditions for the existence of telescopers in the differential, difference, and q-difference case
in terms of (generalizations of) residues.

We can now define what makes a differential algebra such as A = k{u} and A = C(x) adequate for the forthcoming
construction of the free integro-differential algebra.

Definition 4.4. Let (A, d) be a differential algebra of weight λ with derivation d : A → A.

(a) If λ = 0, then (A, d) is called regular if its derivation d is a regular map. Then a quasi-inverse of d is called a quasi-
antiderivative.

(b) If λ ≠ 0, then (A, d) is called regular if its derivation d is a regular map and the kernel of one of its quasi-inverses is a
nonunitary k-subalgebra of A. Such a quasi-inverse of d is called a quasi-antiderivative.

We observe that the class of regular differential algebras is fairly comprehensive in the zero weight case. It includes all
differential algebras over a field k since in that case every subspace is complemented, so all k-linear maps are regular. In
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particular, all differential fields (viewed as differential algebras over their field of constants) are regular. The example C(x)
is a case in point, but note that Example 4.3 provides an explicit quasi-antiderivative rather than plain existence.

The situation is more complex in the nonzero weight case due to the extra restriction on the derivation, which we need
in our construction of free integro-differential algebras. If k is a field, the ring of differential polynomials k{u} is regular
for any weight, and we will provide an explicit quasi-antiderivative that works also when k is a Q-algebra but not a field
(Proposition 4.10). Moreover, the field of complex rational functions C(x) with its usual difference operator is a regular
differential ring of weight one, and this can be extended to arbitrary nonzero weight (Proposition 4.12).

4.2. Construction of ID(A)∗

According to Theorem 3.6, the free integro-differential algebra ID(A) can be described by a suitable quotient. However,
for studying this object effectively, a more explicit construction is preferable. We will achieve this, for a regular differential
algebra A, by defining an integro-differential algebra ID(A)∗, and by showing in the next subsection that it satisfies the
relevant universal property. Hence we may take ID(A)∗ to be ID(A).

4.2.1. Definition of ID(A)∗ and the statement of Theorem 4.6
Let (A, d) be a regular differential algebra with a fixed quasi-antiderivative Q .
Denote

AJ = imQ and AT = kerQ .

Then we have the direct sums

A = AJ ⊕ ker d and A = im d ⊕ AT

with the corresponding projectors E = idA − Q ◦ d and S = d ◦ Q , respectively. As before, we write J = idA − E =

Q ◦ d and T = idA − S for the complementary projectors. Furthermore, we use the notation K := ker d ⊇ k in this
subsection.

We give now an explicit construction of ID(A)∗ via tensor products (all tensors are still over k). First let

XT (A) :=


k≥0

A ⊗ A⊗k
T = A ⊕ (A ⊗ AT ) ⊕ (A ⊗ A⊗2

T ) + · · ·

be the k-submodule ofX(A) in Eq. (12). Under our assumption that AT is a subalgebra of A when λ ≠ 0,XT (A) is clearly
a k-subalgebra of X(A) under the multiplication in Eqs. (13) and (14). It is also closed under the derivation dA defined in
Eq. (15). Alternatively,

XT (A) = A ⊗ X+(AT )

is the tensor product algebra whereX+(AT ) :=


n≥0 A
⊗n
T is the mixable shuffle algebra [19,21,26] on the k-algebra AT . In

the case λ = 0, this is the plain shuffle algebra, where it is sufficient for AT to have the structure of a k-module. So a pure
tensor a of A ⊗ X+(AT ) is of the form

a = a ⊗ a ∈ A ⊗ A⊗n
T ⊆ A⊗(n+1). (16)

We then define the length of a to be n + 1.
Next let ε : A → Aε be an isomorphism of K -algebras, where

Aε := {ε(a) | a ∈ A}

denotes a replica of the K -algebra A, endowed with the zero derivation. We identify the image ε(K) ⊆ Aε with K so that
ε(c) = c for all c ∈ K . Finally let

ID(A)∗ := Aε ⊗K XT (A) = Aε ⊗K A ⊗ X+(AT ) (17)

denote the tensor product differential algebra of Aε and XT (A), namely the tensor product algebra where the derivation
(again denoted by dA) is defined by the Leibniz rule.

4.2.2. Definition of ΠA

Wewill define a linear operatorΠA on ID(A)∗. First require thatΠA is linear over Aε . Thuswe just need to defineΠA(a) for
a pure tensor a in A⊗X+(AT ). We will accomplish this by induction on the length n of a. When n = 1, we have a = a ∈ A.
Then we have

a = d(Q (a)) + T (a) with T (a) ∈ AT (18)

and we define

ΠA(a) := Q (a) − ε(Q (a)) + 1 ⊗ T (a). (19)
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Assume ΠA(a) has been defined for a of length n ≥ 1 and consider the case when a has length n + 1. Then a = a ⊗ awhere
a ∈ A, a ∈ A⊗n

T and we define

ΠA(a ⊗ a) := Q (a) ⊗ a − ΠA(Q (a)a) − λ ΠA(d(Q (a)) a) + 1 ⊗ T (a) ⊗ a, (20)

where the first and last terms aremanifestly inA⊗X+(AT )while themiddle terms are in ID(A)∗ by the inductionhypothesis.
Wewrite EA = idID(A)∗ −ΠA ◦dA for what will turn out to be the ‘‘evaluation’’ corresponding toΠA (see the discussion before
Example 4.3).

We display the following relationship between ΠA, PA and ε for later application.

Lemma 4.5. (a) For a ∈ A, we have EA(a) = ε(a).
(b) For a ∈ X+(AT ), we have ΠA(a) = PA(a) = 1 ⊗ a.

Proof. (a) Using the direct sum A = AJ ⊕ ker d, we distinguish two cases. If a ∈ ker d = K , then the left-hand side
is a − ΠA(dA(a)) = a − ΠA(0) = a; but the right-hand is a as well since ε : A → Aε is a K -algebra homomorphism.
Hence assume a ∈ AJ = im J . In that case a = J(a) = Q (d(a)) and hence T (d(a)) = d(a) − d(Q (d(a))) = 0.
So ΠA(dA(a)) = ΠA(d(a)) = a − ε(a) by Eq. (19).
(b) This is a special case of Eqs. (18) and (20) with Q (a) = 0 and T (a) = a since a ∈ AT . �

Theorem 4.6. Let (A, d,Q ) be a regular differential algebra of weight λ with quasi-antiderivative Q . Then the triple
(ID(A)∗, dA, ΠA), with the natural embedding

iA : A → ID(A)∗ = Aε ⊗K A ⊗ X+(AT )

to the second tensor factor, is the free commutative integro-differential algebra of weight λ generated by A.

The proof of Theorem 4.6 is given in Section 4.3.
Since AT ∼= A/ im d as k-modules, for different choices of Q , the corresponding AT are isomorphic as k-modules. Then for

λ = 0 the mixable shuffle (i.e., shuffle) algebrasX+(AT ) are isomorphic k-algebras since in that case the algebra structure
of AT is not used; see e.g. Section 2.1 of [24]. When λ ≠ 0, for AT from different choices of Q , they are still isomorphic as
k-modules. But it is not clear that they are isomorphic as nonunitaryk-algebras. Nevertheless, the free commutative integro-
differential algebras derived by Theorem 4.6 are isomorphic due to the uniqueness of the free objects. See Remark 4.13 for
further discussions.

The following is a preliminary discussion on subalgebras as direct sum factors.

Lemma 4.7. Let T and S be projectors on a unitary k-algebra R such that T + S = idR. Then the following statements are
equivalent:

(a) im T = ker S is a subalgebra;
(b) T (T (x)T (y)) = T (x)T (y);
(c) S(xy) = S(S(x)y + xS(y) − S(x)S(y)).

Proof. ((a) ⇔ (b)) It is clear since T is a projector.
((a) ⇒ (c)) It follows from

S(T (x)T (y)) = S((x − S(x))(y − S(y)) = 0.

((c) ⇒ (a)) Clearly, the identity implies that ker S is a subalgebra. �

If S = d ◦ Q as above, we obtain from Lemma 4.7(c) an equivalent identity

Q (xy) = Q (d(Q (x))y + xd(Q (y)) − d(Q (x))d(Q (y)))

in terms of Q and d, since Q ◦ d ◦ Q = Q .

4.3. The proof of Theorem 4.6

We will verify that (ID(A)∗, dA, ΠA) is an integro-differential algebra in Section 4.3.1 and verify its universal property in
Section 4.3.2.

4.3.1. The integro-differential algebra structure on ID(A)∗

Since dA is clearly a derivation, by Theorem 2.5(b), we just need to check the two conditions

dA ◦ ΠA = idID(A)∗ , (21)
EA(xy) = EA(x)EA(y), x, y ∈ ID(A)∗. (22)

IX 149



L. Guo et al. / Journal of Pure and Applied Algebra 218 (2014) 456–473 467

Since Aε is in the kernel of dA and in the ring of constants for ΠA, we just need to verify the equations for pure tensors
x = a, y = b ∈ A ⊗ X+(AT ).

We check Eq. (21) by showing (dA ◦ ΠA)(a) = a for a ∈ A⊗X+(AT ) by induction on the length n ≥ 1 of a. When n = 1,
we have a = a ∈ A and obtain

dA(ΠA(a)) = dA(Q (a) − ε(Q (a)) + 1 ⊗ T (a)) = d(Q (a)) + T (a) = a

by Eq. (18). Under the induction hypothesis, we consider a = a ⊗ awith a ∈ A⊗n
T , n ≥ 1. Then we have

dA(ΠA(a ⊗ a)) = dA

Q (a) ⊗ a − ΠA(Q (a)a) − λ ΠA(d(Q (a)) a) + 1 ⊗ T (a) ⊗ a


= d(Q (a)) ⊗ a + Q (a)a + λ d(Q (a))a − Q (a)a − λ d(Q (a))a + T (a) ⊗ a

= d(Q (a)) ⊗ a + T (a) ⊗ a

= a ⊗ a

by Eq. (18) again.
We next verify Eq. (22). If the length of both x and y are one, then x and y are in A. Then by Lemma 4.5(a), we have

EA(xy) = ε(xy) = ε(x)ε(y) = EA(x)EA(y).

If at least one of x or y have length greater than one, then each pure tensor in the expansion of xy has length greater than
one. Then the equation holds by the following lemma.

Lemma 4.8. For any pure tensor a = a ⊗ a ∈ A ⊗ X+(AT ) of length greater than one we have EA(a) = 0.

Remark 4.9. Combining Lemma 4.5(a) and Lemma 4.8 we have im EA = Aε . Further, by Eq. (10), we have ker dA =

im EA = Aε .

Proof. For a given a = a ⊗ a of length greater than one, we compute

EA(a ⊗ a) = a ⊗ a − ΠA(dA(a ⊗ a)) (by definition of EA)
= a ⊗ a − ΠA(d(a) ⊗ a) − ΠA(aa) − ΠA(λd(a)a) (by definition of dA)
= a ⊗ a − Q (d(a)) ⊗ a + ΠA(Q (d(a))a) + λ ΠA(d(Q (d(a))) a) − 1 ⊗ T (d(a)) ⊗ a

− ΠA(aa) − ΠA(λd(a)a) (by definition of ΠA)

= a ⊗ a − Q (d(a)) ⊗ a + ΠA(Q (d(a))a) − ΠA(aa) (by d ◦ Q ◦ d = d and T (d(a)) = 0)
= E(a) ⊗ a − ΠA(E(a)a) (by definition of E = idA − Q ◦ d).

Since E(A) = K ⊆ Aε and ΠA is taken to be Aε-linear, from Lemma 4.5(b), we obtain

EA(a ⊗ a) = E(a)(1A ⊗ a − ΠA(a)) = 0. �

4.3.2. The universal property
We now verify the universal property of (ID(A)∗, dA, ΠA) as the free integro-differential algebra on (A, d): Let iA : A →

ID(A)∗ be the natural embedding of A into the second tensor factor of ID(A)∗ = Aε ⊗K A ⊗ X+(AT ). Then for any integro-
differential algebra (R,D, Π) and any differential algebra homomorphism f : (A, d) → (R,D), there is a unique integro-
differential algebra homomorphism f̄ : (ID(A)∗, dA, ΠA) → (R,D, Π) such that f̄ ◦ iA = f .
The existence of f̄ : Let a differential algebra homomorphism f : (A, d) → (R,D) be given. Note that f is in fact a K -algebra
homomorphism where the K -algebra structure on R is given by f : K → R. Since (R, Π) is a commutative Rota–Baxter
algebra, by the universal property of X(A) as the free commutative Rota–Baxter algebra on the commutative algebra A,
there is a homomorphism f̃ : (X(A), PA) → (R, Π) of commutative Rota–Baxter algebras such that f̃ ◦ jA = f where
jA : A → X(A) is the embedding into the first tensor factor. This means that f̃ is an A-algebra homomorphism and, in
particular, a K -algebra homomorphism. Thus f̃ restricts to a K -algebra homomorphism

f̃ : A ⊗ X+(AT ) → R.

Further, f also gives a K -algebra homomorphism

fε : Aε → R, ε(a) → f (a) − Π(D(f (a))).

Thus we get an algebra homomorphism on the tensor product over K :

f̄ := fε ⊗K f̃ : Aε ⊗K (A ⊗ X+(AT )) → R

that extends f̃ and fε . Further, we have f̄ ◦ jA = f .
It remains to check the equations

f̄ ◦ dA = D ◦ f̄ , f̄ ◦ ΠA = Π ◦ f̄ . (23)
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Since Aε is in the kernel of dA and in the ring of constants of ΠA, we only need to verify the equations when restricted to
A ⊗ X+(AT ).

Fix a ⊗ a = a(1 ⊗ a) ∈ A ⊗ X+(AT ). By Lemma 4.5(b), we have

Π(f̄ (a)) = Π(f̃ (a)) = f̃ (ΠA(a)) = f̄ (1 ⊗ a).

Thus we obtain

f̄ (dA(a ⊗ a)) = f̄ (d(a) ⊗ a) + f̄ (aa) + f̄ (λd(a)a)
= f (d(a))f̄ (1 ⊗ a) + f (a)f̄ (a) + λf (d(a))f̄ (a)
= D(f (a))f̄ (1 ⊗ a) + f (a)D(Π(f̄ (a))) + λD(f (a))D(Π(f̄ (a)))
= D(f (a))f̄ (1 ⊗ a) + f (a)D(f̄ (1 ⊗ a)) + λD(f (a))D(f̄ (1 ⊗ a))

= D(f (a)f̄ (1 ⊗ a))

= D(f̄ (a ⊗ a)).

This proves the first equation in Eq. (23). We next prove the second equation by induction on the length k ≥ 1 of
a := a ⊗ a ∈ A ⊗ X+(AT ). When k = 1, we have a = a ∈ A and

f̄ (ΠA(a)) = f̄ (Q (a) − ε(Q (a)) + 1 ⊗ T (a))
= f (Q (a)) − f (Q (a)) + Π(D(f (Q (a)))) + Π(f (T (a)))
= Π(f (d(Q (a)) + T (a)))
= Π(f (a)),

using Lemma 4.5(a) and (b). Assume now that the claim has been proved for k = n ≥ 1 and consider a = a ⊗ awith length
n + 1. Then we have

f̄ (ΠA(a ⊗ a)) = f̄ (Q (a) ⊗ a − ΠA(Q (a)a) − λ ΠA(d(Q (a))a) + 1 ⊗ T (a) ⊗ a)

= f̄ (Q (a))f̄ (ΠA(a)) − f̄ (ΠA(Q (a)a)) − λf̄ (ΠA(d(Q (a))a)) + f̄ (PA(T (a) ⊗ a)).

Here we have applied Lemma 4.5(b) in the last term. Applying the induction hypothesis to the first three terms and using
the fact that the restriction f̃ of f̄ to A ⊗ X+(AT ) is compatible with the Rota–Baxter operators in the last term, we obtain

f̄ (ΠA(a ⊗ a)) = f (Q (a))Π(f̄ (a)) − Π(f̄ (Q (a)a)) − λΠ(f̄ (d(Q (a))a)) + Π(f̄ (T (a) ⊗ a))

= Π

D(f (Q (a)))Π(f̄ (a))


+ Π


f (T (a))f̄ (PA(a))


,

where we have used integration by parts in Theorem 2.5(f) in the last step. On the other hand, we have

Π(f̄ (a ⊗ a)) = Π(f (a)f̄ (PA(a)))
= Π


f (d(Q (a)) + T (a))f̄ (PA(a))


= Π


D(f (Q (a)))Π(f̄ (a))


+ Π


f (T (a))f̄ (PA(a))


.

Thus we have completed the proof of the existence of the integro-differential algebra homomorphism f̄ .
The uniqueness of f̄ : Suppose f̄1 : ID(A)∗ → R is a homomorphism of integro-differential algebras such that f̄1 ◦ iA = f . For
1 ⊗ a1 ⊗ · · · ⊗ an ∈ X+(AT ), we have

f̄1(1 ⊗ a1 ⊗ · · · ⊗ an) = f̄1 (ΠA(a1ΠA(· · · ΠA(an) · · · )))

= Π(f (a1)Π(· · · Π(f (an)) · · · ))

= f̄ (ΠA(a1ΠA(· · · ΠA(an) · · · )))

= f̄ (1 ⊗ a1 ⊗ · · · ⊗ an).

Thus the restrictions of f̄ and f̄1 to A ⊗ X+(AT ) are the same. Further, by Lemma 4.5(a),

f̄1(ε(a)) = f (a) − f̄1(ΠA(dA(a))) = f (a) − Π(D(f (a)) = f̄ (ε(a)).

Hence the restrictions of f̄ and f̄1 to Aε are also the same. As these restrictions to A⊗X+(AT ) and Aε are K -homomorphisms,
by the universal property of the tensor product over K , f̄ and f̄1 agree on ID(A)∗ = Aε ⊗K A ⊗ X+(AT ). This proves the
uniqueness of f̄ and thus completes the proof of Theorem 4.6.

4.4. Examples of regular differential algebras

In this section we show that some common examples of differential algebras, namely the algebra of differential
polynomials and the algebra of rational functions, are regular where the weight can be taken arbitrary.
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4.4.1. Rings of differential polynomials
Our main goal in this subsection is to prove that (k{u}, d) is a regular differential algebra for any weight, and to give an

explicit quasi-antiderivative Q for d.
We start by introducing some definitions for classifying the elements of A = k{u}. Let ui, i ≥ 0, be the i-th derivation of

u. Then k{u} is the polynomial algebra on {ui | i ≥ 0}. For α = (α0, . . . , αk) ∈ Nk+1, we write uα
= uα0

0 · · · uαk
k . Furthermore,

we use the convention that uα
= 1 when α ∈ N0 is the degenerate tuple of length zero. Then all monomials of k{u} are

of the form uα , where α contains no trailing zero. The order of such a monomial u(α0,...,αk) ≠ 1 is defined to be k; the
order of u()

= 1 is set to −1. The order of a nonzero differential polynomial is defined as the maximum of the orders of
its monomials. The following classification of monomials is crucial [17,8]: A monomial uα of order k is called functional if
either k ≤ 0 or αk > 1. We write

AT = k{uα
| uα is functional}

for the corresponding submodule. Since the product of two functional monomials is again functional, AT is in fact a k-
subalgebra of A. Furthermore, we write AJ for the submodule generated by all monomials uα

≠ 1.

Proposition 4.10. For any λ ∈ k, the canonical derivation d : A → A of weight λ defined in Theorem 3.1 admits a quasi-
antiderivative Q with associated direct sums A = AT ⊕ im d and A = AJ ⊕ ker d.

Proof. The main work goes into showing the direct sum A = AT ⊕ im d. We first show AT ∩ im d = 0. Let x ∈ A. If x has
order −1, it is an element of k so that d(x) = 0. If x has order k ≥ 0, we distinguish the two cases of λ = 0 and λ ≠ 0. If
λ = 0, then we have d(x) = (∂x/∂uk) uk+1 + x̃, where all terms of x̃ have order at most k. Hence d(x) ∉ AT and therefore
we have AT ∩ im d = 0.

We now turn to the case when λ ≠ 0. By Eq. (1) and an inductive argument, we find that for a product w =


i∈I wi in
A, we have

d(w) =


∅≠J⊆I

λ|J|−1

i∈J

d(wi)

i∉J

wi.

Then for a given monomial uα
= u(α0,...,αk) =

k
i=0 u

αi
i of order kwe have

d(uα) =


0≤βi≤αi,

k
i=0 βi≥1

λβ0+···+βk−1
k

i=0


αi
βi


uαi−βi
i uβi

i+1

=


0≤βi≤αi,

k
i=0 βi≥1

λβ0+···+βk−1


k

i=0


αi
βi


uαi−βi+βi−1
i


uβk
k+1, (24)

with the convention β−1 = 0. Consider the reverse lexicographic order on monomials of order k + 1:

(β0, . . . , βk+1) < (γ0, . . . , γk+1) ⇔ ∃ 0 ≤ n ≤ k + 1 (βi = γi for n < i ≤ k + 1 and βn < γn).

The smallest monomial of order k+ 1 under this order in the sum in Eq. (24) is given by uα0
0 · · · uαk−1

k−1 uαk−1
k uk+1 when βk = 1

and β0 = · · · = βk−1 = 0, coming from uα0
0 · · · uαk−1

k−1 d(uαk
k ). Thus for two monomials of order k with uα < uβ under this

order, the least monomial of order k + 1 in d(uα) is smaller than the least monomial of order k + 1 in d(uβ). In particular,
for the least monomial uα of order k of our given element x of order k ≥ 0, the least monomial of order k + 1 in d(uα) is the
least monomial of order k+ 1 in d(x) and is given by uα0

0 · · · uαk−1
k−1 uαk−1

k uk+1. Since this monomial is not in AT , it follows that
d(x) is not in AT , showing that AT ∩ im d = 0.

Note that the previous argument shows in particular that d(x) ≠ 0 for x ∉ k. Thus we have

A = AJ ⊕ k.

We next show that every monomial uα in k{u} is in AT + im d. We prove this by induction on the order of uα . If the order
is−1 or 0, then uα

∈ AT by definition. Assuming the claim holds for differential monomials of order less than k > 0, consider
now a monomial uα of order k so that α = (α0, . . . , αk). If uα

∈ AT , we are done. If not, we must have αk = 1. Then we
distinguish the cases when λ = 0 and λ ≠ 0. If λ = 0, then

uα
= uα0

0 · · · uαk−1
k−1 uk

= uα0
0 · · · uαk−2

k−2
1

αk−1+1 d(uαk−1+1
k−1 )

= d(uα0
0 · · · uαk−2

k−2
1

αk−1+1 uαk−1+1
k−1 ) − d


uα0
0 · · · uαk−2

k−2

 1
αk−1+1 uαk−1+1

k−1 .

Now the first term in the result is in im d and the second term is in AT + im d by the induction hypothesis, allowing us to
complete the induction when λ = 0.
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Now consider the case when λ ≠ 0. Suppose the claim does not hold for some monomials uα
= u(α0,...,αk−1,1) of order k.

Among these monomials, there is one such that the exponent vector α = (α0, . . . , αk−1, 1) is minimal with respect to the
lexicographic order:

(α0, . . . , αk−1, 1) < (β0, . . . , βk−1, 1) ⇔ ∃ 0 ≤ n ≤ k − 1 (αi = βi for 1 ≤ i < n and αn < βn).

By Eq. (24), we have

d(uαk−1+1
k−1 ) =

αk−1+1
βk−1=1


αk−1 + 1

βk−1


λβk−1−1uαk−1+1−βk−1

k−1 uβk−1
k

= (αk−1 + 1)uαk−1
k−1 uk +

αk−1+1
βk−1=2


αk−1 + 1

βk−1


λβk−1−1uαk−1+1−βk−1

k−1 uβk−1
k .

So

uαk−1
k−1 uk =

1
αk−1+1d(u

αk−1+1
k−1 ) −

αk−1+1
βk−1=2

λβk−1−1

αk−1+1


αk−1 + 1

βk−1


uαk−1+1−βk−1
k−1 uβk−1

k .

Thus

uα
= uα0

0 · · · uαk−1
k−1 uk

= uα0
0 · · · uαk−2

k−2
1

αk−1+1d(u
αk−1+1
k−1 ) −

αk−1+1
βk−1=2

λβk−1−1

αk−1+1


αk−1 + 1

βk−1


uα0
0 · · · uαk−2

k−2 uαk−1+1−βk−1
k−1 uβk−1

k .

The monomials in the sum are in AT . For the first term, by Eq. (1), we have

uα0
0 · · · uαk−2

k−2
1

αk−1+1 d(uαk−1+1
k−1 )

= d

uα0
0 · · · uαk−2

k−2
1

αk−1+1 uαk−1+1
k−1


− d(uα0

0 · · · uαk−2
k−2 ) 1

αk−1+1 uαk−1+1
k−1

− λ d(uα0
0 · · · uαk−2

k−2 )d


1
αk−1+1 uαk−1+1

k−1


.

As in the case of λ = 0, the first term in the result is in im d and the second term has the desired decomposition by the
induction hypothesis. Applying Eq. (24) to both derivations in the third term, we see that the term is a linear combination
of monomials of the form uγ

= u(γ0,...,γk) where

γ = (α0 − β0, α1 − β1 + β0, . . . , αk−2 − βk−2 + βk−3, αk−1 + 1 − βk−1 + βk−2, βk−1)

for some 0 ≤ βi ≤ αi, 0 ≤ i ≤ k − 2 with
k−2

i=0 βi ≥ 1 and βk−1 ≥ 1. If such a monomials has βk−1 ≥ 2, then the
monomial is already in AT . If such a monomial has βk−1 = 1, then it has order k and has lexicographic order less than uα

since
k−2

i=0 βi ≥ 1. By the minimality of uα , this monomial is in AT + im d. Hence uα is in AT + im d. This is a contradiction,
allowing us to completes the induction when λ ≠ 0.

With the two direct sum decompositions, the quasi-antiderivative Q is obtained by Proposition 4.2. �

We can thus conclude that k{u} is indeed a regular differential algebra, as claimed earlier. Hence the construc-
tion ID(k{u})∗ developed in Section 4.2 does yield the free integro-differential algebra over the single generator u.

Proposition 4.11. Let k be a commutativeQ-algebra. Then the free integro-differential algebra ID(k{u}) is a polynomial algebra.

Proof. We first take the coefficient ring to be Q. Since ID(Q{u}) is isomorphic to ID(Q{u})∗, which is given by Eq. (17)
with A = Q{u}, it suffices to ensure thatX+(AT ) is a polynomial algebra. Now observe that AT = QF is the monoid algebra
generated over the set F of functional monomials. One checks immediately that the functional monomials F form a monoid
under multiplication. Hence Theorem 2.3 of [24] is applicable, and we see that the mixable shuffle algebra X+(AT ) =

MSQ,λ(F) is isomorphic to Q[Lyn(F)], where Lyn(F) denotes the set of Lyndon words over F . This proves the proposition
when k = Q. Then the conclusion follows for any commutative Q-algebra k since ID(k{u})∗ ∼= k ⊗Q ID(Q{u})∗. �

4.4.2. Rational functions
We show that the algebra of rational functions with derivation of any weight is regular.

Proposition 4.12. Let A = C(x). For any λ ∈ C let

dλ : A → A, f (x) →


f (x+λ)−f (x)

λ
, λ ≠ 0,

f ′(x), λ = 0,
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be the λ-derivation introduced in Example 2.2(b). Then dλ is regular. In particular the difference operator on C(x) is a regular
derivation of weight one.

Proof. We have considered the case of λ = 0 in Example 4.3. Modifying the notations there, any rational function can be
uniquely expressed as

r +

k
i=1

ni
j=1

γij

(x − αij)i
, (25)

where r ∈ C[x], αij ∈ C are distinct for any given i and γij ∈ C are nonzero. Let 0 ≠ λ ∈ C be given. We have the direct sum
of linear spaces

C[x] ⊕ R = C[x] ⊕


i≥1

Ri,

where R is the linear space from the fractions in Eq. (25), namely the linear space with basis 1/(x − α)i, α ∈ C, 1 ≤ i, and
Ri, for fixed i ≥ 1, is the linear subspace with basis 1/(x − α)i, α ∈ C.

We note that the λ-divided falling factorials


x
n


λ

:=
x(x − λ)(x − 2λ) · · · (x − (n + 1)λ)

n!
, n ≥ 0,

with the convention
x
0


λ

= 1, form a C-basis of C[x]. In fact,
x
n


λ

=
1
n!

n
k=0

s(n, k)λn−kxk, xn = n!
n

k=0

S(n, k)λn−k

x
n


λ

, n ≥ 0,

where s(n, k) and S(n, k) are Stirling numbers of the first and second kind, respectively; see [19,20] for example. By a direct
computation, we have

dλ


x
n


λ


=

x+λ

n


λ
−
x
n


λ

λ
=


x

n − 1


λ

.

Thus dλ(C[x]) = C[x] and hence C[x] ⊆ im dλ. We next note that R, as well as Rk, is also closed under the operator dλ since

λdλ


k

i=1

ni
j=1

γij

(x − αij)i


=

k
i=1

ni
j=1

γij

(x − (αij − λ))i
−

k
i=1

ni
j=1

γij

(x − αij)i
.

Further, for any n ≥ 0 and f (x) ∈ C(x), we have

λdλ


n

i=0

f (x + iλ)


= f (x + (n + 1)λ) − f (x),

and similarly for n < 0,

λdλ


−1
i=n

f (x + iλ)


= f (x) − f (x + nλ).

Thus for any n ∈ Z, we have

f (x) ≡ f (x + nλ) mod im dλ.

In particular,

1/(x − α)i ≡ 1/(x − (α − nλ))i mod im dλ

and hence

1/(x − α)i ≡ 1/(x − β)i mod im dλ,

for some β ∈ C with the real part Re(β) ∈ [0, |Re(λ)|). Consequently, any fraction in R is congruent modulo im dλ to an
element of

C(x)T :=


k

i=1

ni
j=1

γij

(x − αij)i
∈ R

 Re(αij) ∈ [0, |Re(λ)|)


.
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That is,

C(x) = im dλ + C(x)T .

On the other hand, suppose there is a nonzero function

f (x) =

k
i=1

ni
j=1

γij

(x − αij)i
∈ im dλ ∩ C(x)T .

Thus there is g(x) =
k

i=1
mi

j=1
γij

(x−βij)i
such that dλ(g(x)) = f (x). The range of i in f (x) and g(x) are the same since dλ(Ri) ⊆

Ri. Let f (x) =
k

i=1 fi(x) and g(x) =
k

i=1 gi(x) be the homogeneous decompositions of f and g . Then dλ(gi(x)) = fi(x),
1 ≤ i ≤ k. Fix 1 ≤ i ≤ k and take Re(λ) > 0 for now. List βi,1 < · · · < βi,mi according to their lexicographic order from the
pairs (a, b) ↔ a + i b ∈ C. Then we have

λdλ(gi(x)) =

mi
j=1

γij

(x − (βij − λ))i
−

mi
j=1

γij

(x − βij)i
.

The first fraction in the first sum, 1/(x − (βi,1 − λ))i, is not the same as any other fraction in the first sum since they are
translations by λ of distinct fractions in fi, and is not the same as any fraction in the second sum since Re(βi,1 − λ) <
Re(βi,1) ≤ Re(βij) for 1 ≤ j ≤ mi. Similarly the last fraction in the second sum, 1/(x − βi,mi)

i, is not the same as any other
terms in the sums. Thus they both have nonzero coefficients in dλ(gi(x)). But

Re(βi,mi) − Re(βi,1 − λ) = Re(βi,mi − (βi,1 − λ)) = Re(βi,mi − βi,1) + Re(λ) ≥ Re(λ).

Hence Re(βi,mi) and Re(βi,1 − λ) cannot both be in [0, Re(λ)). Thus dλ(gi) and hence dλ(g) cannot be in C(x)T . This is a
contradiction, showing that im dλ ∩ C(x)T = 0. When Re(λ) < 0, we get analogously im dλ ∩ C(x)T = 0. Thus we have
proved

C(x) = im dλ ⊕ C(x)T . (26)

Note that C(x)T is closed under multiplication, hence is a nonunitary subalgebra of C(x).
The above argument shows that dλ(g) is in C(x)T for g ∈ R only when g = 0. Thus ker dλ ∩ R = 0. Since dλ preserves

the decomposition C(x) = C[x] ⊕ R, we have ker dλ = ker(dλ)

C[x] = C. Thus we have the direct sum decomposition

C(x) = ker dλ ⊕ (xC[x] ⊕ R),

and hence dλ is injective on xC[x] ⊕ R with image im dλ. Therefore dλ is regular with quasi-antiderivative Q defined to be
the inverse of

dλ : xC[x] ⊕ R → im dλ

on im dλ and to be zero on its complement C(x)T ; see Proposition 4.2. �

Remark 4.13. We remark that the subalgebra of C(x) that is a complement of im dλ is not unique, thus giving different
quasi-antiderivatives. In fact, from the proof of Proposition 4.12 it is apparent that in the decomposition (26) one can replace
C(x)T by

C(x)T ,a =


k

i=1

ni
j=1

γij

(x − αij)i
∈ R

 Re(αi) ∈ [a, a + | Re(λ)|)


,

for any given a ∈ R. These two subalgebras are isomorphic since C(x)T ,a is isomorphic to the polynomial C-algebra with
generating set

1
x − α

α ∈ [a, a + | Re(λ)|)


.

Remark 4.14. In conclusion, we have given the first construction for the free integro-differential algebra ID(A)∗ over a given
regular differential algebra A. In several ways, this construction is similar to the integro-differential polynomials of [36,38].
This will be clear when one writes out the elements a0 ⊗ a1 ⊗ a2 ⊗ · · · of Eq. (16) in the form a0


a1

a2


· · · . But there are
also some important differences:

(a) The integro-differential polynomials are the polynomial algebra in the variety of integro-differential algebras of weight
zero, not the free algebra in this category. In fact, the polynomial algebra is always a free product of the coefficient
algebra and the free algebra by Theorem 4.31 of [30].

(b) The construction of [36] uses the language of term algebras and rewrite systems whereas in this paper we use a more
abstract approach through tensor products.
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(c) In the integro-differential polynomials, the starting point is a given integro-differential algebra (A,D, Π) instead of a
regular differential algebra as in the present paper. In the former case we can construct nested integrals over differential
polynomials with coefficients in A, whereas in the latter case we can only treat differential polynomials with trivial
coefficients (i.e., the derivation vanishes on them).

It would be interesting to apply the methods used in this paper to rederive and generalize the construction of the integro-
differential polynomials of [36]. This would also shed some light on the constructivemeaning of the free product mentioned
in Item (a) above. An important step in this direction might be generalizing Section 4.4.1 to differential polynomials with
nonzero derivation on the coefficient ring k. See [16] for a construction of the free integro-differential algebra on an arbitrary
set by the method of Gröbner–Shirshov bases.
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We consider generalized inverses of linear operators on arbitrary vector spaces
and study the question when their product in reverse order is again a generalized
inverse. This problem is equivalent to the question when the product of two
projectors is again a projector, and we discuss necessary and sufficient conditions
in terms of their kernels and images alone. We give a new representation of
the product of generalized inverses that does not require explicit knowledge of
the factors. Our approach is based on implicit representations of subspaces via
their orthogonals in the dual space. For Fredholm operators, the corresponding
computations reduce to finite-dimensional problems. We illustrate our results with
examples for matrices and linear ordinary boundary problems.
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1. Introduction
Analogues of the reverse order law (AB)−1 = B−1 A−1 for bijective operators have been
studied intensively for various kinds of generalized inverses. Most articles and books are
concerned with the matrix case; see for example [1–11]. For infinite-dimensional vector
spaces, usually additional topological structures like Banach or Hilbert spaces are assumed;
see for example [12–15]. In our approach, we systematically exploit duality results that
hold in arbitrary vector spaces and a corresponding duality principle for statements about
generalized inverses and projectors; see Appendix A.

The validity of the reverse order law can be reduced to the question whether the product
of two projectors is a projector (Section 2). This problem is studied in [16–18] for finite-
dimensional vector spaces. We discuss necessary and sufficient conditions that carry over
to arbitrary vector spaces and can be expressed in terms of the kernels and images of the
respective operators alone (Section 4).Applying the duality principle leads to new conditions
and a characterization of the commutativity of two projectors that generalizes a result from
[19].

In Section 5, we translate the results for projectors to generalized inverses and obtain
necessary and sufficient conditions for the reverse order law in arbitrary vector spaces.

∗Corresponding author. Email: georg.regensburger@oeaw.ac.at

© 2013 Taylor & Francis
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1568 A. Korporal and G. Regensburger

Based on these conditions, we give a short proof for the characterization in Theorem 5.3
of two operators such that the reverse holds for all inner inverses (also called g-inverses
or {1}-inverses). Moreover, we show that there always exist algebraic generalized inverses
(also called {1, 2}-inverses) of two operators A and B such that their product in reverse
order is an algebraic generalized inverse of AB.

Assuming the reverse order law to hold, Theorem 6.2 gives a representation of the
product of two outer inverses ({2}-inverses) that can be computed using only kernel and
image of the outer inverses of the factors. In this representation, we rely on a description of
the kernel of a composition using inner inverses (Section 3) and implicit representations of
subspaces via their orthogonals in the dual space. Moreover, we avoid the computation
of generalized inverses by using the associated transpose map. Examples for matrices
illustrating the results are given in Section 7.

An important application for our results is given by linear boundary problems
(Section 9). Their solution operators (Green’s operators) are generalized inverses, and it
is natural to express infinite dimensional solution spaces implicitly via the (homogeneous)
boundary conditions they satisfy. Green’s operators for ordinary boundary problems are
Fredholm operators, for which we can check the conditions for the reverse order law
algorithmically and compute the implicit representation of the product (Section 8). Hence
we can test if the product of two (generalized) Green’s operators is again a Green’s operator,
and we can determine which boundary problem it solves.

2. Generalized inverses
In this section, we first recall basic properties of generalized inverses. For further details
and proofs, we refer to [15,20] and the references therein. Throughout this article, U , V and
W always denote vector spaces over the same field F , and we use the notation V1 ≤ V for
a subspace V1 of V .

Definition 2.1 Let T : V → W be linear. We call a linear map G : W → V an inner
inverse of T if T GT = T and an outer inverse of T if GT G = G. If G is an inner and an
outer inverse of T , we call G an algebraic generalized inverse of T .

This terminology of generalized inverses is adopted from [20]; other sources refer to
inner inverses as generalized inverses or g-inverses, whereas algebraic generalized inverses
are also called reflexive generalized inverses. Also the notations {1}-inverse (resp. {2}- and
{1, 2}-inverse) are used, which refer to the corresponding Moore–Penrose equations the
generalized inverse satisfies.

Proposition 2.2 Let T : V → W and G : W → V be linear. The following statements
are equivalent:

(i) G is an outer inverse of T .
(ii) GT is a projector and ImGT = ImG.

(iii) GT is a projector and V = ImG ⊕ KerGT .
(iv) GT is a projector and W = ImT + KerG.
(v) T G is a projector and KerT G = KerG.

(vi) T G is a projector and W = KerG ⊕ ImT G.
(vii) T G is a projector and ImG ∩ KerT = {0}.
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Linear and Multilinear Algebra 1569

Corresponding to (vii) and (vi), for subspaces B ≤ V and E ≤ W with

B ∩ KerT = {0} and W = E ⊕ T (B),

we can construct an outer inverse G of T with ImG = B and KerG = E as follows; cf.
[15, Cor. 8.2]. We consider the projector Q with

ImQ = T (B), KerQ = E . (1)

The restriction T |B : B → T (B) is bijective since B ∩ KerT = {0}, and we can define
G = (T |B)−1 Q. One easily verifies that G is an outer inverse of T with ImG = B and
KerG = E . Since by Proposition 2.2(iii) we have V = B⊕T −1(E), we define the projector
P in analogy to Q by

ImP = T −1(E), KerP = B. (2)

Then, by definition and by Proposition 2.2, we have

GT G = G, T G = Q and GT = 1 − P,

and G is determined uniquely by these equations. Hence an outer inverse depends only
on the choice of the defining spaces B and E . We use the notations G = O(T, B, E) and
G = O(T, P, Q) for P and Q as in (2) and (1).

Obviously, G is an outer inverse of T if and only if T is an inner inverse of G. Therefore,
we get a result analogous to Proposition 2.2 for inner inverses by interchanging the role of
T and G. The construction of inner inverses is not completely analogous to outer inverses,
see [20, Prop. 1.3]. For subspaces B ≤ V and E ≤ W such that

V = KerT ⊕ B and W = ImT ⊕ E, (3)

an inner inverse G of T is given on ImT by (T |B)−1 and can be chosen arbitrarily on E .
For such an inner inverse with B = ImGT and E = KerT G, we write G ∈ I(T, B, E).

For constructing algebraic generalized inverses, we start with direct sums as in (3), but
require KerG = E and ImG = B. We use the notation G = G(T, B, E).

The following result for inner inverses is well known in the matrix case [8,17,21] and
its elementary proof remains valid for arbitrary vector spaces.

Proposition 2.3 Let T1 : V → W and T2 : U → V be linear with outer (resp. inner)
inverses G1 and G2. Let P = G1T1 and Q = T2G2. Then G2G1 is an outer (resp. inner)
inverse of T1T2 if and only if Q P (resp. P Q) is a projector.

Proof Let G2G1 be an outer inverse of T1T2, that is, G2G1 = G2G1T1T2G2G1.
Multiplying with T2 from the left and with T1 from the right yields

T2G2G1T1 = T2G2G1T1T2G2G1T1,

thus Q P = T2G2G1T1 is a projector. For the other direction, we multiply the previ-
ous equation with G2 from the left and G1 from the right and use that G1T1G1 = G1
and G2T2G2 = G2. The proof for inner inverses follows by interchanging the roles of
Ti and Gi . !
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1570 A. Korporal and G. Regensburger

3. Kernel of compositions
We now describe the inverse image of a subspace under the composition of two linear maps
using inner inverses. For projectors, kernel and image of the composition can be expressed
in terms of kernel and image of the corresponding factors alone. Note that a projector is an
inner inverse of itself.

Proposition 3.1 Let T1 : V → W and T2 : U → V be linear and G2 an inner inverse
of T2. For a subspace W1 ≤ W , we have

(T1T2)
−1(W1) = G2(T

−1
1 (W1) ∩ ImT2) ⊕ KerT2

for the inverse image of the composition. In particular,

KerT1T2 = G2(KerT1 ∩ ImT2) ⊕ KerT2.

Proof Since T2G2 is a projector onto ImT2 by Proposition 2.2(ii) (interchanging the role
of T and G), we have

T1T2(G2(T
−1

1 (W1) ∩ ImT2) + KerT2) = T1 Q2(T
−1

1 (W1) ∩ ImT2) + 0

= T1(T −1
1 (W1) ∩ ImT2) ≤ W1 ∩ ImT1T2 ≤ W1.

Conversely, let u ∈ (T1T2)
−1(W1). Then T2u = v with v ∈ T −1

1 (W1). Since also v ∈ ImT2,
we have

T2(u − G2v) = T2u − Q2v = T2u − v = v − v = 0,

that is, u − G2v ∈ KerT2. Writing u = G2v +u − G2v yields u ∈ G2(T
−1

1 (W1)∩ ImT2)+
KerT2. The sum is direct since by Proposition 2.2(vi) (interchanging the role of T and G),
we have U = KerT2 ⊕ ImG2T2. !

Corollary 3.2 Let T : V → W be linear and let P : V → V and Q : W → W be
projectors. Then

KerT Q = (KerT ∩ ImQ) ⊕ KerQ and ImPT = (ImT + KerP) ∩ ImP.

Proof Applying Proposition 3.1 yields

KerT Q = Q(KerT ∩ ImQ) ⊕ KerQ = (KerT ∩ ImQ) ⊕ KerQ.

The statement for the image follows from the duality principle A.4. !

This result generalizes [17, Lemma 2.2], where the kernel and image of a product P Q
of two projectors are computed as above, when P Q is again a projector.

4. Products of projectors
In view of Proposition 2.3, we study necessary and sufficient conditions for the product
of two projectors to be a projector. Throughout this section let P, Q : V → V denote
projectors.

The first of the following necessary and sufficient conditions for the product of P and Q
to be a projector is mentioned as an exercise without proof in [22, p. 339]. In [16, Lemma 3]
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Linear and Multilinear Algebra 1571

the same result is formulated for matrices but the proof is valid for arbitrary vector spaces.
The second necessary and sufficient condition for the matrix case is given in [17, Lemma
2.2]. The simpler proof from [18] carries over to arbitrary vector spaces.

Lemma 4.1 The composition P Q is a projector if and only if

ImP Q ≤ ImQ ⊕ (KerP ∩ KerQ)

if and only if
ImQ ≤ ImP ⊕ (KerP ∩ ImQ) ⊕ (KerP ∩ KerQ).

We obtain the following characterization of the idempotency of P Q in terms of the
kernels and images of P and Q alone.

Theorem 4.2 The following statements are equivalent:

(i) The composition P Q is a projector.
(ii) ImP ∩ (ImQ + KerP) ≤ ImQ ⊕ (KerP ∩ KerQ)

(iii) ImQ ≤ ImP ⊕ (KerP ∩ ImQ) ⊕ (KerP ∩ KerQ)

(iv) KerQ ⊕ (KerP ∩ ImQ) ≥ KerP ∩ (ImQ + ImP)

(v) KerP ≥ KerQ ∩ (ImQ + KerP) ∩ (ImQ + ImP)

Proof The equivalence of (i), (ii) and (iii) follows from the previous lemma and Corollary
3.2. By the duality principle A.4, the last two conditions are equivalent to (ii) and (iii),
respectively. !

For algebraic generalized inverses, it is also interesting to have sufficient conditions for
P Q as well as Q P to be projectors; for example, if P and Q commute. This can again be
characterized in terms of the images and kernels of P and Q alone. If P Q = Q P , one sees
with Corollary 3.2 that

ImP Q = ImP ∩ ImQ and KerP Q = KerP + KerQ. (4)

In general, these conditions are necessary but not sufficient for commutativity of P and Q,
see [16, Ex. 1].

Using Corollary 3.2, modularity (A1) and (A2), one obtains the following character-
ization of projectors with image or kernel as in (4); for further details see [23]. For the
commutativity of projectors see also [22, p. 339].

Proposition 4.3 The composition P Q is a projector with

(i) ImP Q = ImP ∩ ImQ if and only if

ImQ = (ImP ∩ ImQ) ⊕ (KerP ∩ ImQ).

(ii) KerP Q = KerP + KerQ if and only if

KerP = (KerP ∩ KerQ) ⊕ (KerP ∩ ImQ).
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1572 A. Korporal and G. Regensburger

Corollary 4.4 We have P Q = Q P if and only if

ImQ = (ImP ∩ ImQ) ⊕ (KerP ∩ ImQ)

and
KerQ = (ImP ∩ KerQ) ⊕ (KerP ∩ KerQ).

In [16, Thm. 4] and [19, Thm. 3.2] different necessary and sufficient conditions for the
commutativity of two projectors are given, but both require the computation of P Q as well
as of Q P .

5. Reverse order law for generalized inverses
Proposition 2.3 and Theorem 4.2 together give necessary and sufficient conditions for the
reverse order law for outer inverses to hold, in terms of the defining spaces Bi and Ei alone.

Theorem 5.1 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1, B1, E1) and G2 = O(T2, B2, E2). The following conditions are equivalent:

(i) G2G1 is an outer inverse of T1T2.
(ii) T2(B2) ∩ (B1 + E2) ≤ B1 ⊕ (E2 ∩ T −1

1 (E1))

(iii) B1 ≤ T2(B2) ⊕ (E2 ∩ B1) ⊕ (E2 ∩ T −1
1 (E1))

(iv) T −1
1 (E1) ⊕ (E2 ∩ B1) ≥ E2 ∩ (B1 + T2(B2))

(v) E2 ≥ T −1
1 (E1) ∩ (B1 + E2) ∩ (B1 + T2(B2))

Proof Recall that ImGi = Bi and KerGi = Ei , and Q = T2G2 and P = G1T1 are
projectors with

ImP = B1, KerP = T −1
1 (E1), ImQ = T2(B2) and KerQ = E2.

By Proposition 2.3, G2G1 is an outer inverse if and only if Q P is a projector. Applying
Theorem 4.2 proves the claim. !

In the following theorem, we give the analogous conditions for inner inverses, where
P = G1T1 and Q = T2G2 are the projectors corresponding to the direct sums in (3). Note
that the conditions for inner inverses only depend on the choice of B1 and E2, but not on
B2 and E1.

The characterization of (iii) and the orthogonal of (v) in the following theorem generalize
[17, Thm. 2.3] to arbitrary vector spaces.

Theorem 5.2 Let T1 : V → W and T2 : U → V be linear with inner inverses G1 ∈
I(T1, B1, E1) and G2 ∈ I(T2, B2, E2). The following conditions are equivalent:

(i) G2G1 is an inner inverse of T1T2.
(ii) B1 ∩ (ImT2 + KerT1) ≤ ImT2 ⊕ (KerT1 ∩ E2)

(iii) ImT2 ≤ B1 ⊕ (KerT1 ∩ ImT2) ⊕ (KerT1 ∩ E2)

(iv) E2 ⊕ (KerT1 ∩ ImT2) ≥ KerT1 ∩ (ImT2 + B1)

(v) KerT1 ≥ E2 ∩ (ImT2 + KerT1) ∩ (ImT2 + B1)
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Linear and Multilinear Algebra 1573

The question when the reverse order law holds for all inner inverses of T1 and T2 was
answered for matrices in [11, Thm. 2.3], and an alternative proof was given in [24]. Using
the previous characterizations, we give a short proof that generalizes the result to arbitrary
vector spaces.

Theorem 5.3 Let T1 : V → W and T2 : U → V be linear. Then G2G1 is an inner
inverse of T1T2 for all inner inverses G1 of T1 and G2 of T2 if and only if T1T2 = 0 or
KerT1 ≤ ImT2.

Proof If KerT1 ≤ ImT2 then KerT1 ∩ImT2 = KerT1 and (iii) in Theorem 5.2 the previous
theorem is satisfied since KerT1 + B1 = V . The case T1T2 = 0 is trivial.

For the reverse implication, assume that ImT2 is not contained in KerT1 and KerT1 is
not contained in ImT2. Choose V1, V2 ≤ V such that we have two direct sums KerT1 =
(ImT2 ∩ KerT1) ⊕ V1 and ImT2 = (ImT2 ∩ KerT1) ⊕ V2. Then we have

ImT2 + KerT1 = (ImT2 ∩ KerT1) ⊕ V1 ⊕ V2. (5)

By assumption, we can choose non-zero v1 ∈ V1 and v2 ∈ V2. Let v = v1 + v2. Then
v ∈ ImT2 + KerT1 and v ̸∈ KerT1, v ̸∈ ImT2. Hence we can choose B1 and E2 such that
v ∈ B1 and v ∈ E2 and V = KerT1 ⊕ B1 = ImT2 ⊕ E2. Then

v ∈ E2 ∩ (ImT2 + KerT1) ∩ (ImT2 + B1)

but v ∈ KerT1. Hence 5.2 in the previous theorem is not satisfied for inner inverses with
ImG1 = B1 and KerG2 = E2. !

Werner [17, Thm. 3.1] proves that for matrices, it is always possible to construct inner
inverses such that the reverse order law holds. Using the necessary and sufficient condition
for outer inverses above, we extend this result to algebraic generalized inverses in arbitrary
vector spaces. The special case of Moore–Penrose inverses is treated in [8, Thm. 3.2], and
explicit solutions are constructed in [25,26].

Theorem 5.4 Let T1 : V → W and T2 : U → V be linear. There always exist algebraic
generalized inverses G1 of T1 and G2 of T2 such that G2G1 is an algebraic generalized
inverse of T1T2.

Proof Choose V1, V2 ≤ V as in the previous proof such that (5) holds. Moreover, choose
V3 ≤ V such that

V = (ImT2 + KerT1) ⊕ V3 = (ImT2 ∩ KerT1) ⊕ V1 ⊕ V2 ⊕ V3.

Then B1 = V2 ⊕ V3 is a direct complement of KerT1 and E2 = V1 ⊕ V3 is a direct
complement of ImT2. Hence, there exist respectively an algebraic generalized inverse G1
of T1 with ImG1 = B1 and G2 of T2 with KerG2 = E2. We verify that such G1 and G2
satisfy Theorem 5.1(iii), where T −1

1 (E1) = KerT1 and T2(B2) = ImT2 since G1 and G2
are algebraic generalized inverses:

ImT2 ⊕ (E2 ∩ B1) ≥ ImT2 ⊕ V3 = (ImT2 ∩ KerT1) ⊕ V2 ⊕ V3 ≥ B1.
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1574 A. Korporal and G. Regensburger

Similarly, we verify Theorem 5.2(iii)

B1 ⊕ (KerT1 ∩ ImT2) = V2 ⊕ V3 ⊕ (KerT1 ∩ ImT2) ≥ V2 ⊕ (KerT1 ∩ ImT2) = ImT2.

Hence G2G1 is an algebraic generalized inverse of T1T2 for all G1 = G(T1, B1, E1) and
G2 = G(T2, B2, E2), independent of the choice of E1 and B2. !

6. Representing the product of outer inverses
In this section, we assume that for two linear maps T1 : V → W and T2 : U → V with
outer inverses G1 and G2, respectively, the reverse order law holds. Our goal is to find a
description of the product G2G1 that does not require the explicit knowledge of G1 and
G2. Using the representation via projectors, one immediately verifies that

O(T2, P2, Q2) O(T1, P1, Q1) = O(T1T2, P2 − G2 P1T2, T1 Q2G1)

but this expression involves both outer inverses G1 and G2. For the representation via
defining spaces, we compute the kernel and the image of the product.

Lemma 6.1 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1, B1, E1) and G2 = O(T2, B2, E2). Then

KerG2G1 = E1 ⊕ T1(B1 ∩ E2) and ImG2G1 = G2((B1 + E2) ∩ ImT2).

Proof Recall that by definition KerGi = Ei and ImGi = Bi . The first identity follows
directly from Proposition 3.1. For the second identity, we first note that for a linear map
G and subspaces V1, V2, we have G(V1 ∩ V2) = G(V1) ∩ G(V2) if KerG ≤ V1. Hence
G2((B1 + E2) ∩ ImT2) equals

G2((ImG1 + KerG2) ∩ ImT2) = G2(ImG1) ∩ G2(ImT2) = ImG2G1,

since G2(ImT2) = ImG2 by Proposition 2.2(ii). !

Note that the expression for the image of the composition requires the explicit knowledge
of G2. In particular, the reverse order law takes the form

O(T2, B2, E2) O(T1, B1, E1) = O(T1T2, G2((B1 + E2) ∩ ImT2), E1 + T1(B1 ∩ E2)).

Werner [17, Thm. 2.4] gives a result in a similar spirit for inner inverses of matrices.
Using an implicit description of ImGi , it is possible to state the reverse order law in a

form that depends on the kernels and images of the respective outer inverses alone. This
approach is motivated by our application to linear boundary problems (Section 9), where it
is natural to define solution spaces via the boundary conditions they satisfy.

In more detail, the Galois connection from Appendix A allows to represent a subspace
B implicitly via the orthogonally closed subspace B = B⊥ of the dual space. We will
therefore use the notation G = O(T,B, E) for the outer inverse with ImG = B⊥ and
KerG = E as well as the analogue for inner inverses.
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Linear and Multilinear Algebra 1575

Theorem 6.2 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1,B1, E1) and G2 = O(T2,B2, E2). If G2G1 is an outer inverse of T1T2, then

O(T2,B2, E2) O(T1,B1, E1) = O(T1T2,B2 ⊕ T ∗
2 (B1 ∩ E⊥

2 ), E1 ⊕ T1(B
⊥
1 ∩ E2)), (6)

where T ∗
2 denotes the transpose of T2.

Proof From Lemma 6.1, we already know that KerG2G1 = E1 ⊕ T1(B
⊥
1 ∩ E2). From

Proposition A.2 and 3.1, we get

(ImG2G1)
⊥ = KerG∗

1G∗
2 = T ∗

2 (KerG∗
1 ∩ ImG∗

2) ⊕ KerG∗
2

= T ∗
2 ((ImG1)

⊥ ∩ (KerG2)
⊥) ⊕ (ImG2)

⊥ = T ∗
2 (B1 ∩ E⊥

2 ) ⊕ B2,

and thus (6) holds. !

A computational advantage of this representation is that one can determine G2G1
directly by computing only one outer inverse instead of computing both G1 and G2; see the
next section for an example.

7. Examples for matrices
In this section, we illustrate our results for finite-dimensional vector spaces. In particular,
we show how to compute directly the composition of two generalized inverses using the
reverse order law in the form (6).

Consider the following linear maps T1 : Q4 → Q3 and T2 : Q3 → Q4 given by

T1 =

⎛

⎝
1 −1 −1 1
0 2 2 −2
3 1 1 −1

⎞

⎠ and T2 =

⎛

⎜⎜⎝

1 −2 −1
1 1 2

−1 5 4
−1 5 4

⎞

⎟⎟⎠ .

We first use Theorems 5.1 and 5.2 to check whether for algebraic generalized inverses
G1 = G(T1, B1, E1) and G2 = G(T2, B2, E2), the composition G2G1 is an algebraic
generalized inverse of T1T2.

For testing the conditions, we only need to fix B1 = ImG1 and E2 = KerG2, such that
B1 ⊕ KerT1 = Q4 = E2 ⊕ ImT2. We have

KerT1 = span((0, 1, 0, 1)T , (0, 0, 1, 1)T ), ImT2 = span((1, 0,−2,−2)T , (0, 1, 1, 1)T ),

so we may choose for example

B1 = span((1, 0, 0, 0)T , (0, 1, 0, 0)T ), E2 = span((1, 0, 0, 0)T , (0, 0, 1, 0)T ).

For algebraic generalized inverses, we obtain as a necessary and sufficient condition for
being an outer inverse

B1 ≤ ImT2 ⊕ (E2 ∩ B1) ⊕ (E2 ∩ KerT1)

from Theorem 5.1(iii).
Since E2 ∩ KerT1 = {0} and E2 ∩ B1 = span((1, 0, 0, 0)T ), the right hand side yields

that span((1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 1)T ) ≥ B1. Thus for all algebraic generalized
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1576 A. Korporal and G. Regensburger

inverses G1 and G2 with ImG1 = B1 and KerG2 = E2, the product G2G1 is an outer
inverse of T1T2.

The corresponding condition for inner inverses by Theorem 5.2(iii) is

ImT2 ≤ B1 ⊕ (KerT1 ∩ ImT2) ⊕ (KerT1 ∩ E2).

Since KerT1 ∩ ImT2 = {0}, the right hand side yields B1, which does not contain ImT2.
Hence for the above choices of G1 and G2, the product G2G1 is never an inner inverse of
T1T2.

Since G2G1 is an outer inverse, Theorem 6.2 allows to determine G2G1 directly without
knowing the factors. Identifying the dual space with row vectors, the orthogonals of B1 and
E2 are given by

B⊥
1 = B1 = span((0, 0, 1, 0), (0, 0, 0, 1)), E⊥

2 = span((0, 1, 0, 0), (0, 0, 0, 1)),

so we have B⊥
1 ∩E2 = span((1, 0, 0, 0)T ) and B1∩E⊥

2 = span((0, 0, 0, 1)). For explicitly
computing G2G1, we also have to choose B2 = ImG2 and E1 = KerG1. Since we have

ImT1 = span((1, 0, 3)T ), (0, 1, 2)T ), KerT2 = span((1, 1,−1)T ),

we may choose the complements E1 = KerG1 and B2 = ImG2 as

E1 = span((0, 0, 1)T ) and B2 = span((1, 0, 0)T , (0, 1, 0)T ).

Using (6), we can determine the kernel

E = KerG2G1 = E1 ⊕ T1(B
⊥
1 ∩ E2) = span((1, 0, 0)T , (0, 0, 1)T ).

The image of G2G1 is by (6) given via the orthogonal

(ImG2G1)
⊥ = B2 ⊕ T ∗

2 (B1 ∩ E⊥
2 ) = span((0, 0, 1), (−1, 5, 4)),

which means that B = ImG2G1 = span((5, 1, 0)T ). Therefore, we can directly determine
G as the unique outer inverse

G = O(T1T2, B, E) =

⎛

⎝
0 5

12 0
0 1

12 0
0 0 0

⎞

⎠ .

One easily checks that G is an outer inverse of T .

8. Fredholm operators
We now turn to algorithmic aspects of the previous results. As already emphasized, for
arbitrary vector spaces we can express conditions for the reverse order law in terms of the
defining spaces alone. Nevertheless, in general it will not be possible to compute sums and
intersections of infinite-dimensional subspaces. For algorithmically checking the conditions
of Theorem 5.1 or 5.2 and for computing the reverse order law in the form (6), we consider
finite (co)dimensional spaces and Fredholm operators.

Recall that a linear map T between vector spaces is called Fredholm operator if
dim KerT < ∞ and codim ImT < ∞. Moreover, for finite codimensional subspaces
V1 ≤ V , we have codim V1 = dim V ⊥

1 . In this case, V1 can be implicitly represented by
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Linear and Multilinear Algebra 1577

the finite-dimensional subspace V ⊥
1 ≤ V ∗. For an application to linear ordinary boundary

problems, see the next section.
We assume that for finite-dimensional subspaces, we can compute sums and intersections

and check inclusions, both in vector spaces and in their duals. With the following lemma,
the intersection of a finite-dimensional subspace with a finite codimensional subspace is
reduced to computing kernels of matrices.

Definition 8.1 Let u = (u1, . . . , um)T ∈ V m and β = (β1, . . . , βn)T ∈ (V ∗)n . We call

β(u) =

⎛

⎜⎝
β1(u1) . . . β1(um)

...
. . .

...

βn(u1) . . . βn(um)

⎞

⎟⎠ ∈ Fn×m

the evaluation matrix of β and u.

Lemma 8.2 Let U ≤ V and B ≤ V ∗ be generated respectively by u = (u1, . . . , um)

and β = (β1, . . . ,βn). Let k1, . . . , kr ∈ Fm be a basis of Kerβ(u), and κ1, . . . , κs ∈ Fn

a basis of Ker(β(u))T . Then

(i) U ∩ B⊥ is generated by
∑m

i=1 k1
i ui , . . . ,

∑m
i=1 kr

i ui and
(ii) U⊥ ∩ B is generated by

∑n
i=1 κ1

i βi , . . . ,
∑n

i=1 κs
i βi .

Proof A linear combination v = ∑m
ℓ=1 cℓuℓ is in B⊥ if and only if βi (v) = 0 for

1 ≤ i ≤ n, that is,
∑m

ℓ=1 cℓβi (uℓ) = 0 for 1 ≤ i ≤ n. Hence β(u) · (c1, . . . , cm)T = 0.
Analogously, one sees that the coefficients of linear combination in U⊥∩B are in the kernel
of (β(u))T . !

We reformulate the conditions of Theorem 5.1 such that for Fredholm operators they only
involve operations on finite-dimensional subspaces and intersections like in the previous
lemma. Similarly, one can rewrite the conditions of Theorem 5.2.

Corollary 8.3 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1,B1, E1) and G2 = O(T2,B2, E2). Let C2 = T2(B

⊥
2 )⊥ and K1 = T −1

1 (E1). The
following conditions are equivalent:

(i) G2G1 is an outer inverse of T1T2.
(ii) C2 + (B1 ∩ E⊥

2 ) ≥ B1 ∩ (E2 ∩ K1)
⊥

(iii) B1 ≥ C2 ∩ (E2 ∩ B⊥
1 )⊥ ∩ (E2 ∩ K1)

⊥

(iv) K1 ⊕ (E2 ∩ B⊥
1 ) ≥ E2 ∩ (B1 ∩ C2)

⊥

(v) E2 ≥ K1 ∩ (B1 ∩ E⊥
2 )⊥ ∩ (B1 ∩ C2)

⊥

Proof Taking the orthogonal of both sides of 5.1 (ii) and (iii), respectively, and applying
Proposition A.1 we get (ii) and (iii). For (iv) and (v), we can apply Proposition A.1 directly
to the corresponding conditions of Theorem 5.1. !

We note that using Lemma 8.2, it also possible to determine constructively the implicit
representation (6) of a product of generalized inverses; see the next section.
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1578 A. Korporal and G. Regensburger

9. Examples for linear ordinary boundary problems
As an example involving infinite dimensional spaces and Fredholm operators, we consider
solution (Green’s) operators for linear ordinary boundary problems. Algebraically, linear
boundary problems can be represented as a pair (T,B), where T : V → W is a surjective
linear map and B ≤ V ∗ is an orthogonally closed subspace of (homogeneous) boundary
conditions. We say that v ∈ V is a solution of (T,B) for a given w ∈ W if T v = w and
v ∈ B⊥.

For a regular boundary problem (having a unique solution for every right-hand side),
the Green’s operator is defined as the unique right inverse G of T with ImG = B⊥;
see [28] for further details. The product G2G1 of the Green’s operators of two boundary
problems (T1,B1) and (T2,B2) is then the Green’s operator of the regular boundary
problem (T1T2,B2 ⊕ T ∗

2 (B1)), see also Theorem 6.2.
For boundary problems having at most one solution, that is B⊥ ∩ KerT = {0}, the

linear algebraic setting has been extended in [23] by defining generalized Green’s operators
as outer inverses. More specifically, one first has to project an arbitrary right-hand side
w ∈ W onto T (B⊥), the image of the ‘functions’ satisfying the boundary conditions, along
a complement E of T (B⊥). The corresponding generalized Green’s operator is defined as
the outer inverse G = O(T,B, E), and we refer to E ≤ W as an exceptional space for the
boundary problem (T,B).

The question when the product of two outer inverses is again an outer inverse, is the
basis for factoring boundary problems into lower order problems; see [28,29] for the case
of regular boundary problems. This, in turn, provides a method to factor certain integral
operators.

As an example, let us consider the boundary problem

u′′ = f
u′(0) = u′(1) = u(1) = 0.

(7)

In the above setting, this means we consider the pair (T1,B1) with T1 = D2 and B1 =
span(E0 D, E1 D, E1), where D denotes the usual derivation on smooth functions and Ec
the evaluation at c ∈ R. The boundary problem is only solvable for forcing functions f
satisfying the compatibility condition ∫1

0 f (ξ) dξ = 0; more abstractly, we have T1(B
⊥
1 ) =

C ⊥
1 with C1 = span(∫1

0), where ∫1
0 denotes the functional f /→ ∫1

0 f (ξ) dξ . For computing
a generalized Green’s operator of (T1,B1, E1), we have to project f onto C ⊥

1 along a fixed
complement E1. In [30], we computed the generalized Green’s operator

G1( f ) = x
x
∫
0

f (ξ) dξ −
x
∫
0
ξ f (ξ) dξ − 1

2
(x2 + 1)

1
∫
0

f (ξ) dξ +
1
∫
0
ξ f (ξ) dξ

of (7) for E1 = R being the constant functions. It is easy to see that in this case we have
T −1

1 (E1) = span(1, x, x2).
As a second boundary problem, we consider

u′′ − u = f
u′(0) = u′(1) = u(1) = 0,

or (T2,B2) with T2 = D2 −1 and B2 = span(E0 D, E1 D, E1). For the corresponding
generalized Green’s operator G2 with exceptional space E2 = span(x), we will now check
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Linear and Multilinear Algebra 1579

if the products G1G2 and G2G1 are again generalized Green’s operators of T1T2 = T2T1 =
D4 − D2, using condition (ii) of Corollary 8.3.

We use the algorithm from [30], implemented in the package IntDiffOp for the
computer algebra system Maple, to compute the compatibility conditions. The algorithm
is based on the identity

T (B⊥)⊥ = G∗(B ∩ (KerT )⊥),

for any right inverse G of T , which follows from Propositions A.2 and 3.1. Moreover, a
right inverse of the differential operator can be computed by the variation of constants and
the intersection B∩(KerT )⊥ using Lemma 8.2. Thus, we obtain C2 = span(∫1

0(exp(−x)+
exp(x))), where ∫1

0(exp(−x)+exp(x)) denotes the functional f /→ ∫1
0(exp(−ξ)+exp(ξ))

f (ξ) dξ .
The space T −1

2 (E2) = span(x, exp(x), exp(−x)) can be computed using Proposi-
tion 3.1 and a right inverse of the differential operator; this is also implemented in the
IntDiffOp package. Hence, we have E1 ∩ T −1

2 (E2) = {0} and therefore B2 ∩ (E1 ∩
T −1

2 (E2))
⊥ = B2. Computing B2 ∩ E⊥

1 with Lemma 8.2 yields B2 ∩ E⊥
1 = span

(E0 D, E1 D); thus G1G2 is not an outer inverse of the product T2T1 = D4 − D2 by Corollary
8.3(ii).

On the other hand, we have E2 ∩ T −1
1 (E1) = span(x) = E2, hence we know by Corol-

lary 8.3(ii) that G2G1 is an outer inverse of T1T2 = D4 − D2. Furthermore, by Theorem
6.2 we can determine which boundary problem it solves without computing G1 and G2.
With Lemma 8.2, we obtain B⊥

1 ∩ E2 = {0} and B1 ∩ E⊥
2 = span(E0 D − E1, E1 D − E1).

Since applying the transpose T ∗
2 to E0 D − E1 and E1 D − E1 corresponds to multiplying

T2 = D2 −1 from the right, G2G1 is the generalized Green’s operator of

(D4 − D2, span(E0 D, E1 D, E1, E0 D3 − E1 D2, E1 D3 − E1 D2), R)

by (6); or, in traditional notation, it solves the boundary problem

u′′′′ − u′′ = f
u′(0) = u′(1) = u(1) = u′′′(0) − u′′(1) = u′′′(1) − u′′(1) = 0,

with exceptional space R.
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[12] Dinčić NČ, Djordjević DS. Basic reverse order law and its equivalencies. Aequationes Math.

2013;85:505–517.
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Appendix A. Duality
In the appendix, we summarize duality results for arbitrary vector spaces and their duals that gen-
eralize the standard duality for finite-dimensional vector spaces but do not require any topological
assumptions; see [30, Sections 9.2 and 9.3] and [28] for further details. The notation should also
remind of the analogous and well-known results for Hilbert spaces.

Let V and W be vector spaces over a field F and ⟨, ⟩ : V × W → F be a bilinear map. For
V1 ≤ V , we define the orthogonal

V ⊥
1 = {w ∈ W | ⟨v,w⟩ = 0 for all v ∈ V1} ≤ W.

The orthogonal W⊥
1 for W1 ≤ W is defined analogously. A subspace U is called orthogonally closed

if U = U⊥⊥. It follows directly from the definition that for all subsets X1, X2 ⊆ V , we have
X1 ⊆ X2 ⇒ X⊥

1 ⊇ X⊥
2 and X1 ⊆ X⊥⊥

1 ; and the same holds for subsets of W . Let P(V ) denote
the projective geometry of V , that is, the partially ordered set (poset) of all subspaces ordered by
inclusion. Then we have an order-reversing Galois connection between P(V ) and P(W ) defined by
U /→ U⊥.

We now consider the canonical bilinear form V × V ∗ → F of a vector space V and its dual V ∗
defined by ⟨v,β⟩ /→ β(v). Then every subspace V1 ≤ V is orthogonally closed with respect to the
canonical bilinear form, and every finite-dimensional subspace B ≤ V ∗ is orthogonally closed. The
Galois connection gives an order-reversing bijection between P(V ) and the poset of all orthogonally
closed subspaces of V ∗. So we can describe any subspace V1 ≤ V implicitly by the corresponding
orthogonally closed subspace V ⊥

1 . We denote the poset of all orthogonally closed subspaces of V ∗
with P(V ∗).

The projective geometry P(V ) is a modular lattice, where join and meet are defined as the sum
and intersection of subspaces. Modularity means that for all V1, V2, V3 ∈ P(V ) with V1 ≤ V3 we
have

V1 + (V2 ∩ V3) = (V1 + V2) ∩ V3. (A1)

Moreover, for spaces V1 ≤ V3 and V2 ≤ V4, we have

V = V1 + V2 = V3 ⊕ V4 ⇒ V1 = V3 and V2 = V4, (A2)

since V3 ∩ V4 = {0} implies V3 = (V1 ⊕ V2) ∩ V3 = V1 and V4 = (V1 ⊕ V2) ∩ V4 = V2.
One can also show that P(V ∗) is a modular lattice, where the meet is the intersection and the join

is the orthogonal closure of the sum of subspaces. Using this fact, one can prove in particular that the
sum of two orthogonally closed subspaces is orthogonally closed. The following theorem summarizes
Section 9.3 of [30].

Proposition A.1 The map V1 /→ V ⊥
1 gives an order-reversing lattice isomorphism with inverse

B1 /→ B⊥
1 between the complemented modular lattices P(V ) and P(V ∗). In particular, the inter-

section of orthogonally closed subspaces in V ∗ is orthogonally closed and

(V1 + V2)⊥ = V ⊥
1 ∩ V ⊥

2 and (B1 ∩ B2)⊥ = B⊥
1 + B⊥

2 .

The sum of two orthogonally closed subspaces in V ∗ is orthogonally closed and

(V1 ∩ V2)⊥ = V ⊥
1 + V ⊥

2 and (B1 + B2)⊥ = B⊥
1 ∩ B⊥

2 .

Furthermore, orthogonality preserves direct sums, such that

V = V1 ⊕ V2 ⇒ V ∗ = V ⊥
1 ⊕ V ⊥

2 and V ∗ = B1 ⊕ B2 ⇒ V = B⊥
1 ⊕ B⊥

2 .

For a linear map A : V → W between vector spaces, the transpose A∗ : W∗ → V ∗ is defined by
γ /→ γ ◦ A. The transposition map A /→ A∗ from L(V, W ) to L(W∗, V ∗) is linear, and it is injective
since for all w ̸= 0 there exists a linear map h ∈ W∗ with h(w) ̸= 0. Moreover, the transpose of a
composition is given by (A1 A2)∗ = A∗

2 A∗
1.
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1582 A. Korporal and G. Regensburger

The image of an orthogonally closed space under the transpose map is orthogonally closed, and
we have following identities, see, for example, [28, Prop. A.6].

Proposition A.2 Let V and W be vector spaces and A : V → W be linear. Then

A(V1)⊥ = (A∗)−1(V ⊥
1 ), A(B⊥

1 ) = (A∗)−1(B1)⊥,

A∗(C1)⊥ = A−1(C ⊥
1 ), A∗(W⊥

1 ) = A−1(W1)⊥,

for subspaces V1 ≤ V , W1 ≤ W , C1 ≤ W∗ and orthogonally closed subspaces B1 ≤ V ∗. In
particular,

(ImA)⊥ = Ker A∗, ImA = (Ker A∗)⊥, (ImA∗)⊥ = Ker A, ImA∗ = (Ker A)⊥,

for the image and kernel of A and A∗.

The property of being a projector, outer/inner/algebraic generalized inverse carries over to the
transpose.

Proposition A.3 A linear map P : V → V is a projector if and only if its transpose P∗ is a
projector. A linear map G : W → V is an outer/inner/algebraic generalized inverse of T : V → W
if and only if G∗ is an outer/inner/algebraic generalized inverse of T ∗.

Proof This follows from the defining equations for these properties. For example, if G is an outer
inverse of T , we have G∗T ∗G∗ = (GT G)∗ = G∗, and the reverse implication follows from the
injectivity of the transposition map. !

With the results of this section, we obtain the following duality principle for generalized inverses.

Remark A.4 Given a valid statement for linear maps on arbitrary vector spaces V over a common
field involving inclusions, {0} and V , sums and intersections, direct sums, kernels and images,
projectors, and outer/inner/algebraic generalized inverses, we obtain a valid dual statement by

• reversing the order of the linear maps and the corresponding domains and codomains,
• reversing inclusions and interchanging V and {0},
• interchanging sums and intersections,
• interchanging kernels and images.

For example, one easily checks that in Proposition 2.2, the statements (v)–(vii) are the duals of
(ii)–(iv) in this sense.
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1. Introduction

Skew polynomial rings are used in the literature for an algebraic and algorithmic treatment of 
many common operators like differential and difference operators; see e.g. the works by Chyzak and 
Salvy (1998); Li (2002); Bueso et al. (2003); Chyzak et al. (2005); Levandovskyy (2005) or the recent 
overview by Gómez-Torrecillas (2014). Normal forms for skew polynomials are given by the standard 
polynomial basis. However, normal forms for univariate integral operators are sums of terms of the 
form f

∫
g . We show that quotients of tensor rings are useful for algebraic modeling of and algorithmic 

computations with additive operators. The framework provided uses a quotient of a tensor ring by a 
two-sided ideal for constructing a ring of operators, constructing quotients of such rings of operators 
by one-sided ideals would be a separate problem. Tensor rings naturally capture the multiadditivity 
of composition of additive operators. In addition, they allow basis-free treatment of multiplication 
operators resp. coefficients. In particular, the coefficient ring is not required to be finitely presented. 
Moreover, for integro-differential operators, they also cover arbitrary rings of constants which neither 
have to be fields nor commutative rings but need to contain a unit element.

We are not aware that tensor reduction systems in tensor rings have been used so far in the liter-
ature for an algorithmic treatment of operator algebras. For applications of noncommutative Gröbner 
bases in the free polynomial algebra to operator algebras, we refer to Helton et al. (1998), Helton 
and Stankus (1999), Rosenkranz et al. (2003) and the references on integro-differential operators in 
Section 4. An overview on Gröbner-Shirshov bases for various algebraic structures is given in Bokut 
and Chen (2014); see, in particular, Guo et al. (2013), Gao et al. (2014), Gao et al. (2015), Gao and 
Guo (2017) in connection with differential type, integro-differential, and Rota–Baxter type operators.

For computing in quotients of tensor rings by two-sided ideals, we use Bergman’s analog (Bergman, 
1978) of Gröbner bases in tensor rings, which we explain in Section 2 along with the underlying al-
gebraic structures. Bergman’s confluence criterion for tensor reduction systems involves computations 
in the tensor ring, but determining the structure of normal forms reduces to a combinatorial prob-
lem on words. We generalize Bergman’s tensor setting in Section 3 by introducing the concept of 
specialization. As a first example for our setting with specialization, we present integro-differential 
operators (IDOs) over an arbitrary integro-differential ring in Section 4. There we give a confluent 
tensor reduction system together with the corresponding normal forms. In Section 5, we introduce 
IDOs with linear substitutions. For completing a tensor reduction system to a confluent one, we give 
a heuristic method along the lines of Buchberger’s algorithm in Section 6 and we discuss various 
problems arising in this context. In each section, we comment about the computational aspects. The 
Mathematica package TenReS can be obtained at http :/ /gregensburger.com /softw /tenres/ along with 
example files; see also Hossein Poor et al. (2016b) for further details on the package.

Throughout this paper rings are not necessarily commutative unless stated otherwise, but they are 
always assumed to have a unit element (of multiplication). Furthermore, we use operator notation, 
e.g. we write ϕ1 instead of ϕ(1) or ∂ f g = (∂ f )g + f ∂ g for the Leibniz rule ∂( f g) = ∂( f )g + f ∂(g). 
All our operators act from the left, in particular, a product AB acts on f as (A ◦ B)( f ).

1.1. Comparison with conference paper

A two-level version of Bergman’s setting in tensor algebras has been introduced already in Hos-
sein Poor et al. (2016a). In contrast, in the present paper we deal with the more general structure of 
tensor rings instead of tensor algebras. We introduce a generalization and simplification of the two-
level tensor setting in Section 3. New aspects treated are deletion criteria for excluding ambiguities 
from consideration (see Section 2.3.1) and the heuristic completion process discussed in Section 6. 
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The example presented in Section 4 is more general as it allows also noncommutative differential 
rings and Section 5 contains an entirely new example.

We also need to correct some minor mistakes in Hossein Poor et al. (2016a). The definition of 
� in Eq. (8) should include the requirement that ϕ1 = 1. Lemma 4.2 should be replaced by the 
weaker statement of Lemma 15 of the present paper, the proof of Theorem 4.6 needs to be adapted 
accordingly, cf. the proof of Theorem 20. Also, the equation immediately before Lemma 4.4 has to be 
replaced by the equation immediately before Lemma 17 in the present paper.

1.2. Introductory example

We use the well-known example of differential operators to briefly discuss several approaches 
for modeling rings of operators. Recall that differential operators with polynomial coefficients (Weyl 
algebra) over a field K ⊇Q can be defined as the quotient algebra

K 〈X, D〉/(D X − X D − 1)

of the free polynomial algebra K 〈X, D〉 by a two-sided ideal; see for example Coutinho (1995). Let 
now (R, ∂) be a commutative differential ring and let K denote its ring of constants. If R is a finitely 
presented K -algebra, then also the differential operators R〈∂〉 are a finitely presented K -algebra anal-
ogous to the Weyl algebra.

Skew polynomials are a well-established approach that only introduces finitely many rules for 
differential operators over arbitrary differential rings R (e.g. rational functions): they are represented 
by defining a multiplication on normal forms 

∑
f i∂

i based on the commutation rule

∂ · f = f ∂ + ∂ f .

Viewed as construction by generators and relations, this amounts to (potentially) infinitely many re-
lations, one for each generator of R .

In the following, we motivate and illustrate informally tensor reduction systems. For a commuta-
tive differential ring, the construction leads to a quotient of the tensor algebra as in Hossein Poor et 
al. (2016a). The commutation rule for skew polynomials above corresponds to a reduction homomor-
phism for tensors below. The ring R is regarded as the coefficient ring of skew polynomials, whereas 
in the tensor construction below R is just considered as a K -module and we tensor over the ring K
only. Hence for the multiplication in R , we need to introduce an additional reduction homomorphism 
for tensors.

Example 1. Consider a commutative differential ring (R, ∂) and let K denote its ring of constants. By 
the Leibniz rule, the derivation ∂ : R → R is a K -module homomorphism. Since R is commutative, 
also the multiplication operators induced by f ∈ R mapping g �→ f g are K -module homomorphisms. 
Let MD = K∂ denote the free left K -module generated by the symbol ∂ . The identities in the K -tensor 
algebra K 〈M〉 on the K -module M = R ⊕ K∂ reflect the identities coming from the K -linearity of the 
operators and their compositions, where the tensor product is interpreted as composition of operators.

To incorporate the additional identities, we use reduction rules defined by K -module homomor-
phisms on certain submodules of the tensor algebra. Corresponding to the composition of multiplica-
tion operators and the Leibniz rule, we consider two homomorphisms defined by

f ⊗ g �→ f g and ∂ ⊗ f �→ f ⊗ ∂ + ∂ f .

These two reduction rules induce the two-sided ideal J = ( f ⊗ g− f g, ∂ ⊗ f − f ⊗ ∂ − ∂ f | f , g ∈ R)

which we use to define the K -algebra of differential operators as the quotient algebra

R〈∂〉 = K 〈M〉/ J .

We want to obtain unique normal forms in the quotient by applying the reduction rules above. A ten-
sor of the form

∂ ⊗ f ⊗ g
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corresponds to an overlap ambiguity of these two rules, since it can be reduced by the homomor-
phisms in different ways to obtain either

( f ⊗ ∂ + ∂ f )⊗ g or ∂ ⊗ ( f g).

For checking resolvability of the ambiguity the S-polynomial formed by the difference of these alter-
natives should be reducible to zero. In the present case, it reduces to zero because of the Leibniz rule 
in R . More explicitly, for all f , g ∈ R we have

SP(∂ ⊗ f , f ⊗ g)= ( f ⊗ ∂ + ∂ f )⊗ g − ∂ ⊗ ( f g)

→ f ⊗ g ⊗ ∂ + f ⊗ ∂ g + (∂ f )g − f g ⊗ ∂ − ∂( f g)

→ f g ⊗ ∂ + f ∂ g + (∂ f )g − f g ⊗ ∂ − ∂( f g)

= f ∂ g + (∂ f )g − ∂( f g)= 0.

Another ambiguity is expressed by tensors of the form f ⊗ g ⊗ h and is resolvable as well. Since all 
ambiguities are resolvable, we obtain normal forms in terms of irreducible tensors

∂⊗ j and f ⊗ ∂⊗ j. �
For differential operators with matrix coefficients, we let R be a ring of matrices over some (com-

mutative) differential ring. Then not only R is a noncommutative differential ring, but also its ring of 
constants K is no longer commutative and elements of K do not commute with elements of R . Con-
sequently, R is not a K -algebra anymore. More generally, we consider an arbitrary differential ring 
R . It is a bimodule over its ring of constants K and tensoring over K leads to a construction of the 
differential operators as a quotient of the tensor ring instead of the tensor algebra.

Example 2. For an arbitrary (not necessarily commutative) differential ring (R, ∂), ∂ is a K -bimodule 
homomorphism of R whereas multiplication operators g �→ f g in general are only right K -module 
homomorphisms. We consider the K -tensor ring K 〈M〉 on the K -bimodule M = R ⊕MD , where MD is 
a K -bimodule non-freely generated by ∂ . The identities in the tensor ring K 〈M〉 reflect the identities 
coming from the additivity of the operators and their compositions. Reduction rules are K -bimodule 
homomorphisms defined by the same formulae as above. For details see Example 8 later. �
2. Tensor reduction systems

In this section, we describe analogs of Gröbner bases in tensor rings following Bergman (1978)
using standard notation for rewriting systems from Baader and Nipkow (1998). First we outline the 
construction and some properties of the K -tensor ring K 〈M〉 on a K -bimodule M over a arbitrary 
ring K with unit element. If K is commutative and the left and right scalar multiplication on M agree, 
then K 〈M〉 is the tensor algebra on M , which is a generalization of the noncommutative polynomial 
algebra on a set of indeterminates. In contrast to the noncommutative polynomials, in the tensor ring 
the “coefficients” in K do not commute with the “indeterminates”. For further details on tensor rings 
and proofs see, for example, Cohn (2003), Rowen (1991). A Gröbner basis theory for free bimodules 
has been presented in Kobayashi (2005) and for bimodules over Poincaré-Birkhoff-Witt (PBW) algebras 
in Román García and Román García (2005), Levandovskyy (2005).

2.1. Basics of tensor rings

From now, K denotes a ring (not necessarily commutative) with unit element. A K -bimodule is a 
left K -module M which is also a right K -module satisfying the associativity condition (km)l = k(ml)
for all m ∈ M and k, l ∈ K . By a K -ring we understand a ring R that is a K -bimodule such that 
(xy)z = x(yz) for any x, y, z in R or K . Even when K is commutative, the notion of K -ring is more 
general than the notion of K -algebra, because the action of K need not centralize the ring, that is, we 
do not require kr = rk for k ∈ K and r ∈ R . In other words, the difference can be described by saying 
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that whereas a K -algebra (K commutative) is a ring R with a homomorphism from K to the center 
of R , a K -ring is a ring R with a ring homomorphism from K to R . In particular, if K is a subring of 
some ring R , then R is a K -ring.

We first recall basic properties of the tensor product on K -bimodules. Let M1, . . . , Mn be 
K -bimodules. Given an abelian group (A, +), we say that β : M1 × · · · ×Mn → A is a balanced map if 
it is multiadditive and it satisfies

β(m1, . . . ,mik,mi+1, . . . ,mn)= β(m1, . . . ,mi,kmi+1, . . . ,mn)

for all k ∈ K , m j ∈ M j , where i = 1, . . . , n − 1 and j = 1, . . . , n. By the definition of the tensor product, 
there exists an abelian group M1 ⊗ · · · ⊗ Mn together with a balanced map

⊗: M1 × · · · × Mn → M1 ⊗ · · · ⊗ Mn.

We write m1 ⊗ · · · ⊗mn for the image of (m1, . . . , mn) under ⊗. The universal property of the ten-
sor product states that if β : M1 × · · · × Mn → A is any balanced map, then there exists a unique 
homomorphism β : M1 ⊗ · · · ⊗ Mn → A such that

β(m1 ⊗ · · · ⊗mn)= β(m1, . . . ,mn).

Note that, if M1, . . . , Mn are K -bimodules, then M1 ⊗ · · · ⊗ Mn is again a K -bimodule with scalar 
multiplications

k(m1 ⊗ · · · ⊗mn)= km1 ⊗ · · · ⊗mn and (m1 ⊗ · · · ⊗mn)k=m1 ⊗ · · · ⊗mnk.

We denote the tensor product of M with itself over K by M⊗n = M ⊗ · · · ⊗ M (n factors) and its 
elements are called tensors. In particular, M⊗1 = M and we interpret M⊗0 as the K -bimodule Kε , 
where ε denotes the empty tensor. Elements of the form m1 ⊗ · · · ⊗mn ∈ M⊗n with m1, . . . , mn ∈ M , 
are called pure tensors and they generate M⊗n as a K -bimodule. As a K -bimodule, the tensor ring 
K 〈M〉 is defined as the direct sum K 〈M〉 = ⊕∞

n=0 M⊗n with multiplication M⊗r × M⊗s → M⊗(r+s)

given by the balanced map

(m1 ⊗ · · · ⊗mr,m̃1 ⊗ · · · ⊗ m̃s) �→m1 ⊗ · · · ⊗mr ⊗ m̃1 ⊗ · · · ⊗ m̃s,

which can be extended to K 〈M〉 by biadditivity. In general, the K -bimodule K 〈M〉 with this multipli-
cation is a ring with ε being its unit element. Note that by the homomorphism K → K 〈M〉 mapping 
k �→ kε the tensor ring K 〈M〉 is a K -ring.

The K -tensor algebra on a K -module M with K commutative is a special case of the K -tensor ring 
by viewing M as a K -bimodule with identical scalar multiplication from left and right. Note that for 
a free K -module M with basis X , the K -tensor algebra K 〈M〉 is isomorphic to the noncommutative 
polynomial algebra K 〈X〉. It has the set of all products x1 ⊗ · · · ⊗ xn for x1, . . . , xn ∈ X as a K -module 
basis, i.e. elements in K 〈X〉 have a unique representation as K -linear combinations of such products.

The analogous situation for tensor rings is more involved. The free K -bimodule on a set X is given 
by K⊗ZZX⊗Z K , where ZX denotes the free left Z-module on X . The K -tensor ring over the free 
K -bimodule on X is isomorphic to the free K -ring on X , which is generated as a K -bimodule by 
the set of all products x1 ⊗ k2x2 ⊗ · · · ⊗ knxn such that x1, . . . , xn ∈ X and k2, . . . , kn ∈ K . Note that 
the representation of elements of the free K -ring on X in terms of such products is not unique, in 
contrast to the noncommutative polynomial algebra. Since bimodules have coefficients on both sides 
and coefficients do not commute with indeterminates, even the free K -bimodule generated by {x1}
gives rise to non-uniqueness: k1x1k3 + k2x1k1 = k3x1k1 + k1x1k2 for k3 = k1 + k2 ∈ K .

2.2. Diamond Lemma in tensor rings

Now we are ready to explain the setting for reduction systems in tensor rings following Bergman 
(1978, Sec. 6). Let (Mx)x∈X be a family of K -bimodules indexed by a set X . The modules Mx play the 
role of the indeterminates in the noncommutative polynomial algebra.
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We denote the free monoid on X by 〈X〉 and its unit element by ε . The free monoid 〈X〉 can also 
be regarded as the word monoid over the alphabet X with ε as the empty word. For every word 
W = x1 . . . xn ∈ 〈X〉, we denote the tensor product of the corresponding bimodules by

MW := Mx1 ⊗ · · · ⊗ Mxn .

In particular, we have Mε = Kε for the empty word/tensor ε . The pure tensors m1⊗· · ·⊗mn ∈ MW
with mi ∈ Mxi play the role of the monomials in the tensor ring. We consider the direct sum

M :=
⊕
x∈X

Mx (1)

and the K -tensor ring on M:

K 〈M〉 =
∞⊕

n=0

M⊗n =
⊕

W∈〈X〉
MW . (2)

Every tensor t ∈ K 〈M〉 can be written as a sum of pure tensors. However, in contrast to linear com-
binations of monomials in the noncommutative polynomial algebra, this representation is not unique. 
This happens because already M⊗n is not freely generated as a K -bimodule by the pure tensors, e.g. 
m1 ⊗m3 +m2 ⊗m1 =m3 ⊗m1 +m1 ⊗m2 in M⊗2 for m3 =m1 +m2 ∈ M . Still, using bimodule ho-
momorphisms, one can define reductions analogous to polynomial reduction for (non-)commutative 
Gröbner bases.

Definition 3. Let M be given by Eq. (1). A reduction rule for K 〈M〉 is given by a pair (W , h) of a word 
W ∈ 〈X〉 and a K -bimodule homomorphism h : MW → K 〈M〉. For a reduction rule r = (W , h) and 
words A, B ∈ 〈X〉, we define a reduction as the K -bimodule homomorphism

hA,r,B : K 〈M〉→ K 〈M〉
acting as idA ⊗ h ⊗ idB on M AW B and the identity on all other MV with V ∈ 〈X〉 and V �= AW B .

For a pure tensor a ⊗ w ⊗ b ∈ M AW B with a ∈ M A , w ∈ MW , and b ∈ MB , the reduction hA,r,B is 
given by

a⊗ w ⊗ b �→ a⊗ h(w)⊗ b.

So, as for polynomial reduction, we “replace” the “leading monomial” w by the “tail” h(w) given by 
the homomorphism h.

Let t ∈ K 〈M〉. A reduction hA,r,B acts trivially on t , i.e. hA,r,B(t) = t , if the summand of t in M AW B
is zero, see Eq. (2). A reduction rule r = (W , h) reduces t to s ∈ K 〈M〉 if a reduction hA,r,B for some 
A, B ∈ 〈X〉 acts non-trivially on t and hA,r,B(t) = s and we write t →r s.

A reduction system for K 〈M〉 is a set � of reduction rules. Every reduction system � induces a 
reduction relation →� on tensors by defining t →� s for t, s ∈ K 〈M〉 if t →r s for some reduction rule 
r ∈�. Fixing a reduction system �, we say that t ∈ K 〈M〉 can be reduced to s ∈ K 〈M〉 by � if t = s or 
there exists a finite sequence of reduction rules r1, . . . , rn in � such that

t →r1 t1 →r2 · · · →rn−1 tn−1 →rn s

and we write t
∗→� s. In other words, ∗→� denotes the reflexive transitive closure of the reduction 

relation →� .
The set of irreducible words 〈X〉irr ⊆ 〈X〉 consists of those words having no subwords from the set 

{W | (W , h) ∈�}. We define the K -subbimodule of irreducible tensors as

K 〈M〉irr =
⊕

W∈〈X〉irr

MW . (3)

We also need to consider partial orders on 〈X〉. A semigroup partial order on 〈X〉 is a partial order 
≤ on 〈X〉 such that B < B̃ ⇒ ABC < AB̃C for all A, B, B̃, C ∈ 〈X〉. If in addition ε ≤ A, for all A ∈ 〈X〉, 
then it is called a monoid partial order. It is called Noetherian if there are no infinite descending chains.
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Remark 4. Note that a lexicographic order on 〈X〉 is not a semigroup order. However, a (weighted) 
degree-lexicographic order of the words is a semigroup (total) order on 〈X〉 and it is Noetherian if X
is finite. Given a semigroup S with a semigroup partial order � on it and a semigroup homomorphism 
ϕ : 〈X〉 → S , we can define the induced semigroup partial order on 〈X〉 by

V ≤ W :⇔ V = W or ϕ(V )≺ ϕ(W ).

For example, for S = N with the usual order and the homomorphism given by ϕ(x0) = 1 for x0 ∈ X
and ϕ(x) = 0 for x ∈ X \ {x0}, the induced partial order just compares the degree in x0. Given two 
semigroups S1 and S2 with corresponding semigroup partial orders ≤1 and ≤2 respectively, we can 
combine them lexicographically to obtain a semigroup partial order on S = S1 × S2 by

(a1,a2)≤ (b1,b2) :⇔ a1 <1 b1 or a1 = b1 and a2 ≤2 b2.

A semigroup partial order ≤ is compatible with a reduction system � if for all reduction rules 
(W , h) ∈�,

h(MW )⊆
⊕

V <W

MV .

If a compatible semigroup partial order is Noetherian, then there do not exist infinite sequences of 
reductions in �. In other words, the reduction relation →� is terminating or Noetherian. So, in that 
case, every t ∈ K 〈M〉 can be reduced in finitely many steps to an irreducible tensor

t
∗→� s ∈ K 〈M〉irr

and such an s is called a normal form of t . In general, a tensor can have different normal forms. If 
t ∈ K 〈M〉 has a unique normal form, we denote it by t↓� .

For ensuring unique normal forms for reduction systems on tensor rings, we state below Bergman’s 
analog of Buchberger’s criterion for Gröbner bases (Buchberger, 1965). In the context of Gröbner-
Shirshov bases for various algebraic structures this is also referred to as the Composition-Diamond 
Lemma; see e.g. the survey by Bokut and Chen (2014).

Let � be a reduction system. We study the cases when two different reductions act non-trivially 
on tensors in MW for W ∈ 〈X〉.

Definition 5. An overlap ambiguity is given by two (not necessarily distinct) reduction rules 
(W , h), (W̃ , ̃h) ∈� and nonempty words A, B, C ∈ 〈X〉 such that

W = AB and W̃ = BC .

It is called resolvable if for all pure tensors a ∈ M A , b ∈ MB , and c ∈ MC the S-polynomial can be 
reduced to zero:

h(a⊗ b)⊗ c − a⊗ h̃(b⊗ c)
∗→� 0.

An inclusion ambiguity is given by distinct reduction rules (W , h), (W̃ , ̃h) ∈� and words A, B, C ∈ 〈X〉
with W = B and W̃ = ABC . It is called resolvable if for all pure tensors a ∈ M A , b ∈ MB , and c ∈ MC

the S-polynomial can be reduced to zero: a ⊗ h(b) ⊗ c − h̃(a ⊗ b ⊗ c) ∗→� 0.

With slight abuse of notation, we refer to S-polynomials of an overlap or inclusion ambiguity, 
respectively, by

SP(AB, BC) or SP(B, ABC).

A reduction system � induces the two-sided reduction ideal

I� := (t − h(t) | (W ,h) ∈� and t ∈ MW )⊆ K 〈M〉. (4)

For studying operator algebras, we want to compute in the factor ring K 〈M〉/I� . If all ambiguities are 
resolvable, then we can do this effectively using reductions in K 〈M〉 and the corresponding normal 
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forms with respect to →� . This is the confluence criterion (condition 1. below) that we will check 
algorithmically, for a brief discussion see the following subsection.

Theorem 6. (Bergman, 1978) Let K be a ring, let (Mx)x∈X be a family of K -bimodules indexed by a set X, and 
let M =⊕

x∈X Mx. Let � be a reduction system on K 〈M〉 and let ≤ be a Noetherian semigroup partial order 
on 〈X〉 that is compatible with �. Then the following are equivalent:

1. All ambiguities of � are resolvable.
2. Every t ∈ K 〈M〉 has a unique normal form t↓� .
3. K 〈M〉/I� and K 〈M〉irr are isomorphic as K -bimodules.

If these conditions hold, then we can define a multiplication on K 〈M〉irr by s · t := (s ⊗ t)↓� so that K 〈M〉/I�
and K 〈M〉irr are isomorphic as K -rings.

Note that our definition of resolvability above differs from the definition used by Bergman. Actu-
ally, he uses two different notions for resolvability of ambiguities, which we briefly describe below. 
Both of them are weaker than our Definition 5 in general. However, if every tensor has a unique nor-
mal form, then all three definitions of resolvability are equivalent. Hence Theorem 6 holds regardless 
which of these three notions of resolvability is used. One slightly weaker notion only requires the 
existence of a tensor t ∈ K 〈M〉 such that

h(a⊗ b)⊗ c
∗→� t

∗←� a⊗ h̃(b⊗ c) or a⊗ h(b)⊗ c
∗→� t

∗←� h̃(a⊗ b⊗ c),

respectively, in other words, the two different results of the reductions of a ⊗ b ⊗ c are joinable. 
Another even weaker notion is the following, which depends on semigroup partial order ≤.

Definition 7. We call an overlap or inclusion ambiguity with words A, B, C ∈ 〈X〉 ≤-resolvable if and 
only if all its S-polynomials are contained in the bimodule I ABC generated by⋃

V∈〈X〉
V <ABC

{t − s | t ∈ MV and t →� s ∈ K 〈M〉}.

If the semigroup partial order ≤ is compatible with �, then this bimodule is contained in a “trun-
cation” I� ∩⊕

V∈〈X〉
V <ABC

MV of the reduction ideal I� .

Example 8. We revisit Example 2 to study it formally in the tensor ring setting. Let (R, ∂) be a 
differential ring and let K denote its ring of constants. We consider the K -bimodule MR = R (indexed 
by the letter R). In addition, we consider the free left K -module MD = K∂ generated by ∂ (indexed 
by the letter D), which we view as a K -bimodule with right multiplication defined by

c∂ · d= cd∂,

for all c, d ∈ K . This definition is based on left K -linearity of the operation ∂ on R:

(c∂d) f = c∂(df )= (cd∂) f .

Let M = MR ⊕ MD be the module of basic operators. Then words over the alphabet X = {R, D} index 
the direct summands of the K -tensor ring K 〈M〉.

We interpret elements f ∈ R as multiplication operators, ∂ as the derivation on R , and the tensor 
product ⊗ as the composition of operators. So we consider the reduction system � = {rRR, rDR} with 
the reduction rules

rRR = (RR, f ⊗ g �→ f g) and rDR = (DR, ∂ ⊗ f �→ f ⊗ ∂ + ∂ f )

corresponding to the composition of multiplication operators and the Leibniz rule. Then the ring of 
differential operators can be defined as the quotient

180 XI



J. Hossein Poor et al. / Journal of Symbolic Computation 85 (2018) 247–274 255

R〈∂〉 = K 〈M〉/I�

of the tensor ring by the two-sided reduction ideal. The informal definition of the reduction homo-
morphisms above can be made formal in the following way. First, since

MR × MR → MR

( f , g) �→ f g

is a balanced map, it induces a well-defined homomorphism MRR → MR of abelian groups. This 
homomorphism can be verified to be even a K -bimodule homomorphism, which we use to define 
rRR . Extending the definition

β(∂, f ) := f ⊗ ∂ + ∂ f

by

β(c∂, f ) := β(∂, cf ),

we obtain a balanced map β : MD × MR → MRD ⊕ MR , since

β(c∂ · d, f )= β(cd∂, f )= β(∂, cdf )= β(c∂,df ).

Like above, β induces a K -bimodule homomorphism MDR → MRD ⊕ MR constituting rDR .
So any semigroup partial order ≤ on 〈X〉 with RR > R, as well as DR > RD and DR > R is com-

patible with �, e.g. the degree-lexicographic order with D > R. There are two overlap ambiguities. 
The S-polynomials of the first ambiguity reduce to zero in two steps:

SP(RR,RR)= ( f g)⊗ h− f ⊗ (gh)→rRR ( f g)h− f (gh)= 0.

We already have seen in Example 2 that the S-polynomials SP(DR, RR) reduce to the Leibniz rule 
in R . Hence by Theorem 6 every t ∈ K 〈M〉 has a unique normal form t↓� in K 〈M〉irr, where

K 〈M〉irr = Kε ⊕ MR ⊕ MD ⊕ (MR ⊗ MD)⊕ M⊗2
D ⊕ (MR ⊗ M⊗2

D )⊕ · · ·
since 〈X〉irr = {ε, R, D, RD, D2, RD2, . . .}. In other words, t↓� can be written as a sum of pure tensors 
of the form ε, f , ∂, f ⊗ ∂, ∂ ⊗ ∂, f ⊗ ∂ ⊗ ∂, . . . and we recover the well-known normal forms of 
differential operators. �
Remark 9. If some α ∈ Mx corresponds to a left K -linear operator, like ∂ ∈ MD above, then for the 
right scalar multiplication of left multiples of α, we always have

cα · d= cdα

with c, d ∈ K ; see also Eq. (12). As soon as such an operator is present, the ring over which the 
tensors are formed has to contain K in order to incorporate the corresponding relations directly into 
the tensor ring.

2.3. Computational aspects

Considering the algorithmic aspects of Theorem 6, we assume that we have a finite reduction 
system � over a finite alphabet X . Moreover, a compatible Noetherian semigroup partial order has to 
be assumed.

For generating the set of ambiguities, we only need to work in the word monoid 〈X〉. Likewise, 
determining the set of irreducible words 〈X〉irr is a purely combinatorial problem on words as well, cf. 
the proofs of Theorems 27 and 32. For checking resolvability of ambiguities, it suffices to work with 
S-polynomials constructed from general elements of the basic bimodules Mx . The result of a reduction 
step, i.e. the application of a homomorphism from the reduction system, needs to be simplified in 
the tensor ring. This involves application of properties of the tensor product and of identities in the 
bimodules, like the Leibniz rule in the example above. In practice, the reduction to zero often can be 
detected heuristically without having a canonical simplifier in the bimodules.
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The package TenReS provides routines to generate all ambiguities and corresponding S-
polynomials of a reduction system given by the user. It also includes routines for computing in the 
tensor ring. Identities needed for computing in the bimodules of Eq. (1) have to be implemented by 
the user in each concrete case.

In contrast to specifying new identities in the polynomial resp. term algebra, already the construc-
tive specification of reduction homomorphisms in the tensor setting is not clear in general.

2.3.1. Deletion criteria
For polynomial rings there are two classical deletion criteria for excluding critical pairs from con-

sideration: the product criterion and the chain criterion. We want to consider their analogs for excluding 
ambiguities from the confluence check for tensor reduction systems.

There is no need for an analog of the product criterion as it is already built into the definition of 
ambiguities of tensor reduction rules. If rules (W , h), (W̃ , ̃h) ∈� are such that no word of length less 
than |W | + |W̃ | contains both W and W̃ as subwords, then the rules do not have any ambiguities 
among them anyway. Hence we focus only on the chain criterion. The following lemma is an analog 
of Lemma 5.11 in Mora (1994).

Lemma 10. Let ≤ be a semigroup partial order on 〈X〉 compatible with the reduction system �. Let r1, r2 ∈�

have an overlap ambiguity with A, B, C ∈ 〈X〉, i.e. r1 = (AB, g) and r2 = (BC, h). Let r3 = (V , f ) ∈� where 
V is a subword of W = ABC such that one of the following cases holds.

1. V is a subword of A = LV R and the inclusion ambiguity of r1 and r3 with L, V , R B is ≤-resolvable.
2. V is a subword of B = LV R and the two inclusion ambiguities of r1 and r3 with AL, V , R and of r2 and 

r3 with L, V , RC are ≤-resolvable.
3. V is a subword of C = LV R and the inclusion ambiguity of r2 and r3 with BL, V , R is ≤-resolvable.
4. V is a subword of AB = LV R (with nonempty V 1, V 2 such that V = V 1 V 2 and B = V 2 R) and the 

inclusion ambiguity of r1 and r3 with L, V , R as well as the overlap ambiguity of r2 and r3 with V 1, V 2, RC
are ≤-resolvable.

5. V is a subword of BC = LV R (with nonempty V 1, V 2 such that V = V 1 V 2 and B = LV 1) and the overlap 
ambiguity of r1 and r3 with AL, V 1, V 2 as well as the inclusion ambiguity of r2 and r3 with L, V , R are 
≤-resolvable.

6. There are nonempty L, R such that V = LB R (with A = A1L and C = RC2) and the overlap/inclusion am-
biguity of r1 and r3 with A1, LB, R as well as the overlap/inclusion ambiguity of r2 and r3 with L, B R, C2
are ≤-resolvable.

Then the overlap ambiguity of r1 and r2 with A, B, C is ≤-resolvable.

Proof. For all cases there are canonical choices for W1, W2 such that W = W1 LV RW2 (resp. W =
W1LB RW2 in the last case). For a pure tensor t ∈ MW we have that the corresponding S-polynomial 
is equal to hε,r1,C (t) − hA,r2,ε (t) = t1 + t2 with t1 := hε,r1,C (t) − t3, t2 := t3 − hA,r2,ε(t), and t3 :=
hW1 L,r3,RW2(t) (resp. t3 := hW1,r3,W2 (t) in the last case). According to Definition 7, we show that 
t1, t2 ∈ IW .

In Case 3, we directly verify t1 = g(a ⊗ b) ⊗ (c − hL,r3,R(c)) − (a ⊗ b − g(a ⊗ b)) ⊗ hL,r3,R(c) ∈ IW

with a ∈ M A , b ∈ MB , and c ∈ MC such that t = a ⊗b ⊗ c. Otherwise, by assumption, all S-polynomials 
of r1 and r3 are contained in I S1 , where S1 = AB V 2 in Case 5, S1 = AB R in Case 6, and S1 = AB
in the remaining cases. Then, there is m1 ∈ MT1 , where T1 ∈ 〈X〉 is such that W = S1T1, and an 
S-polynomial s1 of r1 and r3 such that t1 = s1 ⊗m1. Hence t1 ∈ I S1 ⊗ MT1 ⊆ I S1 T1 = IW .

Analogously, we directly verify t2 ∈ IW in Case 1. In the remaining cases we let S2 := BC (resp. 
S2 := V 1 BC in Case 4 and S2 := LBC in Case 6). Then, we have t2 =m2 ⊗ s2 for some S-polynomial 
s2 of r2 and r3 and some m2 ∈ MT2 , where T2 ∈ 〈X〉 is such that W = T2 S2. We conclude t2 ∈
MT2 ⊗ I S2 ⊆ IW , since s2 ∈ I S2 by assumption.

Consequently, t1 and t2 are in IW in all cases. Hence the same applies to the S-polynomial 
hε,r1,C (t) − hA,r2,ε (t) and the overlap ambiguity of r1 and r2 with A, B, C is ≤-resolvable. �
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Note that V might be a subword of W in multiple ways, so we need to specify which ambiguities 
of r1, r3 resp. r2, r3 are ≤-resolvable in order to be able to conclude that the given ambiguity of r1, r2
is ≤-resolvable. A similar statement can be obtained for inclusion ambiguities of r1 and r2.

3. Tensor setting with specialization

Direct application of Bergman’s tensor setting requires the sum in Eq. (1) to be direct. As a con-
sequence, domains of reduction rules in a reduction system cannot overlap, even their tensor factors 
cannot overlap. In order to emulate overlapping domains (or factors), reduction rules have to be split 
into several smaller parts so that domains of those smaller rules do not overlap. Thus computa-
tions with such reduction systems can be inconvenient and inefficient in practice as the smaller rules 
technically are just individual rules that need to be applied separately. Moreover, this leads to some 
redundancy in the investigation of ambiguities and S-polynomials. Sticking to the above definition of 
reduction systems for tensor rings, this situation cannot be avoided.

Example 11. Note that in Example 8 irreducible tensors still have some relations among them when 
acting as operators. For instance, kε ∈ M⊗0 and k ∈ M both act by multiplying with k ∈ K . So we 
need an additional reduction rule reducing k ∈ M to kε ∈ M⊗0 for k ∈ K . Fixing a direct complement 
R = K ⊕ R̃ in R for defining the reduction rule

rK = (K,1 �→ ε),

would cause the splitting of the rule rRR into four rules rKK, rKR̃, rR̃K, rR̃R̃ and similarly rDR would split 
into two rules. The aim of this section is to introduce a framework that allows the rule rK to coexist 
with rRR and rDR . �

In order to remedy this situation, the aim of this section is to introduce a more flexible tensor 
setting where the definable reduction systems are much more general. While the induced reduction 
relations are also more general, the corresponding reduction ideals are not, however.

Definition 12. Let M be a K -bimodule. We call a family (Mz)z∈Z of K -subbimodules of M a decom-
position with specialization, if M =∑

z∈Z Mz and there exists a subset X ⊆ Z such that

1. we have the direct sum decomposition M =⊕
x∈X Mx and

2. for every z ∈ Z the corresponding module Mz satisfies

Mz =
⊕

x∈S(z)

Mx (5)

where S(z) := {x ∈ X | Mx ⊆ Mz} is the set of specializations of z.

Note that this definition implies S(x) = {x} for x ∈ X . In the following, we define a framework for 
tensor reduction systems that are based on such a decomposition with specialization. To this end, we 
fix a K -bimodule M , alphabets X ⊆ Z , and a decomposition (Mz)z∈Z of M with specialization.

For words W = w1 . . . wn ∈ 〈Z〉 we define the corresponding subbimodule of K 〈M〉 as before by 
MW := Mw1 ⊗ · · · ⊗ Mwn . Because of Eq. (5), any MW is then a direct sum of certain MV , V ∈ 〈X〉. 
For a precise statement we can extend the notion of specialization from the alphabet Z to the whole 
word monoid 〈Z〉 by the definition below such that we have the following generalization of Eq. (5):

MW =
⊕

V∈S(W )

MV .

Definition 13. For W = w1 . . . wn ∈ 〈Z〉 we define the set of specializations of W by

S(W ) := {v1 . . . vn ∈ 〈X〉 | ∀i : vi ∈ S(wi)}
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Remark 14. Note that for V ∈ 〈X〉 and W ∈ 〈Z〉 the bimodules MV and MW either intersect only in 0
or MV is contained in MW . Note further that the specializations of W ∈ 〈Z〉 are also given by

S(W )= {V ∈ 〈X〉 | MV ⊆ MW }.

Definition 3 carries over by replacing X with Z . For such a reduction system � over Z we define 
the reduction ideal I� by Eq. (4) and we define 〈X〉irr as the set of words from 〈X〉 containing no 
subwords from the set⋃

(W ,h)∈�

S(W ).

Based on 〈X〉irr we define K 〈M〉irr as in Eq. (3). Furthermore, for every reduction system � over Z
we call its reformulation as a reduction system over X the refined reduction system �X , which is given 
by

�X :=
⋃

(W ,h)∈�

{(V ,h|MV ) | V ∈ S(W )}. (6)

Lemma 15. Let � be a reduction system over Z and let �X be its refinement on X. Then the reduction ideals 
and the irreducible words are the same for � and for �X . Moreover, also K 〈M〉irr stays the same.

Proof. Follows immediately from the definitions. �
Note that, however, the refined reduction system does not define the same reduction relation. In 

general, we neither have →�X⊆→� nor →�⊆→�X . We only have →� ⊆ ∗→�X in general.

Definition 16. We call a partial order ≤ on 〈Z〉 consistent with specialization if for all words V , W ∈ 〈Z〉
with V < W we also have Ṽ < W̃ for all specializations Ṽ ∈ S(V ) and W̃ ∈ S(W ).

Note that the above definition implies that W is incomparable to all elements in S(W ), except 
possibly W itself, which can be seen by considering the two cases V ∈ S(W ) and W ∈ S(V ) in the 
definition.

A semigroup partial order ≤ on 〈Z〉 is compatible with a reduction system � over Z if for all 
(W , h) ∈� we have

h(MW )⊆
∑

V∈〈Z〉
V <W

MV .

If ≤ is consistent with specialization, then for any W̃ ∈ S(W ) we have
∑

V∈〈Z〉
V <W

MV ⊆
⊕

V∈〈X〉
V <W̃

MV .

Lemma 17. Let � be a reduction system over Z and let ≤ be a semigroup partial order on 〈Z〉 consistent with 
specialization and compatible with �. Then the restricted order ≤ on 〈X〉 is compatible with �X .

Proof. By definition of �X , For any reduction rule (W̃ , ̃h) ∈ �X there is (W , h) ∈ � such that W̃ ∈
S(W ) and h̃ = h|MW̃

. So, by our assumptions, we have

h̃(MW̃ )= h(MW̃ )⊆ h(MW )⊆
∑

V∈〈Z〉
V <W

MV ⊆
⊕

V∈〈X〉
V <W̃

MV . �
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We need to generalize the notion of ambiguities to account for the fact that the sum K 〈M〉 =∑
W∈〈Z〉 MW is not necessarily direct anymore.

Definition 18. Let (W , h), (W̃ , ̃h) ∈ � be two (not necessarily distinct) reduction rules and let 
A, B1, B2, C ∈ 〈Z〉 be nonempty words with

W = AB1, W̃ = B2C, and S(B1)∩ S(B2) �= ∅,
then we call this an overlap ambiguity. An overlap ambiguity is called resolvable if for all pure tensors 
a ∈ M A , b ∈ MB1 ∩ MB2 , and c ∈ MC the S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c − a⊗ h̃(b⊗ c)
∗→� 0.

Similarly, an inclusion ambiguity is given by two distinct reduction rules (W , h), (W̃ , ̃h) ∈ � and 
words A, B1, B2, C ∈ 〈Z〉 with W = B1, W̃ = AB2C , and S(B1) ∩ S(B2) �= ∅. An inclusion ambiguity is 
called resolvable if for all pure tensors a ∈ M A , b ∈ MB1 ∩ MB2 , and c ∈ MC the S-polynomial can be 
reduced to zero: a ⊗ h(b) ⊗ c − h̃(a ⊗ b ⊗ c) ∗→� 0.

If B1 �= B2 for an overlap or inclusion ambiguity, then we say that the ambiguity is with specializa-
tion.

Again, we use SP(AB1, B2C) or SP(B1, AB2C), respectively, to refer to S-polynomials of an overlap 
or inclusion ambiguity.

Remark 19. Note that in total there now can be four types of ambiguities: in addition to the two 
types of ambiguities (without specialization) of Definition 5 there are also corresponding versions 
with specialization as defined above.

With these definitions we can prove the following generalization of Bergman’s result. In order to 
prove properties of the reduction system � over Z we apply Bergman’s result (Theorem 6) to the 
refined reduction system �X over X .

Theorem 20. Let M be a K -bimodule and let (Mz)z∈Z be a decomposition with specialization. Let � be a 
reduction system over Z on K 〈M〉 and let ≤ be a Noetherian semigroup partial order on 〈Z〉 consistent with 
specialization and compatible with �. Then the following are equivalent:

1. All ambiguities of � are resolvable.
2. Every t ∈ K 〈M〉 has a unique normal form t↓� .
3. K 〈M〉/I� and K 〈M〉irr are isomorphic as K -bimodules.

Moreover, if these conditions are satisfied, then we can define a multiplication on K 〈M〉irr by s · t := (s ⊗ t)↓�

so that K 〈M〉/I� and K 〈M〉irr are isomorphic as K -rings.

Proof. First, we prove the implication 2. ⇒ 1. Any S-polynomial of an ambiguity of � is of the form 
h(t) − h̃(t) for some pure tensor t ∈ K 〈M〉 and reductions h and h̃ of �. Let H1 be a composition of 
reductions of � such that H1(h(t)) ∈ K 〈M〉irr and let H2 be a composition of reductions of � such 
that H2(H1(h̃(t))) ∈ K 〈M〉irr. Then H2 ◦ H1 reduces the S-polynomial to zero since t has a unique 
normal form w.r.t. �.

The rest of the proof is reduced to Theorem 6 via properties of the refined reduction system �X . 
Lemma 15 shows that we can replace the reduction system � by its refinement �X without changing 
the reduction ideal or K 〈M〉irr , hence statement 3. holds for � if and only if it holds for �X . Further-
more, we note that every S-polynomial of �X is also an S-polynomial of � and that ∗→� ⊆ ∗→�X , 
hence statement 1. holds for �X if it holds for �. If statement 2. holds for �X , then by ∗→� ⊆ ∗→�X

and the fact that K 〈M〉irr does not change it also holds for �. Finally, Lemma 17 implies that �X and 
the restriction of ≤ to 〈X〉 satisfy the assumptions of Theorem 6, which concludes the proof. �
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Note that for W , W̃ ∈ 〈Z〉 having a common specialization, i.e. S(W ) ∩ S(W̃ ) �= ∅, there does not 
necessarily exist V ∈ 〈Z〉 such that S(V ) = S(W ) ∩ S(W̃ ). In general, the intersection of two modules 
is given by

MW ∩ MW̃ =
⊕

V∈S(W )∩S(W̃ )

MV =
n⊗

k=1

⊕
x∈S(wk)∩S(w̃k)

Mx,

where W = w1 . . . wn and W̃ = w̃1 . . . w̃n .

Example 21. Consider alphabets X = {x1, x2, x3} and Z = X ∪ {y1, y2} with M y1 = Mx1 ⊕ Mx3

and M y2 = Mx2 ⊕ Mx3 . The words W = x1 y2 y1 and W̃ = y1 y2 y2 in 〈Z〉 satisfy S(W ) ∩ S(W̃ ) =
{x1x2x3, x1x3x3} �= ∅. We have MW ∩ MW̃ = Mx1 ⊗ M y2 ⊗ Mx3 . So, in this case, there even exists a 
word V = x1 y2x3 that satisfies S(V ) = S(W ) ∩ S(W̃ ) and MV = MW ∩ MW̃ . �
Example 22. Consider alphabets X = {x1, x2, x3, x4} and Z = X ∪ {y1, y2} with S(yi) = X \ {x5−i}. 
The words W = y1 and W̃ = y2 satisfy S(W ) ∩ S(W̃ ) = {x1, x2} �= ∅ and there is no word V with 
S(V ) = S(W ) ∩ S(W̃ ). �

In order to describe the intersection of modules in terms of words again it will be convenient to 
also consider another partial order � on 〈Z〉, which is induced by the natural partial order, given by 
set inclusion, on all sets of the form S(W ) ⊆ 〈X〉. In other words, we have V � W in 〈Z〉 if and only 
if S(V ) ⊆ S(W ), which holds if and only if MV is contained in MW .

In addition, for a set S ⊆ 〈Z〉 we define the K -bimodule

M S :=
∑
W∈S

MW ⊆ K 〈M〉 (7)

with M S being the trivial bimodule {0} if S is empty. We also define

lb(S) := {V ∈ 〈Z〉 | V � W for all W ∈ S}
as the set of all lower bounds of S with respect to the partial order �. Note that this implies⋂

W∈S

MW = Mlb(S) = Mlb(S)∩〈X〉

where we have lb(S) ∩ 〈X〉 =⋂
W∈S S(W ). If � satisfies the ascending chain condition, it is enough 

to consider only maximal elements of lb(S) for 
⋂

W∈S MW = Mlb(S) .

Example 23. Consider alphabets X = {x1, x2, x3, x4, x5, x6} and Z = X ∪ {y1, y2, y3, z1, z2} with 
S(yi) = {xi, xi+1} and S(zi) = X \ {x7−i}. The words W = z1 and W̃ = z2 satisfy S(W ) ∩ S(W̃ ) =
{x1, x2, x3, x4} �= ∅ and there is no word V with S(V ) = S(W ) ∩ S(W̃ ). We have lb(W , W̃ ) =
{x1, x2, x3, x4, y1, y2, y3} and the maximal elements of lb(W , W̃ ) are y1, y2, y3. As explained above, 
we have MW ∩MW̃ = Mlb(W ,W̃ ) = Mlb(W ,W̃ )∩〈X〉 = M{y1,y2,y3} . In this example, we can even find words 
such that the intersection is a direct sum of as few modules as possible: MW ∩MW̃ = M y1 ⊕M y3 . �
3.1. Multi-level setting

Our two-level tensor setting presented at ISSAC 2016 (Hossein Poor et al., 2016a, Sec. 4) can be 
generalized to obtain a multi-level tensor setting, which in turn is a special case of the setting pre-
sented above. We briefly describe how the multi-level tensor setting looks like. To this end, we first 
recall when one direct sum decomposition of M is a refinement of another.

For two families of K -bimodules with M =⊕
x∈X Mx =⊕

y∈Y M y , we say that (Mx)x∈X is a refine-
ment of (M y)y∈Y if there exists a partition (X y)y∈Y of X such that

1. X y = {x} for all y ∈ X ∩ Y and
2. M y =⊕

x∈X y
Mx for all y ∈ Y .
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For the multi-level setting we consider a family of alphabets (Xi)i∈I each corresponding to a direct 
sum decomposition M =⊕

x∈Xi
Mx , the “levels”. On the index set I we can define a partial order �

such that i � j if and only if (Mx)x∈Xi is a refinement of (Mx)x∈X j . We require that the set I has a 
least element 0 ∈ I w.r.t. �, i.e. there exists a finest level that is a refinement of all levels. Defining 
X := X0 and Z :=⋃

i∈I Xi we easily recognize this as a special case of the above tensor setting with 
specialization.

Conversely, each instance of the tensor setting with specialization can be viewed as multi-level 
by letting X0 := X and completing each Mz , z ∈ Z \ X , into a level of its own: M = Mz ⊕ Mz with 
Mz :=

⊕
x∈X\S(z) Mx . The resulting order � on I := {0} ∪ (Z \ X) may be far from total, it may even be 

trivial apart from 0 � i.
The multi-level setting is worth mentioning mainly because of the following property. If � is a 

total order on I , i.e. if all levels are nested, then for any W , W̃ ∈ 〈Z〉 with S(W ) ∩ S(W̃ ) �= ∅, there 
exists (at least one) V ∈ 〈Z〉 such that S(V ) = S(W ) ∩ S(W̃ ), i.e. MV = MW ∩ MW̃ .

3.2. Computational aspects

Many properties that we discussed for Bergman’s tensor setting also hold for the tensor setting 
with specialization we introduced above. For instance, determining ambiguities and irreducible words 
is done just on the level of words. In the following, we discuss the differences of the two settings.

The main computational benefit of Theorem 20 compared to Theorem 6 lies in the fact that for the 
confluence criterion we only need to check ambiguities of � over the alphabet Z and no computations 
with �X are needed. Computing with the refined reduction system over X instead, generally would 
lead to a higher number of ambiguities, since one reduction rule in � can give rise to many reduction 
rules in �X . Only for determination of irreducible words we restrict to 〈X〉.

If we formulate our reduction system � over the alphabet Z , instead of using some �̃ over the 
smaller alphabet X for the same reduction ideals I�̃ = I� , we may be able to considerably reduce 
the size of the reduction system. This may happen in two different ways. First, assume a partition of 
X such that some homomorphisms in �̃ are defined by the same formula and the homomorphisms 
differ only by the choice of their domain and the corresponding words are obtained as specializations 
from some template. Then the corresponding reduction rules from �̃ could be merged into one re-
duction rule in �. This is exactly what happens for �̃ = �X . Second, also extending the domain of 
some homomorphism from �̃ may contribute to obtaining a smaller reduction system �. So usually 
we will have �̃ ⊂�X .

The package TenReS also provides routines for generating all overlap and inclusion ambiguities 
with specialization together with their corresponding S-polynomials. For a detailed comparison of 
Bergman’s setting and our generalization for the example of IDOs see (Hossein Poor et al., 2016a).

4. Integro-differential operators

Integro-differential operators over a field of constants were introduced in Rosenkranz (2005), 
Rosenkranz and Regensburger (2008) to study algebraic and algorithmic aspects of linear ordinary 
boundary problems. The construction made use of a parametrized Gröbner basis in infinitely many 
variables coming from a basis of the coefficient algebra; see also the survey (Rosenkranz et al., 2012) 
for an automated confluence proof and (Regensburger, 2016) for related references. For polynomial co-
efficients, also generalized Weyl algebras (Bavula, 2013), skew polynomials (Regensburger et al., 2009), 
and noncommutative Gröbner bases (Quadrat and Regensburger, 2017) have been used to study them. 
In this section, we apply the tensor setting with specialization introduced above to the construction of 
normal forms for integro-differential operators (IDOs) over an arbitrary integro-differential ring. First, 
we define an integro-differential ring analogous to the definition of an integro-differential algebra in 
Rosenkranz et al. (2012), Guo et al. (2014).

Definition 24. Let (R, ∂) be a differential ring such that ∂ R = R . Moreover, let 
∫ : R → R be a bimod-

ule homomorphism over the ring of constants in R , such that

∂
∫

f = f (8)
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for all f ∈ R . We call (R, ∂, 
∫
) an integro-differential ring if the evaluation

E f := f − ∫
∂ f (9)

is multiplicative, i.e. for all f , g ∈ R we have

E f g = (E f )Eg.

The following lemma shows that in any integro-differential ring, the evaluation E maps to the con-
stants such that it acts as the identity on them, in particular, it is also a homomorphism of rings with 
unit element. Moreover, the ring R can be decomposed as direct sum of constant and non-constant 
“functions”.

Lemma 25. Let (R, ∂, 
∫
) be an integro-differential ring with constants K . Then, we have E1 = 1, E f ∈ K for 

all f ∈ R, and

R = K ⊕ ∫
R,

as direct sum of K -bimodules.

Proof. We first compute E1 = 1 − ∫
∂1 = 1 and ∂E f = ∂( f − ∫

∂ f ) = ∂ f − ∂ f = 0. For any f ∈ R , we 
have f = E f + f −E f = E f +∫

∂ f and hence R = K +∫
R . Let f ∈ K ∩∫

R and g ∈ R such that f = ∫
g . 

Then 0 = ∂ f = ∂
∫

g = g , which implies f = 0. �
For the rest of this section, we fix an arbitrary integro-differential ring (R, ∂, 

∫
) and we denote its 

ring of constants by K . By an operator, we understand in the following a K -bimodule homomorphism 
from R to R . For example, the operations ∂, 

∫
, E can be viewed as operators.

Following Lemma 25, we consider the direct sum decomposition R = K ⊕ ∫
R and the correspond-

ing K -bimodules

MK = K and MR̃ =
∫

R (10)

(indexed by the symbols K and R̃). Note that the elements of MK and MR̃ are not interpreted as func-
tions but as left multiplication operators g �→ f g induced by those functions. For studying boundary 
value problems algebraically, we also need to deal with other multiplicative “functionals” on R with 
the same properties as E, so we consider the set

� := {ϕ : R → K | ϕ is a K -bimodule homomorphism with ϕ f g = (ϕ f )ϕg and ϕ1= 1}.
(11)

Instead, one can also consider � as a proper subset (containing E) of the full set defined above. This 
amounts to working with a smaller ring of operators later. For the operators ∂ , 

∫
, E, and ϕ ∈ �̃ with 

�̃=� \ {E}, we consider the free left K -modules

MD = K∂, MI = K
∫
, ME = K E, MΦ̃ = K �̃ (12)

generated by them (indexed by the symbols D, I, E, and Φ̃). We view these modules as K -bimodules 
with right multiplication defined by

cα · d= cdα

where α ∈ {∂, 
∫
, E} ∪�̃ and c, d ∈ K , since the generators of these modules correspond to left K -linear 

operators. We define two alphabets

X = {K, R̃,D, I,E,Φ̃} and Z = X ∪ {R,Φ}, (13)

with the K -bimodules (Mx)x∈X defined in Eqs. (10) and (12) as well as

MR = MK ⊕ MR̃ and MΦ = ME ⊕ MΦ̃. (14)
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Now, we define the module M by

M := MR ⊕ MD ⊕ MI ⊕ MΦ, (15)

which turns (Mz)z∈Z into a decomposition with specialization.
In order to compute with these operators, we need to collect identities they satisfy in form of a 

reduction system. To this end, we first list identities following immediately from their definitions (like 
multiplicativity of functionals, K -linearity, and the Leibniz rule) and some of their consequences that 
hold in R . For all f , g ∈ R and ϕ, ψ ∈�:

ϕ f g = (ϕ f )ϕg ∂
∫

g = g
ψϕg = ϕg

∫
∂ g = g − Eg

E
∫

g = 0
∫

f ϕg = (
∫

f )ϕg
∂ f g = f ∂ g + (∂ f )g

∫
f ∂ g = f g − ∫

(∂ f )g − (E f )Eg
∂ϕg = 0

∫
f
∫

g = (
∫

f )
∫

g − ∫
(
∫

f )g

The identities that do not follow immediately from the definitions are E
∫

g = 0, integration by parts
∫

f ∂ g = f g − ∫
(∂ f )g − (E f )Eg,

and the Rota–Baxter identity∫
f
∫

g = (
∫

f )
∫

g − ∫
(
∫

f )g

for the integral. They can either be verified directly or we obtain them in Section 6 as a consequence 
of S-polynomial computations. All identities listed above correspond to identities for operators acting 
on g ∈ R . The reduction system � over the alphabet 〈Z〉 is given by Table 1, defined in terms of all 
f , g ∈ R and ϕ, ψ ∈�.

In analogy to the definition of reduction homomorphisms in Section 2, the informal definitions in 
Table 1 have to be made formal. For instance,

βID(
∫
, ∂) := ε − E

is extended to a balanced map on MI × MD via

βID(c
∫
,d∂) := cdβID(

∫
, ∂)

and similarly

βIRΦ(
∫
, f ,ϕ) := ∫

f ⊗ ϕ

Table 1
Reduction rules for IDOs.

K 1 �→ ε
RR f ⊗ g �→ f g
ΦR ϕ ⊗ f �→ (ϕ f )ϕ
ΦΦ ψ ⊗ ϕ �→ ϕ
EI E⊗ ∫ �→ 0
DR ∂ ⊗ f �→ f ⊗ ∂ + ∂ f
DΦ ∂ ⊗ ϕ �→ 0
DI ∂ ⊗ ∫ �→ ε
IΦ

∫ ⊗ ϕ �→ ∫
1⊗ ϕ

ID
∫ ⊗ ∂ �→ ε − E

II
∫ ⊗ ∫ �→ ∫

1⊗ ∫ − ∫ ⊗ ∫
1

IRΦ
∫ ⊗ f ⊗ ϕ �→ ∫

f ⊗ ϕ
IRD

∫ ⊗ f ⊗ ∂ �→ f − ∫ ⊗ ∂ f − (E f )E
IRI

∫ ⊗ f ⊗ ∫ �→ ∫
f ⊗ ∫ − ∫ ⊗ ∫

f
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with ϕ ∈� is extended to a balanced map on MI × MR × MΦ by

βIRΦ(c
∫
, f ,

∑
i

ciϕi) :=
∑

i

βIRΦ(
∫
, cf ci,ϕi).

Definition 26. Let (R, ∂, 
∫
) be an integro-differential ring with constants K . We call

R〈∂,
∫
,�〉 := K 〈M〉/ J

the ring of integro-differential operators, where J is the two-sided reduction ideal induced by the re-
duction system obtained from Table 1.

In order to compute in R〈∂,
∫
,�〉 we want to analyze the reduction system defined by Table 1

according to Theorem 20 above and determine normal forms of tensors. Following the definition 
in Eq. (6), the refined reduction system �X is obtained, according to Eq. (14), by splitting rules 
whose words contain R or Φ into “smaller” rules using S(R) = {K, R̃} and S(Φ) = {E, Φ̃}. For ex-
ample, the reduction rule (ΦR, h) ∈ � is split into the rules (W , h|MW ) ∈ �X where W ∈ S(ΦR) =
{EK, ER̃, Φ̃K, Φ̃R̃}.

Theorem 27. Let (R, ∂, 
∫
) be an integro-differential ring with constants K and let � be the set of multiplicative 

K -bimodule homomorphisms given by Eq. (11). Let M be defined by Eqs. (14) and (15) and let the reduction 
system � be defined by Table 1.

Then every t ∈ K 〈M〉 has a unique normal form t↓� , which is given by a sum of pure tensors of the form

f ⊗ ϕ ⊗ ∂⊗ j or f ⊗ ϕ ⊗ ∫ ⊗ g

where j ∈N0 , each of f , g ∈ MR̃ and ϕ ∈� may be absent, and ϕ⊗ ∫
does not specialize to E ⊗ ∫

. Moreover,

R〈∂,
∫
,�〉 ∼= K 〈M〉irr

as K -rings, where the multiplication on K 〈M〉irr is defined by s · t := (s ⊗ t)↓� .

Proof. We consider the alphabets X and Z given by Eq. (13). This turns (Mz)z∈Z into a decomposition 
with specialization for the module M , see Definition 12. For defining a Noetherian monoid partial 
order ≤ on 〈Z〉 that is compatible with �, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃.

For instance, we could use a degree-lexicographic order with I > D >Φ > R on 〈{R,D, I,Φ}〉 ⊆ 〈Z〉 or 
other degree-lexicographic orders with D > R and I > R. We extend it to a monoid partial order on 
〈Z〉 based on Definition 16 in order to make it consistent with specialization. Then by the package
TenReS we verify that all ambiguities of � are resolvable, see Section 4.1. Hence by Theorem 20
every element of K 〈M〉 has a unique normal form and K 〈M〉/I� ∼= K 〈M〉irr as K -rings.

It remains to determine the explicit form of elements in K 〈M〉irr. To do so, we determine the 
set of irreducible words 〈X〉irr in 〈X〉. Irreducible words containing only the letters K and R̃ have 
to avoid the subwords K and S(RR) = {KK, KR̃, R̃K, R̃R̃}, hence only the words ε and R̃ are left. 
The irreducible words containing only E and Φ̃ are exactly ε , E, and Φ̃, since they have to avoid 
the subwords S(ΦΦ) = {EE, EΦ̃, Φ̃E, Φ̃Φ̃}. Altogether, we see that the irreducible words containing 
only the letters K, R̃, E, and Φ̃ are given by the set {ε, R̃, E, Φ̃, R̃E, R̃Φ̃}, since they also have to 
avoid the subwords S(ΦR) = {EK, ER̃, Φ̃K, Φ̃R̃}. Allowing also the letter D, we have to avoid the 
subwords coming from S(DR) = {DK, DR̃} and S(DΦ) = {DE, DΦ̃}. Therefore, we can only append 
words D j with j ∈ N0 to the irreducible words determined so far, in order to obtain all elements 
of 〈X〉irr not containing the letter I. Finally, we also consider the letter I. Since subwords EI and DI

have to be avoided, the first occurrence of I in an irreducible word can only be preceded by ε , R̃, Φ̃, 
or R̃Φ̃. We also have to avoid the subwords S(IΦ) = {IE, IΦ̃}, ID, and II, so any letter immediately 
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following I has to be R̃. In addition, we have to avoid the subwords S(IRΦ) = {IKE, IKΦ̃, IR̃E, IR̃Φ̃}, 
S(IRD) = {IKD, IR̃D}, and S(IRI) = {IKI, IR̃I}, so the letter I cannot be followed by a subword of length 
greater than one. Altogether, the elements of 〈X〉irr are of the form

R̃V D j or R̃Φ̃IR̃,

where j ∈ N0 and each of R̃, Φ̃, and V ∈ S(Φ) = {E, Φ̃} may be absent. The normal forms follow 
from Eq. (3). �

Note that the formulae given in Table 1 above to define the reduction system for the tensor ring 
are the same as the formulae presented in Table 2 in Hossein Poor et al. (2016a) for the tensor al-
gebra with commutative K . Here we use these formulae to define K -bimodule homomorphisms via 
balanced maps instead of defining K -module homomorphisms via multilinear maps. The same ambi-
guities need to be considered for checking confluence and we obtain the same structure of normal 
forms. Differences arise only from R now being a K -ring instead of a K -algebra.

4.1. Computational aspects

In the following, we briefly discuss computational details of the tensor setting with specialization 
for integro-differential operators. Applying TenReS to the reduction system �, in total 52 ambiguities 
and corresponding S-polynomials are generated. Among them, there are 4 ambiguities for which the 
corresponding S-polynomials are zero anyway, for instance

SP(DΦ,EI)= 0⊗ ∫ − ∂ ⊗ 0= 0.

The S-polynomials of 48 remaining ambiguities are reduced to zero by applying automatically the 
implementation of rules from �, identities in R and identities in MD , MI and MΦ . The complete 
computation is included in the example files of the package. Here we consider a few concrete in-
stances of ambiguities. For example, we use the definition of E in R in the reduction of the following 
S-Polynomial

SP(IRD,DΦ)= ( f − ∫ ⊗ ∂ f − (E f )E)⊗ ϕ − ∫ ⊗ f ⊗ 0

→rIRΦ f ⊗ ϕ − (
∫
∂ f )⊗ ϕ − (E f )E⊗ ϕ

= f ⊗ ϕ − ( f − E f )⊗ ϕ − (E f )E⊗ ϕ

= E f ⊗ ϕ − (E f )E⊗ ϕ→rΦΦ E f ⊗ ϕ − (E f )ϕ→rK 0.

As another example, we use the definition of the right multiplication in the K -bimodule MI in the 
following reduction

SP(IΦ,ΦR)= (
∫

1⊗ ϕ)⊗ f − ∫ ⊗ (ϕ f )ϕ→rIΦ

∫
1⊗ ϕ ⊗ f − ϕ f (

∫
1⊗ ϕ)

→rΦR

∫
1⊗ (ϕ f )ϕ − ϕ f (

∫
1⊗ ϕ)

= (
∫

1ϕ f )⊗ ϕ − ϕ f (
∫

1⊗ ϕ)= (ϕ f )
∫

1⊗ ϕ − ϕ f (
∫

1⊗ ϕ)

= ϕ f (
∫

1⊗ ϕ)− ϕ f (
∫

1⊗ ϕ)= 0.

There are 41 ambiguities without specialization. The remaining 11 ambiguities consist of 4 overlap 
ambiguities with specialization and 7 inclusion ambiguities with specialization. For example,

SP(IRΦ,EI)= (
∫

f ⊗ E)⊗ ∫ − ∫ ⊗ f ⊗ 0→rEI 0,

and

SP(K,DR)= ∂ ⊗ ε ⊗ ε − 1⊗ ∂ →rK ∂ − ∂ = 0.

We emphasize again that the confluence criterion of Theorem 20 directly works with the reduction 
system �, no computations with the refined reduction system �X over X are needed.
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5. Integro-differential operators with linear substitutions

In this section, we apply our tensor setting with specialization to extend the ring of integro-
differential operators by adding linear substitution operators. An important motivation for studying 
this ring comes from the work by Quadrat (2015). In this paper, such operators and their com-
mutation rules are used for an algorithmic approach to Artstein’s integral transformation of linear 
differential systems with delayed inputs to linear differential system without delays. IDOs with linear 
substitutions also address the univariate case in Rosenkranz et al. (2015), where algebraic aspects of 
multivariate integration with linear substitutions are studied. Moreover, they provide an algebraic set-
ting for dealing with delay differential equations and the corresponding initial and boundary problems 
in general.

A delay differential equation is an ordinary differential equation in which the derivative at a certain 
time depends on the solution at prior times; see, for example, Hale and Verduyn Lunel (1993), Smith 
(2011). A general first-order constant delay equation has the form

y′(x)= f (x, y(x), y(x− b1), y(x− b2), . . . , y(x− bn))

where the time delays b j for 1 ≤ j ≤ n are positive constants. A homogeneous linear first-order time-
delay equation with one constant delay has the form

y′(x)= A(x)y(x)+ B(x)y(x− b).

The chain rule and integration by substitution from calculus describe the interaction of linear 
substitutions f (ax − b) with differentiation and integration. More formally, let σa,b denote the linear 
substitution operator mapping a smooth function f (x) to f (ax − b) for a nonzero constant a and an 
arbitrary constant b. Then

∂xσa,b f (x)= af ′(ax− b)= aσa,b∂x f (x)

and

x∫

0

σa,b f (t)dt =
x∫

0

f (at − b)dt = 1

a

ax−b∫

−b

f (t)dt = 1

a
σa,b

x∫

0

f (t)dt − 1

a
Eσa,b

x∫

0

f (t)dt.

Following these identities, we want to define an integro-differential ring with linear substitutions. 
In what follows, C = K ∩Z(R) denotes the ring of elements of K which commute with all elements 
of R and C∗ denotes its group of units. In order to find a proper algebraic setting, we will add an 
axiomatization of linear substitution operations to an integro-differential ring.

Definition 28. Let (R, ∂, 
∫
) be an integro-differential ring with constants K and let

S := {σa,b | a ∈ C∗, b ∈ C}
where σa,b : R → R are multiplicative K -bimodule homomorphisms on R fixing the constants K such 
that

σ1,0 f = f , σa,bσc,d f = σac,bc+d f (16)

and

∂σa,b f = aσa,b∂ f (17)

for all a, c ∈ C∗ , b, d ∈ C and f ∈ R . Then we call (R, ∂, 
∫
, S) an integro-differential ring with linear 

substitutions.

Remark 29. The set S along with composition can be considered as a group of K -bimodule homo-
morphisms on R . The neutral element is σ1,0 and the inverse for σa,b ∈ S is given by

σ−1
a,b = σa−1,−ba−1 .

So the elements in S actually are automorphisms.
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As in analysis, integration by substitution is a consequence of the chain rule and the fundamental 
theorem of calculus.

Lemma 30. Let (R, ∂, 
∫
, S) be an integro-differential ring with linear substitutions. For all σa,b ∈ S and f ∈ R,

∫
σa,b f = a−1(id− E)σa,b

∫
f . (18)

Proof. We first apply 
∫

to Eq. (17). So
∫
∂σa,b f = ∫

aσa,b∂ f = a
∫
σa,b∂ f .

By Eq. (9), we substitute 
∫
∂σa,b f with (id− E)σa,b f and multiply the resulting equation by a−1. This 

gives the identity
∫
σa,b∂ f = a−1(id− E)σa,b f ,

which implies Eq. (18) by just replacing f with 
∫

f . �
In the sequel, we fix an integro-differential ring with linear substitutions (R, ∂, 

∫
, S) with con-

stants K and evaluation E = id− ∫
∂ . We consider the modules MK , MR̃ , MD , MI , ME , MΦ̃ , MR , and 

MΦ which are introduced in Eqs. (10), (12), and (14). In addition, we add the free left K -module

MG := K S.

We also view it as a K -bimodule with the right multiplication defined by cσa,b · d = cdσa,b with 
c, d ∈ K . It has the direct sum decomposition

MG = MN ⊕ MG̃

such that MN := Kσ1,0 is the K -bimodule generated by the trivial substitution σ1,0 = id and MG̃ :=
K S̃ is the K -bimodule generated by all linear substitutions in S̃ = S \ {σ1,0}. Therefore we take the 
alphabets

X := {K, R̃,D, I,E,Φ̃,N, G̃}, Z := X ∪ {R,Φ,G}. (19)

With the K -bimodules

MR = MK ⊕ MR̃, MΦ = ME ⊕ MΦ̃, MG = MN ⊕ MG̃, (20)

we define

M := MR ⊕ MD ⊕ MI ⊕ MΦ ⊕ MG. (21)

Then (Mz)z∈Z is a decomposition with specialization.
In addition to the identities of IDOs that we collected in Section 4, the identities for IDOs with 

linear substitutions include additional identities involving the substitution operators. Again, we first 
collect some identities involving substitution operations that hold in R . For all f , g ∈ R , ϕ ∈ � and 
σa,b, σc,d ∈ S we have:

σ1,0 g = g σa,bσc,d g = σac,bc+d g

σa,b f g = (σa,b f )(σa,b g) ∂σa,b g = aσa,b∂ g

σa,bϕg = ϕg
∫

f σa,b g = a−1(id− E)σa,b
∫
(σ−1

a,b f )g

The only identity above that does not follow immediately from Definition 28 is
∫

f σa,b g = a−1(id− E)σa,b
∫
(σ−1

a,b f )g.
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Table 2
New reduction rules for IDOs with linear substitutions.

N σ1,0 �→ ε

GR σa,b ⊗ f �→ σa,b f ⊗ σa,b

GΦ σa,b ⊗ ϕ �→ ϕ

GG σa,b ⊗ σc,d �→ σac,bc+d

DG ∂ ⊗ σa,b �→ aσa,b ⊗ ∂

IG
∫ ⊗ σa,b �→ a−1(ε − E)⊗ σa,b ⊗

∫
IRG

∫ ⊗ f ⊗ σa,b �→ a−1(ε − E)⊗ σa,b ⊗
∫ ⊗ σ−1

a,b f

It can be verified by replacing f with (σ−1
a,b f )g in Lemma 30 and then using multiplicativity of σa,b . 

Corresponding reduction rules to these identities in R are listed in Table 2.
In order to obtain our reduction system � over the alphabet 〈Z〉, we consider reduction rules of 

the Table 1 along with the reduction rules of the Table 2 simultaneously.

Definition 31. Let (R, ∂, 
∫
, S) be an integro-differential ring with linear substitutions. We call

R〈∂,
∫
,�, S〉 := K 〈M〉/ J

the ring of integro-differential operators with linear substitutions, where J is the two-sided reduction 
ideal induced by the reduction system obtained from adjoining Table 2 to Table 1.

Similar to the previous example, the refined reduction system �X is obtained, according to 
Eq. (20), by splitting rules whose words contain R, Φ or G into “smaller” rules using S(R) = {K, R̃}, 
S(Φ) = {E, Φ̃} and S(G) = {N, G̃}. Following Theorem 20, we determine normal forms of tensors in 
R〈∂,

∫
,�, S〉.

Theorem 32. Let (R, ∂, 
∫
, S) be an integro-differential ring with linear substitutions and let M be as in 

Eqs. (21) and (20) and let the reduction system � be defined by Tables 1 and 2. Then every t ∈ K 〈M〉 has 
a unique normal form given by a sum of pure tensors

f ⊗ ϕ ⊗ σa,b ⊗ ∂⊗ j or f ⊗ ϕ ⊗ σa,b ⊗
∫ ⊗ g,

where j ∈N0 , each of f , g ∈ MR̃ , ϕ ∈� and σa,b ∈ S̃ may be absent, and ϕ ⊗ σa,b ⊗
∫

does not specialize to 
E ⊗ ∫

. Moreover, with defining the multiplication s · t := (s ⊗ t)↓� on K 〈M〉irr

R〈∂,
∫
,�, S〉 ∼= K 〈M〉irr.

Proof. We consider the alphabets X and Z as defined in Eq. (19). Then (Mz)z∈Z is a decomposition 
with specialization for the module M , see Definition 12. For defining a Noetherian monoid partial 
order ≤ on 〈Z〉 that is compatible with �, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃, GR > RG, DG > GD, IG > EGI, IRG > EGIR.

For instance, on 〈Y 〉 with Y = {R, D, I, Φ, G} we first define a monoid order by

V ≤ W :⇔ Ṽ ≺ W̃ or Ṽ = W̃ and V � W ,

where Ṽ and W̃ are obtained by removing all occurrences of Φ, cf. Remark 4, and � is the degree-
lexicographic order with I � D � G �Φ � R on 〈Y 〉. Then, we extend ≤ to a monoid partial order on 
〈Z〉 based on Definition 16 in order to make it consistent with specialization.

Then by the package TenReS we verify that all ambiguities of � are resolvable, see Section 5.1. 
Hence by Theorem 20 every element of K 〈M〉 has a unique normal form and K 〈M〉/I� ∼= K 〈M〉irr as 
K -rings.
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It remains to determine the explicit form of elements in K 〈M〉irr . To do so, we determine the set 
of irreducible words 〈X〉irr in 〈X〉. Note that �IDO ⊂ �, where �IDO is given by Table 1. Hence the 
irreducible words w.r.t. � are among the irreducible words w.r.t. �IDO. In Theorem 27, we already 
determined the irreducible words that do not contain the letters N and G̃ to be of the form

R̃V D j or R̃Φ̃IR̃,

where j ∈N0 and each of R̃, Φ̃, and V ∈ S(Φ) may be absent.
The irreducible words containing only N and G̃ are exactly ε and G̃, since they have to avoid 

the subwords N and S(GG) = {NN, NG̃, G̃N, G̃G̃}. The irreducible words in 〈X〉irr also have to avoid 
subwords from S(GR), S(GΦ), S(DG), S(IG), and S(IRG). Hence they are of the form

R̃V G̃D j or R̃V G̃IR̃,

where j ∈N0 and each of R̃, G̃, and V ∈ S(Φ) may be absent and V G̃I does not specialize to EI. The 
normal forms follow from Eq. (3). �
5.1. Computational aspects

In the following, we shortly mention some computational details of the tensor setting with special-
ization for integro-differential operators with linear substitutions. Applying TenReS to the reduction 
system � given by Tables 1 and 2, in total 87 ambiguities and corresponding S-polynomials are gen-
erated. All ambiguities are resolvable and the automatic verification can be found in the example files 
of the package. There are 66 ambiguities without specialization. For instance,

SP(IRΦ,EI)= (
∫

f ⊗ E)⊗ ∫ − ∫ ⊗ f ⊗ 0→rEI

∫
f ⊗ 0= 0,

and

SP(IG,GR)= (a−1σa,b ⊗
∫ − a−1E⊗ σa,b ⊗

∫
)⊗ f − ∫ ⊗ (σa,b f ⊗ σa,b)

= a−1σa,b ⊗
∫ ⊗ f − a−1E⊗ σa,b ⊗

∫ ⊗ f − ∫ ⊗ σa,b f ⊗ σa,b →rIRG 0.

The remaining 21 ambiguities consist of 5 overlap ambiguities with specialization and 16 inclusion 
ambiguities with specialization. They all involve the following three reduction rules (over X)

(K,1 �→ ε), (EI,E⊗ ∫ �→ 0), (N,σ1,0 �→ ε)

and their S-polynomials can be reduced to zero. For example,

SP(N,DG)= ∂ ⊗ ε − σ1,0 ⊗ ∂ →rN ∂ − ∂ = 0,

and

SP(N, IRG)= ∫ ⊗ f − (ε − E)⊗ σ1,0 ⊗
∫ ⊗ f →rN E⊗ σ1,0 ⊗

∫ ⊗ f →rN E⊗ ∫ ⊗ f →rEI 0.

6. Completion of tensor reduction systems

For computing in the quotient ring K 〈M〉/I� , we would like to compute with a system of repre-
sentatives. By Theorem 6, the irreducible tensors K 〈M〉irr are such a system if the tensor reduction 
system is confluent. If the reduction system is not confluent, we want to construct a confluent one 
that generates the same reduction ideal of Eq. (4).

Like Buchberger’s algorithm (Buchberger, 1965) and Knuth–Bendix completion (Knuth and Bendix, 
1970), the completion process involves adding new rules corresponding to non-resolvable ambiguities 
(S-polynomials resp. critical pairs); see also Buchberger (1987). Obstructions for general algorithms 
are inherited from the noncommutative polynomial algebra case (Mora, 1994), e.g., deciding existence 
of finite Gröbner bases and the undecidability of the word problem. Unlike noncommutative Gröb-
ner basis computations and Knuth–Bendix completion, where we have semi-decision algorithms, the 
method we describe for completing tensor reduction systems involves also non-algorithmic steps. One 
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of the main difficulties is to define a new reduction homomorphism based on the S-polynomials of 
a non-resolvable ambiguity. Since for verification of confluence, a compatible semigroup partial order 
is sufficient, one can also start the completion process with a compatible semigroup partial order in-
stead of a total one. Extending this order in a compatible way may not always be possible. We refer 
also to Caboara (1993), Gritzmann and Sturmfels (1993) for variants of Buchberger’s algorithm in the 
commutative case that do not assume a total term ordering as input.

Before we discuss aspects of the completion process for tensor reduction systems more formally 
below, we have a look at a few concrete non-resolvable ambiguities. We start with the following 
reduction rules for integro-differential operators that follow immediately from the definition:

�0 = {(K,1 �→ ε), (RR, f ⊗ g �→ f g), (ΦR,ϕ ⊗ f �→ (ϕ f )ϕ), (ΦΦ,ψ ⊗ ϕ �→ ϕ),

(DR, ∂ ⊗ f �→ f ⊗ ∂ + ∂ f ), (DΦ, ∂ ⊗ ϕ �→ 0), (DI, ∂ ⊗ ∫ �→ ε), (ID,
∫ ⊗ ∂ �→ ε − E)}

On 〈Z〉 we define a partial order ≤ based on the length of words with the additional property that 
DR > RD. Generating from it the minimal partial order that is consistent with specialization means 
that we also have to define DK > KD, DK > R̃D, DR̃ > KD, and DR̃ > R̃D. In order to obtain the 
minimal semigroup partial order generated by that, we not only have to define ADRB > ARDB for 
any A, B ∈ 〈Z〉, but also for all k ≥ 2 the general condition A1DRA2DR . . .DRAk > A1RDA2RD . . .RDAk
for all Ai ∈ 〈Z〉 along with all 22k−2 specializations R ∈ {K, R̃}. The resulting semigroup partial order 
≤ is compatible with �0.

The rules rDI and rID have two overlap ambiguities with each other, one is resolvable and one is 
not. The latter has S-polynomial

SP(ID,DI)= (ε − E)⊗ ∫ − ∫ ⊗ ε =−E⊗ ∫
.

This trivially gives rise to the new rule

(EI,E⊗ ∫ �→ 0).

The rules rID and rDR have a non-resolvable overlap ambiguity with S-polynomials

SP(ID,DR)= (ε − E)⊗ f − ∫ ⊗ ( f ⊗ ∂ + ∂ f )→rΦR
f − (E f )E− ∫ ⊗ f ⊗ ∂ − ∫ ⊗ ∂ f .

While we could reduce further, by using rK for example, we will not be able to reduce to zero for all 
f ∈ R . Based on the expression above, however, we can introduce a new rule

(IRD,
∫ ⊗ f ⊗ ∂ �→ f − (E f )E− ∫ ⊗ ∂ f )

that allows to reduce all the S-polynomials of the overlap ambiguity of rID and rDR to zero. This 
rule gives rise to a non-resolvable overlap ambiguity with rDI among others. The corresponding S-
polynomials can be reduced to

SP(IRD,DI)= ( f − (E f )E− ∫ ⊗ ∂ f )⊗ ∫ − ∫ ⊗ f ⊗ ε →rEI f ⊗ ∫ − ∫ ⊗ ∂ f ⊗ ∫ − ∫ ⊗ f .

We would like to have a new reduction homomorphism on MIRI that reduces the tensor 
∫ ⊗ ∂ f ⊗ ∫

to f ⊗ ∫ − ∫ ⊗ f . Replacing f by 
∫

f , we arrive at the definition

(IRI,
∫ ⊗ f ⊗ ∫ �→ ∫

f ⊗ ∫ − ∫ ⊗ ∫
f ).

Finally, we consider the inclusion ambiguity (with specialization) of this new rule with rK , which 
has irreducible S-polynomials

SP(K, IRI)= ∫ ⊗ ε ⊗ ∫ − (
∫

1⊗ ∫ − ∫ ⊗ ∫
1)= ∫ ⊗ ∫ − ∫

1⊗ ∫ + ∫ ⊗ ∫
1.

At this point, the leading term is not determined by our partial order above. We decide to have the 
new rule

(II,
∫ ⊗ ∫ �→ ∫

1⊗ ∫ − ∫ ⊗ ∫
1)

and extend ≤ accordingly to have it compatible with the new rule. Similarly, the overlap ambiguity 
of rIRD and rDΦ gives rise to the rule rIRΦ , which in turn has an inclusion ambiguity with rK giving 
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rise to rIΦ . Thereby we obtain the reduction system given in Table 1. The whole completion process 
for both Table 1 and 2 can be found in the example files of the TenReS package.

In the following, we discuss these issues more formally. For a better overview we consider three 
different tensor settings starting with the special case of a total order for Bergman’s original setting, 
which already covers most issues that may arise during the completion process. Incrementally we 
discuss the problems arising in more general situations below. After that we illustrate some of those 
problems by revisiting the computations done for �0 above.

Bergman’s tensor setting with a total order Based on the direct sum decomposition (2) into word mod-
ules MW we define the support of a tensor t ∈ K 〈M〉 by

supp(t) := {W ∈ 〈X〉 | πW (t) �= 0}, (22)

where πW denotes the canonical projection onto the direct summand MW of K 〈M〉. For each non-
resolvable ambiguity, the following points have to be considered.

• We apply a sequence of reductions uniformly to the bimodule generated by S-polynomials to 
obtain a new bimodule Sred generated by reduced S-polynomials. It is not necessary to have 
Sred ⊆ K 〈M〉irr.

• Among all possible supports supp(Sred) = {supp(t) | t ∈ Sred} we pick some nonempty support 
S ∈ supp(Sred), e.g. a maximal element of supp(Sred) w.r.t. ⊆. The total order ≤ determines a 
maximal element W ∈ S , determining the “leading term” of the corresponding tensors in Sred.

• A new homomorphism h should be defined on MW that allows to reduce t ∈ Sred ∩ M S with 
πW (t) �= 0 to zero, where M S is defined in Eq. (7) as the sum of all modules MV with V ∈ S . In 
addition, h has to be defined such that id−h maps MW into I� , i.e. the reduction ideal stays the 
same I� = I�∪{(W ,h)} . To discuss this we consider the subbimodule N of Sred generated by all t ∈
Sred∩M S with πW (t) �= 0. This bimodule N is contained in Sred∩M S , but they are not necessarily 
equal. If πW : N → MW is bijective, then it is natural to define h via h(πW (t)) = πW (t) − t . Such 
a homomorphism may not exist for two reasons.
– If there are distinct t1, t2 ∈ N with πW (t1) = πW (t2), then we cannot have h(πW (t1)) =

πW (t1) − t1 and h(πW (t2)) = πW (t2) − t2 at the same time. In that case, we need to be con-
tent with some homomorphism g : MW → N such that h(t) = t − g(t) and πW ◦ g = id. As a 
consequence t1 − t2 ∈ Sred may still not be reducible to zero with � ∪ {(W , h)}.

– If there is a t ∈ MW that is not in πW (N), then it is not clear how to define h on all of MW so 
that ≤ is still compatible with � ∪ {(W , h)}, in particular πW (h(MW )) = {0}, without violating 
I� = I�∪{(W ,h)} . Instead of N , considering the larger bimodule Ñ := Sred ∩⊕

V≤W MV might 
satisfy πW (Ñ) = MW . If not, it may be necessary to split some modules Mx , x ∈ X , further in 
order to turn πW (N) or πW (Ñ) into a word module MV over some new alphabet X .

• Finally, we include the new reduction rule (W , h) into �. If supp(Sred) �= {∅, S}, then it may 
happen that the new rule is not sufficient to reduce all elements of Sred to zero. In that case, we 
need to check resolvability of the current ambiguity again.

Bergman’s tensor setting with a partial order The only new issue that appears with a partial order ≤ on 
words that is not a total order, is that the “leading term” of tensors in Sred may not be determined by 
the order. If the selected support S ∈ supp(Sred) does not have a greatest element already, we need 
to choose a word W ∈ S so that we can extend the semigroup partial order in a compatible way, i.e. 
W becomes the greatest element of S . Such a choice is not guaranteed to exist.

Tensor setting with specialization The first thing to note is that we cannot have a total order on 〈Z〉
that is consistent with specialization (as long as Z �= X). All points of the above discussion apply 
also to decompositions of M with specialization except that supp(Sred) should now be defined as 
supp(Sred) =⋃{supp(t) | t ∈ Sred} where for a particular tensor t we now define supp(t) as the set of 
“all possible supports”

supp(t) := {S ⊆ 〈Z〉 | t ∈ M S ,∀W , W̃ ∈ S : πW (t) �= 0∧ S(W )∩ S(W̃ )= ∅}.
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Other than that, no new fundamental obstacles arise in this setting. We just add a few remarks.
It can be advantageous to pick supports with words associated to bigger modules in order to con-

struct reduction homomorphisms h with larger domains. Also, it can be useful to introduce additional 
letters to the alphabet Z in order to collect some of the bimodules appearing in the process. We 
illustrate some of the points discussed formally by revisiting the concrete ambiguities treated above.

The first and simplest case above was the overlap ambiguity of rID and rDI with words I, D, and I. 
All S-polynomials are irreducible w.r.t. �0 and the bimodule generated by them has supp(Sred) =
{∅, {EI}, {ΦI}}. Picking S = {ΦI} and W =ΦI would lead to πW |Sred not being surjective onto MW . So 
the choice S = {EI} and W = EI is preferable and we can define the homomorphism h : MW → K 〈M〉
of rEI by h(πW (t)) = πW (t) − t = 0 in this case.

For the overlap ambiguity of rID and rDR we applied the reduction hε,rΦR,ε to all S-polynomials. 
The bimodule generated by them now has

supp(Sred)= {∅, {K,E, IKD}, {R̃, IR̃D, IK}, {R̃, IR̃D, ˜IR}, {R̃, IR̃D, IR},
{R,E, IRD, IK}, {R,E, IRD, IR̃}, {R,E, IRD, IR}, . . . }.

The chosen partial order ≤ determines a greatest element of most S ∈ supp(Sred). Picking S ∈
supp(Sred) with the largest M S gives S = {R, Φ, IRD, IR} and W = IRD so that πW : Sred → MW is 
bijective. This allows for a straightforward definition of rIRD again.

A more interesting case is the overlap ambiguity of rIRD and rDR with words IR, D, R. After apply-
ing the reduction hε,rEI,ε to all S-polynomials the bimodule generated by them has

supp(Sred)= {∅, {KI, IK}, {R̃I, IKI, IR̃}, {RI, IKI, IR}, {R̃I, IR̃I, IR̃}, {RI, IR̃I, IR}, {R̃I, IRI, IR̃},
{RI, IRI, IR}, {RI, IR}, {KI, R̃I, IKI, IK, IR̃}, . . . }.

Picking again one S ∈ supp(Sred) with the largest M S gives S = {RI, IRI, IR} and W = IRI. Now N =
Sred and πW : Sred → MW is surjective but not injective. We choose the bimodule homomorphism 
g : MW → Sred to be defined by g(

∫ ⊗ f ⊗ ∫
) = ∫ ⊗ f ⊗ ∫ + ∫ ⊗ ∫

f − ∫
f ⊗ ∫

. It satisfies πW ◦ g = id
and we define the homomorphism h : MW → K 〈M〉 of rIRI by h := id − g . While hε,rIRI,ε does not 
map Sred to {0}, the image contains only elements of the form c ⊗ ∫ − ∫ ⊗ c with c ∈ K , which are 
reducible to zero by �0.

The last ambiguity dealt with explicitly above is the inclusion ambiguity (with specialization) of 
rIRI and rK . Its S-polynomials are irreducible and we have

supp(Sred)= {∅, {II, R̃I, IR̃}, {II, R̃I, IR}, {II,RI, IR̃}, {II,RI, IR}}.
As pointed out already, the partial order does not determine a greatest element within any of the 
possible supports. Since πW : Sred → MW is not surjective except for W = II, we would have to split 
MR̃ further in order to define a new reduction rule on πW (Sred) in all other cases. So we choose 
W = II and extend the semigroup partial order such that II > R̃I and II > IR̃.

7. Concluding remarks

A ring of operators may not be finitely presented by generators and relations, it may not even 
be finitely generated. The tensor setting nonetheless often allows to have a finite decomposition of 
the module M of basic operators together with a finite reduction system. Reduction rules need to be 
defined by homomorphisms due to non-uniqueness of the representation of tensors. In addition, ho-
momorphisms collect families of relations into one reduction rule. If a reduction system is confluent, 
the normal forms are unique as tensors while tensors themselves do not have unique representations 
in terms of pure tensors. Both the theoretical concepts and the concrete formulae for the reduction 
systems in the examples presented essentially are the same when working in the tensor algebra or in 
the tensor ring.

In comparison to Bergman’s tensor setting, our tensor setting with specialization allows more flex-
ibility in defining a reduction system for a given ring of operators. This is achieved by relaxing the 
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restriction that the submodules of M that are used for defining the reduction homomorphisms have 
to form a direct sum. As a consequence, reduction systems can be smaller and reduction is more 
efficient by avoiding unnecessary splitting.

Already when we compare quotients of the tensor algebra with quotients of the free algebra 
we note some important differences. All computations in quotients of the free algebra happen on 
two levels: polynomial arithmetic in the free algebra and polynomial reduction modulo the ideal. 
Computations in the K -algebra K 〈M〉 actually take place on three levels. The additional level are 
computations in the module M and its submodules Mz . Analogous to the free algebra there are com-
putations in K 〈M〉 coming from the properties of the tensor product and the reduction system that 
acts by applying the reduction homomorphisms.

Depending on the choice of the module M and its decomposition, certain identities of operators 
either are dealt with by the reduction system or only within the module M . One extreme case occurs 
when M already is the whole K -ring of operators. Then the reduction system only consists of the rules 
1 �→ ε and m1 ⊗m2 �→m1m2 which do not expose any structure of the ring of operators. Another 
extreme case occurs when M is some module that generates the ring of operators and all Mz are 
cyclic. Then the reduction system has to encode all identities among those generators, which makes it 
harder to have a finite reduction system. For instance, any confluent reduction system for IDOs with 
polynomial coefficients K [x]〈∂,

∫
,E〉, Q ⊆ K , is infinite if M is just generated by x, ∂ , 

∫
, and E. In 

between those two extreme cases there is the opportunity to encode only part of the identities by 
the reduction system and “hide” the remaining ones inside the modules Mz . For instance, following 
the construction of K [x]〈∂,

∫
,E〉, Q ⊆ K , given in Section 4 the module M consists of K [x] and the 

modules generated by ∂ , 
∫

, and E and the confluent reduction system given in Table 1 with R = K [x]
is finite. Finiteness of this reduction system can be understood by recalling that reduction rules can 
collect many identities of the same form into one reduction homomorphism.

In principle, if M is a free module, one could reformulate each reduction rule in terms of reduction 
rules on individual basis elements and work in the free algebra without making use of tensors. Con-
sequently, computations with the reduction system would then have to use basis expansion in each 
step. In the tensor setting, however, we do not need to fix a basis of the module M . It is enough to 
work with the decomposition into modules Mz , which also enables working with non-free modules. 
This even allows to consider arbitrary modules M that are not concrete but carry a certain algebraic 
structure. For example, the reduction systems and the computations for checking their confluence in 
Sections 4 and 5 do not rely on a concrete integro-differential ring R .

Based on the normal forms, a confluent reduction system for a ring of operators enables to autom-
atize many computations and proofs involving these operators. The confluent reduction systems given 
for IDOs and IDOs with linear substitutions can be used e.g. to prove the Taylor formula, to compute 
Green’s operators of linear ordinary boundary problems, or to support computations in Artstein’s re-
duction of linear time-delay systems. Since K is neither required to be a field nor commutative, we 
can directly consider operators with matrix coefficients to model systems. Elements in R can even 
model matrices of generic size. The tensor setting can also be used to model other rings of operators. 
For example, we already have results for IDOs with more general types of functionals or a discrete 
analog of IDOs.
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GENERALIZED MASS ACTION SYSTEMS: COMPLEX
BALANCING EQUILIBRIA AND SIGN VECTORS OF THE
STOICHIOMETRIC AND KINETIC-ORDER SUBSPACES∗

STEFAN MÜLLER† AND GEORG REGENSBURGER‡

Abstract. Mass action systems capture chemical reaction networks in homogeneous and dilute
solutions. We suggest a notion of generalized mass action systems that admits arbitrary power-law
rate functions and serves as a more realistic model for reaction networks in intracellular environments.
In addition to the complexes of a network and the related stoichiometric subspace, we introduce
corresponding kinetic complexes, which represent the exponents in the rate functions and determine
the kinetic-order subspace. We show that several results of chemical reaction network theory carry
over to the case of generalized mass action kinetics. Our main result essentially states that if the
sign vectors of the stoichiometric and kinetic-order subspace coincide, there exists a unique complex
balancing equilibrium in every stoichiometric compatibility class. However, in contrast to classical
mass action systems, multiple complex balancing equilibria in one stoichiometric compatibility class
are possible in general.

Key words. chemical reaction network theory, generalized mass action kinetics, complex bal-
ancing, generalized Birch’s theorem, oriented matroids
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1. Introduction. Dynamical systems arising from chemical reaction networks
with mass action kinetics are the subject of chemical reaction network theory (CRNT),
which was initiated by the work of Horn, Jackson, and Feinberg; cf. [25, 24, 13].
In particular, this theory provides results about existence, uniqueness, and stability
of equilibria independently of rate constants (and initial conditions). However, the
validity of the underlying mass action law is limited; it only holds for elementary
reactions in homogeneous and dilute solutions. In intracellular environments, which
are highly structured and characterized by macromolecular crowding, the rate law has
to be modified; cf. [8, 23, 28].

Two types of modifications have been proposed: “fractal reaction kinetics” [26,
27, 38, 21] and the “power-law formalism” [34, 35, 36, 37]. The names of the two
approaches are a bit misleading since both approaches address the problem of di-
mensional restriction (i.e., molecules confined to surfaces, channels, or fractal-like
structures) and both use power-laws. More specifically, in fractal-like kinetics, rate
constants are time-dependent (via a power-law), whereas the exponents of the species
concentrations in the rate function are the corresponding stoichiometric coefficients
(as in mass action kinetics). On the other hand, in the power-law formalism, rate
constants are time-independent (as in mass action kinetics), whereas the exponents
of the species concentrations may be (nonnegative) real numbers different from the
respective stoichiometric coefficients. For model selection, data have to be collected
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GENERALIZED MASS ACTION SYSTEMS 1927

for many molecules and intracellular environments. Recent data of binding kinetics
in crowded media [2, 30] suggest that the power-law formalism is the preferred model.

In this work, we study the consequences of the power-law formalism for chemical
reaction networks. In particular, we demonstrate that several fundamental results
of CRNT carry over to the case of generalized mass action kinetics (i.e., power-law
rate functions). There has been an early approach to account for generalized mass
action kinetics [25], which entails a redefinition of the complexes of a network. Here,
we suggest a different approach, where we keep the original complexes, but introduce
additional “kinetic complexes,” which determine the exponents of the species concen-
trations in the rate functions. This has the advantage that the underlying chemical
reaction network and thus properties like weak reversibility and deficiency remain the
same.

From the kinetic complexes, we obtain (in addition to the stoichiometric sub-
space) a “kinetic-order subspace,” and it turns out that the generalization of a central
result of CRNT (concerned with the uniqueness and existence of a complex balancing
equilibrium in every stoichiometric compatibility class) depends on the sign vectors
of the two subspaces. Our main result, Theorem 3.10, essentially states that if these
sign vectors are equal, there exists a unique complex balancing equilibrium in every
stoichiometric compatibility class. In general, however, there may be more than one
complex balancing equilibrium in a stoichiometric compatibility class; see Proposi-
tion 3.2 and Example 4.2.

Chemical reaction networks with nonmass action kinetics are also studied in [5,
4, 3]. In this approach, one is interested in conditions that guarantee the uniqueness
of equilibria. If autocatalytic reactions are excluded and if the dependence of the
rate functions on the species concentrations corresponds to the stoichiometric matrix,
the structure of the stoichiometric matrix alone guarantees uniqueness. Moreover,
the properties of the stoichiometric matrix can be translated into conditions for the
species reaction graph. As a consequence, this theory is applicable to many types
of kinetics; however, it does not address the existence of equilibria. Existence and
uniqueness of equilibria for general kinetics are discussed in [12]. The methods are
based on homotopy invariance of the Brouwer degree in a way related to the approach
in section 3.3.

Organization of the work. In the next section, we recall the definition of
mass action systems and several fundamental results of CRNT. Then we introduce
generalized mass action systems and discuss the results that carry over easily to this
framework. In section 3, we study uniqueness and existence of complex balancing
equilibria; more specifically, we reformulate the problem and study injectivity and
surjectivity of a certain map (a simplified version of), which appears, for example, in
toric and computational geometry or statistics. In section 4, we discuss two examples
of generalized mass action systems. Finally, we draw our conclusions and give an
outlook to further lines of research. In the appendix, we recall the relevant results on
sign vectors of vector spaces and face lattices of polyhedral cones and polytopes.

Notation. We denote the positive real numbers by R> and the nonnegative real
numbers by R≥. For a finite index set I, we write RI for the real vector space of formal
sums x =

∑
i∈I xi i with xi ∈ R, and RI

> and RI
≥ for the corresponding subsets. Given

x ∈ RI , we write x > 0 if x ∈ RI
> and x ≥ 0 if x ∈ RI

≥. Further, we define ex ∈ RI
>

and ln(x) ∈ RI componentwise, i.e., (ex)i = exi and (ln(x))i = ln(xi), the latter for
x ∈ RI

>. Finally, we define x ◦ y ∈ RI for x, y ∈ RI as (x ◦ y)i = xiyi and xy ∈ R≥ for
x, y ∈ RI

≥ as xy =
∏

i∈I xyi

i , where we set 00 = 1.
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2. Chemical reaction networks. In our presentation of CRNT, we follow the
surveys by Feinberg [14, 15, 16] and Gunawardena [22].

Definition 2.1. A chemical reaction network (S , C , R) consists of three finite
sets: (i) a set S of species, (ii) a set C ⊂ RS

≥ of complexes, and (iii) a set R ⊂ C ×C
of reactions with the following properties: (a) for all y ∈ C : ∃y′ ∈ C such that
(y, y′) ∈ R or (y′, y) ∈ R and (b) for all y ∈ C : (y, y) �∈ R.

Complexes are formal sums of species; they are the left-hand sides and right-hand
sides of chemical reactions. For y ∈ C , we may write y =

∑
s∈S ys s, where ys is the

stoichiometric coefficient of species s. As usual in chemistry, we write y → y′ for a
reaction (y, y′) ∈ R. In a chemical reaction network, each complex appears in at least
one reaction; moreover, there are no reactions of the form y → y.

A chemical reaction network (S , C , R) gives rise to a directed graph with com-
plexes as nodes and reactions as edges. Connected components L1, . . . , Ll ⊆ C are
called linkage classes, strongly connected components are called strong linkage classes,
and strongly connected components without outgoing edges T1, . . . , Tt ⊆ C are called
terminal strong linkage classes. Each linkage class must contain at least one terminal
strong linkage class, i.e., t ≥ l. The network (S , C , R) is called weakly reversible if
the linkage classes coincide with the strong linkage classes and hence with the terminal
strong linkage classes.

From a dynamic point of view, each reaction y → y′ ∈ R causes a change in species
concentrations proportional to y′ − y ∈ RS . The change caused by all reactions lies
in a subspace of RS such that any trajectory in RS

≥ lies in a coset of this subspace.
Definition 2.2. Let (S , C , R) be a chemical reaction network. The stoichio-

metric subspace is defined as

S = span{y′ − y ∈ RS | y → y′ ∈ R} .

Further, let c′ ∈ RS
> . The corresponding stoichiometric compatibility class is de-

fined as

(c′ + S)≥ = (c′ + S) ∩ RS
≥ .

2.1. Mass action systems. The rate of a reaction y → y′ ∈ R depends on
the concentrations of the species involved. The explicit form of the rate function
Ky→y′ : RS

≥ → R≥ is determined by the underlying kinetics. In the case of mass

action kinetics, it is a monomial in the concentrations c ∈ RS
≥ of reactant species, i.e.,

Ky→y′(c) = ky→y′ cy with rate constant ky→y′ ∈ R>. In other words, the stoichiomet-
ric coefficient of a species on the left-hand side of the reaction equals the exponent of
the corresponding concentration in the rate function. It remains to formally introduce
the rate constants.

Definition 2.3. A mass action system (S , C , R, k) is a chemical reaction net-
work (S , C , R) together with a vector k ∈ RR

> of rate constants.
Definition 2.4. The ordinary differential equation (ODE) associated with a

mass action system (S , C , R, k) is defined as

dc

dt
= r(c)

with the species formation rate

r(c) =
∑

y→y′∈R

ky→y′ cy (y′ − y) .
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In order to rewrite the species formation rate, we use the unit vectors ωy ∈ RC

corresponding to complexes y ∈ C and define
• a linear map1 Y : RC → RS with Y ωy = y,
• a nonlinear map Ψ: RS

≥ → RC , c �→∑
y∈C cy ωy, and

• a linear map2 A : RC → RC , x �→∑
y→y′∈R ky→y′ xy (ωy′ − ωy).

Now, the species formation rate can be decomposed as

r(c) =
∑

y→y′∈R

ky→y′ cy (y′ − y)(2.1)

= Y
∑

y→y′∈R

ky→y′ cy (ωy′ − ωy)

= Y
∑

y→y′∈R

ky→y′ Ψ(c)y (ωy′ − ωy)

= Y A Ψ(c) .

Equilibria of the ODE associated with a mass action system satisfying A Ψ(c) = 0
and c > 0 are called complex balancing equilibria. The possibility of other (positive)
equilibria suggests the definition of the deficiency of a mass action system.

Definition 2.5. Let (S , C , R, k) be a mass action system. The set of complex
balancing equilibria is defined as

Z = {c ∈ RS
> | A Ψ(c) = 0} .

The deficiency of the system is defined as

δ = dim(ker(Y ) ∩ im(A)) .

Originally, the deficiency was defined differently. As we will see in Proposition
2.8, the two definitions coincide under certain conditions on the network structure.
In Figure 2.1, we summarize the definitions associated with a mass action system and
depict their dependencies.

Results. Now we are in position to present several results of CRNT related to
the deficiency zero theorem. (The results are due to Horn, Jackson, and Feinberg
[25, 24, 13]. For proofs, we refer the reader to the surveys [14, 16, 22].) As we will
see later, corresponding statements also hold in the case of generalized mass action
kinetics. We start with a foundational linear algebra result, which can be proved
using the Perron–Frobenius theorem.

Theorem 2.6. Let (S , C , R, k) be a mass action system with the associated
map A, and let T1, . . . , Tt ⊆ C be the terminal strong linkage classes. Then

1. for i = 1, . . . , t : ∃χi ∈ RC
≥ with supp(χi) = Ti,

2. ker(A) = span{χ1, . . . , χt},
3. dim(ker(A)) = t.

The next result is an immediate consequence of Theorem 2.6.
Corollary 2.7. Let (S , C , R) be a chemical reaction network. If there exist rate

constants k such that the mass action system (S , C , R, k) has a complex balancing
equilibrium, then (S , C , R) is weakly reversible.

1The corresponding matrix amounts to Ysy = ys.
2The corresponding matrix amounts to Ayy′ = Ky′y − δyy′

∑
y′′∈C Kyy′′ , where K ∈ RC×C

with Kyy′ = ky→y′ if y → y′ ∈ R and Kyy′ = 0 otherwise.
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dc

dt
= Y A Ψ(c)

Fig. 2.1. The mass action system (S ,C ,R, k): Associated definitions and their dependencies.
(Definitions at arrowheads depend on tails.)

If each linkage class contains exactly one terminal strong linkage class, the de-
ficiency is independent of the rate constants and can be computed from basic pa-
rameters of the chemical reaction network. The resulting formula was the original
definition of the deficiency.

Proposition 2.8. If a chemical reaction network (S , C , R) is weakly reversible
(or more generally if t = l), then, for all rate constants k, the deficiency of the mass
action system (S , C , R, k) is given by δ = m − l − s, where m is the number of com-
plexes, l is the number of linkage classes, and s is the dimension of the stoichiometric
subspace.

In the case of deficiency zero, weak reversibility guarantees the existence of com-
plex balancing equilibria.

Proposition 2.9. If a chemical reaction network (S , C , R) is weakly reversible
and δ = 0, then, for all rate constants k, the mass action system (S , C , R, k) has a
complex balancing equilibrium.

Theorem 2.6 further implies that the set of complex balancing equilibria can be
parametrized by the orthogonal of the stoichiometric subspace.

Proposition 2.10. Let (S , C , R, k) be a mass action system with nonempty set
Z of complex balancing equilibria. Then

Z = {c ∈ RS
> | ln(c) − ln(c∗) ∈ S⊥} = {c∗ ◦ ev | v ∈ S⊥}

for any c∗ ∈ Z.
Finally, we recall a result concerned with the existence and uniqueness of a com-

plex balancing equilibrium in every stoichiometric compatibility class. It can be proved
using methods from convex analysis.
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Theorem 2.11. Let (S , C , R, k) be a mass action system with nonempty set
Z of complex balancing equilibria. Then Z meets every stoichiometric compatibility
class in exactly one point.

In section 3, we study the conditions under which a result analogous to Theorem
2.11 holds in the case of generalized mass action kinetics.

2.2. Generalized mass action systems. Chemical reactions occur between
entire molecules such that the stoichiometric coefficients are integers. Under the as-
sumption of mass action kinetics, the rate functions are monomials in the concentra-
tions of the reactant species. However, in Definition 2.1 we allowed nonnegative real
stoichiometric coefficients and hence “generalized monomials” as rate functions, since
all results presented above also hold in this generality. This observation can be used
to account for generalized mass action kinetics. We outline two different approaches,
the second of which is the focus of this paper.

In the first approach [25], chemical reactions are redefined as pseudoreactions
with the same net balance, but real stoichiometric coefficients. For example, the
reaction

nAA + nBB → nCC

with nA, nB, nC ∈ N can be redefined as

νAA + νBB + νCC → (νA − nA)A + (νB − nB)B + (νC + nC)C

with νA, νB, νC ∈ R≥ and rate function k [A]νA [B]νB [C]νC . The redefinition of chem-
ical reactions does not affect the stoichiometric subspace; however, it entails a new
(and typically larger) set of complexes and hence a new mass action system (with
different properties). For example, consider the (weakly) reversible chemical reaction
network

A + B � C

with two complexes and one linkage class. Since the stoichiometric subspace S =
span{(−1, −1, 1)T} has dimension one, we obtain δ = 2−1−1 = 0 by Proposition 2.8.
In order to account for generalized mass action kinetics specified by the rate functions
kA+B→C [A]a[B]b and kC→A+B[C]c with a, b, c ∈ R>, the system can be redefined by
the pseudoreactions

aA + bB → (a − 1)A + (b − 1)B + C,

cC → A + B + (c − 1)C

with four complexes and two linkage classes. This new system is not weakly reversible
and has deficiency δ = 4 − 2 − 1 = 1, again by Proposition 2.8.

In this paper, we present a different way to account for generalized mass action
kinetics. Most importantly, we disentangle the definition of the rate functions from
the stoichiometric coefficients. In particular, we keep the integer stoichiometric coeffi-
cients, but we allow “generalized monomials” as rate functions, in which the exponents
of the concentrations can be arbitrary nonnegative real numbers. More formally, we
do not change the chemical reaction network, but we associate with each complex a
so-called kinetic complex, which determines the exponents of the concentrations in
the rate function of the respective reaction. In the above example, we associate the
kinetic complexes aA + bB and cC with A + B and C, thereby specifying the rate
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functions kA+B→C [A]a[B]b and kC→A+B[C]c. We obtain the following network, where
we indicate association of kinetic complexes by dots:

A + B � C
...

...
aA + bB cC

For an arbitrary chemical reaction network with generalized mass action kinetics, the
rate function Ky→y′ : RS

≥ → R≥ corresponding to reaction y → y′ ∈ R is given by

Ky→y′(c) = ky→y′ cỹ, where ỹ is the kinetic complex associated with y.

Definition 2.12. A generalized chemical reaction network (S , C , C̃ , R) is a
chemical reaction network (S , C , R) together with a family C̃ = (xy)y∈C in RS

≥ of
kinetic complexes, where |{xy | y ∈ C }| = |C |. We write ỹ = xy for the kinetic
complex associated with the complex y ∈ C .

A generalized chemical reaction network (S , C , C̃ , R) contains the chemical reac-
tion network (S , C , R); moreover, it entails the fictitious chemical reaction network
(S , C̃ , R), where the set C̃ = {ỹ | y ∈ C } has the same cardinality as C (by defini-
tion) and the relation R is isomorphic to R, i.e., ỹ → ỹ′ ∈ R whenever y → y′ ∈ R.
Hence the networks (S , C , R) and (S , C̃ , R) give rise to the same directed graph (up
to the renaming of vertices). A generalized chemical reaction network (S , C , C̃ , R) is
called weakly reversible if (S , C , R) is weakly reversible. Also the definitions of the
stoichiometric subspace and the stoichiometric compatibility classes carry over from
(S , C , R) to (S , C , C̃ , R); cf. Definition 2.2. Additionally, we introduce the kinetic-
order subspace of a generalized chemical reaction network, which coincides with the
stoichiometric subspace of the fictitious network.

Definition 2.13. Let (S , C , C̃ , R) be a generalized chemical reaction network.
The kinetic-order subspace is defined as

S̃ = span{ỹ′ − ỹ | y → y′ ∈ R} .

For consistency, the name kinetic subspace would be more appropriate for S̃ but
this name has already been given to a certain subspace of the stoichiometric subspace
[18], which coincides with the stoichiometric subspace if t = l.

For later use, we introduce the maps

• Ỹ : RC → RS with Ỹ ωy = ỹ and

• Ψ̃ : RS
≥ → RC , c �→∑

y∈C cỹ ωy,

where we identify RC and RC̃ .
Definition 2.14. A generalized mass action system (S , C , C̃ , R, k) is a gener-

alized chemical reaction network (S , C , C̃ , R) together with a vector k ∈ RR
> of rate

constants.
Definition 2.15. The ODE associated with a generalized mass action system

(S , C , C̃ , R, k) is defined as

dc

dt
= r̃(c)

with the species formation rate

r̃(c) =
∑

y→y′∈R

ky→y′ cỹ (y′ − y) .
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As in (2.1), we can decompose the species formation rate of a generalized mass
action system as

r̃(c) = Y A Ψ̃(c) .

Analogous to Definition 2.5, equilibria satisfying A Ψ̃(c) = 0 and c > 0 are called
complex balancing equilibria; they coincide with the complex balancing equilibria of
the fictitious mass action system (S , C̃ , R, k). The deficiency, which quantifies the
possibility of other equilibria, coincides with the deficiency of the mass action system
(S , C , R, k).

Definition 2.16. Let (S , C , C̃ , R, k) be a generalized mass action system. The
set of complex balancing equilibria is defined as

Z̃ = {c ∈ RS
> | A Ψ̃(c) = 0}

and the deficiency as

δ = dim(ker(Y ) ∩ im(A)) .

It remains to introduce the kinetic deficiency, which coincides with the deficiency
of the fictitious system.

Definition 2.17. Let (S , C , C̃ , R, k) be a generalized mass action system. The
kinetic deficiency is defined as

δ̃ = dim(ker(Ỹ ) ∩ im(A)) .

In Figure 2.2, we summarize the definitions associated with a generalized mass ac-
tion system and depict their dependencies. From the mass action system (S , C , R, k),
we keep the stoichiometric subspace S and the deficiency δ, whereas we use all defini-
tions associated with the fictitious mass action system (S , C̃ , R, k); in particular, the
kinetic-order subspace S̃, the kinetic deficiency δ̃, and the set Z̃ of complex balancing
equilibria.

Results. Now we return to the results of CRNT that have been derived for mass
action systems. Since Theorem 2.6 is concerned with the kernel of the linear map
A, the underlying kinetics is not relevant at all. But also Corollary 2.7 and Proposi-
tions 2.8–2.10 carry over easily to generalized mass action systems if we consider the
fictitious chemical reaction network (S , C̃ , R) and the fictitious mass action system
(S , C̃ , R, k) defined above. For reference, we present the analogous results.

Proposition 2.18. Let (S , C , R) be a chemical reaction network. If there exists
a generalized mass action system (S , C , C̃ , R, k) with a complex balancing equilib-
rium, then (S , C , R) is weakly reversible.

Proof. Assume that (S , C , C̃ , R, k) and hence the mass action system (S , C̃ ,
R, k) have a complex balancing equilibrium. By Corollary 2.7, the chemical reaction
network (S , C̃ , R) and hence (S , C , R) are weakly reversible.

Proposition 2.19. If a chemical reaction network (S , C , R) is weakly reversible
(or more generally if t = l), then the deficiencies of any generalized mass action system
(S , C , C̃ , R, k) are given by δ = m− l−s and δ̃ = m− l− s̃, where m is the number of
complexes, l is the number of linkage classes, s is the dimension of the stoichiometric
subspace, and s̃ is the dimension of the kinetic-order subspace.
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dc

dt
= Y A Ψ̃(c)

Fig. 2.2. The generalized mass action system (S ,C , C̃ ,R, k): Associated definitions and their
dependencies. (For better readability, k and A are plotted twice.)

Proof. Assume that (S , C , R) and hence the chemical reaction network (S , C̃ , R)
arising from (S , C , C̃ , R, k) are weakly reversible (or more generally that t = l). The
deficiency of the generalized mass action system equals the deficiency of (S , C , R, k),
and the kinetic deficiency equals the deficiency of (S , C̃ , R, k). By Proposition 2.8,
the deficiencies of the two mass action systems are given by the formulas stated.

Proposition 2.20. If a generalized chemical reaction network (S , C , C̃ , R) is
weakly reversible and δ̃ = 0, then any generalized mass action system (S , C , C̃ , R, k)
has a complex balancing equilibrium.

Proof. Assume that (S , C , R) and hence the chemical reaction network (S , C̃ , R)
arising from (S , C , C̃ , R, k) are weakly reversible. Additionally, assume δ̃ = 0. By
Proposition 2.9, the mass action system (S , C̃ , R, k) and hence (S , C , C̃ , R, k) have
a complex balancing equilibrium.

Proposition 2.21. Let (S , C , C̃ , R, k) be a generalized mass action system with
nonempty set Z̃ of complex balancing equilibria. Then

Z̃ = {c ∈ RS
> | ln(c) − ln(c∗) ∈ S̃⊥} = {c∗ ◦ eṽ | ṽ ∈ S̃⊥}

for any c∗ ∈ Z̃.
Proof. The set of complex balancing equilibria of the mass action system (S , C̃ ,

R, k) coincides with Z̃, and its stoichiometric subspace coincides with S̃, which is the
kinetic-order subspace of (S , C , C̃ , R, k). By Proposition 2.10, the nonempty set Z̃
is given by the formula stated.

One might conjecture that Theorem 2.11 also holds for generalized mass action
systems. However, an analogous result depends on both the complexes C and the
kinetic complexes C̃ , where C determines the stoichiometric subspace S (and hence
the stoichiometric compatibility classes (c′ + S)≥), whereas C̃ determines the set Z̃
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of complex balancing equilibria (and the related kinetic-order subspace S̃). It turns
out that the result depends on additional assumptions concerning the sign vectors of
the subspaces S and S̃; see Theorem 3.10.

3. Complex balancing equilibria. In the following, we consider a generalized
mass action system (S , C , C̃ , R, k) with stoichiometric subspace S, kinetic-order sub-
space S̃, and nonempty set Z̃ of complex balancing equilibria.

From Proposition 2.21 we know that Z̃ = {c∗ ◦ eṽ | ṽ ∈ S̃⊥} for any c∗ ∈ Z̃. We
provide necessary and sufficient conditions such that in every stoichiometric compat-
ibility class (c′ + S)≥ there is at most one complex balancing equilibrium. Moreover,
we provide sufficient conditions such that in every stoichiometric compatibility class
there is at least one complex balancing equilibrium.

The question of uniqueness is answered by the following result for arbitrary sub-
spaces S and S̃. It involves the corresponding sets of sign vectors denoted by σ(S) and
σ(S̃); for the definition of sign vectors and related notions we refer the reader to the
appendix. We note that sign vectors also appear in the study of multiple equilibria
that are not necessarily complex balancing [17, 32].

Proposition 3.1. Let S, S̃ be subspaces of Rn. Then the following two state-
ments are equivalent:

1. For all c∗ > 0 and c′ > 0, the intersection (c′ + S)≥ ∩ {c∗ ◦ eṽ | ṽ ∈ S̃⊥}
contains at most one element.

2. σ(S) ∩ σ(S̃⊥) = {0}.
Proof. (¬1 ⇒ ¬2): Suppose there exist u1 �= u2 ∈ S and ṽ1 �= ṽ2 ∈ S̃⊥ such that

c′ + u1 = c∗ ◦ eṽ1 and c′ + u2 = c∗ ◦ eṽ2 (for a certain c′ and a certain c∗). Then
u1 − u2 = c∗ ◦ (eṽ1 − eṽ2) and by the monotonicity of the exponential function

σ(u1 − u2

︸ ︷︷ ︸
∈ S

) = σ(c∗ ◦ (eṽ1 − eṽ2

)) = σ(eṽ1 − eṽ2

) = σ(ṽ1 − ṽ2

︸ ︷︷ ︸
∈ S̃⊥

) .

Hence σ(S) ∩ σ(S̃⊥) �= {0}.
(¬2 ⇒ ¬1): Suppose that 0 �= τ ∈ σ(S) ∩ σ(S̃⊥). Then there exist u ∈ S and

ṽ1 ∈ S̃⊥ such that σ(u) = σ(ṽ1) = τ . Further, let ṽ2 = 1
2 ṽ1. Then σ(ṽ1 − ṽ2) = τ and

σ(u) = σ(ṽ1 − ṽ2) = σ(eṽ1 − eṽ2

) = σ(c∗ ◦ (eṽ1 − eṽ2

))

for all c∗ > 0. In particular, there is c∗ such that u = c∗ ◦ (eṽ1 − eṽ2

). With c′ =

c∗ ◦ eṽ1

, one has c′ − u = c∗ ◦ eṽ2

and hence both c′ and c′ − u are elements of
(c′ + S)≥ ∩ {c∗ ◦ eṽ | ṽ ∈ S̃⊥}.

It follows, in particular, that if the sign vectors are equal, σ(S) = σ(S̃), complex
balancing equilibria are unique (in a stoichiometric compatibility class) since then

σ(S) ∩ σ(S̃⊥) = σ(S) ∩ σ(S̃)⊥ = σ(S) ∩ σ(S)⊥ = {0}

using (A.1). Note that this is only a sufficient condition; for example, with S =
span{(−1, 1)} and S̃ = span{(−1, 0)}, we have σ(S) ∩ σ(S̃⊥) = {0} but σ(S) �=
σ(S̃). However, it includes classical mass action kinetics where S = S̃ and each
stoichiometric compatibility class contains at most one complex balancing equilibrium.
On the other hand, if σ(S) ∩ σ(S̃⊥) �= {0} and the underlying network is weakly
reversible, then such a generalized chemical reaction network has the capacity for
multiple complex balancing equilibria, as shown in the following result.
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Proposition 3.2. If a generalized chemical reaction network (S , C , C̃ , R) is
weakly reversible and σ(S) ∩ σ(S̃⊥) �= {0}, there exist rate constants k such that the
generalized mass action system (S , C , C̃ , R, k) has more than one complex balancing
equilibrium in some stoichiometric compatibility class.

Proof. Let σ(S) ∩ σ(S̃⊥) �= {0}. By Proposition 3.1, there exist c∗ > 0 and
c′ > 0 such that (c′ + S)≥ ∩{c∗ ◦ eṽ | ṽ ∈ S̃⊥} contains more than one element. Using
Proposition 2.21, it remains to show that there exist rate constants k ∈ RR

> such that

c∗ is a complex balancing equilibrium of (S , C , C̃ , R, k), i.e.,

A Ψ̃(c∗) =
∑

y→y′∈R

ky→y′ (c∗)ỹ (ωy′ − ωy) = 0 .

Since (S , C , C̃ , R) and hence (S , C , R) are weakly reversible, this is guaranteed by
Lemma 3.3.

In the proof of Proposition 3.2, we use the following result.
Lemma 3.3. Let (S , C , R) be a chemical reaction network. Then, the following

statements are equivalent:
1. (S , C , R) is weakly reversible.
2. There exists k ∈ RR

> such that
∑

y→y′∈R ky→y′ (ωy′−ωy) = 0, where ωy ∈ RC

denotes the unit vector corresponding to y ∈ C .
Proof. (1 ⇒ 2): By weak reversibility, there exists a cycle y → y′ → · · · → y for

each reaction y → y′ ∈ R and we denote the set of reactions involved in this cycle by
Cy→y′ . Clearly,

∑
z→z′∈Cy→y′ (ωz′ − ωz) = 0 and hence

∑

y→y′∈R

∑

z→z′∈Cy→y′

(ωz′ − ωz) =
∑

y→y′∈R

ky→y′ (ωy′ − ωy) = 0 ,

where ky→y′ > 0 records in how many cycles the reaction y → y′ appears.
(2 ⇒ 1): We write

∑
y→y′∈R ky→y′ (ωy′−ωy) = AΩ with Ω = (1, 1, . . . , 1)T ∈ RC

> .
By Theorem 2.6, if AΩ = 0, then (S , C , R) is weakly reversible.

The second implication is a basic fact from CRNT [24, 16].

3.1. The map F . In order to study uniqueness and existence in a common
framework, we rephrase the problem. We suppose that S contains n species and fix an
order among them. Then we can identify RS with Rn such that S, S̃ ⊆ Rn. Further,

let V = (v1, . . . , vd) and Ṽ = (ṽ1, . . . , ṽd̃) be bases for S⊥ and S̃⊥, respectively.
In other words, S⊥ = im(V ) and dim(S⊥) = d and analogously S̃⊥ = im(Ṽ ) and
dim(S̃⊥) = d̃.

An element in (c′ + S)≥ ∩ {c∗ ◦ eṽ | ṽ ∈ S̃⊥} corresponds to u ∈ S and ṽ ∈ S̃⊥

such that c∗ ◦ eṽ = c′ + u or equivalently to λ ∈ Rd̃ such that

〈c∗ ◦ e
∑d̃

j=1 λj ṽj

, vi〉 = 〈c′, vi〉 for i = 1, . . . , d .

Hence, provided c∗ ∈ Z̃, uniqueness and existence (of a complex balancing equilibrium
in every stoichiometric compatibility class) correspond to injectivity and surjectivity
of the following map:

F : Rd̃ → C◦ ⊆ Rd(3.1)

λ �→ F (λ) with (F (λ))i = 〈c∗ ◦ e
∑d̃

j=1 λj ṽj

, vi〉 ,
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where c∗ > 0 and

C◦ = {γ ∈ Rd | γi = 〈c′, vi〉, c′ ∈ Rn
>} .

Note that F depends on c∗. It is instructive to reformulate the definition of F . To
this end, we express the columns of V and Ṽ by its rows,

V = (v1, . . . , vd) = (w1, . . . , wn)T ,

Ṽ = (ṽ1, . . . , ṽd̃) = (w̃1, . . . , w̃n)T ,

or equivalently vj
i = wi

j and ṽj
i = w̃i

j , and obtain

(F (λ))i = 〈c∗ ◦ e
∑d̃

j=1 λj ṽj

, vi〉 =

n∑

k=1

c∗
k e

∑d̃
j=1 λj ṽj

k vi
k

=

n∑

k=1

c∗
k e

∑d̃
j=1 λjw̃k

j wk
i =

n∑

k=1

c∗
k e〈λ,w̃k〉 wk

i

and

γi = 〈c′, vi〉 =
n∑

k=1

c′
k vi

k =
n∑

k=1

c′
k wk

i .

Hence we can write F (λ) =
∑n

k=1 c∗
k e〈λ,w̃k〉 wk and γ =

∑n
k=1 c′

k wk.

Definition 3.4. Let V ∈ Rn×d, Ṽ ∈ Rn×d̃ with n ≥ d, d̃ have full rank. We write

V = (v1, . . . , vd) = (w1, . . . , wn)T and Ṽ = (ṽ1, . . . , ṽd̃) = (w̃1, . . . , w̃n)T . Further, let
c∗ > 0. We define

F : Rd̃ → C◦ ⊆ Rd

λ �→
n∑

k=1

c∗
k e〈λ,w̃k〉 wk ,

where

C◦ =

{
n∑

k=1

c′
k wk ∈ Rd | c′ ∈ Rn

>

}
.

This definition is more transparent than the equivalent one given above. It be-
comes clear that the set C◦ is the interior of the polyhedral cone generated by the
vectors (w1, . . . , wn). The map F itself (in case V = Ṽ ) appears in toric geometry
[20], where it is related to moment maps, and in statistics [31], where it is related to
exponential families. There is a useful result [20], which guarantees injectivity and
surjectivity of F in case V = Ṽ .

Proposition 3.5. Let V , Ṽ , and F be as in Definition 3.4. If V = Ṽ , then F
is a real analytic isomorphism of Rd onto C◦ for all c∗ > 0.

This is a variant of Birch’s theorem [31, 41, 9]; it implies Theorem 2.11. We will
build on this result when we study the surjectivity of F , but first we deal with its
injectivity in case V �= Ṽ .
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3.2. Injectivity of F . In the context of multiple equilibria in mass action sys-
tems [10] and geometric modeling [11], it was shown that the map F (in case d = d̃)
is injective for all c∗ if and only if F is a local isomorphism for all c∗. We give an
alternative proof of this result and extend it to the case d �= d̃, where we use the sign
vectors of the spaces im(V ) and im(Ṽ ).

Theorem 3.6. Let V , Ṽ , and F be as in Definition 3.4. Then, the following
statements are equivalent:

1. F is injective for all c∗ > 0.
2. F is an immersion for all c∗ > 0. (∂F

∂λ is injective for all λ and c∗ > 0.)

3. σ(im(V )⊥) ∩ σ(im(Ṽ )) = {0}.
Proof. We use F in the form of (3.1).
(1 ⇔ 3): By Proposition 3.1.

Using S⊥ = im(V ) and S̃⊥ = im(Ṽ ), the injectivity of F for all c∗ is equivalent to
the existence of at most one element in (c′ +S)≥ ∩{c∗ ◦ eṽ | ṽ ∈ S̃⊥} for all c′ and c∗.

(¬2 ⇒ ¬3): Suppose that ∂F
∂λ is not injective (for a certain c∗ and a certain λ),

i.e., there exists a nonzero λ′ ∈ Rd̃ such that ∂F
∂λ λ′ = 0. Since

d̃∑

j=1

∂Fi

∂λj
λ′

j =

d̃∑

j=1

〈c∗ ◦ e
∑d̃

k=1 λk ṽk ◦ṽj , vi〉λ′
j =

〈
c∗ ◦ e

∑d̃
k=1 λk ṽk

︸ ︷︷ ︸
c

◦
d̃∑

j=1

λ′
j ṽj

︸ ︷︷ ︸
ṽ′

, vi

〉
,

this is equivalent to the existence of c > 0 and ṽ′ ∈ im(Ṽ ) such that 〈c◦ ṽ′, vi〉 = 0 for
i = 1, . . . , d, which in turn is equivalent to c ◦ ṽ′ ∈ im(V )⊥. Clearly σ(c ◦ ṽ′) = σ(ṽ′)
and hence σ(im(V )⊥) ∩ σ(im(Ṽ )) �= {0}.

(¬3 ⇒ ¬2): Suppose that 0 �= τ ∈ σ(im(V )⊥) ∩ σ(im(Ṽ )). Then, there exist
u ∈ im(V )⊥ and ṽ′ ∈ im(Ṽ ) such that σ(u) = σ(ṽ′) = τ . Clearly, one can choose
c > 0 such that u = c ◦ ṽ′ and hence c ◦ ṽ′ ∈ im(V )⊥. As demonstrated in the

previous step, this is equivalent to the existence of c∗ > 0 and λ, λ′ �= 0 ∈ Rd̃ such
that ∂F

∂λ λ′ = 0.

Finally, we note that for d = d̃, statement 3 in Theorem 3.6 is symmetric with
respect to V and Ṽ .

Corollary 3.7. Let V , Ṽ be as in Definition 3.4 with d = d̃. Then, σ(im(V )⊥)∩
σ(im(Ṽ )) = {0} if and only if σ(im(Ṽ )⊥) ∩ σ(im(V )) = {0}.

Proof. Let F be in the form of (3.1) with d = d̃, and let F̃ be obtained from F
by changing the roles of V and Ṽ ,

F̃ : Rd → Rd

λ �→ F̃ (λ) with (F̃ (λ))i = 〈c∗ ◦ e
∑d

j=1 λjvj

, ṽi〉 .

We will show that ∂F
∂λ is injective for all c∗ if and only if ∂F̃

∂λ is injective for all c∗.
Then, by Theorem 3.6 we will obtain the desired result.

Suppose that ∂F̃
∂λ (or equivalently its transpose) is not injective (for a certain c∗

and a certain λ), i.e., there exists λ′ ∈ Rd̃ such that (∂F̃
∂λ )T λ′ = 0. Since

d∑

j=1

∂F̃j

∂λi
λ′

j =

d∑

j=1

〈c∗ ◦ e
∑d

k=1 λkvk ◦vi, ṽj〉λ′
j =

〈
c∗ ◦ e

∑d
k=1 λkvk

︸ ︷︷ ︸
c

◦ vi,

d∑

j=1

λ′
j ṽj

︸ ︷︷ ︸
ṽ′

〉
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and 〈c ◦ vi, ṽ′〉 = 〈c ◦ ṽ′, vi〉, this is equivalent to the noninjectivity condition for ∂F
∂λ

derived in the proof of Theorem 3.6.

3.3. Surjectivity of F . It is more difficult to derive conditions for the surjec-
tivity of F . Our main result is concerned with sufficient conditions; however, we start
with a discussion of necessary conditions.

Let C and C̃ be the polyhedral cones generated by the vector configurations
V T = (w1, . . . , wn) and Ṽ T = (w̃1, . . . , w̃n), respectively. Then C◦ = int(C), and
analogously we write C̃◦ = int(C̃). We note that C◦ and C̃◦ are nonempty since V
and Ṽ have full rank.

We write σ(im(V ))≥ = σ(im(V )) ∩ {0, +}n for the face lattice of C (see the

appendix), and analogously σ(im(Ṽ ))≥ = σ(im(Ṽ )) ∩ {0, +}n for the face lattice of

C̃. A face f of C is characterized by a sign vector τ ∈ σ(im(V ))≥ or equivalently by a
supporting hyperplane with normal vector λ ∈ Rd, where τk = 0 whenever 〈λ, wk〉 = 0
(for wk lying on f) and τk = + whenever 〈λ, wk〉 > 0.

Now, we can study a necessary condition for surjectivity: The image of F must
contain points arbitrarily close to any point on a face of C. We assume that C is
pointed, more specifically that (+, . . . , +)T ∈ σ(im(V )), and we consider the simplest
nontrivial face, namely an extreme ray e. To begin with, we assume that e contains
only one generator, say w1; hence the characteristic sign vector amounts to τ =
(0, +, . . . , +)T . If F is surjective, then the cone C̃ must have a corresponding extreme

ray ẽ with the same sign vector τ . Only then is there μ ∈ Rd̃ with 〈μ, w̃1〉 = 0 and
〈μ, w̃k〉 > 0 for k = 2, . . . , n such that the limit

lim
a→∞

F (−aμ + ν) = lim
a→∞

n∑

k=1

c∗
k e−a〈μ,w̃k〉+〈ν,w̃k〉 wk = c∗

1 e〈ν,w̃1〉 w1

can be placed arbitrarily close to any point on e (by appropriate choice of ν ∈ Rd̃).
If the extreme ray e contains more than one generator, there may be several

corresponding extreme rays ẽ. For a particular ẽ with characteristic sign vector τ̃ ,

there is μ ∈ Rd̃ (with 〈μ, w̃k〉 = 0 if τ̃k = 0 and 〈μ, w̃k〉 > 0 if τ̃k = +) such that
lima→∞ F (−aμ+ ν) lies on e. We note that if ẽ contains w̃k, then e must contain wk;
otherwise the limit does not lie on e. This condition on the corresponding extreme
rays ẽ and e can be expressed by their characteristic sign vectors τ̃ and τ , namely as
τ̃ ≥ τ . For higher-dimensional faces, similar (but more complicated) conditions can
be formulated.

For the proof of the following surjectivity result, we will employ degree theory.
In particular, we use two properties of the Brouwer degree d(f, D, y) of a continuous
function f : D̄ → Rd defined on the closure of an open and bounded subset D ⊂ Rd

(with boundary ∂D) at a value y �∈ f(∂D): (i) the degree is invariant under homotopy,
and (ii) if the degree is nonzero, there exists x such that y = f(x); see [29] or [19].

Theorem 3.8. Let V , Ṽ , and F be as in Definition 3.4. If there exists a
lattice isomorphism Φ: σ(im(Ṽ ))≥ → σ(im(V ))≥ with τ̃ ≥ Φ(τ̃ ) and (+, . . . , +)T ∈
σ(im(V )), then F is surjective for all c∗ > 0.

Proof. In order to use the Brouwer degree, we require a map on a closed and
bounded set. To this end, we define a map G equivalent to F from the interior of C̃
to the interior of C and extend G to the boundaries such that it maps faces to faces.
Then, we cut the pointed cones such that we obtain polytopes P̃ and P . Finally, we
define a homotopy between the map G and a homeomorphism between the polytopes
guaranteed by the face lattice isomorphism. As a consequence, every point in the
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interior of P has nonzero Brouwer degree and hence is in the image of G. Since the
cut of the cone C can be placed at arbitrary distance from the origin, this holds for
every point in the interior of C.

Since (+, . . . , +)T ∈ σ(im(V )), the face lattice isomorphism implies (+, . . . , +)T ∈
σ(im(Ṽ )), and hence the cones C and C̃ are pointed. We start by choosing a minimal
set of generators for C̃, which (after reordering) we assume to be (w̃1, . . . , w̃nE ), where
nE is the number of extreme rays of C̃. We define an auxiliary map,

F̃ : Rd̃ → C̃◦

λ �→
nE∑

k=1

c̃∗
k e〈λ,w̃k〉 w̃k,

which is a real analytic isomorphism by Proposition 3.5, and a composed map,

G◦ : C̃◦ → C◦

x �→ F (F̃−1(x)) ,

which is surjective whenever F is surjective.
Since G◦ is defined only on C̃◦, we want to extend it continuously to the bound-

ary ∂C̃, i.e., to the faces of the cone. Let f̃ be a face of C̃. It contains a subset
of the minimal set of generators for C̃, which (after reordering) we assume to be
(w̃1, . . . , w̃nmin). There may be additional generators on f̃ , which we assume to be
(w̃nE+1, . . . , w̃nE+nadd), where nmin + nadd is the total number of generators on f̃ .

Now, let (xi)i∈N be a sequence with xi ∈ C̃◦ and limi→∞ xi ∈ f̃ . Via the isomor-

phism F̃ , there is a corresponding sequence (λi)i∈N with λi ∈ Rd̃. From

lim
i→∞

xi =

nmin∑

k=1

c̃∗
k lim

i→∞
e〈λi,w̃k〉 w̃k +

nE∑

k=nmin+1

c̃∗
k lim

i→∞
e〈λi,w̃k〉 w̃k,

we conclude that limi→∞ e〈λi,w̃k〉 ≥ 0 for k = 1, . . . , nmin and limi→∞ e〈λi,w̃k〉 = 0
for k = nmin + 1, . . . , nE . Additional generators w̃k on f̃ can be written as non-
negative linear combinations of the minimal generators (w̃1, . . . , w̃nmin) and hence3

we obtain limi→∞ e〈λi,w̃k〉 ≥ 0. Generators w̃k not on f̃ can be written as nonnega-
tive linear combinations containing at least one of the remaining minimal generators

(w̃nmin+1, . . . , w̃nE ) and hence4 we obtain limi→∞ e〈λi,w̃k〉 = 0. As a consequence, the
image of the sequence converges and

lim
i→∞

G◦(xi) =

nmin∑

k=1

c∗
k lim

i→∞
e〈λi,w̃k〉 wk +

nE+nadd∑

k=nE+1

c∗
k lim

i→∞
e〈λi,w̃k〉 wk .

The isomorphism Φ (between the face lattices of C̃ and C) with τ̃ ≥ Φ(τ̃ ) implies
that there is a face f of C with wk ∈ f if w̃k ∈ f̃ . That is, w1, . . . , wnmin ∈ f as well
as wnE+1, . . . , wnE+nadd ∈ f and hence limi→∞ G◦(xi) ∈ f .

In other words, there is a continuous extension of G◦ to the face f̃ , which maps f̃
to the corresponding face f . We set G := G◦ on C̃◦ and G(x) := limi→∞ G◦(xi) for

3By using e〈λ
i,
∑nmin

k=1
akw̃k〉 =

∏nmin
k=1 (e〈λ

i,w̃k〉)ak .
4By using e〈λ

i,
∑nE

k=1
akw̃k〉 =

∏nmin
k=1 (e〈λ

i,w̃k〉)ak
∏nE

k=nmin+1(e
〈λi,w̃k〉)ak .
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any sequence (xi)i∈N with xi ∈ C̃◦ and limi→∞ xi = x ∈ f̃ . Since this can be done
for all faces of C̃, there is a map G : C̃ → C which extends G◦ continuously to ∂C̃
and maps faces to faces.

Due to the face lattice isomorphism, a minimal set of generators for C is given
by (w1, . . . , wnE ). The isomorphism further implies d = d̃.

Since C is a pointed cone, we can choose a (d − 1)-dimensional subspace of Rd

such that C lies on one side of the subspace. We cut C with a hyperplane parallel
to the subspace and obtain a polytope P (lying on one side of the hyperplane). In
particular, we intersect the extreme rays of C with the hyperplane: the intersection
of the extreme ray ek (generated by wk) is located at αkwk with αk > 0.

Analogously, we cut C̃ with a hyperplane and obtain a polytope P̃ . The intersec-
tion of the extreme ray ẽk (generated by w̃k) is located at α̃kw̃k with α̃k > 0.

From now on, we restrict the map G to P̃ and choose c̃∗ such that G maps
corners of P̃ to corresponding corners of P . For example, the corner α̃1w̃

1 on ẽ1

corresponds (by F̃−1) to the sequence (λi)i∈N with λi ∈ Rn, limi→∞ c̃∗
1 e〈λi,w̃1〉 = α̃1,

and limi→∞ e〈λi,w̃k〉 = 0 for k = 2, . . . , nE. In turn, (λi)i∈N corresponds (by F ) to the
corner α1w

1 on e1:

lim
i→∞

(
c∗
1 e〈λi,w̃1〉 w1 +

nE+nadd∑

k=nE+1

c∗
k e〈λi,w̃k〉 wk

)
= α1w

1 .

Here, we have assumed that, in addition to w̃1, there are additional generators w̃k

(with k = nE + 1, . . . , nE + nadd) on ẽ1 with corresponding generators wk on e1. If

we write w̃k = β̃kw̃1, wk = βkw1, and x = limi→∞ e〈λi,w̃1〉, we can determine c̃∗
1 from

c̃∗
1 x = α̃1 with c∗

1 x +

nE+nadd∑

k=nE+1

c∗
k xβ̃kβk = α1 .

If we choose c̃∗
k accordingly for each extreme ray ẽk, then G maps “side-edges” of P̃

to corresponding side-edges of P . The image of other faces of P̃ need not coincide
with the corresponding faces of P . (However, due to the face lattice isomorphism,
the image of a “side-face” of P̃ lying on a face of C̃, lies in the corresponding face of
C.) In particular,5 the image of the “cut-face” of P̃ (arising from the cut with the
hyperplane) may lie outside the cut-face of P .

The isomorphism between the face lattices of C̃ and C has another important
consequence. It guarantees the existence of a piecewise linear homeomorphism G′ :
P̃ → P , which restricts to homeomorphisms between corresponding faces of P̃ and
P ; see the appendix. We note that G′ has nonzero Brouwer degree on P ◦ = int(P )
and define a homotopy between G (restricted to P̃ ) and G′,

H : P̃ × [0, 1] → C ⊂ Rd

(x, t) �→ t G(x) + (1 − t)G′(x) .

(The homotopy H maps to C, since both G and G′ map to C and C is convex.)
Now, let y ∈ P ◦. Below we will show that y �∈ H(∂P̃ , t) for all t ∈ [0, 1]. Writing

P̃ ◦ = int(P̃ ), we conclude that d(G, P̃ ◦, y) = d(G′, P̃ ◦, y) �= 0 (by the homotopy

5A point on the cut-face of P̃ is a convex combination of the “corners” α̃kw̃
k, k = 1, . . . , nE .

By F̃−1 it corresponds to some λ ∈ Rn, which by F corresponds to a point on the cut-face of P ,
that is, a convex combination (with the same coefficients) of the corners αkw

k, k = 1, . . . , nE , plus
a positive linear combination of the additional generators wk, k = nE + 1, . . . , n.
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invariance of the Brouwer degree) and that there exists x ∈ P̃ ◦ with G(x) = y (by the
existence property of the Brouwer degree). In other words, the image of G restricted
to P̃ ◦ contains P ◦. Since the cut of the cone C can be placed at an arbitrary distance
from the origin, G◦ : C̃◦ → C◦ and hence F : Rd → C◦ are surjective.

It remains to show that y �∈ H(∂P̃ , t) for all t ∈ [0, 1]: For side-faces f̃ ⊂ ∂P̃ ,
one has H(f̃ , t) ⊂ ∂C for all t ∈ [0, 1] (since G and G′ map side-faces to side-faces),
whereas for the cut-face f̃ ⊂ ∂P̃ , one either has H(f̃ , t) ⊂ ∂P for all t ∈ [0, 1]
(whenever G maps one cut-face to the other) or H(int(f̃), t) ∩ P = ∅ for all t ∈ [0, 1]
(whenever G maps the cut-face out of P ). In each case, one obtains H(∂P̃ , t)∩P ◦ = ∅
for all t ∈ [0, 1].

We think that the technical condition (+, . . . , +)T ∈ σ(im(V )) in Theorem 3.8,
which requires the cone C to be pointed, is not necessary, and a similar result can
be obtained for arbitrary cones. However, at the moment we do not have a complete
proof for such a theorem.

3.4. Main results. The previous two theorems concerned with injectivity and
surjectivity of F allow the following generalization of Proposition 3.5 (Birch’s theo-
rem).

Proposition 3.9. Let V , Ṽ , and F be as in Definition 3.4. If σ(im(V )) =
σ(im(Ṽ )) and (+, . . . , +)T ∈ σ(im(V )), then F is a real analytic isomorphism of Rd

onto C◦ for all c∗ > 0.
Proof. From σ(im(V )) = σ(im(Ṽ )) it follows that d = d̃ and with (A.1) that

σ(im(V )⊥) ∩ σ(im(Ṽ )) = {0}. Hence, F is injective and a local isomorphism by The-
orem 3.6. Moreover, with Φ being the identity, F is surjective by Theorem 3.8.

Note that the condition σ(im(V )) = σ(im(Ṽ )) in the previous proposition can be
tested algorithmically using chirotopes; see the appendix. We can now formulate a
result analogous to Theorem 2.11 in the case of generalized mass action kinetics.

Theorem 3.10. Let (S , C , C̃ , R, k) be a generalized mass action system with
nonempty set Z̃ of complex balancing equilibria, stoichiometric subspace S, and kinetic-
order subspace S̃. If σ(S) = σ(S̃) and (+, . . . , +)T ∈ σ(S⊥), then Z̃ meets every
stoichiometric compatibility class in exactly one point.

Proof. Suppose Z̃ �= ∅. As discussed at the beginning of subsection 3.1, uniqueness
and existence of a complex balancing equilibrium in every stoichiometric compatibility
class correspond to injectivity and surjectivity of the map F as given in Definition
3.4, where V and Ṽ are bases for S⊥ and S̃⊥, respectively. By (A.1), σ(S) = σ(S̃) is
equivalent to σ(im(V )) = σ(im(Ṽ )), and obviously (+, . . . , +)T ∈ σ(S⊥) is equivalent
to (+, . . . , +)T ∈ σ(im(V )) such that F is injective and surjective by Proposition
3.9.

In the terminology of CRNT, a chemical reaction network is conservative if S⊥ ∩
RS

> �= ∅, i.e., if there is a “vector of molecular weights,” relative to which all reactions
are mass conserving. Note that the condition (+, . . . , +)T ∈ σ(S⊥) in Theorem 3.10
means that the underlying chemical reaction network is conservative.

4. Examples. We discuss two examples of generalized mass action systems.
First, we continue the example of the generalized chemical reaction network intro-
duced in section 2.2,

(4.1)

A + B � C
...

...
aA + bB cC
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with a, b, c ∈ R>. The kinetic complexes aA + bB and cC (associated with the com-
plexes A + B and C) determine the exponents in the rate functions kA+B→C [A]a[B]b

and kC→A+B [C]c.
The network is (weakly) reversible and has two complexes and one linkage class.

The stoichiometric and kinetic-order subspace amount to S = span{(−1, −1, 1)T} and
S̃ = span{(−a, −b, c)T } with dimensions d = d̃ = 1. By Proposition 2.19, δ = δ̃ =
2 − 1 − 1 = 0, and by Proposition 2.20, Z̃ �= ∅. Further, the sign vectors of S and S̃
coincide, i.e., σ(S) = σ(S̃), and (1, 1, 2)T ∈ S⊥, which implies (+, +, +)T ∈ σ(S⊥).
Hence, by Theorem 3.10, every stoichiometric compatibility class contains exactly one
complex balancing equilibrium.

In the rest of this section, we study an autocatalytic mechanism (for the overall
reaction A + B � C) endowed with generalized mass action kinetics:

(4.2)

A + 2B � B + C
...

...
A + B 2B + C

The kinetic complexes A+B and 2B +C (associated with the complexes A+2B
and B +C) determine the rate functions kA+2B→B+C [A][B] and kB+C→A+2B[B]2[C].
The particular kinetics may be unrealistic from a chemical point of view, however,
it will serve to demonstrate how the conditions in Theorem 3.10 for existence and
uniqueness of a complex balancing equilibrium (in every stoichiometric compatibility
class) are violated.

The network is weakly reversible, δ = δ̃ = 0, and hence Z̃ �= ∅. In particular,
the stoichiometric and kinetic-order subspace amount to S = span{(−1, −1, 1)T} and

S̃ = span{(−1, 1, 1)T}. For the orthogonal complements S⊥ and S̃⊥ we choose the
bases

V =

⎛
⎝

1 0
0 1
1 1

⎞
⎠ and Ṽ =

⎛
⎝

1 1
0 1
1 0

⎞
⎠ .

The cones C and C̃ generated by V T = (wA, wB , wC) and Ṽ T = (w̃A, w̃B, w̃C)
both coincide with R2

≥:

�wA

�wB �wC

0 1
0

1

�w̃C

�w̃B �w̃A

0 1
0

1

First, we address the question of existence. We observe that the cone C has
an extreme ray generated by wA, whereas the cone C̃ does not have a corresponding
extreme ray generated by w̃A (since w̃A lies in the interior of C̃). As a consequence, the
map F is not surjective for all c∗; cf. the argument at the beginning of subsection 3.3.
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In other words, there may be a stoichiometric compatibility class that does not contain
a complex balancing equilibrium.

Now, we turn to the question of uniqueness. In order to employ Propositions 3.1
or 3.2, we determine σ(S) ∩ σ(S̃⊥). The sign vectors of S are (−, −, +)T , its inverse,
and 0, whereas the sign vectors of S̃⊥ can be read off from the above figure: For every
hyperplane of R2, i.e., for every line through 0 ∈ R2, we check if w̃A, w̃B , and w̃C lie
on the line or on its negative or positive side. We obtain

σ(S) =

⎛
⎝

− 0
− . . . 0
+ 0

⎞
⎠ and σ(S̃⊥) =

⎛
⎝

+ + + 0 − − 0
+ 0 − − − − . . . 0
+ + + + + 0 0

⎞
⎠ ,

where we use matrix notation for sets of vectors and where we do not state vectors
explicitly that are inverses of others. We find that σ(S) ∩ σ(S̃⊥) contains (−, −, +)T .
Hence, by Proposition 3.2, there exist rate constants kA+2B→B+C and kB+C→A+2B

such that some stoichiometric compatibility class contains more than one complex
balancing equilibrium.

Due to the simplicity of the generalized mass action system, the equilibria of the
associated ODE can be determined analytically. The equilibrium condition amounts to

kA+2B→B+C [A][B] = kB+C→A+2B[B]2[C] ,

and since δ = 0 all equilibria are complex balancing. By using the conservation
relations [A] + [C] = [A]0 + [C]0 = ΣAC and [B] + [C] = [B]0 + [C]0 = ΣBC and by
writing K = kA+2B→B+C/kB+C→A+2B, we obtain a quadratic equation in [C], which
can be solved as

[C] =
K + ΣBC

2
±
√(

K + ΣBC

2

)2

− K ΣAC .

Depending on the equilibrium constant K and the initial values ΣAC and ΣBC (which
determine a stoichiometric compatibility class), the quadratic equation has 0, 1, or 2
solutions with [C] > 0. If, additionally, [A] = ΣAC −[C] > 0 and [B] = ΣBC −[C] > 0,
then ([A], [B], [C])T is a complex balancing equilibrium. Obviously, a stoichiometric
compatibility class contains 0, 1, or 2 complex balancing equilibria; it turns out that
each case is realized.

5. Conclusion. CRNT establishes intriguing results about the ODEs associated
with mass action systems, in particular about the existence, uniqueness, and stability
of equilibria. For application in molecular biology, however, one would like to have a
framework that permits rate laws more general than mass action kinetics.

In this paper we show that the suggested notion of generalized mass action sys-
tems, which admits arbitrary nonnegative power-law rate functions, allows us to gen-
eralize several results of CRNT. In particular, Theorem 3.10 essentially states that if
the sign vectors of the stoichiometric and the kinetic-order subspace coincide, there
exists a unique complex balancing equilibrium in every stoichiometric compatibility
class.

A natural next step is to study other results of CRNT in the case of generalized
mass action kinetics, most importantly, to analyze the stability of complex balancing
equilibria, which is guaranteed in the classical case. Further, genuinely biological no-
tions such as the robustness [6, 39, 40] of chemical reaction networks can be addressed
in a framework with more realistic kinetics.
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Appendix. Sign vectors and face lattices. In this section, we outline some
facts on the relation between sign vectors of vector spaces and face lattices of polyhe-
dral cones and polytopes. For further details we refer to [1, Chap. 7] and [42, Chaps. 2
and 6] and to [33, 7] in the context of oriented matroids.

We obtain the sign vector σ(x) ∈ {−, 0, +}n of a vector x ∈ Rn by applying the
sign function componentwise, and we write

σ(S) = {σ(x) | x ∈ S}
for a subset S ⊆ Rn.

Two sign vectors ς, τ ∈ {−, 0, +}n are orthogonal if ςkτk = 0 for all k or if there
exist k, l with ςkτk = − and ςlτl = + (where the product on {−, 0, +} is defined in
the obvious way); we write ς⊥τ . Note that ς⊥τ if and only if there are orthogonal
vectors x, y ∈ Rn such that σ(x) = ς and σ(y) = τ .

The orthogonal complement Σ⊥ of a set Σ ⊆ {−, 0, +}n is defined by

Σ⊥ = {ς ∈ {−, 0, +}n | ς⊥τ ∀τ ∈ Σ} .

The sign vectors of the orthogonal complement of a subspace S ⊆ Rn are given by

(A.1) σ(S⊥) = σ(S)⊥;

see, for example, [42, Prop. 6.8].
Let V = (v1, . . . , vd) ∈ Rn×d with n ≥ d have full rank. Then V T = (w1, . . . , wn)

is called a vector configuration (of n vectors in Rd). With λ ∈ Rd and v =
∑d

j=1 λjv
j ∈

im(V ), we obtain vk =
∑d

j=1 λjv
j
k =

∑d
j=1 λjw

k
j = 〈λ, wk〉. Hence, σ(v) describes the

positions of the vectors w1, . . . , wn relative to the hyperplane with normal vector λ.
The face lattice of the cone C generated by w1, . . . , wn can be recovered from the

sign vectors of the subspace generated by v1, . . . , vd. It is the set σ(im(V )) ∩ {0, +}n

with the partial order induced by the relation 0 < +, which we denote by

σ(im(V ))≥ = σ(im(V )) ∩ {0, +}n.

A face f of C is characterized by a supporting hyperplane with normal vector λ ∈ Rd

such that 〈λ, wk〉 = 0 for generators wk lying on f and 〈λ, wk〉 > 0 for the remaining
wk (thus lying on the positive side of the hyperplane).

A cone C is called pointed if C ∩ (−C) = {0} or equivalently if it has vertex 0.
A cone is pointed if and only if it has an extreme ray, and every pointed polyhedral
cone is the conical hull of its finitely many extreme rays. Note that if (+, . . . , +)T ∈
σ(im(V )), the cone C generated by V T is pointed.

As for polyhedral cones, the faces of a polytope form a lattice. Two polytopes are
combinatorially equivalent if their face lattices are isomorphic. Combinatorial equiva-
lence corresponds to the existence of a piecewise linear homeomorphism between the
polytopes that restricts to homeomorphisms between faces.

The sign vectors σ(im(V )) of the subspace im(V ) can be equivalently character-
ized by the chirotope χV T of the point configuration V T , which is defined as the map

χV T : {1, . . . , n}d → {−, 0, +}
(i1, . . . , id) �→ sign(det(wi1 , . . . , wid)) .

The chirotope records for each d-tuple of vectors if it forms a positively (or nega-
tively) oriented basis of Rd or it is not a basis. It can, for example, be used to test
algorithmically if the sign vectors of two subspaces are equal, that is, to decide if
σ(im(V )) = σ(im(Ṽ )) for two matrices V, Ṽ ∈ Rn×d.
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Abstract. Dynamical systems arising from chemical reaction networks
with mass action kinetics are the subject of chemical reaction network
theory (CRNT). In particular, this theory provides statements about
uniqueness, existence, and stability of positive steady states for all rate
constants and initial conditions. In terms of the corresponding polyno-
mial equations, the results guarantee uniqueness and existence of positive
solutions for all positive parameters.

We address a recent extension of CRNT, called generalized mass-
action systems, where reaction rates are allowed to be power-laws in the
concentrations. In particular, the (real) kinetic orders can differ from the
(integer) stoichiometric coefficients. As with mass-action kinetics, com-
plex balancing equilibria are determined by the graph Laplacian of the
underlying network and can be characterized by binomial equations and
parametrized by monomials. In algebraic terms, we focus on a construc-
tive characterization of positive solutions of polynomial equations with
real and symbolic exponents.

Uniqueness and existence for all rate constants and initial conditions
additionally depend on sign vectors of the stoichiometric and kinetic-
order subspaces. This leads to a generalization of Birch’s theorem, which
is robust with respect to certain perturbations in the exponents. In this
context, we discuss the occurrence of multiple complex balancing equi-
libria.

We illustrate our results by a running example and provide a MAPLE
worksheet with implementations of all algorithmic methods.

Keywords: Chemical reaction network theory, generalized mass-action
systems, generalized polynomial equations, symbolic exponents, positive
solutions, binomial equations, Birch’s theorem, oriented matroids, mul-
tistationarity.

1 Introduction

In this work, we focus on dynamical systems arising from (bio-)chemical reac-
tion networks with generalized mass-action kinetics and positive solutions of the
corresponding systems of generalized polynomial equations.
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In chemical reaction network theory, as initiated by Horn, Jackson, and Fein-
berg in the 1970s [15,33,32], several fundamental results are based on the as-
sumption of mass action kinetics (MAK). Consider the reaction

1 A + 1 B → C (1)

involving the reactant species A, B and the product C, where we explicitly state
the stoichiometric coefficients of the reactants. The left- and right-hand sides of
a reaction, in this case A+B and C, are called (stoichiometric) complexes. Let

[A] = [A](t)

denote the concentration of species A at time t, and analogously for B and C.
Assuming MAK, the rate at which the reaction occurs is given by

v = k [A]1[B]1

with rate constant k > 0. In other words, the reaction rate is a monomial in the
reactant concentrations [A] and [B] with the stoichiometric coefficients as expo-
nents. Within a network involving additional species and reactions, the above
reaction contributes to the dynamics of the species concentrations as

d

dt

⎛
⎜⎜⎜⎜⎜⎝

[A]
[B]
[C]
[D]
...

⎞
⎟⎟⎟⎟⎟⎠

= k [A][B]

⎛
⎜⎜⎜⎜⎜⎝

−1
−1
1
0
...

⎞
⎟⎟⎟⎟⎟⎠

+ · · ·

In many applications, the reaction network is given, but the values of the rate
constants are unknown. Surprisingly, there are results on existence, uniqueness,
and stability of steady states that do not depend on the rate constants. See, for
example, the lecture notes [16] and the surveys [17,19,30].

However, the validity of MAK is limited; it only holds for elementary reactions
in homogeneous and dilute solutions. For biochemical reaction networks in in-
tracellular environments, the rate law has to be modified. In previous work [40],
we allowed generalized mass-action kinetics (GMAK) where reaction rates are
power-laws in the concentrations. In particular, the exponents need not coincide
with the stoichiometric coefficients and need not be integers. For example, the
rate at which reaction (1) occurs may be given by

v = k [A]a[B]b

with kinetic orders a, b > 0. Formally, we specify the rate of a reaction by
associating (here indicated by dots) with the reactant complex a kinetic complex,
which determines the exponents in the generalized monomial:

A + B → C
...

aA + bB
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Before we give the definition of generalized mass action systems, we introduce
a running example, which will be used to motivate and illustrate general state-
ments. Throughout the paper, we focus on algorithmic aspects of the theoretical
results. Additionally, we provide a MAPLE worksheet1 with implementations of
all algorithms applied to the running example. For other applications of com-
puter algebra to chemical reaction networks, we refer to [7,14,36,45].

Notation. We denote the strictly positive real numbers by R>. We define ex ∈
Rn> for x ∈ Rn component-wise, that is, (ex)i = exi ; analogously, ln(x) ∈ Rn for
x ∈ Rn> and x−1 ∈ Rn for x ∈ Rn with xi �= 0. For x, y ∈ Rn, we denote the
component-wise (or Hadamard) product by x ◦ y ∈ Rn, that is, (x ◦ y)i = xiyi;
for x ∈ Rn> and y ∈ Rn, we define xy ∈ R> as

∏n
i=1 x

yi

i .
Given a matrix B ∈ Rn×m, we denote by b1, . . . , bm its column vectors and

by b1, . . . , bn its row vectors. For x ∈ Rn>, we define xB ∈ Rm> as

(xB)j = xb
j

=

n∏

i=1

x
bij

i

for j = 1, . . . ,m. As a consequence,

ln(xB) = BT lnx.

Finally, we identify a matrix B ∈ Rn×m with the corresponding linear map
B : Rm → Rn and write im(B) and ker(B) for the respective vector subspaces.

2 Running Example

We consider a reaction network based on the weighted directed graph

1
k12 �� 2
k21

��

k23
��

4
k45 �� 5
k54

��

3

k31

����������

(2)

with 5 vertices, 6 edges and corresponding positive weights. Clearly, the edges
represent reactions and the weights are rate constants. We assume that the
network contains 4 species A, B, C, D and associate with each vertex a (stoi-
chiometric) complex, that is, a formal sum of species:

A + B �� C��

��

A �� D��

2A

����������

1 The worksheet is available at http://gregensburger.com/software/GMAK.zip.
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In order to specify the reaction rates, e.g., v12 = k12[A]
1
2 [B]

3
2 , we additionally

associate a kinetic complex with each source vertex:

1
2A + 3

2B �� C��

��

A �� D��

3A

�����������

Writing

x = (x1, x2, x3, x4)
T

for the concentrations of species A, B, C, D, the dynamics of the generalized
mass action system is given by

d

dt

⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−1 1 2 −1 −1 1
−1 1 0 1 0 0
1 −1 −1 0 0 0
0 0 0 0 1 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

k12 (x1)
1
2 (x2)

3
2

k21 x3

k23 x3

k31 (x1)
3

k45 x1

k54 x4

⎞
⎟⎟⎟⎟⎟⎟⎠

= N v(x), (3)

where we fix an order on the edges, E =
(
(1, 2), (2, 1), (2, 3), (3, 1), (4, 5), (5, 4)

)
,

and introduce the stoichiometric matrix N and the vector of reaction rates v(x).
We further decompose the system. Writing the stoichiometric and kinetic

complexes as column vectors of the matrices

Y =

⎛
⎜⎜⎝

1 0 2 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎠ and Ỹ =

⎛
⎜⎜⎝

1
2 0 3 1 0
3
2 0 0 0 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎠

and using the incidence matrix of the graph (2),

IE =

⎛
⎜⎜⎜⎜⎝

−1 1 0 1 0 0
1 −1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠
,

we can write the stoichiometric matrix as

N = Y IE .

The vector of reaction rates v(x) can also be decomposed by introducing a di-
agonal matrix

Δk = diag(k12, k21, k23, k31, k45, k54)
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containing the rate constants, a matrix indicating the source vertex of each
reaction,

Is =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠
,

and the vector of monomials determined by the kinetic complexes,

xỸ =

⎛
⎜⎜⎜⎜⎝

(x1)
1
2 (x2)

3
2

x3

(x1)
3

x1

x4

⎞
⎟⎟⎟⎟⎠
.

Then,

v(x) = Δk I
T
s x

Ỹ ,

and we can write
dx

dt
= N v(x) = Y IE Δk I

T
s x

Ỹ .

Note that the matrix

Ak = IE Δk I
T
s =

⎛
⎜⎜⎜⎜⎝

−k12 k21 k31 0 0
k12 −(k21 + k23) 0 0 0
0 k23 −k31 0 0
0 0 0 −k45 k54

0 0 0 k45 −k54

⎞
⎟⎟⎟⎟⎠

(4)

depends only on the weighted digraph, while Y and xỸ are determined by the
stoichiometric and kinetic complexes. The resulting decomposition

dx

dt
= Y Ak x

Ỹ

is due to [33], where Ak is called kinetic matrix and the stoichiometric and
kinetic complexes are equal, that is, Y = Ỹ . The interpretation of Ak as a
weighted graph Laplacian was introduced in [24] and used in [12,47,31,37,34], in
particular, in connection with the matrix-tree theorem.

3 Generalized Mass Action Systems

We consider directed graphs G = (V,E) given by a finite set of vertices

V = {1, . . . ,m}
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and a finite set of edges E ⊆ V × V . We often denote an edge e = (i, j) ∈ E by
i → j to emphasize that it is directed from the source i to the target j. Further,
we write

Vs = {i | i → j ∈ E}
for the set of source vertices that appear as a source of some edge.

Definition 1. A generalized chemical reaction network (G, y, ỹ) is given by a
digraph G = (V,E) without self-loops, and two functions

y : V → Rn and ỹ : Vs → Rn

assigning to each vertex a (stoichiometric) complex and to each source a kinetic
complex.

We note that this definition differs from [40]. On the one hand, kinetic complexes
were assigned also to non-source vertices, on the other hand, all (stoichiometric)
complexes had to be different, and analogously the kinetic complexes.

Definition 2. A generalized mass action system (Gk, y, ỹ) is a generalized
chemical reaction network (G, y, ỹ), where edges (i, j) ∈ E are labeled with rate
constants kij ∈ R>.

The contribution of reaction i → j ∈ E to the dynamics of the species concen-
trations x ∈ Rn is proportional to the reaction vector y(j)−y(i) ∈ Rn. Assuming
generalized mass action kinetics, the rate of the reaction is determined by the
source kinetic complex ỹ(i) and the positive rate constant kij :

vi→j(x) = kij x
ỹ(i).

The ordinary differential equation associated with a generalized mass action
system is defined as

dx

dt
=

∑

i→j∈E
kij x

ỹ(i)
(
y(j) − y(i)

)
.

The change over time lies in the stoichiometric subspace

S = span{y(j) − y(i) ∈ Rn | i → j ∈ E},

which suggests the definition of a (positive) stoichiometric compatibility class
(c′ + S) ∩ Rn> with c′ ∈ Rn>.

In case every vertex is a source, that is, Vs = V , we introduce also the kinetic-
order subspace

S̃ = span{ỹ(j) − ỹ(i) ∈ Rn | i → j ∈ E}.
In order to decompose the right-hand side of the ODE system, we define the

matrices Y ∈ Rn×m as yj = y(j) and Ỹ ∈ Rn×m as ỹj = ỹ(j) for j ∈ Vs and
ỹj = 0 otherwise (see also the remark below). Further, we introduce the weighted
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graph Laplacian Ak ∈ Rm×m: (Ak)ij = kji if j → i ∈ E, (Ak)ii = − ∑
i→j∈E kij ,

and (Ak)ij = 0 otherwise. We obtain:

dx

dt
= Y Ak x

Ỹ .

Note that ỹj can be chosen arbitrarily for j /∈ Vs, since in this case (Ak)
j = 0

and hence (Ak)
jxỹ

j

= 0.

Steady states of the ODE satisfying x ∈ Rn> and Ak x
Ỹ = 0 are called complex

balancing equilibria. We denote the corresponding set by

Zk = {x ∈ Rn> | Ak xỸ = 0}.

Finally, the (stoichiometric) deficiency is defined as

δ = m− l − s,

where m is the number of vertices, l is the number of connected components,
and s = dimS is the dimension of the stoichiometric subspace.

Using S = im(Y IE), where IE is the incidence matrix of the graph (for a
fixed order on E), we obtain the equivalent definition

δ = dim(ker(Y ) ∩ im(IE)),

see for example [34]. Further, note that im(Ak) ⊆ im(IE). Now, if δ = 0, then
ker(Y ) ∩ im(Ak) ⊆ ker(Y ) ∩ im(IE) = {0}, and there are no x ∈ Rn> such that

Y Ak x
Ỹ = 0, but Ak x

Ỹ �= 0. In other words, if δ = 0, there are no steady states
other than complex balancing equilibria.

4 Graph Laplacian

A basis for the kernel of Ak in (4) is given by

(k31 k21 + k31 k23, k12 k31, k23 k12, 0, 0)T and (0, 0, 0, k54, k45)
T .

Obviously, the support of the vectors coincides with the connected components of
the graph. In general, this holds for the strongly connected components without
outgoing edges.

Let Gk = (V,E, k) be a weighted digraph without self-loops and Ak its graph
Laplacian. Further, let l be the number of connected components (aka linkage
classes) and T1, . . . , Tt ⊆ V be the sets of vertices within the strongly con-
nected components without outgoing edges (aka terminal strong linkage classes).
Clearly, t ≥ l. A fundamental result of CRNT [21] states that there exist linearly
independent χ1, . . . , χt ∈ Rn≥, where χλμ > 0 if μ ∈ Tλ and χλμ = 0 otherwise,

such that ker(Ak) = span{χ1, . . . , χt}.
In fact, the non-zero entries in the basis vectors can be computed using the

matrix-tree theorem:
χλμ = Kμ, λ ∈ {1, . . . , t}
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with tree constants

Kμ =
∑

T ∈Sμ

∏

i→j∈T
kij , μ ∈ {1, . . . ,m},

where Sμ is the set of directed spanning trees (for the respective strongly con-
nected component without outgoing edges) rooted at vertex μ; see [31,37,34].
We refer to [8] for further details and references on the graph Laplacian and a
combinatorial proof of the matrix-tree theorem following [49].

If there exists ψ ∈ Rm> with Ak ψ = 0, then every vertex resides in a strongly
connected component without outgoing edges, that is, every connected compo-
nent is strongly connected. In this case, the underlying unweighted digraph is
called weakly reversible. Now, let (G, y, ỹ) be a generalized chemical reaction net-
work. If there exist rate constants k such that the generalized mass action system

(Gk, y, ỹ) admits a complex balancing equilibrium x ∈ Rn>, that is, Ak x
Ỹ = 0,

then G is weakly reversible.

5 Binomial Equations for Complex Balancing Equilibria

For a weakly reversible digraph, we know from the previous section that a basis
for ker(Ak), parametrized by the weights, is given in terms of the l connected
components and the m tree constants.

In our example, where l = 2 and m = 5, basis vectors of ker(Ak) are given by

(K1,K2,K3, 0, 0)T and (0, 0, 0,K4,K5)
T

with tree constants

(K1,K2,K3,K4,K5) = (k31 k21 + k31 k23, k12 k31, k23 k12, k54, k45).

Due to their special structure, we immediately find “binomial” basis vectors
for the orthogonal complement ker(Ak)

⊥,

(−K2,K1, 0, 0, 0)T , (0,−K3,K2, 0, 0)T , and (0, 0, 0,−K5,K4)
T ,

which are again determined by the connected components and tree constants.
These vectors form a basis since they are linearly independent and

dim ker(Ak)
⊥ = m− dim ker(Ak) = m− l = 5 − 2 = 3.

In our example, a complex balancing equilibrium x ∈ R4
> with ψ = xỸ and hence

Ak ψ = 0, can equivalently be described as a positive solution of the binomial
equations ⎛

⎝
−K2 K1 0 0 0

0 −K3 K2 0 0
0 0 0 −K5 K4

⎞
⎠ψ = 0.
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In other words, ψ ∈ ker(Ak) is equivalent to ψ ⊥ ker(Ak)
⊥ or a basis thereof.

Explicitly, we have ψ = xỸ = ((x1)
1
2 (x2)

3
2 , x3, (x1)

3, x1, x4)
T and

K1 x3 −K2 (x1)
1
2 (x2)

3
2 = 0, K2 (x1)

3 −K3 x3 = 0, K4 x4 −K5 x1 = 0. (5)

Clearly, these considerations generalize to arbitrary weakly reversible digraphs:
Based on the (strongly) connected components, we can characterize complex bal-
ancing equilibria by m− l binomial equations with tree constants as coefficients.

Proposition 1. Let Ak be the graph Laplacian of a weakly reversible digraph
with positive weights and m vertices ordered within l connected components,

Lλ = (iλμ)μ=1,...,mλ
for λ = 1, . . . , l, where

∑l
λ=1mλ = m.

Let Ỹ ∈ Rn×m and
Zk = {x ∈ Rn> | Ak xỸ = 0}.

Then,

Zk = {x ∈ Rn> | Ki x
ỹj −Kj x

ỹi

= 0, (i, j) ∈ E}
where

E = {(iλμ, i
λ
μ+1) | λ = 1, . . . , l; μ = 1, . . . ,mλ − 1}.

Note that the actual binomial equations depend on the order of the vertices
within the connected components, but the zero set does not.

6 Binomial Equations with Real and Symbolic Exponents

In this section, we collect basic facts about positive real solutions of binomial
equations with real exponents. We present the results in full generality, in partic-
ular, not restricted to complex balancing equilibria, and emphasize algorithmic
aspects. Moreover, by reducing computations to linear algebra, we outline the
treatment of symbolic exponents.

In an algebraic perspective, one usually considers solutions of binomial equa-
tions with integer exponents. We refer to [13] for an introduction including algo-
rithmic aspects and an extensive list of references. An algorithm with polynomial
complexity for computing solutions with non-zero or positive coordinates of para-
metric binomial systems is presented in [29]. For recent algorithmic methods for
binomial equations and monomial parametrizations, see [1]. Toric geometry and
computer algebra was introduced to the study of mass action systems in [25,27,26]
and further developed in [12]. So-called toric steady states are solutions of binomial
equations arising from polynomial dynamical systems [42].

In chemical reaction networks, it is natural to consider real exponents: kinetic
orders, measured by experiments, need not be integers. Also in S-systems [46,48],
defined by binomial power-laws, the exponents are real numbers identified from
data. We note that binomial equations are implicit in the original works on
chemical reaction networks [33,32].
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In the following, we consider binomial equations

αi x
ai − βi x

bi

= 0 for i = 1, . . . , r

for x ∈ Rn>, where ai, bi ∈ Rn and αi, βi ∈ R>. Clearly, x is a solution iff

xa
i−bi

=
βi
αi

for i = 1, . . . , r.

By introducing the exponent matrix M ∈ Rn×r, whose ith column is the vector
ai − bi, and the vectors α, β ∈ Rr> with entries αi and βi, respectively, we can
rewrite the above equation system as

xM =
β

α
.

More generally, we are interested for which γ ∈ Rr> the equations

xM = γ

have a positive solution. Taking the logarithm, we obtain the equivalent linear
equations

MT lnx = ln γ, (6)

which reduces the problem to linear algebra.
In the rest of this section, we fix a matrix M ∈ Rn×r and write

ZM,γ = {x ∈ Rn> | xM = γ}

for the set of all positive solutions with right-hand side γ ∈ Rr>.

Proposition 2. The following statements hold:

ZM,γ �= ∅ for all γ ∈ Rr> iff ker(M) = {0}.

If ker(M) �= {0}, then

ZM,γ �= ∅ for γ ∈ Rr> iff γC = 1,

where C ∈ Rr×p with im(C) = ker(M) and ker(C) = {0}.

Proof. Using (6), xM = γ is equivalent to

ln γ ∈ im(MT ) = ker(M)⊥.

Hence, ZM,γ �= ∅ for all γ ∈ Rr> iff ker(M) = {0}. If ker(M) �= {0}, then

ln γ ∈ ker(M)⊥ = im(C)⊥ ⇔ CT ln γ = 0 ⇔ γC = 1.

�
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Computing an explicit positive solution x∗ ∈ ZM,γ (if it exists) in terms of
γ is equivalent to computing a particular solution for the linear equations (6).
For this, we use an arbitrary generalized inverse H of MT , that is, a matrix
H ∈ Rn×r such that

MTHMT = MT .

We refer to [4] for details on generalized inverses.

Proposition 3. Let γ ∈ Rr> such that ln γ ∈ im(MT ). Let H ∈ Rn×r be a
generalized inverse of MT . Then,

x∗ = γH
T ∈ ZM,γ .

Proof. By assumption, ln γ = MT z for some z ∈ Rn. Then,

MT lnx∗ = MTH ln γ = MTHMT z = MT z = ln γ

and hence x∗ ∈ ZM,γ as claimed. �
Given one positive solution x∗ ∈ ZM,γ , we have a generalized monomial

parametrization for the set of all positive solutions.

Proposition 4. Let x∗ ∈ ZM,γ. Then,

ZM,γ = {x∗ ◦ ev | v ∈ im(M)⊥}.
If im(M)⊥ �= {0}, then

ZM,γ = {x∗ ◦ ξBT | ξ ∈ Rq>},
where B ∈ Rn×q with im(B) = im(M)⊥ and ker(B) = {0}.
Proof. The first equality follows from (6): x ∈ ZM,γ iff v = lnx − lnx∗ ∈
ker(MT ) = im(M)⊥, that is, x = x∗ ◦ ev with v ∈ im(M)⊥.

Since the columns of B form a basis for im(M)⊥, we can write v ∈ im(M)⊥

uniquely as v = B t for some t ∈ Rq. By introducing ξ = et ∈ Rq>, we obtain

(ev)i = evi = e
∑

j bij tj =
∏
j ξ

bij

j = ξbi = (ξB
T

)i,

that is, ev = ξB
T

. �
Note that the conditions for the existence of positive solutions and the

parametrization of all positive solutions, respectively, depend only on the vector
subspaces ker(M) and im(M)⊥ = ker(MT ).

Summing up, we have seen that computing positive solutions for binomial
equations reduces to linear algebra involving the exponent matrix M . The ma-
trices C, H and B from Propositions 2, 3, and 4 can be computed effectively if
M ∈ Qn×r and C, B can be chosen to have only integer entries.

Moreover, the linear algebra approach to binomial equations allows to deal
algorithmically with indeterminate (symbolic) exponents. We can use computer
algebra methods for matrices with symbolic entries like Turing factoring (gen-
eralized PLU decomposition) [10] and its implementation [11]. Based on these
methods, we can compute explicit monomial parametrizations with symbolic
exponents for generic entries and investigate conditions for special cases. See
Section 8 for an example.
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7 Kinetic Deficiency

Applying the results from the previous section, we rewrite the binomial equa-
tions (5) from our example,

K1 x3 −K2 (x1)
1
2 (x2)

3
2 = 0, K2 (x1)

3 −K3 x3 = 0, K4 x4 −K5 x1 = 0,

as

xM = κk,

where

M =

⎛
⎜⎜⎝

− 1
2 3 −1

− 3
2 0 0

1 −1 0
0 0 1

⎞
⎟⎟⎠ (7)

and
κk = (K2/K1,K3/K2,K5/K4)

T ,

which depends on the weights k via the tree constants K.
Recall that the binomial equations depend on the basis vectors for ker(Ak)

⊥

which are determined by the relation E = {(1, 2), (2, 3), (4, 5)}. To specify the
resulting exponent matrix M and the right-hand side κk, we have fixed an order
on the relation. By abuse of notation, we write

E = ((1, 2), (2, 3), (4, 5)).

Hence, M = Ỹ IE with

IE =

⎛
⎜⎜⎜⎜⎝

−1 0 0
1 −1 0
0 1 0
0 0 −1
0 0 1

⎞
⎟⎟⎟⎟⎠
. (8)

In general, for a weakly reversible digraph with m vertices and l connected
components, let E be a relation as in Proposition 1 with fixed order. We denote
by IE ∈ Rm×(m−l) the matrix with columns

ej − ei for (i, j) ∈ E ,

where ei denotes the ith standard basis vector in Rm. Clearly, the columns of IE
are linearly independent and hence dim im(IE) = m− l. To rewrite the binomial
equations in Proposition 1, we define the exponent matrix M ∈ Rn×(m−l) as

M = Ỹ IE ,

the right-hand side κk ∈ Rm−l
> as

(κk)(i,j) = Kj/Ki for (i, j) ∈ E , (9)
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and obtain
Zk = {x ∈ Rn> | xM = κk}.

We note that the actual matrix M depends on E , but im(M) does not. This can
be seen using the following fact.

Proposition 5. Let G = (V,E) be a digraph with m vertices and l connected
components. Let IE ∈ Rm×|E| denote its incidence matrix (for fixed order on
E), and let IE ∈ Rm×(m−l) be as defined above. Then,

im(IE ) = im(IE).

Proof. From graph theory (see for example [35]) and the argument above, we
know that dim im(IE) = dim im(IE) = m− l. It remains to show that im(IE) ⊆
im(IE ). We consider the column ej−ei of IE corresponding to the edge (i, j) ∈ E.
Clearly, i and j are in the same connected component Lλ, in particular, i = iλμ(i)

and j = iλμ(j), where we assume μ(i) < μ(j). Then,

ej − ei =
∑

μ=μ(i),...,μ(j)−1

ei
λ
μ+1 − ei

λ
μ ,

where ei
λ
μ+1 − ei

λ
μ are columns of IE corresponding to pairs (iλμ, i

λ
μ+1) in E . �

Now, we see that im(M) equals the kinetic-order subspace S̃:

im(M) = im(Ỹ IE) = im(Ỹ IE) = S̃.

Finally, we recall that the number of independent conditions on κk for the
existence of a positive solution of xM = κk is given by dim ker(M), cf. Proposi-
tion 2. Observing M ∈ Rn×(m−l), we obtain

dim ker(M) = m− l − dim im(M) = m− l − dim S̃. (10)

Hence, for a digraph with m vertices and l connected components, we define
the kinetic deficiency as

δ̃ = m− l − s̃,

where s̃ = dim S̃ denotes the dimension of the kinetic-order subspace.

8 Computing Complex Balancing Equilibria

Combining the results from the previous sections, we obtain the following con-
structive characterization of complex balancing equilibria in terms of quotients
of tree constants.

Theorem 1. Let Ak be the graph Laplacian of a weakly reversible digraph with
positive weights, m vertices, and l connected components. Let Ỹ ∈ Rn×m be
the matrix of kinetic complexes, s̃ = dim S̃ the dimension of the kinetic-order
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subspace, and δ̃ = m − l − s̃ the kinetic deficiency. Further, let M ∈ Rn×(m−l)

and κk ∈ Rm−l
> such that

Zk = {x ∈ Rn> | Ak xỸ = 0} = {x ∈ Rn> | xM = κk}.

Then, the following statements hold:

(a) Zk �= ∅ for all k iff δ̃ = 0.

(b) If δ̃ > 0, then
Zk �= ∅ iff (κk)

C = 1,

where C ∈ R(m−l)×δ̃ with im(C) = ker(M) and ker(C) = {0}.
(c) If Zk �= ∅, then

x∗ = (κk)
HT ∈ Zk,

where H ∈ Rn×(m−l) is a generalized inverse of MT .

(d) If x∗ ∈ Zk and s̃ < n, then

Zk = {x∗ ◦ ξBT | ξ ∈ Rn−s̃
> },

where B ∈ Rn×(n−s̃) with im(B) = S̃⊥ and ker(B) = {0}.

Proof. By Propositions 2, 3, and 4. In fact, it remains to prove one implication
in (a). Assume Zk �= ∅ for all k, that is, there exists a solution to xM = κk for
all k. By Lemma 1 below, for all γ ∈ Rm−l

> , there exists k such that κk = γ.
Hence, there exists a solution to xM = γ for all γ. Using (10) and Proposition 2,
we obtain δ̃ = dim ker(M) = 0. �
Lemma 1. Let Ak be the graph Laplacian of a weakly reversible digraph with
positive weights, m vertices, and l connected components, and let κk ∈ Rm−l

> be
the vector of quotients of tree constants defined in (9). For all γ ∈ Rm−l

> , there
exists k such that κk = γ.

Proof. First, we show that every positive vector ψ ∈ Rm> solves Ak ψ = 0 for
some weights k. Indeed, for given k, the vector of tree constants K ∈ Rm> solves
AkK = 0, and by choosing k∗

ij = kij
Ki

ψi
, one obtains

(Ak∗ ψ)i =

m∑

j=1

(Ak∗)ij ψj =
∑

j→i∈E
k∗
ji ψj −

∑

i→j∈E
k∗
ij ψi

=
∑

j→i∈E
kjiKj −

∑

i→j∈E
kij Ki =

m∑

j=1

(Ak)ij Kj = (AkK)i = 0

for all i = 1, . . . ,m, that is, Ak∗ ψ = 0.
Let E be a relation as in Proposition 1 with the obvious order. Using basis

vectors of ker(Ak) having tree constants as entries, we find that

ψj
ψi

=
Kj

Ki
= (κk)(i,j) for all (i, j) ∈ E .
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By choosing the entries of ψ ∈ Rm> in the obvious order, every γ ∈ Rm−l
> can be

attained by κk for some k. �

Remark 1. Theorem 1 is constructive in the following sense:

– To test if the digraph G is weakly reversible, we compute the connected and
the strongly connected components and check whether they are equal.

– The tree constants are computed in terms of the weights k, using (fraction-
free) Gaussian elimination on the sub-matrices of Ak determined by the
(strongly) connected components.

– Given the kinetic complexes Ỹ ∈ Qn×m and the (strongly) connected compo-
nents of the digraph, we compute a matrix M and a vector κk as introduced
in Section 7.

– All matrices involved are computed by linear algebra from the exponent
matrix M . This can also be done algorithmically if the kinetic complexes
Ỹ and hence M contain indeterminate (symbolic) entries; see the end of
Section 6.

In our example, δ̃ = 5 − 2 − 3 = 0 and a monomial parametrization of all
complex balancing equilibria is given by

(
(κ3)

−1, (κ1)
− 2

3 (κ2)
− 2

3 (κ3)
− 5

3 , κ−1
2 (κ3)

−3, 1
)T

◦ (ξ3, ξ5, ξ9, ξ3)T ,

where

κ ≡ κk =

(
k12

k21 + k23
,
k23

k31
,
k45

k54

)T

and ξ ∈ R>.
To conclude, we associate with each vertex of the graph a kinetic complex pos-

sibly containing symbolic coefficients, thereby specifying monomials with sym-
bolic exponents:

aA + bB �� C��

��

A �� D��

cA

�����������

(11)

In this setting, a monomial parametrization with symbolic exponents of all
complex balancing equilibria is given by

(
(κ3)

−1, (κ1)
− 1

b (κ2)
− 1

b (κ3)
a−c

b , (κ2)
−1 (κ3)

−c, 1
)T

◦ (ξb, ξc−a, ξbc, ξb)T ,

which is valid for non-zero a, b, c ∈ R.

9 Generalized Birch’s Theorem

Since the dynamics of generalized mass-action systems is confined to cosets of
the stoichiometric subspace, we are interested in uniqueness and existence of
complex balancing equilibria in every positive stoichiometric compatibility class.
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Let Gk be a weakly reversible digraph with positive weights, m vertices and
l connected components. For fixed rate constants k, a complex balancing equi-

librium x∗ ∈ Rn> of the mass-action system (Gk, y, ỹ) solves Ak xỸ = 0, where

Ak ∈ Rm×m is the graph Laplacian and Ỹ ∈ Rn×m is the matrix of kinetic com-
plexes. Equivalently, it solves xM = κk, where the columns of M ∈ Rn×(m−l)

are differences of kinetic complexes and the entries of κk ∈ Rm−l
> are quotients

of the tree constants K, which depend on the weights k. In other words,

Zk = {x ∈ Rn> | Ak xỸ = 0}
= {x ∈ Rn> | xM = κk}.

Given a complex balancing equilibrium x∗ ∈ Rn>, we further know that

Zk = {x∗ ◦ ev | v ∈ im(M)⊥}
= {x∗ ◦ ξBT | ξ ∈ Rd̃>},

where the second equality holds if im(M)⊥ �= {0} and B ∈ Rn×d̃ is defined as
im(B) = im(M)⊥ and ker(B) = {0}.

For simplicity, we write W̃ = BT ∈ Rd̃×n such that S̃ = im(M) = im(B)⊥ =
im(W̃T )⊥ = ker(W̃ ). Analogously, we introduce a matrix W ∈ Rd×n with full
rank d such that S = ker(W ).

If the intersection of the set of complex balancing equilibria with some com-
patibility class,

Zk ∩ (x′ + S),

is non-empty, then there exist ξ ∈ Rd̃> and u ∈ S such that

x∗ ◦ ξW̃ = x′ + u.

Multiplication by W yields

W (x∗ ◦ ξW̃ ) = W x′

such that existence and uniqueness of complex balancing equilibria in every
stoichiometric compatibility class are equivalent to surjectivity and injectivity
of the generalized polynomial map

fx∗ : Rd̃> → C◦ ⊆ Rd (12)

ξ �→ W (x∗ ◦ ξW̃ ) =

n∑

i=1

x∗
i ξ

w̃i

wi,

where C◦ is the interior of the polyhedral cone

C =
{
Wx′ ∈ Rd | x′ ∈ Rn≥

}
=

{
n∑

i=1

x′
i w

i ∈ Rd | x′ ∈ Rn≥

}
.
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In mass-action systems, where S = S̃ and hence W = W̃ , one version [23]
of Birch’s theorem [5] states that fx∗ is a real analytic isomorphism of Rd> onto
C◦ for all x∗ ∈ Rn>. We refer to [28, Sect. 5] for a recent overview on the use of
Birch’s theorem in CRNT and to [41] for the version used in algebraic statistics.
Interestingly, Martin W. Birch’s seminal paper on maximum likelihood methods
for log-linear models was part of a PhD thesis at the University of Glasgow that
was never submitted [22].

Recently, we have generalized Birch’s theorem to W �= W̃ , cf. [40, Proposi-
tion 3.9]. To formulate the result, we define the sign vector σ(x) ∈ {−, 0,+}n
of a vector x ∈ Rn by applying the sign function component-wise, and we write
σ(S) = {σ(x) | x ∈ S} for a subset S ⊆ Rn.

Theorem 2. Let W ∈ Rd×n, W̃ ∈ Rd̃×n and S = ker(W ), S̃ = ker(W̃ ). If
σ(S) = σ(S̃) and (+, . . . ,+)T ∈ σ(S⊥), then the generalized polynomial map

fx∗ in (12) is a real analytic isomorphism of Rd̃> onto C◦ for all x∗ ∈ Rn>.

If δ̃ = 0, there exists a complex balancing equilibrium for all rate constants k,
by Theorem 1. If further the generalized polynomial map fx∗ is surjective and
injective for all x∗, then, by Theorem 2, there exists a unique steady state in
every positive stoichiometric compatibility class for all k.

To illustrate the result, we consider the minimal (weakly) reversible weighted
digraph

1
k12
�
k21

2,

and associate with each vertex a (stoichiometric) complex

A + B � C

as well as a kinetic complex
aA + bB � C,

where a, b > 0. We find S = im(−1,−1, 1)T and S̃ = im(−a,−b, 1)T and choose

W =

(
1 0 1
0 1 1

)
and W̃ =

(
1 0 a
0 1 b

)

such that S = ker(W ) and S̃ = ker(W̃ ). Clearly, our generalization of Birch’s
theorem applies since

σ(S) =

⎧
⎨
⎩

⎛
⎝

−
−
+

⎞
⎠ ,

⎛
⎝

+
+
−

⎞
⎠ ,

⎛
⎝

0
0
0

⎞
⎠

⎫
⎬
⎭ = σ(S̃)

and (1, 1, 2)T ∈ S⊥. Hence, there exists a unique solution ξ ∈ R2
> for the system

of generalized polynomial equations

x∗
1 ξ1

(
1
0

)
+ x∗

2 ξ2

(
0
1

)
+ x∗

3 (ξ1)
a (ξ2)

b

(
1
1

)
=

(
y1
y2

)
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for all right-hand-sides y ∈ C◦ = R2
>, all parameters x∗ ∈ R3

>, and all exponents
a, b > 0. Note that Birch’s theorem guarantees the existence of a unique solution
only for a = b = 1.

In terms of the generalized mass-action system above, we have the following
result: Since δ̃ = 2 − 1 − 1 = 0, there exists a unique complex balancing equilib-
rium in every positive stoichiometric compatibility class for all k12, k21 > 0 and
all kinetic orders a, b > 0. Since δ = 2 − 1 − 1 = 0, there are no other steady
states.

10 Sign Vectors and Oriented Matroids

The characterization of surjectivity and injectivity of generalized polynomial
maps involves sign vectors of real linear subspaces, which are basic examples of
oriented matroids. (Whereas a matroid abstracts the notion of linear indepen-
dence, an oriented matroid additionally captures orientation.)

The theory of oriented matroids provides a common framework to study com-
binatorial properties of various geometric objects, including point configurations,
hyperplane arrangements, convex polyhedra, and directed graphs. See [2], [50,
Chapters 6 and 7], and [44] for an introduction and overview, and [6] for a
comprehensive study.

There are several sets of sign vectors associated with a linear subspace which
satisfy the axiom systems for (co-)vectors, (co-)circuits, or chirotopes of oriented
matroids. (In fact, there are non-realizable oriented matroids that do not arise
from linear subspaces.)

For algorithmic purposes, the characterization of oriented matroids in terms
of basis orientations is most useful. The chirotope of a matrix W ∈ Rd×n (with
rank d) is defined as the map

χW : {1, . . . , n}d → {−, 0,+}
(i1, . . . , id) �→ sign(det(wi1 , . . . , wid)),

which records for each d-tuple of vectors whether it forms a positively oriented
basis of Rd, a negatively oriented basis, or not a basis. Hence, chirotopes can
be used to test algorithmically if the sign vectors of two subspaces are equal by
comparing determinants of maximal minors.

More generally, the realization space of matrices defining the same oriented
matroid as W ∈ Rd×n (with rank d) is described by the semi-algebraic set

R(W ) = {A ∈ Rd×n | sign(det(ai1 , . . . , aid)) =

sign(det(wi1 , . . . , wid)), 1 ≤ i1 < · · · < id ≤ n}.

Mnëv’s universality theorem [38] theorem states that already for oriented ma-
troids with rank d = 3, the realization space can be “arbitrarily complicated”;
see [6] for a precise statement and [3] for semi-algebraic sets and algorithms.

Concerning software, the C++ package TOPCOM [43] allows to compute effi-
ciently chirotopes with rational arithmetic and generate all cocircuits (covectors
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with minimal support). There is also an interface to the open source computer
algebra system SAGE.

In our running example, we have S̃ = im(Ỹ IE ) = im(M) with M as in (7).
Analogously, S = im(Y IE ) = im(N ) with

N =

⎛
⎜⎜⎝

−1 2 −1
−1 0 0
1 −1 0
0 0 1

⎞
⎟⎟⎠ . (13)

To check the sign vector condition σ(S) = σ(S̃), we compare the chirotopes of
N T and MT . Computing the signs of the four maximal minors of N T , we see
that its chirotope is given by

χN T (1, 2, 3) = −, χN T (1, 2, 4) = +, χN T (1, 3, 4) = −, χN T (2, 3, 4) = +.

Analogously, we compute the chirotope of MT and verify χN T = χMT . Clearly,
the other sign vector condition (+, . . . ,+)T ∈ σ(S⊥) also holds, for example,
(1, 1, 2, 1)T ∈ S⊥.

Since δ̃ = 0, we know from Theorems 1 and 2 that there exists a unique com-
plex balancing equilibrium in every positive stoichiometric compatibility class
for all rate constants k. Moreover, since δ = 5 − 2 − 3 = 0, we know that there
are no steady states other than complex balancing equilibria for the ODE (3).

In the setting of symbolic exponents (11), the exponent matrix amounts to

M =

⎛
⎜⎜⎝

−a c −1
−b 0 0
1 −1 0
0 0 1

⎞
⎟⎟⎠ (14)

and the chirotope of MT (in the same order as above) is given by

− sign(b), sign(b c), sign(a− c), sign(b)

for a, b, c �= 0. Hence, there exists a unique steady state in every positive stoichio-
metric compatibility class for all rate constants and all exponents with a, b, c > 0
and a < c.

11 Multistationarity

A (generalized) chemical reaction network (G, y, ỹ) has the capacity for multi-
stationarity if there exist rate constants k such that the generalized mass action
system (Gk, y, ỹ) admits more than one steady state in some stoichiometric com-
patibility class.

In mass-action systems, every stoichiometric compatibility class contains at
most one complex balancing equilibrium. However, in generalized mass action
systems, multiple steady states of this type are possible [40, Proposition 3.2].
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Proposition 6. Let (G, y, ỹ) be a generalized chemical reaction network. If G
is weakly reversible and σ(S) ∩ σ(S̃⊥) �= {0}, then (G, y, ỹ) has the capacity for
multiple complex balancing equilibria.

Analogously, multiple toric steady states are possible (for networks with mass-
action kinetics) if the sign vectors of two subspaces intersect non-trivially [9,42].
For deficiency one networks (with mass-action kinetics), the capacity for multi-
stationarity is also characterized by sign conditions [18,20].

For precluding multistationarity, injectivity of the right-hand side of the dy-
namical system on cosets of the stoichiometric subspace is sufficient. In [39],
we characterize injectivity of generalized polynomial maps on cosets of the sto-
ichiometric subspace in terms of sign vectors. There, we also give a survey on
injectivity criteria and discuss algorithms to check sign vector conditions.

For the last time, we return to our example, in particular, to the setting of
symbolic kinetic complexes. Considering the matrix M in (14), a matrix B with
im(B) = im(M)⊥ = S̃⊥ is given by

B = (b, c− a, b c, b)T

for a, b, c �= 0. Hence, for a, b, c > 0 and a > c, we have (+,−,+,+)T ∈ σ(S̃⊥).
On the other hand, considering the matrix N in (13) with im(N ) = S, we also

have (+,−,+,+)T ∈ σ(S), and hence σ(S) ∩ σ(S̃⊥) �= {0}. By Proposition 6,
if the inequalities a, b, c > 0 and a > c hold, then there exist rate constants k
that admit more than one complex balancing equilibrium in some stoichiometric
compatibility class.
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42. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bull. Math. Biol. 74, 1027–1065 (2012)

43. Rambau, J.: TOPCOM: triangulations of point configurations and oriented ma-
troids. In: Mathematical Software (Beijing 2002), pp. 330–340. World Sci. Publ,
River Edge (2002)

44. Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of Discrete
and Computational Geometry, pp. 111–132. CRC, Boca Raton (1997)

45. Samal, S.S., Errami, H., Weber, A.: PoCaB: A software infrastructure to explore
algebraic methods for bio-chemical reaction networks. In: Gerdt, V.P., Koepf, W.,
Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 294–307.
Springer, Heidelberg (2012)

46. Savageau, M.A.: Biochemical systems analysis: II. The steady state solutions for
an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–379
(1969)

47. Thomson, M., Gunawardena, J.: The rational parameterisation theorem for multi-
site post-translational modification systems. J. Theoret. Biol. 261, 626–636 (2009)

48. Voit, E.O.: Biochemical systems theory: A review. In: ISRN Biomath. 2013, 897658
(2013)

49. Zeilberger, D.: A combinatorial approach to matrix algebra. Discrete Math. 56,
61–72 (1985)

50. Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995)

244 XIII



Found Comput Math (2016) 16:69–97
DOI 10.1007/s10208-014-9239-3

Sign Conditions for Injectivity of Generalized
Polynomial Maps with Applications to Chemical
Reaction Networks and Real Algebraic Geometry

Stefan Müller · Elisenda Feliu · Georg Regensburger ·
Carsten Conradi · Anne Shiu · Alicia Dickenstein

Received: 21 November 2013 / Revised: 30 September 2014 / Accepted: 26 October 2014 /
Published online: 6 January 2015
© SFoCM 2015

Abstract We give necessary and sufficient conditions in terms of sign vectors for
the injectivity of families of polynomial maps with arbitrary real exponents defined
on the positive orthant. Our work relates and extends existing injectivity conditions
expressed in terms of Jacobian matrices and determinants. In the context of chemical

Communicated by Marie-Francoise Roy.

Stefan Müller, Elisenda Feliu, and Georg Regensburger have contributed equally to this work.

S. Müller · G. Regensburger
Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences,
Altenbergerstraße 69, 4040 Linz, Austria
e-mail: stefan.mueller@ricam.oeaw.ac.at

G. Regensburger
e-mail: georg.regensburger@ricam.oeaw.ac.at

E. Feliu
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen, Denmark
e-mail: efeliu@math.ku.dk

C. Conradi
Max-Planck-Institut Dynamik komplexer technischer Systeme, Sandtorstr. 1, 39106 Magdeburg,
Germany
e-mail: conradi@mpi-magdeburg.mpg.de

A. Shiu
Department of Mathematics, Texas A&M University, Mailstop 3368, College Station,
TX 77843-3368, USA
e-mail: annejls@math.tamu.edu

A. Dickenstein (B)
Dto. de Matemática, FCEN, Universidad de Buenos Aires, and IMAS (UBA-CONICET),
Ciudad Universitaria, Pab. I, C1428EGA Buenos Aires, Argentina
e-mail: alidick@dm.uba.ar

123

XIV 245



70 Found Comput Math (2016) 16:69–97

reaction networks with power-law kinetics, our results can be used to preclude as
well as to guarantee multiple positive steady states. In the context of real algebraic
geometry, our work recognizes a prior result of Craciun, Garcia-Puente, and Sottile,
together with work of two of the authors, as the first partial multivariate generalization
of the classical Descartes’ rule, which bounds the number of positive real roots of a
univariate real polynomial in terms of the number of sign variations of its coefficients.

Keywords Sign vector · Restricted injectivity · Power-law kinetics · Descartes’ rule
of signs · Oriented matroid

Mathematics Subject Classification 13P15 · 12D10 · 70K42 · 37C10 · 80A30 ·
52C40

1 Introduction

In many fields of science, the analysis of parametrized systems by way of sign vec-
tors has a long history. In economics, market models depend on monotonic price
and demand curves, leading to the theory of sign-solvable linear systems [15,49]. In
electronics, devices such as diodes, transistors, and operational amplifiers are charac-
terized by monotonic functions, and one studies whether the input-output relation of
an electronic circuit is well posed, using the theory of oriented matroids [16,61]. In
many settings, uniqueness of positive solutions is a desirable property, but deciding
this is difficult in general [24,50]. If, however, the maps of interest are injective, then
this precludes multiple solutions.

Motivated by applications to chemical reaction networks and real algebraic geom-
etry, we characterize injectivity of parametrized families of polynomial maps with
arbitrary real exponents, in terms of sign vectors. Our work builds on results from
chemical engineering, by abstracting, relating, and extending existing injectivity con-
ditions expressed in terms of Jacobian matrices and determinants.

The relevant literature from the theory of chemical reaction networks is discussed
in Sect. 1.2. The main application to real algebraic geometry is addressed in Sect. 1.3.

1.1 Statement of the Main Theorem

Throughout this paper, we consider families of maps defined on the positive orthant,
associated with two real matrices of coefficients and exponents, respectively, and a
vector of positive parameters.

Definition 1.1 Let A = (ai j ) ∈ R
m×r , B = (bi j ) ∈ R

r×n , and κ ∈ R
r+. We define

the associated generalized polynomial map fκ : Rn+ → R
m as

fκ,i (x) =
r∑

j=1

ai j κ j x
b j1
1 . . . x

b jn
n , i = 1, . . . ,m.
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The term generalized indicates that we allow polynomials with real exponents. In the
literature, generalized polynomials occur under other names. For instance, they are
called signomials in geometric programming [14].

We often use a more compact notation. By introducing Aκ ∈ R
m×r as Aκ =

A diag(κ) and x B ∈ R
r+ via (x B) j = x

b j1
1 . . . x

b jn
n for j = 1, . . . , r , we can write

fκ(x) = Aκ x
B . (1)

A generalized polynomial map fκ : Rn+ → R
n (1) with A ∈ R

n×r and B ∈ R
r×n ,

induces a system of ordinary differential equations (ODEs) called a power-law system:

dx

dt
= fκ(x). (2)

For any initial value x0 ∈ R
n+, the solution is confined to the coset x0 + Sκ , where

Sκ is the smallest vector subspace containing the image of fκ . Hence, when studying
positive steady states of (2), one is in general interested in the positive solutions to the
equation fκ(x) = 0 within cosets x ′+Sκ with x ′ ∈ R

n+. Due to the form of fκ , one has
Sκ ⊆ S where S = im(A). In many applications, Sκ = S for all κ ∈ R

r+, for example,
if the rows of B are distinct. If fκ is injective on (x ′ + S) ∩ R

n+, then fκ(x) �= fκ(y)
for all distinct x , y ∈ (x ′ + S) ∩R

n+, and hence the coset x ′ + S contains at most one
positive steady state. Clearly, for a vector subspace S of Rn , two vectors x , y ∈ R

n

lie in x ′ + S for some x ′ ∈ R
n , if and only if x − y ∈ S. This motivates the following

definition of injectivity with respect to a subset.

Definition 1.2 Given two subsets �, S ⊆ R
n , a function g defined on � is called

injective with respect to S if x, y ∈ �, x �= y, and x − y ∈ S imply g(x) �= g(y).

We will in general consider functions defined on the positive orthant, that is,
� = R

n+. When S is a vector subspace, injectivity with respect to S is equivalent
to injectivity on every coset x ′ + S.

When the matrix B has integer entries, determining the injectivity of the map fκ
for a fixed (computable) parameter value κ , with respect to a semialgebraic subset S,
is a question of quantifier elimination and thus can be decided algorithmically, but is
very hard in practice. This paper focuses on how to decide injectivity for the whole
family, that is, for all possible values of κ ∈ R

r+, for a matrix B with real entries. Our
results are given in terms of sign vectors characterizing the orthants that ker(A) and
(a subset of) im(B) intersect nontrivially.

Definition 1.3 For a vector x ∈ R
n , we obtain the sign vector σ(x) ∈ {−, 0,+}n by

applying the sign function componentwise.

Note that a sign vector ν ∈ {−, 0,+}n corresponds to the (possibly lower dimensional)
orthant ofRn given by σ−1(ν). For a subset S ⊆ R

n , we write σ(S) = {σ(x) | x ∈ S}
for the set of all sign vectors of S and

�(S) = σ−1(σ (S))
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for the union of all (possibly lower dimensional) orthants that S intersects. For con-
venience, we introduce S∗ = S\{0}.

In order to state our main result, we require some more notation. Identifying B ∈
R
r×n with the linear map B : Rn → R

r , we write B(S) for the image under B of the
subset S ⊆ R

n . In analogy to Aκ , we introduce Bλ = B diag(λ) for λ ∈ R
n+. Finally,

we write J fκ for the Jacobian matrix associated with the map fκ . Here is our main
result, which brings together and extends various existing results (see Sect. 1.2).

Theorem 1.4 Let fκ : Rn+ → R
m be the generalized polynomialmap fκ (x) = Aκ x B,

where A ∈ R
m×r , B ∈ R

r×n, and κ ∈ R
r+. Further, let S ⊆ R

n. The following
statements are equivalent:

(inj) fκ is injective with respect to S, for all κ ∈ R
r+.

(jac) ker
(
J fκ (x)

) ∩ S∗ = ∅, for all κ ∈ R
r+ and x ∈ R

n+.
(lin) ker(Aκ Bλ) ∩ S∗ = ∅, for all κ ∈ R

r+ and λ ∈ R
n+.

(sig) σ(ker(A)) ∩ σ(B(�(S∗))) = ∅.

Note that, for a fixed exponent matrix B, condition (sig)depends only on the sign
vectors of ker(A) and S. In particular, fκ is injective with respect to S for all κ ∈ R

r+
if and only if it is injective with respect to �(S) ⊆ R

n , which is the largest set having
the same sign vectors as S.

To study unrestricted injectivity, we set S = R
n in Theorem 1.4, in which case

condition (sig) is equivalent to

ker(B) = {0} and σ(ker(A)) ∩ σ(im(B)) = {0};

see Corollary 2.8. Assuming ker(B) = {0}, condition (sig) depends only on the
corresponding vector subspaces ker(A) and im(B); see also [53, Theorem 3.6].

Birch’s theorem [12] in statistics corresponds to the unrestricted case S = R
n

and B = AT with full rank n. Note that im(B) = im(AT ) = ker(A)⊥, and hence
σ(ker(A))∩σ(im(B)) = {0} is trivially fulfilled. Therefore, statement (inj) holds, so
Theorem 1.4 guarantees that for any choice of vectors y ∈ R

n and κ ∈ R
r+, there is at

most one solution x ∈ R
n+ to the equations

r∑

j=1

ai j κ j x
a1 j
1 . . . x

anj
n = yi , i = 1, . . . , n.

In fact, Birch’s theorem also guarantees the existence of a solution, for all y in the
interior of the polyhedral cone generated by the columns of A. A related result, due
to Horn, Jackson, and Feinberg, asserts the existence and uniqueness of complex
balancing equilibria [26,43,44], which is discussed in the next subsection and Sect. 3.
Our generalization of Birch’s theorem based on [53] is given in statement (ex) of
Theorem 1.5.
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1.2 Motivation from Chemical Reaction Networks

For chemical reaction networks withmass-action kinetics, the concentration dynamics
are governed by dynamical systems (2) with polynomial maps fκ(x) = Aκ x B , as
defined in (1). We introduce some terms that are standard in the chemical engineering
literature. The components of κ ∈ R

r+ are called rate constants and are often unknown
in practice. The vector subspace S = im(A) is called the stoichiometric subspace.
One speaks of multistationarity if there exist a vector of rate constants κ ∈ R

r+
and two distinct positive vectors x, y ∈ R

n+ with x − y ∈ S such that fκ(x) =
fκ(y) = 0. Clearly, if fκ is injective with respect to S for all values of κ , then
multistationarity is ruled out. Therefore, Theorem 1.4 can be applied in this setting to
preclude multistationarity.

Indeed, our work unifies and extends existing conditions for injectivity established
in the context of chemical reaction networks. The first such result was given byCraciun
and Feinberg for the special case of a fully open network, that is, when each chem-
ical species has an associated outflow reaction and hence S = R

n : injectivity of the
corresponding family of polynomial maps was characterized by the nonsingularity of
the associated Jacobian matrices, which could be assessed by determinantal condi-
tions [20]. An elementary proof of this foundational result appeared in the context
of geometric modeling [24], and extended Jacobian and determinantal criteria were
subsequently achieved for arbitrary networks [32,37,46]. Also, for networks with uni-
and bimolecular reactions and fixed rate constants, injectivity of the polynomial map
has been characterized [56]. Injectivity results have been obtained also for families of
kinetics different from mass-action, in particular, for nonautocatalytic kinetics [7,8],
power-law kinetics and strictly monotonic kinetics [33,73], weakly monotonic kinet-
ics [65], and other families [9]. Further, several injectivity criteria have been translated
to conditions on the species-reaction graph or the interaction graph [7,22,41,52,66].

Sign conditions for the injectivity of monomial maps have been applied both to
preclude and to assert multiple positive steady states for several special types of steady
states, such as detailed balancing and complex balancing equilibria of mass-action
systems [26,43,44], toric steady states of mass-action systems [57], and complex
balancing equilibria of generalizedmass-action systems [53]. Specifically, such special
steady states are parametrized by a monomial map, and multistationarity occurs if and
only if the sign vectors of two vector subspaces intersect nontrivially. Moreover, for
given rate constants, existence of one complex balancing equilibrium in a mass-action
system implies existence and uniqueness of such steady states within each coset of
the stoichiometric subspace, and no other steady states are possible [44].

In this paper, we unify and extend the criteria for injectivity and multistationarity
described above. Related results appear in the deficiency-oriented theory, as initiated
by Horn, Jackson, and Feinberg [26,43,44] (see also [27–31]). This theory is named
after the deficiency of a reaction network, a nonnegative integer that can be computed
from basic network properties. Deficiency zero networks with mass-action kinetics
admit positive steady states if and only if the network is strongly connected, and, in this
case, there is a unique positive steady state, which is a complex balancing equilibrium.
On the other hand, some networks with deficiency one admit multiple positive steady
states, and the capacity for multistationarity is characterized by certain sign conditions
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[29,31]. For other uses of sign conditions to determine multistationarity, see [17–19]
and the related applications to particular biochemical networks [42].

1.3 Application to Real Algebraic Geometry

An interesting consequence in the realm of real algebraic geometry that emerges from
the study of injectivity of generalized polynomial maps in applications is Theorem 1.5
below. Statement (bnd) in that result was first proved by Craciun, Garcia-Puente, and
Sottile in their study of control points for toric patches [24, Corollary 8] based on
a previous injectivity result by Craciun and Feinberg [20]. The surjectivity result
underlying statement (ex) is due to Müller and Regensburger [53, Theorem 3.8], who
use arguments of degree theory for differentiable maps. We recognize Theorem 1.5 as
the first partial multivariate generalization of the following well-known rule proposed
by René Descartes in 1637 in “La Géometrie,” an appendix to his “Discours de la
Méthode,” see [71, pp. 96–99]. No multivariate generalization is known, and only a
lower bound together with a disproven conjecture was proposed by Itenberg and Roy
in 1996 [45].

Descartes’ rule of signs Given a univariate real polynomial f (x) = c0+c1x+· · ·+
cr xr , the number of positive real roots of f (counted with multiplicity) is bounded
above by the number of sign variations in the ordered sequence of the coefficients
c0, . . . , cr , more precisely, discard the zeros in this sequence and then count the num-
ber of times two consecutive entries have different signs. Additionally, the difference
between these two numbers (the number of positive roots and the number of sign
variations) is even.

For instance, given the polynomial f (x) = c0 + x − x2 + xk with degree k > 2, the
number of variations in the sequence sign(c0),+,−,+ equals 3 if c0 < 0 and 2 if
c0 ≥ 0. Hence, f admits at most 3 or 2 positive real roots, respectively, and this is
independent of its degree.

An important consequence of Descartes’ rule of signs is that the number of real
roots of a real univariate polynomial f can be bounded in terms of the number of
monomials in f (with nonzero coefficient), independently of the degree of f . In the
multivariate case, Khovanskii [48, Corollary 7] proved the remarkable result that the
number of nondegenerate solutions in R

n of a system of n real polynomial equations
can also be bounded solely in terms of the number q of distinct monomials appearing
in these equations. Explicitly, the number of nondegenerate positive roots is at most
2(q−1)(q−2)/2 (n + 1)q−1. In contrast to Descartes’ rule, this bound is far from sharp,
and the only known refinements of this bound do not depend on the signs of the
coefficients of f [69, Chapters 5–6]. Accordingly, we view Theorem 1.5 as the first
partial multivariate generalization of Descartes’ rule, as the conditions of the theorem
for precluding more than one positive solution depend both on the coefficients and the
monomials of f .

We require the following notation. We introduce [r ] = {1, . . . , r} for any natural
number r . For A ∈ R

n×r and B ∈ R
r×n with n ≤ r , and some index set J ⊆ [r ] of
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cardinality n, we write A[n],J for the submatrix of A indexed by the columns in J and
BJ,[n] for the submatrix of B indexed by the rows in J .

For any choice of y ∈ R
n , we consider the system of n equations in n unknowns

r∑

j=1

ai j x
b j1
1 . . . x

b jn
n = yi , i = 1, . . . , n. (3)

We denote by C◦(A) the interior of the polyhedral cone generated by the column
vectors a1, . . . , ar of A:

C◦(A) =
{

r∑

i=1

μi a
i ∈ R

n | μ ∈ R
r+

}
.

Theorem 1.5 (Multivariate Descartes’ rule for (at most) one positive real root) Let
A ∈ R

n×r and B ∈ R
r×n be matrices with full rank n. Then,

(bnd) Assume that for all index sets J ⊆ [r ] of cardinality n, the product
det

(
A[n],J

)
det

(
BJ,[n]

)
either is zero or has the same sign as all other nonzero

products, and moreover, at least one such product is nonzero. Then, (3) has at
most one positive solution x ∈ R

n+, for any y ∈ R
n.

(ex) Assume that the row vectors of B lie in an open half-space and that the determi-
nants det

(
A[n],J

)
and det

(
BJ,[n]

)
have the same sign for all index sets J ⊆ [r ]

of cardinality n, or the opposite sign in all cases. Then, (3) has exactly one
positive solution x ∈ R

n+ if and only if y ∈ C◦(A).

Note that the sign conditions in statement (ex) together with the full rank of the
matrices imply the hypotheses of (bnd) .

To analyze a univariate polynomial f (x) = c0 + c1x + · · · + cr xr in the setting
of Theorem 1.5, we have A ∈ R

1×r with entries c1, . . . , cr , B ∈ R
r×1 with entries

1, . . . , r , and y = −c0. In this univariate case, the hypotheses of (bnd) in Theorem 1.5
reduce to the conditions that c1, . . . , cr are all nonnegative (or nonpositive) and not all
are zero. If these hold, Theorem 1.5 states that f has at most one positive real root and,
furthermore, if c0 has the opposite sign from the nonzero c1, . . . , cr ’s, (ex)guarantees
the existence of this root. Indeed, there is at most one sign variation, depending on
sign(c0), and so the classical Descartes’ rule yields the same conclusion. The result is
also valid in the case of real, not necessarily natural, exponents.

In Proposition 3.12, we consider the more general system of m equations in
n unknowns with r parameters: fκ(x) = y, where fκ is as in Definition 1.1. More
precisely, we give a criterion via sign vectors for precluding multiple positive real
solutions x ∈ R

n+ for all y ∈ R
m and κ ∈ R

r+.
We will give the proof of Theorem 1.5 in Sect. 3.3, where we restate the sign

conditions on the minors of A and B in terms of oriented matroids. Based on this
approach, a generalization for multivariate polynomials systems in n variables with
n + 2 distinct monomials is given in [11]. This case shows the intricacy inherent in
the pursuit of a full generalization of Descartes’ rule to the multivariate case.
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Outline of the paper In Sect. 2, we characterize, in terms of sign vectors, the injectiv-
ity of a family of generalized polynomial maps with respect to a subset. In particular,
we prove Theorem 1.4, thereby isolating and generalizing key ideas in the litera-
ture. Further, we relate our results to determinantal conditions, in case the subset is a
vector subspace. In Sect. 3, we apply our results to chemical reaction networks with
power-lawkinetics, thereby relating and extendingprevious results.Wegive conditions
for precluding multistationarity in general, for precluding multiple “special” steady
states, and for guaranteeing the existence of two or more such steady states. Further,
we present applications to real algebraic geometry. We prove the partial multivariate
generalization of Descartes’ rule, Theorem 1.5, and we restate the hypotheses in the
language of orientedmatroids. Finally, in Sect. 4, we address algorithmic aspects of our
results, in particular, the efficient computation of sign conditions to decide injectivity.

2 Sign Conditions for Injectivity

In this section, we characterize, in terms of sign vectors, generalized polynomial maps
fκ(x) = Aκ x B that are injective with respect to a subset for all choices of the positive
parameters κ . We accomplish this through a series of results that lead to the proof of
Theorem 1.4.

2.1 Notation

Here, we summarize the notation used throughout this work. Moreover, we elaborate
on the concept of sign vectors defined in the introduction.

We denote the strictly positive real numbers by R+ and the nonnegative real num-
bers by R+. We define ex ∈ R

n+ for x ∈ R
n componentwise, that is, (ex )i = exi ;

analogously, ln(x) ∈ R
n for x ∈ R

n+ and x−1 ∈ R
n for x ∈ R

n with xi �= 0. For
x, y ∈ R

n , we denote the componentwise (orHadamard) product by x◦y ∈ R
n , that is,

(x ◦ y)i = xi yi . Further, we define xb ∈ R for x ∈ R
n+ and b ∈ R

n as xb = ∏n
i=1 x

bi
i .

Given a matrix B ∈ R
r×n , we denote by b1, . . . , bn its column vectors and by

b1, . . . , br its row vectors. Thus, the j th coordinate of the map x B : Rn+ → R
r+ is

given by

(x B) j = xb j = x
b j1
1 . . . x

b jn
n .

Recall that we define Bλ for B ∈ R
r×n and λ ∈ R

n+ as Bλ = B diag(λ).
We identify a matrix B ∈ R

r×n with the corresponding linear map B : Rn → R
r

and write im(B) and ker(B) for the respective vector subspaces. For a subset S ⊆ R
n ,

we write S∗ = S\{0} and denote the image of S under B by

B(S) = {B x | x ∈ S}.

For any natural number n, we define [n] = {1, . . . , n}. Given sets I ⊆ [n] and J ⊆ [r ],
we denote the submatrix of B with row indices in J and column indices in I by BJ,I .
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Now, we are ready to state some consequences of Definition 1.3. For x, y ∈ R
n ,

we have the equivalence

σ(x) = σ(y) ⇔ x = λ ◦ y for some λ ∈ R
n+,

and hence, for S ⊆ R
n , we obtain

�(S) = σ−1(σ (S)) = {λ ◦ x | λ ∈ R
n+ and x ∈ S}. (4)

For subsets X,Y ⊆ R
n , we have the equivalences

�(X) ∩ Y = ∅ ⇔ σ(X) ∩ σ(Y ) = ∅ ⇔ X ∩ �(Y ) = ∅. (5)

2.2 Families of Linear Maps

In this subsection, we consider the case of linear maps. We start with a useful lemma.

Lemma 2.1 Let B ∈ R
r×n and S ⊆ R

n. The following statements are equivalent:

(i) ker(Bλ) ∩ S = ∅, for all λ ∈ R
n+.

(ii) σ(ker(B)) ∩ σ(S) = ∅.
Proof Statement (i) holds if and only if Bλ x = B(λ ◦ x) �= 0 for all λ ∈ R

n+ and
x ∈ S, that is, if and only if ker(B)∩�(S) = ∅. By (5), this is equivalent to statement
(ii) . ��

We note that, if 0 ∈ S, statements (i) and (ii) do not hold, so we instead apply
Lemma 2.1 to S∗. In particular, if S is a vector subspace ofRn , then ker(Bλ)∩ S∗ = ∅
reduces to ker(Bλ) ∩ S = {0}, that is, Bλ is injective on S.

Now, we are ready to prove the equivalence of statements (lin) and (sig) in Theo-
rem 1.4.

Proposition 2.2 Let A ∈ R
m×r , B ∈ R

r×n, and S ⊆ R
n. The following statements

are equivalent:

(i) ker(Aκ Bλ) ∩ S = ∅, for all κ ∈ R
r+ and λ ∈ R

n+.
(ii) σ(ker(A)) ∩ σ(B(�(S))) = ∅.
Proof Clearly, statement (i) is equivalent to ker(Aκ)∩ Bλ(S) = ∅, for all κ ∈ R

r+ and
λ ∈ R

n+. Using (4), this is equivalent to ker(Aκ) ∩ B(�(S)) = ∅, for all κ ∈ R
r+. By

Lemma 2.1 applied to the matrix A and the subset B(�(S)), this is in turn equivalent
to statement (ii) . ��

Again, if S is a vector subspace, ker(Aκ Bλ)∩ S∗ = ∅ reduces to ker(Aκ Bλ)∩ S =
{0}, that is, Aκ Bλ is injective on S. Clearly, the statements in Lemma 2.1 are necessary
conditions for the statements in Proposition 2.2.
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2.3 Families of Generalized Monomial/Polynomial Maps

In this subsection, we use the results on families of linear maps to give sign conditions
for the injectivity of families of generalized polynomial maps with respect to a subset.

From Definition 1.2, we conclude that a function g defined on Rn+ is injective with
respect to a subset S ⊆ R

n if and only if for every x ∈ R
n+ one has g(x) �= g(y) for

all y ∈ (x + S∗) ∩ R
n+, where x + S∗ := {x + y | y ∈ S∗}. In case S is a vector

subspace, then such a function g is injective on the intersection (x + S) ∩ R
n+ of any

coset x + S with the domain R
n+.

We start with a key observation.

Lemma 2.3 For S ⊆ R
n, let

�(S) := {ln x − ln y | x, y ∈ R
n+ and x − y ∈ S}. (6)

Then, �(S) = �(S).

Proof Let x, y ∈ R
n+ such that x − y ∈ S. Then, using the strict monotonicity of the

logarithm, we have σ(ln x − ln y) = σ(x − y) ∈ σ(S) and hence ln x − ln y ∈ �(S).
This proves the inclusion �(S) ⊆ �(S). Conversely, let λ ∈ R

n+ and z ∈ S. We
construct x, y ∈ R

n+ such that ln x − ln y = λ ◦ z and x − y = z as follows: if zi �= 0,
then eλi zi �= 1, so we may define yi := zi/(eλi zi −1) and xi := yi eλi zi ; otherwise,
set xi = yi = 1. This proves �(S) ⊆ �(S). ��

The construction of x, y such that x − y = z ∈ S in the proof of Lemma 2.3 can be
traced back at least to [29, Sect. 7]. See also [19, Lemma 1] and [57, Theorem 5.5].

Lemma 2.4 For B ∈ R
r×n and S ⊆ R

n, let

SB := {x B − yB | x, y ∈ R
n+ and x − y ∈ S∗}. (7)

Then, σ(SB) = σ(B(�(S∗))).

Proof For x, y ∈ R
n+, we have σ(x B − yB) = σ(B(ln x − ln y)) by the strict

monotonicity of the logarithm, and hence

σ(SB) = σ
({B(ln x − ln y) | x, y ∈ R

n+ and x − y ∈ S∗}) = σ(B(�(S∗))),

using (6). By Lemma 2.3, σ(SB) = σ(B(�(S∗))). ��
Proposition 2.5 Let B ∈ R

r×n and S ⊆ R
n. Further, let ϕB : Rn+ → R

r+ be the
generalized monomial map ϕB(x) = x B. The following statements are equivalent:

(i) ϕB is injective with respect to S.
(ii) σ(ker(B)) ∩ σ(S∗) = ∅.
Proof By (7), statement (i) is equivalent to 0 /∈ SB . By Lemma 2.4, this is in turn
equivalent to 0 /∈ B(�(S∗)), that is, ker(B) ∩ �(S∗) = ∅. By (5), this is equivalent
to statement (ii) . ��
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Comparing Proposition 2.5 with Lemma 2.1, we observe that ϕB being injective
with respect to S is equivalent to ker(Bλ) ∩ S∗ = ∅, for all λ ∈ R

n+. In case S is a
vector subspace, then ϕB is injective on the intersection (x + S) ∩R

n+ of any coset of
S with the domain R

n+ if and only if Bλ is injective on S for all λ ∈ R
n+.

Next, we prove the equivalence of statements (inj) and (sig) in Theorem 1.4.

Proposition 2.6 Let fκ : Rn+ → R
m be the generalized polynomial map fκ(x) =

Aκ x B, where A ∈ R
m×r , B ∈ R

r×n, and κ ∈ R
r+. Further, let S ⊆ R

n. The following
statements are equivalent:

(inj) fκ is injective with respect to S, for all κ ∈ R
r+.

(sig) σ(ker(A)) ∩ σ(B(�(S∗))) = ∅.
Proof Statement (inj) asserts that for x, y ∈ R

n+ with x − y ∈ S∗, we have Aκ (x B −
yB) �= 0 for all κ ∈ R

r+. This is equivalent to asserting that ker(Aκ) ∩ SB = ∅
for all κ ∈ R

r+, with SB as in (7). By applying Lemma 2.1 to the matrix A and the
subset SB , this is in turn equivalent to σ(ker(A)) ∩ σ(SB) = ∅. By Lemma 2.4,
σ(SB) = σ(B(�(S∗))), and the equivalence to statement (sig) is proven. ��

A necessary condition for (sig) to hold is ker(B) ∩ �(S∗) = ∅ or, equivalently,
σ(ker(B))∩σ(S∗) = ∅. By Proposition 2.5, this corresponds to the fact that for fκ to
be injective with respect to S for all κ ∈ R

r+, the monomial map ϕB must be injective
with respect to S.

To prove the equivalence of statements (lin) and (jac) in Theorem 1.4, we will use
the following observation.

Lemma 2.7 Let A = (ai j ) ∈ R
m×r , B = (bi j ) ∈ R

r×n, κ ∈ R
r+, and λ ∈ R

n+.
Further, let fκ : Rn+ → R

m be the generalized polynomial map fκ(x) = Aκ x B.
Then, the sets of all Jacobian matrices J fκ (x) and all matrices Aκ Bλ coincide:

{
J fκ (x) | κ ∈ R

r+ and x ∈ R
n+
} = {

Aκ Bλ | κ ∈ R
r+ and λ ∈ R

n+
}
.

Proof As fκ,i (x) = ∑r
j=1 ai j κ j xb j , the (i, 
)th entry of the Jacobian matrix of fκ

amounts to

J fκ (x)i,
 = ∂ fκ,i (x)

∂x


=
r∑

j=1

ai j κ j x
b j b j
 x

−1

 .

That is,

J fκ (x) = A diag
(
κ ◦ x B

)
B diag

(
x−1

)
= Aκ ′ Bλ

with κ ′ = κ ◦ x B and λ = x−1. Clearly, quantifying over all κ ∈ R
r+ and x ∈ R

n+ is
equivalent to quantifying over all κ ′ ∈ R

r+ and λ ∈ R
n+. ��

We can now combine all the results in this section in the proof of our main theorem.
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Proof of Theorem 1.4 The equivalences (lin)⇔ (sig) and (inj)⇔ (sig) are shown in
Propositions 2.2 and 2.6, respectively. The equivalence (jac)⇔ (lin) follows from
Lemma 2.7. ��

In case S is a vector subspace, the injectivity of fκ (on cosets x + S) can be directly
related to the injectivity of the Jacobian of fκ (on S). This line of thought underpins the
original injectivity results on chemical reaction networks due to Craciun and Feinberg
[20] and their extensions. In particular, the case S = im(A) and m = n arises in
applications to chemical reaction networks, which we address in Sect. 3.

As discussed in the introduction, a direct corollary of Theorem 1.4 characterizes
unrestricted injectivity, that is, the case S = R

n . See also [53, Theorem 3.6].

Corollary 2.8 Let fκ : Rn+ → R
m be the generalized polynomial map fκ(x) =

Aκ x B, where A ∈ R
m×r , B ∈ R

r×n, and κ ∈ R
r+. The following statements are

equivalent:

(i) fκ is injective, for all κ ∈ R
r+.

(ii) ker(B) = {0} and σ(ker(A)) ∩ σ(im(B)) = {0}.
Proof Let S = R

n and hence�(S∗) = S∗. By Theorem 1.4, statement (i) is equivalent
to

σ(ker(A)) ∩ σ(B(S∗)) = ∅.

Clearly, the above equality does not hold if ker(B) �= {0}. If ker(B) = {0}, then
B(S∗) = B(S)∗ = im(B)∗. Hence, statement (i) is equivalent to ker(B) = {0} and
σ(ker(A)) ∩ σ(im(B)∗) = ∅, which is in turn equivalent to statement (ii) . ��

The results presented so far concern the injectivity of maps defined on the positive
orthant. In fact, the domain of fκ(x) = Aκ x B can be extended to include certain
points on the boundary of Rn+, and our next result concerns this setting. Given B =
(bi j ) ∈ R

r×n , let �B ⊆ R
n
+ be the maximal subset on which the monomial map

ϕB(x) = x B is well defined, that is,

�B :=
{
x ∈ R

n
+ | x j �= 0 if bi j < 0 for some i ∈ [r ]

}
,

and let f̄κ be the extension of fκ to �B . As it was shown in the context of chemical
reaction networks [32,65,73], injectivity of fκ with respect to S precludes the existence
of distinct x, y ∈ �B in the same coset of S that have the same image under f̄κ , i.e.,
with x − y ∈ S and f̄κ(x) = f̄κ(y).

The technical condition in Proposition 2.9 below is satisfied if at least one of the two
vectors x and y is in the positive orthant, or if both contain some zero coordinates, but
no coordinate of x B and yB vanishes simultaneously. In particular, if fκ is injective
with respect to S for all κ ∈ R

r+, then a coset of S cannot contain a vector in the
interior of the positive orthant and a vector on the boundary that have the same image
under f̄κ .

123

256 XIV



Found Comput Math (2016) 16:69–97 81

Proposition 2.9 Let fκ : Rn+ → R
m be a generalized polynomial map fκ(x) =

Aκ x B, where A ∈ R
m×r , B ∈ R

r×n, and κ ∈ R
r+. Assume that fκ is injective

with respect to S ⊆ R
n, for all κ ∈ R

r+. As above, let f̄κ denote the extension of
fκ to �B. Consider x, y ∈ �B with x �= y and x − y ∈ S, satisfying the following
condition: for any j ∈ [r ], xb j = yb j = 0 implies that xi = yi = 0 for all i ∈ [n]
with b ji �= 0. Then, f̄κ(x) �= f̄κ(y) for all κ ∈ R

r+.

Proof For ε ∈ R+, we define positive vectors xε, yε ∈ R
n+ coordinate-wise as follows:

(xε)i = xi + ε and (yε)i = yi + ε whenever xi yi = 0, and (xε)i = xi and (yε)i = yi
otherwise. Clearly, xε − yε = x − y ∈ S. We claim that we can choose ε small enough
such that

σ(x Bε − yBε ) = σ(x B − yB).

If xb j �= yb j , then clearly sign(x
b j
ε − y

b j
ε ) = sign(xb j − yb j ) for sufficiently small ε

since the map ε �→ x Bε − yBε is continuous. Thus, it suffices to show that xb j = yb j

implies x
b j
ε = y

b j
ε . In fact, we only need to consider the case when x
y
 = 0 for some


 ∈ [n] with b j
 �= 0. Then, our hypothesis implies that xi = yi = 0 for all i ∈ [n]
with b ji �= 0. By construction, (xε)i = (yε)i = ε for all such i and thus x

b j
ε = y

b j
ε ,

as claimed.
Suppose f̄κ(x) − f̄κ(y) = Aκ(x B − yB) = 0 for some κ ∈ R

r+. Since x B − yB =
λ ◦ (x Bε − yBε ) for some λ ∈ R

r+, we obtain 0 = Aκ(x B − yB) = Aκ ′(x Bε − yBε ) =
fκ ′(xε) − fκ ′(yε), where κ ′ = κ ◦ λ. Clearly, this contradicts the hypothesis that fκ ′
is injective with respect to S. ��

A related result concerning injectivity up to the boundary in the two-dimensional
case appears in [68].

2.4 Determinantal Conditions

In this subsection, we characterize the injectivity of a family of maps on the positive
orthant fκ : Rn+ → R

n , x �→ Aκ x B , with respect to S ⊆ R
n , in the case where S

is a vector subspace with dim(S) = rank(A). In particular, we provide injectivity
conditions in terms of determinants and signs of maximal minors.

Given a proper vector subspace S ⊆ R
n of dimension s, it can be presented as

the image of a full-rank matrix C ∈ R
n×s , or as the kernel of a full-rank matrix

Z ∈ R
(n−s)×n , whose rows are a basis of S⊥. To recall the relation between the

maximal minors of C and Z , we need the following notation. For n ∈ N and a subset
I = {i1, . . . , is} ⊆ [n], let I c = { j1, . . . , jn−s} be the complement of I in [n]. For
i1 < · · · < is and j1 < · · · < jn−s , let τ(I ) ∈ {±1} denote the sign of the permutation
that sends 1, . . . , n to j1, . . . , jn−s, i1, . . . , is , respectively.

Lemma 2.10 Let s, n be natural numbers with 0 < s < n and C ∈ R
n×s, Z ∈

R
(n−s)×n full-rank matrices with im(C) = ker(Z). Then, there exists a nonzero real

number δ such that
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δ det(CI,[s]) = (−1)τ(I ) det(Z[n−s],I c ),

for all subsets I ⊆ [n] of cardinality s.
Lemma 2.10 is well known (see for instance, [35, p. 94, Equ. (1.6)] and

[35,AppendixA] on the determinant of a complex, in particular, the proofs of Lemma5
and Proposition 11 or Theorem 12.16 in [47]). The full-rank matrices Z and C are
called Gale dual; see Definition 3.6 below.

Let s ≤ n. For A′ ∈ R
s×r , B ∈ R

r×n , and Z ∈ R
(n−s)×n , let �κ,λ ∈ R

n×n be the
square matrix given in block form as

�κ,λ =
(

Z
A′

κ Bλ

)
, for κ ∈ R

r+ and λ ∈ R
n+. (8)

For simplicity, we do not treat the case s = n separately. Instead, we use�κ,λ = A′
κ Bλ

and det(Z[n−s],I c ) = 1 in the statements below for this case.
We start with two useful lemmas.

Lemma 2.11 Let �κ,λ be the matrix defined in (8), for s ≤ n, A′ ∈ R
s×r , B ∈ R

r×n,
Z ∈ R

(n−s)×n, κ ∈ R
r+, and λ ∈ R

n+. Then,

det(�κ,λ) =
∑

I,J
(−1)τ(I ) det(Z[n−s],I c ) det(A′[s],J ) det(BJ,I )κ

JλI ,

where we sum over all subsets I ⊆ [n], J ⊆ [r ] of cardinality s, and κ J = ∏
j∈J κ j ,

λI = ∏
i∈I λi .

Proof By Laplace expansion on the bottom s rows of �κ,λ, we have that

det(�κ,λ) =
∑

I
(−1)τ(I ) det(Z[n−s],I c ) det((A′

κ Bλ)[s],I ),

where we sum over all subsets I ⊆ [n] of cardinality s. The Cauchy–Binet formula
yields

det((A′
κ Bλ)[s],I ) =

∑
J
det((A′

κ)[s],J ) det((Bλ)J,I )

=
∑

J
det(A′[s],J ) det(BJ,I )κ

JλI ,

where we sum over all subsets J ⊆ [r ] of cardinality s. ��
Lemma 2.12 Let q(c) ∈ R[c1, . . . , c
] be a nonzero homogeneous polynomial, with
degree at most one in each variable. There exists c∗ ∈ R


+ such that q(c∗) = 0 if and
only if q(c) has both positive and negative coefficients.

Proof If all coefficients of q(c) have the same sign, it is clear that q(c∗) �= 0, for
all c∗ ∈ R


+. To prove the reverse implication, let α cv be any monomial of q (so,
v ∈ {0, 1}
). For ε ∈ R+, define c(ε) ∈ R


+ by ci (ε) := ε if vi = 1 and ci (ε) := 1
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if vi = 0. Then, q(c(ε)) is a univariate polynomial in ε of the same degree as q and
with leading coefficient α. For sufficiently large ε, the sign of q(c(ε)) is the sign of
α. Therefore, if two nonzero coefficients have opposite signs, q(c) takes both positive
and negative values, and so by continuity, there exists c∗ ∈ R


+ such that q(c∗) = 0. ��
The following result generalizes [73, Propositions 5.2–5.3].

Theorem 2.13 Let fκ : Rn+ → R
m be the generalized polynomial map fκ(x) =

Aκ x B, where A ∈ R
m×r , B ∈ R

r×n, and κ ∈ R
r+.

Assume that rank(A) = s, and consider a vector subspace S ⊆ R
n with dim(S) =

s. Let Z ∈ R
(n−s)×n and C ∈ R

n×s be matrices presenting S, that is, such that
im(C) = S = ker(Z). Given A′ ∈ R

s×r with ker(A) = ker(A′), call Ã = CA′ ∈
R
n×r , and let �κ,λ ∈ R

n×n be the square matrix associated to A′, B, Z, κ ∈ R
r+, and

λ ∈ R
n+ as in (8).

The following statements are equivalent:

(inj) fκ is injective with respect to S, for all κ ∈ R
r+.

(det) Viewed as a polynomial in κ and λ, det(�κ,λ) is nonzero and all of its nonzero
coefficients have the same sign.

(min) Forall subsets I ⊆ [n], J ⊆ [r ]of cardinality s, the productdet( ÃI,J ) det(BJ,I )

either is zero or has the same sign as all other nonzero products, and moreover,
at least one such product is nonzero.

Proof Using the equivalence (inj)⇔ (lin) of Theorem 1.4 and that S is the solution set
to the equation Zx = 0, statement (inj) is equivalent to �κ,λ(x) �= 0 for all κ ∈ R

r+,
λ ∈ R

n+, and x ∈ R
n with x �= 0. As �κ,λ is a square matrix, this is in turn equivalent

to det(�κ,λ) �= 0, for all κ ∈ R
r+ and λ ∈ R

n+. By Lemma 2.11, det(�κ,λ) is a
homogeneous polynomial in κ, λ with degree at most one in each variable. Hence, the
equivalence (inj)⇔ (det) follows from Lemma 2.12.

By Cauchy–Binet, det( ÃI,J ) = det(CI,[s]) det(A′[s],J ), and hence the equivalence
(det)⇔ (min) follows from Lemmas 2.10 and 2.11. ��

Therefore, injectivity of Aκ x B can be assessed by computing either the nonzero
products of the s×s minors of Ã and B or the determinant of the symbolic matrix�κ,λ.
Further, it follows from Theorem 2.13 that det(�κ,λ) equals the sum of the principal
minors of size s of Ãκ Bλ. This implies the interesting fact that if det(�κ,λ) is nonzero,
it equals the product of the nonzero eigenvalues of Ãκ Bλ.

Clearly, the hypotheses of Theorem 2.13 are fulfilled for S = im(A). In this case,
the matrix C ∈ R

n×s can be chosen to satisfy A = CA′. Therefore, we obtain the
following corollary, which was proven in [73].

Corollary 2.14 Let fκ : Rn+ → R
n be the generalized polynomial map fκ(x) =

Aκ x B, where A ∈ R
n×r , B ∈ R

r×n, and κ ∈ R
r+. Further, let s = rank(A). The

following statements are equivalent:

(inj) fκ is injective with respect to im(A), for all κ ∈ R
r+.

(min) Forall subsets I ⊆ [n], J ⊆ [r ]of cardinality s, the productdet(AI,J ) det(BJ,I )

either is zero or has the same sign as all other nonzero such products, andmore-
over, at least one such product is nonzero.
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Let A ∈ R
m×r and B ∈ R

r×n have full rank m and n, respectively. By
Corollary 2.8, the (unrestricted) injectivity of fκ(x) = Aκ x B is equivalent to
σ(ker(A)) ∩ σ(im(B)) = {0}. For m < n, the intersection ker(A) ∩ im(B) is always
nontrivial since (r − m) + n > r . For m = n, determinantal conditions are given in
Corollary 2.15 below; see also [16, Theorem 3.1] and [24, Corollary 8]. For m > n,
the problem is NP-complete; see Sect. 4.

Corollary 2.15 Let A ∈ R
n×r and B ∈ R

r×n be matrices of rank n. The following
statements are equivalent:

(i) σ(ker(A)) ∩ σ(im(B)) = {0}.
(ii) For all subsets J ⊆ [r ] of cardinality n, the product det(A[n],J ) det(BJ,[n]) either

is zero or has the same sign as all other nonzero products, and moreover, at least
one such product is nonzero.

Proof The (unrestricted) injectivity of fκ(x) = Aκ x B for all κ ∈ R
r+ is equivalent

to both (i) by Corollary 2.8 (since ker(B) = {0}) and (ii) by Corollary 2.14 (since
im(A) = R

n). ��

3 Applications

The first application of our results is to study steady states (or equilibria) of dynamical
systems induced by generalized polynomial maps. In Sect. 3.1, we introduce such
power-law systems and state our results in this setting. In Sect. 3.2, we give sign con-
ditions that preclude/guarantee the existence of multiple steady states of a particular
form. In Sect. 3.3, we show how our results reveal the first partial multivariate general-
ization of Descartes’ rule of signs in real algebraic geometry and interpret our results
in the language of oriented matroids.

3.1 Power-Law Systems

Power-law systems arise naturally as models of systems of interacting species, such
as chemical reaction networks. Other examples include the classical Lotka–Volterra
model in ecology [55] and the SIR model in epidemiology [2].

For readers unfamiliar with chemical reaction networks, we elaborate on the con-
struction of the corresponding dynamical systems. A chemical reaction network con-
sists of a set of n molecular species and a set of r reactions, where the left- and
right-hand sides of the reactions are formal sums of species, called reactant and prod-
uct complexes, respectively. A kinetic system describes the dynamics of the species
concentrations x , where each reaction contributes to the dynamics an additive term:
namely, a corresponding reaction vector (the difference between the product and reac-
tant complexes) multiplied by a particular reaction rate (a nonnegative function of the
concentrations, called kinetics). Thus, a kinetic system has the form

dx

dt
= NK (x), (9)
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where the columns of the stoichiometric matrix N are the reaction vectors and the i th
coordinate of K (x) is the rate function of the i th reaction. The right-hand side of (9)
is called the species-formation rate function. In power-law systems, the kinetics are
given by monomials with real exponents [62]. More precisely, the power-law system
arising from the stoichiometric matrix N ∈ R

n×r , a kinetic-order matrix V ∈ R
r×n ,

and rate constants κ ∈ R
r+ is the kinetic system (9) with kinetics K (x) = κ ◦ xV .

That is, the species-formation rate function fκ : Rn+ → R
n is given by

fκ(x) = Nκ x
V . (10)

In fact, the domain of fκ may be extended to �V ⊆ R
n
+, the maximal subset on

which the monomial map ϕV : x �→ xV is well defined. We note that, without further
restrictions on the matrix V , a power-law system may exhibit physically/chemically
meaningless behavior. For example, a trajectory starting in the interior may reach the
boundary of the positive orthant in finite time with nonzero velocity.

The vector subspace S = im(N ) is the stoichiometric subspace, and the sets (x ′ +
S) ∩ R

n+ for x ′ ∈ R
n+ are the positive compatibility classes. As explained in the

introduction, a trajectory starting at a point x ′ ∈ R
n+ is confined to the coset x ′ + S.

As a consequence, we study power-law systems restricted to compatibility classes. In
particular, we want to characterize whether there exist distinct x, y ∈ R

n+ such that
x − y ∈ S and fκ(x) = fκ(y) = 0 for some κ ∈ R

r+. In our terminology, if fκ is
injective with respect to S for all κ ∈ R

r+, then no such x, y can exist, that is, multiple
positive steady states cannot occur within one compatibility class for any choice of
the rate constants.

Example 3.1 (Mass-action systems)Mass-action systems form a family of power-law
systems, and they are widely used to model the dynamics of chemical reaction net-
works. In mass-action systems, the rate of a chemical reaction is a monomial in the
concentrations of the reactant species; more precisely, the exponents of the concen-
trations are the corresponding stoichiometric coefficients, i.e., the coefficients of the
species in the reactant complex. As a consequence, the kinetic-order matrix V is a
nonnegative integer matrix, which encodes for each reaction the stoichiometries of
the reactant species, and the map fκ(x) is a polynomial map in the standard sense
with domain �V = R

n
+. Mass-action systems are at the core of the so-called chem-

ical reaction network theory, initiated by Horn, Jackson, and Feinberg in the 1970s
[26,43,44]; see also the surveys [27,39].

Example 3.2 (Generalized mass-action systems) The law of mass-action, proposed
by Guldberg and Waage in the 19th century [38], refers to both the formula for chem-
ical equilibrium, which holds for all reactions, and the formula for the reaction rate
(explained in Example 3.1), which holds only for elementary reactions in homoge-
neous and dilute solutions. To model the dynamics of chemical reaction networks
in more general environments, power-law kinetics has been considered under differ-
ent formalisms [44,62]. The notion of generalized mass-action systems as introduced
in [53,54] is a direct extension of mass-action systems, in particular, it includes the
inherent structure of chemical reaction networks.
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Example 3.3 (S-systems) S-systems form another family of power-law systems. This
research area was initiated by the work of Savageau in the late 1960s [62]. In S-
systems, the formation rate of each species consists of one production term and one
degradation term. In other words, the components fκ,i (x) are binomial, and each row
of the stoichiometric matrix N contains the entries 1 and −1, and all other entries
are zero. S-systems can be used to infer gene regulatory networks, for instance, if
the regulation logic is not known or the precise mechanisms are inaccessible. Further,
many common kinetic systems, including (generalized) mass-action systems, can be
approximated by S-systems after a process called recasting [63].

An injectivity criterion for precluding multistationarity in fully open networks with
mass-action kinetics was introduced by Craciun and Feinberg [20] and has been
extended in various ways [8,21,23,32,37,73]. Our contribution to this topic builds
on these results and is summarized in Theorem 3.4. It is a restatement of Theorem 1.4
in the setting of power-law systems; in particular, m = n and S = im(N ) is a vector
subspace. In this case, Corollary 2.14 allows us to add the condition (min) . Further,
the condition (inj) concerns the injectivity of the generalized polynomial map on com-
patibility classes, and (jac) addresses the injectivity of the Jacobian matrix on the
stoichiometric subspace.

Theorem 3.4 (Theorem1.4 for power-law systems)Let fκ : Rn+ → R
n be the species-

formation rate function fκ(x) = Nκ xV of a power-law system, where N ∈ R
n×r ,

V ∈ R
r×n, and κ ∈ R

r+. Further, let S = im(N ) and s = rank(N ). The following
statements are equivalent:

(inj) fκ is injective on every compatibility class, for all κ ∈ R
r+.

(jac) The Jacobian matrix J fκ (x) is injective on the stoichiometric subspace S, for
all κ ∈ R

r+ and x ∈ R
n+.

(min) Forall subsets I ⊆ [n], J ⊆ [r ]of cardinality s, the productdet(NI,J ) det(VJ,I )

either is zero or has the same sign as all other nonzero such products, andmore-
over, at least one such product is nonzero.

(sig) σ(ker(N )) ∩ σ(V (�(S∗))) = ∅.

If the conditions of Theorem 3.4 hold, then multistationarity is precluded. In the
context of chemical reaction networks, the equivalence of conditions (inj) , (jac) , and
(min)was proven in [73]. Thus, our contribution is condition (sig) .

Remark 3.5 Injectivity results for generalized polynomial maps also preclude multi-
stationarity for strictly monotonic kinetics [33,73], which include power-law kinetics.
In the study of concordant networks [65], sign conditions preclude multistationarity
for weakly monotonic kinetics. Injectivity results for differentiable maps and various
classes of kinetics using P-matrices appear in [6–9,34]. P-matrices are defined by the
positivity of principal minors, which is related to condition (min) in this work. Analy-
sis of the signs of minors of Jacobian matrices with applications to counting steady
states appear in [25,40,41].
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3.2 Precluding/Guaranteeing Special Steady States

In this subsection, we relate results on injectivity and sign vectors occurring in the
chemical reaction literature for “special” steady states, under seemingly different
hypotheses. On one side, we study complex balancing equilibria defined for mass-
action systems [26,43,44] and extended to generalized mass-action systems [53]; on
the other side, we consider toric steady states [57]. The common feature of all these
cases is that the steady states under consideration lie in a generalized variety that has
dual equivalent presentations: via generalized binomial equations and via a general-
ized monomial parametrization. Our results give conditions for precluding multiple
special steady states (Proposition 3.9) and for guaranteeing multiple special steady
states (Corollary 3.11).

Given M ∈ R
d ′×n and x∗ ∈ R

n+, we denote the corresponding fiber of x �→ xM

by

ZM
x∗ :=

{
x ∈ R

n+ | xM = (x∗)M
}

.

We note that in the literature on chemical reaction network theory, the alternate for-
mulation ZM

x∗ = {x ∈ R
n+ | ln(x) − ln(x∗) ∈ ker(M)} is used. Also, if we denote by

mi the i th row vector of M and write it as mi = m+
i − m−

i with m+
i ,m−

i ∈ R
n
+, then

for any positive γi , the generalized monomial equation xmi = γi is equivalent to the
generalized binomial equation xm

+
i − γi xm

−
i = 0, when we restrict our attention to

x ∈ R
n+.

Definition 3.6 Two matrices M ∈ R
d ′×n and B ∈ R

n×d with im(B) = ker(M) and
ker(B) = {0} are called Gale dual.

In the usual definition of Gale duality, the matrix M is required to have full rank
d ′ = n − d.

The following lemma is classic.

Lemma 3.7 Let M ∈ R
d ′×n and B ∈ R

n×d be Gale dual. Then, for any x∗ ∈ R
n+,

the fiber ZM
x∗ can be parametrized as follows:

ZM
x∗ = {x∗ ◦ ev | v ∈ ker(M)} = {x∗ ◦ ξ B | ξ ∈ R

d+}.

Proof We start by proving the first equality. We have x ∈ ZM
x∗ if and only if xM =

(x∗)M , which is equivalent to M (ln x − ln x∗) = 0. Therefore, x ∈ ZM
x∗ if and only

if v := ln x − ln x∗ ∈ ker(M), that is, x = x∗ ◦ ev with v ∈ ker(M). Now, we turn
to the second equality. Since the columns of B form a basis for ker(M), we can write
v ∈ ker(M) uniquely as v = B t for some t ∈ R

d . By introducing ξ := et ∈ R
d+, we

obtain

(ev)i = evi = e
∑

j bi j t j = ∏
j ξ

bi j
j = ξbi = (ξ B)i ,

that is, ev = ξ B , so the inclusion ⊆ holds. Similarly, ⊇ holds via v := B log ξ . ��
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We consider a power-law system (10) and assume that the set of steady states
contains the positive part of a generalized variety defined by generalized binomials,
according to the following definition. Recall the connection between certainmonomial
and binomial equations explained before Definition 3.6.

Definition 3.8 Let fκ : Rn+ → R
n be the species-formation rate function fκ(x) =

Nκ xV of a power-law system, where N ∈ R
n×r , V ∈ R

r×n , and κ ∈ R
r+. Further, let

M ∈ R
d ′×n and γ : Rr+ → R

d ′
+ . Consider the family of generalized varieties

Y M,γ
κ :=

{
x ∈ R

n+ | xM = γ (κ)
}

for κ ∈ R
r+,

and assume that each such generalized variety consists of steady states of the corre-
sponding power-law system:

Y M,γ
κ ⊆ {x ∈ R

n+ | fκ(x) = 0} for all κ ∈ R
r+.

An element x∗ ∈ Y M,γ
κ∗ is called a special steady state for κ∗.

According to the definition, x∗ is a special steady state for κ∗ if and only if (x∗)M =
γ (κ∗), or, equivalently, Y M,γ

κ∗ = ZM
x∗ . Clearly, if γ (κ∗) does not belong to the image

of the monomial map ϕM : x �→ xM , then Y M,γ
κ∗ = ∅. As already mentioned, special

steady states include complex balancing equilibria of generalizedmass-action systems
[53] and toric steady states [57]. In both cases, the relevantmap γ is a rational function.

Consider N , V, M , and γ as in Definition 3.8. Let x∗ ∈ R
n+ be a special steady state

for κ∗. By Lemma 3.7, the corresponding set of special steady states Y M,γ
κ∗ = ZM

x∗ can
be parametrized as {x∗ ◦ ξ B | ξ ∈ R

d+}, where B ∈ R
n×d with im(B) = ker(M) and

ker(B) = {0}. In fact, we are interested in the intersection of the set of special steady
states with some compatibility class,

ZM
x∗ ∩ (x ′ + S).

If the intersection is nonempty, then there exist ξ ∈ R
d+ and u ∈ S such that

x∗ ◦ ξ B = x ′ + u,

and multiplication by a matrix A ∈ R
m×n for which ker(A) = S yields

A (x∗ ◦ ξ B) = A x ′.

Thus, using ker(B) = {0}, injectivity of the generalized polynomial map
fx∗ : Rd+ → R

n+,

fx∗(ξ) = A (x∗ ◦ ξ B) = Ax∗ ξ B,
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is equivalent to the uniqueness of special steady states in every compatibility class.
Therefore, if fx∗ is injective for all x∗ ∈ R

n+, as characterized in Proposition 3.9
below, then multiple special steady states are precluded for all rate constants. Note
that Theorem 3.4 precludes multiple “general” steady states.

Proposition 3.9 Let M ∈ R
d ′×n and B ∈ R

n×d be Gale dual, S ⊆ R
n be a vec-

tor subspace, and A ∈ R
m×n such that S = ker(A). The following statements are

equivalent:

(i) The monomial map ϕM : Rn → R
d ′
, x �→ xM is injective on (x ′ + S) ∩ R

n+, for
all x ′ ∈ R

n+.
(ii) σ(ker(M)) ∩ σ(S) = {0}.
(iii) The polynomial map fx∗ : Rd+ → R

m, ξ �→ Ax∗ ξ B is injective, for all x∗ ∈ R
n+.

Proof Statement (ii) is equivalent to σ(ker(A)) ∩ σ(im(B)) = {0}, by the definitions
of the matrices. (i)⇔ (ii) holds by Proposition 2.5 (for a vector subspace S). (iii)⇔
(ii) holds by Corollary 2.8.

In other words, injectivity of monomial maps on cosets of a vector subspace is equiv-
alent to injectivity of a related family of polynomial maps on the positive orthant.

Remark 3.10 Related sign conditions for injectivity appear in [31, Lemma 4.1], [19,
Lemma 1], [57, Theorem 5.5], and [53, Proposition 3.1 and Theorem 3.6]. In gen-
eralized mass-action systems [53], uniqueness of complex balancing equilibria is
guaranteed by the sign condition σ(S) ∩ σ(S̃⊥) = {0}, where S̃ is the kinetic-order
subspace with S̃⊥ = ker(M) = im(B). In the specific case of mass-action sys-
tems, the stoichiometric and kinetic-order subspaces coincide, S = S̃, and hence
σ(S) ∩ σ(S⊥) = {0} holds trivially. Further, in this case, if complex balancing equi-
libria exist, all steady states are of this form [44, Theorem 6A] and multistationarity
cannot occur. The sign condition for precluding multiple toric steady states [57] takes
the form σ(im(AT )) ∩ σ(ker(ZT )) = {0}, where we use calligraphic fonts to avoid
confusion with symbols in this work. The matrix A specifies the parametrization of
Z , whereas the matrix Z defines the stoichiometric subspace S: ker(M) = im(AT )

and S = ker(ZT ).

We close this subsection by considering the case when statement (ii) in Proposi-
tion 3.9 does not hold. In this case, multiple special steady states in one compatibility
class are possible, provided that every x∗ ∈ R

n+ is a special steady state for some κ∗.
Corollary 3.11 Let fκ : Rn+ → R

n be the species-formation rate function fκ(x) =
Nκ xV of a power-law system with stoichiometric subspace S = im(N ), where N ∈
R
n×r , V ∈ R

r×n, and κ ∈ R
r+. Further, let M ∈ R

d ′×n, γ : Rr+ → R
d ′
+ , and Y M,γ

κ be
a set of special state states as in Definition 3.8. Assume that:

(i) σ(ker(M)) ∩ σ(S) �= {0}.
(ii) For all x ∈ R

n+, there exists κ ∈ R
r+ such that x ∈ Y M,γ

κ .

Then, there exist κ∗ ∈ R
r+ and distinct x∗, y∗ ∈ R

n+ such that

x∗, y∗ ∈ Y M,γ
κ∗ and x∗ − y∗ ∈ S.

In other words, there exist multiple special steady states in some compatibility class.
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Proof Assume σ(ker(M)) ∩ σ(S) �= {0}. By (ii)⇔ (i) in Proposition 3.9, there exist
x∗, y∗ ∈ R

n+ with x∗ �= y∗, x∗ − y∗ ∈ S, and (x∗)M = (y∗)M , that is, x∗, y∗ ∈ ZM
x∗ .

By assumption (ii) , there exists κ∗ ∈ R
r+ such that x∗ ∈ Y M,γ

κ∗ , that is, ZM
x∗ = Y M,γ

κ∗ .

Hence, x∗, y∗ ∈ Y M,γ
κ∗ . ��

In the case of complex balancing equilibria, the crucial assumption (ii) in Corol-
lary 3.11 follows from weak reversibility (cf. [53, Lemma 3.3]). In the case of toric
steady states, it is guaranteed by the existence of a positive toric steady state for some
κ or, equivalently, by the existence of a positive vector in the kernel of N (cf. [57,
Theorem 5.5]).

3.3 Solving Systems of Generalized Polynomial Equations

In this subsection, we prove the partial multivariate generalization of Descartes’ rule,
Theorem 1.5. The bound on the number of positive solutions in statement (bnd) is a
direct consequence of Corollaries 2.8 and 2.15, and it was proved in previous works,
e.g., in [24, Corollary 8]. The existence of positive solutions in statement (ex) relies on
the surjectivity result in [53, Theorem 3.8]. The framework of our results is the theory
of oriented matroids, which is concerned with combinatorial properties of geometric
configurations.

Proposition 3.12 Let A ∈ R
m×r and B ∈ R

r×n with full rank n. The following
statements are equivalent:

(i) For all κ ∈ R
r+ and y ∈ R

m, the system of m generalized polynomial equations
in n unknowns

r∑

j=1

ai j κ j x
b j1
1 . . . x

b jn
n = yi , i = 1, . . . ,m,

has at most one positive real solution x ∈ R
n+.

(ii) σ(ker(A)) ∩ σ(im(B)) = {0}.
Proof The left-hand side of the equation system in (i) is the image of x under the
generalized polynomial map fκ : Rn+ → R

m, x �→ Aκ x B . Thus, statement (i) is
equivalent to the injectivity of fκ for all κ ∈ R

r+. So, by Corollary 2.8, (i)⇔ (ii) . ��
We can now prove the bound in the partial multivariate generalization of Descartes’

rule.

Proof of (bnd) in Theorem 1.5 By Corollary 2.15, the hypothesis of (bnd) in Theo-
rem 1.5 is equivalent to statement (ii) in Proposition 3.12 for m = n. The equivalent
condition (i) in Proposition 3.12 implies the conclusion of Theorem 1.5, by setting
κ = (1, . . . , 1)T . ��

Next, we relate our results to the theory of oriented matroids. With a vector con-
figuration A = (a1, . . . , ar ) ∈ R

n×r of r vectors spanning R
n , one can associate the
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following data, each of which encodes the combinatorial structure of A. On one side,
the chirotope of A, defined by the signs of maximal minors,

χA : {1, . . . , r}n → {−, 0,+}
(i1, . . . , in) �→ sign(det(ai1 , . . . , ain )),

records for each n-tuple of vectors whether it forms a positively oriented basis of
R
n , forms a negatively oriented basis, or is not a basis. On the other side, the set of

covectors of A,

V∗(A) =
{(

sign(t T a1), . . . , sign(t T ar )
)

∈ {−, 0,+}r | t ∈ R
n
}

,

encodes the set of all ordered partitions of A into three parts, induced by hyperplanes
through the origin. Equivalently, the covectors of A are the sign vectors of AT ,

V∗(A) = σ
(
im

(
AT

))
,

since for x = AT t ∈ R
r with t ∈ R

n , we have

σ(x)i = sign(xi ) = sign
(∑

j (A
T )i j t j

)
= sign

(∑
j t j a ji

)
= sign(t T ai ),

and hence σ(x) = (
sign(t T a1), . . . , sign(t T ar )

)
.

Further, the set of vectors of A, denoted by V(A), is the orthogonal complement of
V∗(A). We note that two sign vectors μ, ν ∈ {−, 0,+}n are orthogonal if μiνi = 0
for all i or if there exist i, j with μiνi = + and μ jν j = −. We have

V(A) = V∗(A)⊥ = σ(im(AT ))⊥ = σ(im(AT )⊥) = σ(ker(A)),

where we use σ(S)⊥ = σ(S⊥) for any vector subspace S ⊆ R
n , cf. [74, Proposi-

tion 6.8].
The oriented matroid of A is a combinatorial structure that can be given by any

of these data (chirotopes, covectors, or vectors) and defined/characterized in terms of
any of the corresponding axiom systems [13,59,74]. The proofs for the equivalences
among these data/axiom systems are nontrivial. We note that χA and −χA define the
same oriented matroid.

We may now express the sign condition in Proposition 3.12 in terms of oriented
matroids. Clearly, σ(ker(A))∩ σ(im(B)) = {0} if and only if V(A)∩V∗(BT ) = {0}.
In other words, no nonzero vector of A is orthogonal to all vectors of BT , or, equiva-
lently, no nonzero covector of BT is orthogonal to all covectors of A.

Analogously, we translate the sign conditions in statement (ex)of Theorem 1.5.
Indeed, the maximal minors of A and B have the same (opposite) sign(s) if and only
if χA = ±χBT , that is, if and only if A and BT define the same oriented matroid.

The proof of statement (ex) in Theorem 1.5 combines our injectivity result, Proposi-
tion 3.12, with a surjectivity result from previous work [53, Theorem 3.8] to guarantee
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the existence and uniqueness of a positive solution. In fact, (ex) restates a generaliza-
tion of Birch’s theorem [53, Proposition 3.9] in terms of polynomial equations.

Proof of (ex) in Theorem 1.5 Clearly, if (3) has a positive solution x ∈ R
n+, then

y ∈ C◦(A). Conversely, the sign conditions in (ex) , together with the full rank of
the matrices, imply the hypotheses of (bnd) , and hence there is at most one positive
solution of (3). Further, they imply that A and BT define the same oriented matroid,
and hence σ(im(AT )) = σ(im(B)). Finally, the assumption about the row vectors of
B implies the sign condition (+, . . . ,+)T ∈ σ(im(AT )).

By [53, Theorem 3.8], the generalized polynomial map fκ : Rn+ → C◦ ⊆ R
n, x �→

Aκ x B is surjective for all κ ∈ R
r+. Clearly, the left-hand side of the equation system (3)

is the image of x under the generalized polynomialmap fκ for κ = (1, . . . , 1)T . Hence
the equation system has at least one solution x ∈ R

n+ for all y ∈ C◦(A) ⊆ R
n . (We

note that the relevant objects in [53, Theorem 3.8] are F(λ) = fκ(x) with λ = ln x ,
V = AT , Ṽ = B, and c∗ = κ .) ��

Observe that statement (ex) in Theorem 1.5 can also be stated for a fixed exponent
matrix B ∈ R

r×n with full rank n and row vectors lying in an open half-space. Then,
for any coefficient matrix A ∈ R

n×r such that A and BT define the same oriented
matroid, the equation system (3) has exactly one positive solution x ∈ R

n+, for any
y ∈ C◦(A). Alternatively, the hypotheses of statement (ex) can be expressed in a more
symmetric way: “consider matrices A ∈ R

n×r and B ∈ R
r×n such that A and BT

define the same oriented matroid and the column vectors of A (or, equivalently, the
row vectors of B) lie in an open half-space.”

Remark 3.13 In many applications, the existence of positive solutions is guaranteed,
for instance, as in item (ex) above or by a fixed-point argument, in which case the
sign condition in Proposition 3.12 suffices to ensure the existence and uniqueness
of positive solutions. In this setting, homotopy continuation methods can be used to
obtain the solution for a given system [67]. Namely, we identify one system in the
family that has a unique solution—by choosing the coefficients ai j and right-hand
sides yi appropriately, we can ensure that x = (1, . . . , 1) is the unique solution—
and then, we follow the unique positive solution while performing the homotopy by
deforming the parameters of the solved system to those of our given system. However,
this need not always work, since the followed solution can fail to remain positive along
the way.

4 Algorithmic Verification of Sign Conditions

In this section, we outline how the sign condition (sig) in Theorem 1.4 can be verified
algorithmically. Recall that for matrices A ∈ R

m×r , B ∈ R
r×n , and a subset S ⊆ R

n ,
the condition

(sig) σ(ker(A)) ∩ σ(B(�(S∗))) = ∅

is equivalent to the injectivity of fκ(x) = Aκ x B with respect to S, for all κ ∈ R
r+.

A characterization of condition (sig) in terms of determinants and signs of maximal

123

268 XIV



Found Comput Math (2016) 16:69–97 93

minors is given in Theorem 2.13 for the special case where S is a vector subspace with
dim(S) = rank(A).

We assume that the two matrices have rational entries: A ∈ Q
m×r and B ∈ Q

r×n .
As discussed in the introduction, fκ is injective with respect to S if and only if it is
injective with respect to any subset S′ for which S ⊆ S′ ⊆ �(S) = σ−1(σ (S)). The
subset �(S) depends only on the set of nonzero sign vectors σ(S) of S. Therefore,
we assume that a set of sign vectors T ⊆ {−, 0,+}n\{0} is given and discuss how
to check condition (sig) for the corresponding union of (possibly lower dimensional)
orthants σ−1(T ), that is, whether

(sig) σ(ker(A)) ∩ σ(B(σ−1(T ))) = ∅

holds. Clearly, (sig)holds if and only if there do not exist sign vectors μ ∈ {−, 0,+}r
and τ ∈ T such that

μ ∈ σ(ker(A)) ∩ σ(B(σ−1(τ ))),

or, equivalently, if for allμ ∈ {−, 0,+}r and all τ ∈ T the system of linear inequalities

Ax = 0, σ (x) = σ(By) = μ, σ(y) = τ (11)

is infeasible, that is, the system (11) has no solution z = (x, y) ∈ R
r+n .

Linear inequalities arise from the sign equalities in (11). Some of these are strict
inequalities and hence techniques from linear programming do not directly apply.
However, since the inequalities are homogeneous, the set of solutions to (11) forms a
convex cone. In particular, if z is a solution, then so is λz, for all λ ∈ R+. Therefore,
we can verify the infeasibility of (11) by checking the infeasibility of the system of
linear inequalities obtained by replacing the inequalities>0 and<0 by≥ ε and≤ −ε,
respectively, for an arbitrary ε ∈ R+. In this setting, one can apply methods for exact
linear programming, which makes use of Farkas’ lemma to guarantee the infeasibility
of linear programs by way of rational certificates; see for example [1,3,36] and the
exact linear programming solver QSopt_ex [4]. An alternative is to develop and
adapt exact linear programming methods for strict inequalities using Theorems of the
Alternative (Transposition theorems); see for example [51,64]. Using this approach,
we might need to test the infeasibility of system (11) for 3r times the cardinality of T
choices of pairs μ ∈ {−, 0,+}r and τ ∈ T .

To apply this approach, we need to compute the set of sign vectors σ(S) of S. In
the applications in Sect. 3, the subset S is a vector subspace. In this case, the set of
sign vectors σ(S) are the covectors of the corresponding oriented matroid. Chirotopes
can be used to compute covectors with minimal support, which are called cocircuits.
Covectors can be computed from cocircuits. In general, the number of covectors can
be exponentially large compared with the number of cocircuits. For example, Rn

has 3n covectors and n cocircuits corresponding to the vectors of the standard basis.
Therefore, it is reasonable to measure the complexity of enumeration algorithms as
a function of input and output sizes. By this measure, an efficient polynomial-time
algorithm that generates all covectors from cocircuits is discussed in [5]. Note that one
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also can use chirotopes to test directly whether the oriented matroids corresponding to
two vector subspaces are equal, which is the condition for existence and uniqueness
of positive real solutions in item (ex)of Theorem 1.5.

For the special case of unrestricted injectivity (cf.Corollary 2.8 andProposition3.9),
condition (sig) reduces to the condition

σ(ker(A)) ∩ σ(im(B)) = {0},
for matrices A ∈ R

m×r and B ∈ R
r×n , such that A has full rankm and B has full rank

n. In other words, we must check whether the two vector subspaces ker(A) and im(B)

have a common nontrivial sign vector, or, equivalently, whether the corresponding
oriented matroids have a common covector. Form = n, this condition is characterized
in Corollary 2.15 in terms of signs of products of maximal minors. For m > n, it
is shown in [16, Theorem 5.5] that for integer matrices the problem is strongly NP-
complete.

We cannot hope for a polynomial-time algorithm to verify condition (sig) in gen-
eral. A software to find nonzero sign vectors in σ(ker(A)) ∩ σ(im(B)) is described
in [72]. It uses mixed linear integer programming and branch-and-bound methods for
enumerating all sign vectors and has been successfully applied to establish multista-
tionarity for models arising in Systems Biology [17]. The C++ package Topcom [58]
efficiently computes chirotopes with rational arithmetic and generates all cocircuits.
It also has an interface to the open source computer algebra system Sage [70]. For
algorithmic methods to compute sign vectors of real algebraic varieties and semial-
gebraic sets, we refer to [10]. The software package RAGLib [60] can test whether a
system of polynomial equations and inequalities has a real solution.
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Abstract. Algebraic relations between discrete and continuous moments of scaling functions
are investigated based on the construction of Bell polynomials. We introduce families of scal-
ing functions which are parametrized by moments. Filter coefficients of scaling functions and
wavelets are computed with computer algebra methods (in particular Gröbner bases) using rela-
tions between moments. Moreover, we propose a novel concept for data compression based on
parametrized wavelets.
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1. Introduction

Discrete (real or complex) filter coefficients {hk : k = 0, . . . , N} in the dilation equation
of a scaling function

φ(x) =
N

∑
k=0

hkφ(2x− k), (1.1)

are used in many areas of applications, for instance data compression; scaling func-
tions (and in turn filter coefficients) are the basis for constructing wavelets (see e.g.
Daubechies [12, 13], Mallat [20], Strang & Nguyen [27]) and also play a fundamental
role in subdivision schemes (see e.g. Cavaretta et al. [7] and Rioul [22]).

Filter coefficients are determined by the continuous moments

Mn =
∫

xnφ(x)dx,
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and discrete moments

mn =
N

∑
k=0

hkkn,

respectively.

In Section 2 we study algebraic relations between discrete and continuous moments
– in contrast to the literature where recursive relations have been established (see e.g.
Strang & Nguyen [27]). In particular we express the nth continuous moment as a poly-
nomial of the first n discrete moments and vice versa. The polynomials are related to
Bell polynomials. The definition of Bell polynomials as well as some of their elemen-
tary properties are stated in the Appendix.

We recall and extend polynomial relations between moments of scaling functions
associated with orthogonal wavelets in Section 3. In wavelet theory smoothness and the
approximation order of scaling functions are related to vanishing moments conditions
for wavelets (see Daubechies [12, 13], Strang & Nguyen [27] or Unser & Blu [29] for
a recent survey). The study of parametrized scaling functions and wavelets is along
the lines of Daubechies [14] who showed that more symmetry and regularity for scal-
ing functions associated with wavelets can be achieved by using additional degrees
of freedom obtained by giving up some higher order vanishing moment conditions in
the constitutive equations. We compute analytical expressions of parametrized scaling
function families using symbolic computation methods (in particular Gröbner bases)
(cf. Section 3). In our work we use parametrization with respect to the discrete and
continuous moments. In Subsection 3 we propose a novel concept of data compression
using parametrized scaling functions and wavelets. For compression, the coefficients
of the wavelet expansion of the data are computed for a series of parameters. The pa-
rameter yielding optimal compression rates is selected. The compressed data consists
of the coefficients and the single parameter. These data are sufficient for decoding. A
numerical example illustrating the compression idea is presented.

2. Continuous and Discrete Moments

We recall a well-known recursive relation between discrete and continuous moments
(see for example Strang & Nguyen [27, p. 396]).

Lemma 2.1. Let φ be a scaling function satisfying M0 =
∫

φ = 1. Then m0 = 2 and

Mn =
1

2n+1 −2

n

∑
i=1

(

n
i

)

miMn−i,

mn =
(

2n+1 −2
)

Mn −
n−1

∑
i=1

(

n
i

)

miMn−i, for n = 1, 2 . . . .

(2.1)
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In particular, for n = 1, . . . , 4, subsequent application of (2.1) shows that

M1 =
1
2

m1,

M2 =
1
6

m2
1 +

1
6

m2,

M3 =
1

28
m3

1 +
1
7

m1m2 +
1

14
m3,

M4 =
1

210
m4

1 +
11
210

m2
1m2 +

8
105

m1m3 +
1

30
m2

2 +
1

30
m4,

and
m1 = 2M1,

m2 = −4M2
1 +6M2,

m3 = 12M3
1 −24M1M2 +14M3,

m4 = −48M4
1 +120M2

1M2 −64M1M3 −36M2
2 +30M4.

These examples indicate that the continuous moments can be expressed as polynomials
with rational coefficients in the discrete moment variables. The discrete moments are
polynomials with integer coefficients in the continuous moments variables. In this sec-
tion we derive the algebraic structure of these polynomials. To this end we set p0 = 1
and define recursively the polynomials

pn := pn (x1, . . . , xn) =
1

2n+1 −2

n

∑
i=1

(

n
i

)

xi pn−i ∈ Q [x1, . . . , xn] , (2.2)

and

qn := qn (x1, . . . , xn) =
(

2n+1 −2
)

xn −
n−1

∑
i=1

(

n
i

)

xn−iqi ∈ Z [x1, . . . , xn] . (2.3)

By induction it can easily be shown that pn and qn are weighted homogeneous of degree
n with degxi = i.∗ From Lemma 2.1 we see that

Mn = pn (m1, . . . , mn) and mn = qn (M1, . . . , Mn) .

In the following two subsections we analyze the polynomials pn and qn. We solve the
recurrence Equations (2.2) and (2.3) by giving explicit formulas for the polynomials.
Apart from the theoretical interest these formulas allow us to calculate nth polynomial
without knowing the previous ones.

∗ Let di, i = 1, . . . , n, be positive integers. The weighted degree of a monomial xα = xα1
1 · · · xαn

n is ∑n
i=1 αidi.

We refer to di as the weight (or degree) of xi and write degxi = di. A polynomial is called weighted
homogeneous if all of its monomials have the same weighted degree.
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2.1. Continuous ⇒ Discrete Moments

We derive formulas for the polynomials qn, defined in (2.3). For this purpose we use
linear combinations of partial Bell polynomials Bn,k (see Definition 4.1). We define

Qn,k = (−1)kk!Bn,k, for n, k ∈ N.

From (4.2) in the Appendix we see that

Qn,k :=Qn,k(x1, . . . , xn−k+1)

= ∑
i1+···+ik=n

i j>0

(−1)k
(

n
i1, . . . , ik

)

xi1 · · ·xik ∈ Z [x1, . . . , xn−k+1] ,
(2.4)

where
(

n
i1, . . . , ik

)

=
n!

i1! · · · ik!
.

Note that
(

n
i1, . . . , ik

)

=

(

n
i1

)(

n− i1
i2, . . . , ik

)

. (2.5)

We define
Q0,0 = 1, Qn,0 = Q0,k = 0, for n, k ∈ N,

and

Qn := Qn(x1, . . . , xn) =
n

∑
k=0

Qn,k ∈ Z [x1, . . . , xn] , for n ∈ N0. (2.6)

The first polynomials Qn are:

Q0 = 1,

Q1 = −x1,

Q2 = 2x2
1 − x2,

Q3 = −6x3
1 +6x1x2 − x3,

Q4 = 24x4
1 −36x2

1x2 +6x2
2 +8x1x3 − x4.

The polynomials Qn fit in the class of potential polynomials (see Comtet [10, p. 141]).
The following lemma provides recurrence relations for the polynomials Qn,k and Qn.

Lemma 2.2. Let n ∈ N. The polynomials Qn,k and Qn satisfy

(1) For 1 ≤ k ≤ n

Qn,k = −
n

∑
i=1

(

n
i

)

xiQn−i,k−1. (2.7)

(2)

Qn = −
n

∑
i=1

(

n
i

)

xiQn−i = −
n−1

∑
i=0

(

n
i

)

xn−iQi. (2.8)

278 XV



Moments and Filter Coefficients of Scaling Functions 227

Proof. Let n ∈ N and 2 ≤ k ≤ n. From (2.4) and (2.5) it follows that

Qn,k = −
n−1

∑
i=1

(

n
i

)

xiQn−i,k−1.

This together with Q0,k−1 = 0 gives the first assertion for 2 ≤ k ≤ n.
Let k = 1. Since Q0,0 = 1 and Qn−i,0 = 0 for i = 1, . . . , n−1, it follows that

Qn,1 = −xn = −
n

∑
i=1

(

n
i

)

xiQn−i,0.

Moreover, since Qn,0 = 0, we have

Qn =
n

∑
k=0

Qn,k =
n

∑
k=1

Qn,k.

Using (2.7) this implies that

Qn = −
n

∑
k=1

n

∑
i=1

(

n
i

)

xiQn−i,k−1 = −
n

∑
i=1

(

n
i

)

xi

n

∑
k=1

Qn−i,k−1.

Since Qn,k = 0 for k > n, we have Qn−i,k−1 = 0 for k −1 > n− i. Therefore

n

∑
k=1

Qn−i,k−1 =
n−i+1

∑
k=1

Qn−i,k−1 = Qn−i.

The second assertion follows from the last two equations.

The following theorem gives an explicit formula for the polynomials qn in terms of
the known polynomials Qn.

Theorem 2.3. For n ∈ N

qn =
n

∑
i=1

(2i+1 −2)

(

n
i

)

xiQn−i.

Proof. For n = 1 the assertion is true since q1 = 2x1 by (2.3) and

2
(

1
1

)

x1Q0 = 2x1.

Let

q̃n =
n

∑
i=1

(2i+1 −2)

(

n
i

)

xiQn−i, n = 1, 2, . . . . (2.9)

We prove that qn and q̃n both satisfy the recurrence (2.3), which then implies that they
are identical. To this end we show that

q̃n =
(

2n+1 −2
)

xn +
n−1

∑
i=1

(2i+1 −2)

(

n
i

)

xiQn−i

=
(

2n+1 −2
)

xn −
n−1

∑
i=1

(

n
i

)

q̃ixn−i, for n ∈ N.

(2.10)
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From (2.9) it follows that

−
n−1

∑
i=1

(

n
i

)

q̃ixn−i = −
n−1

∑
i=1

(

n
i

)

(

i

∑
j=1

(2 j+1 −2)

(

i
j

)

x jQi− j

)

xn−i.

Using the binomial identity
(

n
i

)(

i
j

)

=

(

n
j

)(

n− j
i− j

)

(2.11)

and interchanging the order of summation gives

−
n−1

∑
i=1

(

n
i

)

q̃ixn−i = −
n−1

∑
j=1

(

n
j

)

(2 j+1 −2)x j

(

n−1

∑
i= j

(

n− j
i− j

)

Qi− jxn−i

)

. (2.12)

From (2.8) it follows that

n−1

∑
i= j

(

n− j
i− j

)

Qi− jxn−i =
n−1− j

∑
i=0

(

n− j
i

)

Qixn− j−i = −Qn− j.

Using this identity in (2.12) yields

−
n−1

∑
i=1

(

n
i

)

q̃ixn−i =
n−1

∑
i=1

(

n
i

)

(2i+1 −2)xiQn−i

and the assertion (2.10) is proved.

The first polynomials qn are:

q1 = 2x1,

q2 = −4x2
1 +6x2,

q3 = 12x1
3 −24x1x2 +14x3,

q4 = −48x1
4 +120x1

2x2 −64x1x3 −36x2
2 +30x4,

q5 = 240x1
5 −720x1

3x2 +360x1
2x3 +420x1x2

2 −160x1x4 −200x2x3 +62x5,

q6 = −1440x6
1 +5040x4

1x2 −2400x3
1x3 −4320x2

1x2
2 +1020x2

1x4 +2640x1x2x3

+540x3
2 −384x1x5 −540x2x4 −280x2

3 +126x6.

2.2. Discrete ⇒ Continuous Moments

In this section we further analyze the polynomials pn, defined in (2.2). We give explicit
formulas for the polynomials as a sum over compositions (for a definition of composi-
tions we refer to Definition 4.2).
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Let k, n ∈ N. We define

pn,k :=pn,k(x1, . . . , xn)

= ∑
i1+···+ik=n

i j>0

cn
i1···ik

(

n
i1, . . . , ik

)

xi1 · · ·xik ∈ Q [x1, . . . , xn−k+1] ,
(2.13)

with
cn

i1··· ik =
1

(2n+1 −2)(2n+1−i1 −2) · · ·
(

2n+1−i1−···−ik−1 −2
) .

We define p0,0 = 1 and pn,0 = p0,k = 0.
We note that

pn,k = 0, for k > n. (2.14)

The sum (2.13) is over all compositions of n in k parts. We recall the analogy with
the constitutive equations for the partial Bell polynomials (cf. (4.2)). However, here in
contrast to Bell polynomials, the coefficients cn

i1··· ik
depend on the particular order of the

numbers i1, . . . , ik.
In the following theorem we establish recurrence relations for the polynomials pn,k

and give a formula for pn.

Theorem 2.4. The polynomials pn,k and pn satisfy

(1) For n ∈ N and 1 ≤ k ≤ n

pn,k =
1

(2n+1 −2)

n

∑
i=1

(

n
i

)

xi pn−i,k−1. (2.15)

(2) For n ∈ N0

pn =
n

∑
k=0

pn,k.

Proof. Let n ∈ N and 2 ≤ k ≤ n. The relation

cn
i1··· ik =

1
(2n+1 −2)

cn−i1
i2··· ik

and the binomial identity (2.5) with (2.13) show that

pn,k =
1

(2n+1 −2)

n−1

∑
i=1

(

n
i

)

xi pn−i,k−1.

This together with p0,k−1 = 0 gives the first assertion for 2 ≤ k ≤ n. For k = 1 it follows
from p0,0 = 1 and pn,0 = 0 that

pn,1 =
1

(2n+1 −2)
xn =

1
(2n+1 −2)

n

∑
i=1

(

n
i

)

xi pn−i,0.
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For the second claim we define

p̃n =
n

∑
k=0

pn,k, n = 0, 1, . . . .

Since p0 = p̃0 = 1, it is sufficient to prove that p̃n and pn both satisfy the recurrence
Equation (2.2), that is, it suffices to show that

p̃n =
1

2n+1 −2

n

∑
i=1

(

n
i

)

xi p̃n−i, for n ∈ N.

Since pn,0 = 0 it follows from (2.15) that

p̃n =
n

∑
k=1

pn,k =
1

(2n+1 −2)

n

∑
i=1

(

n
i

)

xi

n

∑
k=1

pn−i,k−1.

From (2.14) it follows that

n

∑
k=1

pn−i,k−1 =
n−i+1

∑
k=1

pn−i,k−1 =
n−i

∑
k=0

pn−i,k = p̃n−i.

This shows the assertion.

The first polynomials pn are:

p0 = 1,

p1 =
1
2

x1,

p2 =
1
6

x2
1 +

1
6

x2,

p3 =
1

28
x3

1 +
1
7

x1x2 +
1

14
x3,

p4 =
1

210
x4

1 +
11

210
x2

1x2 +
8

105
x1x3 +

1
30

x2
2 +

1
30

x4,

p5 =
1

2604
x5

1 +
13

1302
x3

1x2 +
43

1302
x2

1x3 +
67

2604
x1x2

2 +
4
93

x1x4 +
25
651

x2x3 +
1

62
x5.

Daubechies & Lagarias [15, 16] consider scaling functions satisfying a dilation
equation of the form

φ(x) =
N

∑
k=0

hkφ(αx−βk), (2.16)

with real numbers α > 1 and β0 < β1 < · · · < βN . The results stated so far can easily be
modified to this more general situation.

We define the nth discrete moment by

mn =
N

∑
k=0

hkβn
k .
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Again we assume that M0 =
∫

ϕ = 1. Then (2.16) implies m0 = α and

Mn =
1

αn+1 −α

n

∑
i=1

(

n
i

)

miMn−i,

mn =
(

αn+1 −α
)

Mn −
n−1

∑
i=1

(

n
i

)

miMn−i, for n = 1, 2, . . . .

In this case the polynomials pn and qn are defined recursively by pα
0 = 1 and

pα
n =

1
αn+1 −α

n

∑
i=1

(

n
i

)

xi pα
n−i,

qα
n =

(

αn+1 −α
)

xn −
n−1

∑
i=1

(

n
i

)

xn−iqα
i .

Replacing the dilation factor 2 by α in the proof of Theorem 2.3 we see that

qα
n =

n

∑
i=1

(αi+1 −α)

(

n
i

)

xiQn−i, for n ∈ N,

with Qn defined as in (2.6). The generalization of Theorem 2.4 reads as follows

pα
n =

n

∑
k=0

pα
n,k, for n ∈ N0,

where

pα
n,k = ∑

i1+···+ik=n
i j>0

cn
i1···ik

(

n
i1, . . . , ik

)

xi1 · · ·xik ∈ Q [x1, . . . , xn−k+1]

and
cn

i1··· ik =
1

(αn+1 −α)(αn+1−i1 −α) · · ·
(

αn+1−i1−···−ik−1 −α
) .

3. Moments and Filter Coefficients

The goal of this section is twofold. In the first subsection we recall and extend poly-
nomial relations between moments of scaling functions associated with orthonormal
wavelets. The second subsection is devoted to a study of parametrized wavelets. We
give an application of parametrized wavelets to compression in the last subsection.

Daubechies [14] showed that more symmetry and regularity for scaling functions
associated with wavelets can be obtained with the same number of filter coefficients, by
neglecting some higher order vanishing moment conditions. She calculated a parame-
trized family of wavelets with four filter coefficients [12]. In the case of more than four
filter coefficients, she replaced various vanishing moment conditions for the associated
wavelet and computed solutions of the resulting system for the filter coefficients nu-
merically. In our work we introduce moments of the scaling function as parameters and
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give up one vanishing moment condition. The resulting algebraic system for the fil-
ter coefficients is solved with symbolic methods, in particular by using Gröbner bases.
Our approach differs essentially from other work on symbolic computation of wavelets
coefficients which aim to calculate a finite number of solutions. Here we calculate in-
finitely many solutions, which are due to the additional degree of freedom imposed by
neglecting a vanishing moment condition. Applications of Gröbner bases to the design
of wavelets and digital filters are for example described in Chyzak et al. [8], Lebrun
& Selesnick [18], Lebrun & Vetterli [19] and Selesnick & Burrus [25]. Gröbner bases
were introduced by Buchberger in [4] and [5]. For an introduction see for example Cox
et al. [11]. In Subsection 3 we use the parametrized scaling functions and wavelets for
data compression. The idea is to find the optimal parameter before storage or transmis-
sion.

3.1. Moments of Wavelets

In orthonormal wavelet theory scaling functions φ are considered with the additional
property that their integer translates {φ(x− k)}k∈Z are orthonormal in L2 (R). A wavelet
function ψ is associated with φ via

ψ(x) =
N

∑
k=0

(−1)khN−kφ(2x− k). (3.1)

We denote by

Nn = 〈xn, ψ(x)〉 =

∫
xnψ(x)dx

the nth continuous moment of the wavelet.
In the sequel we discuss the relation between moments of orthonormal scaling func-

tions φ and associated wavelets ψ. Gopinath & Burrus [17] and Sweldens & Piessens
[28] established a relation between the first two moments of orthonormal scaling func-
tions and wavelets. This result is generalized to an arbitrary number of moments in
Theorem 3.4.

Theorem 3.1. [17, 28] If N0 = N1 = 0, then

M2 = M2
1 .

To establish higher order moment identities we make use of the following two lem-
mas:

Lemma 3.2. Let the first p moments of ψ vanish, that is

N j = 0, for j = 0, . . . , p−1.

Then
∑
k

(x− k)nφ(x− k) = Mn, for 0 ≤ n ≤ p−1. (3.2)

For a proof of this result we refer to Sweldens & Piessens [28].
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Lemma 3.3. Let the first p moments of ψ vanish. Then

∑
k

knφ(x− k) =
n

∑
i=0

(

n
i

)

(−1)ixn−iMi, for 0 ≤ n ≤ p−1. (3.3)

Proof. The proof is done by induction. For p = 1 the assertion follows from the previous
Lemma. Suppose that the assertion is true for p and we assume that N j = 0 for j =
0, . . . , p. We have to show that

∑
k

kpφ(x− k) =
p

∑
i=0

(

p
i

)

(−1)ixp−iMi.

Again from the previous Lemma we know that

∑
k

(x− k)pφ(x− k) = Mp.

Expanding (x− k)p yields

p−1

∑
j=0

(

p
j

)

(−1) jxp− j ∑
k

k jφ(x− k)+(−1)p∑
k

kpφ(x− k) = Mp.

From this equation and the induction hypothesis it follows that

(−1)p+1 ∑
k

kpφ(x− k)+Mp =
p−1

∑
j=0

(

p
j

)

(−1) jxp− j
j

∑
i=0

(

j
i

)

(−1)ix j−iMi. (3.4)

Interchanging the order of summation and using the identities
(

p
j

)(

j
i

)

=

(

p
i

)(

p− i
j − i

)

and
p−1

∑
j=i

(−1) j
(

p− i
j − i

)

= (−1)p+1

in (3.4) shows that

(−1)p+1∑
k

kpφ(x− k)+Mp =
p−1

∑
i=0

(−1)ixp−iMi

p−1

∑
j=i

(

p
j

)(

j
i

)

(−1) j

=
p−1

∑
i=0

(

p
i

)

(−1)ixp−iMi

(

p−1

∑
j=i

(−1) j
(

p− i
j − i

)

)

= (−1)p+1
p−1

∑
i=0

(

p
i

)

(−1)ixp−iMi.

This shows the assertion.
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Using the last lemma we are able to prove a relation between higher order continu-
ous moments of orthonormal scaling functions. This result generalizes Theorem 3.1.

Theorem 3.4. Let φ ∈ L2 (R) be a scaling function with the additional property that
its integer translates {φ(x− k)}k∈Z are orthonormal. Let p ∈ N be odd and let the first
p+1 moments of the associated wavelet ψ vanish. Then

Mp+1 =
p

∑
i=1

(−1)i+1
(

p
i

)

MiMp−i+1. (3.5)

Proof. Let
sk = 〈x, φ(x)φ(x− k)〉 , for k ∈ Z .

Since φ(x) and φ(x− k) are orthogonal it follows that

s−k = 〈x, φ(x)φ(x+ k)〉 = 〈x− k, φ(x− k)φ(x)〉 = sk, for k ∈ Z.

Therefore we get using the assumption that p is odd

0 = ∑
k

kpsk = 〈x, φ(x)∑
k

kpφ(x− k)〉.

This identity together with (3.3) shows that

0 =
p

∑
i=0

(

p
i

)

(−1)iMi
〈

x, xp−iφ(x)
〉

=
p

∑
i=0

(

p
i

)

(−1)iMiMp−i+1

and the proposition follows.

Remark 3.5. The above theorem reveals that the even moments of an orthonormal scal-
ing function are completely determined by the odd up to the number of vanishing mo-
ments of the associated wavelet. We exemplarily give the equations for the even mo-
ments using (3.5) for p = 1, 3, 5:

M2 = M2
1 ,

M4 = −3M2
2 +4M1M3 = −3M4

1 +4M1M3,

M6 = 10M2
3 +6M1M5 −15M2M4 = 45M6

1 −60M3
1M3 +6M1M5 +10M2

3.

Using the relations between continuous and discrete moments from the previous sec-
tions, in particular the polynomials pn, we obtain from the above equations the follow-
ing equations for the even discrete moments. We use this observation for the construc-
tion of parametrized families of scaling functions in the following subsection.

m2 =
1
2

m2
1,

m4 = −1
2

m4
1 +2m2

1m2 +2m1m3 − 7
2

m2
2 = −3

8
m4

1 +2m1m3,

m6 =
45
32

m6
1 − 15

2
m3

1m3 +3m1m5 +5m2
3.
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From the following lemma we obtain a different formulation of the previous theo-
rem.

Lemma 3.6. Let n ∈ N be odd. Let x1, . . . , xn+1 be variables and x0 = 1. Then

n

∑
i=0

(

n
i

)

(−1)ixixn−i = 0 (3.6)

and
n+1

∑
i=0

(

n+1
i

)

(−1)ixixn+1−i = 2xn+1 +2
n

∑
i=1

(

n
i

)

(−1)ixixn+1−i. (3.7)

Proof. Since n is odd the first assertion follows from

n

∑
i=0

(

n
i

)

(−1)ixixn−i = (−1)n
n

∑
i=0

(

n
n− i

)

(−1)−ixn−ixi

= −
n

∑
i=0

(

n
i

)

(−1)ixixn−i.

The second assertion follows from

n+1

∑
i=0

(

n+1
i

)

(−1)ixixn+1−i

= x0xn+1 +(−1)n+1x0xn+1 +
n

∑
i=1

(

n+1
i

)

(−1)ixixn+1−i

= 2xn+1 +
n

∑
i=1

((

n
i

)

+

(

n
i−1

))

(−1)ixixn+1−i

and
n

∑
i=1

(

n
i−1

)

(−1)ixixn+1−i = (−1)n+1
n

∑
i=1

(

n
n− i

)

(−1)−ixn+1−ixi

=
n

∑
i=1

(

n
i

)

(−1)ixn+1−ixi.

Corollary 3.7. Let the first p moments of ψ vanish. Then

n

∑
i=0

(−1)i
(

n
i

)

MiMn−i = 0, for 1 ≤ n ≤ p. (3.8)

Proof. Let n be odd. In this case (3.8) is trivially satisfied by (3.6). Let n be even and
1 ≤ n ≤ p, then (3.8) follows from (3.5) from Theorem 3.4 and (3.7).

Equation (3.8) is well known to hold if the continuous moments are replaced by
discrete moments (see for example Bäni [2, p. 115], where the normalization m0 = 1 is
used).
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3.2. Filter Coefficients Parametrized by Moments

To construct families of parametrized scaling functions and wavelets we use that the
even moments are determined by the odd up to number of vanishing moments (cf. Re-
mark 3.5). The parametrization is with respect to the first moment of the associated
scaling function. We derive formulas for filter coefficients of scaling functions with
four, six, and eight filter coefficients and, one, two respectively three vanishing mo-
ments using symbolic computation.

To this end we recall the basic polynomial equations for the filter coefficients of a
scaling function implied by orthonormality and vanishing moments of the associated
wavelet, see for example Daubechies [13] or Strang [26]. The orthonormality of the
integer translates of the scaling function imply that the number of filter coefficients is
even. In the following, it is convenient to number the filter coefficients by

hk, for 1−N ≤ k ≤ N.

Note that then the discrete moments mn for the filter coefficients are equal to

mn =
N

∑
k=1−N

hk(k +N −1)n. (3.9)

Orthonormality of the scaling function,
∫

φ(x)φ(x− l) = δ0, l , can be transformed using
the dilation Equation (1.1) into

N

∑
k=1−N

hkhk−2l = 2δ0, l , for l = 0, . . . , N −1, (3.10)

where hk = 0, for k < 1 − N or k > N. The condition that the first p moments of the
associated wavelet

ψ(x) =
N

∑
k=1−N

(−1)kh1−kφ(2x− k)

vanish, that is

N j =

∫
x jψ(x)dx = 0, for j = 0, . . . , p−1

is equivalent to
N

∑
k=1−N

(−1)kh1−kkl = 0, for l = 0, . . . , p−1. (3.11)

Equation (3.10) for l = 0 is redundant and thus omitted.
In the following we present the conditional equations for four and six filter coeffi-

cients with one degree of freedom achieved by giving up a vanishing moment condition
of the standard orthogonal wavelet setting. For four filter coefficients the conditional
system consists of two linear equations, resulting from the normalization m0 = 2 (cf.
Lemma 2.1) and the vanishing moment condition (3.11). Using the first discrete mo-
ment m := m1 as a parameter gives a third linear constraint on the filter coefficients.
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Thus we have the following system of equations:

h−1 +h0 +h1 +h2 = 2

−h2 +h1 −h0 +h−1 = 0

h0 +2h1 +3h2 = m











linear equations,

h1h−1 +h2h0 = 0 quadratic equation.

Solving the system of linear equations for h2 and substituting the solution into the
quadratic equation gives

−2h2
2 +h2m−h2 −1/4m2 +m−3/4 = 0.

This equation has two possible solutions – each of them gives feasible filter coefficients.
Let

w =
√

−5+6m−m2 and 1 ≤ m ≤ 5,

then for h2 = −1/4+1/4m−1/4w we obtain

h−1 = 5/4−1/4m−1/4w,

h0 = 5/4−1/4m+1/4w,

h1 = −1/4+1/4m+1/4w.

For m = 3 −
√

3 and m = 3 +
√

3 we obtain the classical Daubechies filters with two
vanishing moments [12]. The Haar wavelet corresponds to m = 1 (for m = 3, 5 we get
translated versions). The smoothest scaling function with four filter coefficients with
respect to the Hölder regularity is obtained for m = 1.4, see Daubechies [13, p. 242]
and Rioul [22].

For six filter coefficients with at least two vanishing moments the resulting system
of equations for the filter coefficients is much more involved. Now, the system consists
of linear equations resulting from the normalization m0 = 2 (one equation) and the
vanishing moment conditions (3.11) (two equations). Using again the first discrete
moment m := m1 as a parameter gives a forth linear constraint on the filter coefficients.
In Remark 3.5 it is shown that m2 = m2

1/2 if the first two moments of the associated
wavelet function vanish. This gives a further linear equation. Two quadratic equations
follow from the orthonormality of the scaling function (3.10):

h−2 +h−1 +h0 +h1 +h2 +h3 = 2

h3 −h2 +h1 −h0 +h−1 −h−2 = 0

−2h3 +h2 −h0 +2h−1 −3h−2 = 0

h−1 +2h0 +3h1 +4h2 +5h3 = m

h−1 +4h0 +9h1 +16h2 +25h3 = m2/2



































linear equations,

h0h−2 +h1h−1 +h2h0 +h3h1 = 0

h2h−2 +h3h−1 = 0

}

quadratic equations.
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We have solved this system using Gröbner bases with the computer algebra software
MAPLE and obtained the parametrized solutions:

h−2 =
21
16

− 7
16

m+
1

32
m2 − 1

32
w,

h−1 =
25
16

− 7
16

+
1

32
m2 +

1
32

w,

h0 = −5
8

+
5
8

m− 1
16

m2 +
1

16
w,

h1 = −5
8

+
5
8

m− 1
16

m2 − 1
16

w,

h2 =
5

16
− 3

16
m+

1
32

m2 − 1
32

w,

h3 =
1

16
− 3

16
m+

1
32

m2 +
1
32

w,

with

w =
√

−260+360m−136m2+20m3 −m4 and 5−
√

15 ≤ m ≤ 5+
√

15.

The Daubechies wavelet db3 corresponds to

m = 5−
√

5−2
√

10 or m = 5−
√

5+2
√

10,

coiflets belong to the case m = 4.
The parametrized solutions for eight filter coefficients with at least three vanishing

moments:

h−3 = − 1
512

m5−42m4+684m3−5416m2+20840m−31088+w
m2−14m+50 ,

h−2 = − 1
512

m6−52m5+1124m4−12880m3+82344m2−278080m−mw+6w+387072
m3−22m2+162m−400 ,

h−1 = 1
512

3m5−110m4+1508m3−9432m2+25016m−16464+3w
m2−14m+50 ,

h0 = 1
512

3m6−140m5+2636m4−25360m3+129144m2−317760m−3mw+18w+265216
m3−22m2+162m−400 ,

h1 = − 1
512

3m5−94m4+1092m3−5944m2+15416m−16464+3w
m2−14m+50 ,

h2 = − 1
512

3m6−124m5+2028m4−16688m3+71416m2−142784m−3wm+18w+86016
m3−22m2+162m−400 ,

h3 = 1
512

m5−26m4+268m3−1416m2+4072m−5488+w
m2−14m+50 ,

h4 = 1
512

m6−36m5+516m4−3696m3+13352m2−20160m−wm+6w+3072
m3−22m2+162m−400 ,

with

w=
√

−(m8−56m7+1336m6−17696m5+141792m4−699328m3+2049600m2−3186176m+1891904)(m−8)2.

We recall that with Subsection 2.2 the filter coefficients can also be expressed via
the continuous moment M1.
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3.3. Parametrized Wavelets and Compression

Here we discuss a novel concept of data compression using parametrized scaling func-
tions and wavelets. For compression the coefficients of the expansion of the data with
respect to scaled and dilated scaling functions and wavelets are computed. The coeffi-
cients of the expanded data are transmitted and decoded afterwards. For data compres-
sion with parametrized wavelets the expansion is computed for a series of parameters
and the one that yields optimal compression rates is selected. The coefficients and the
parameter are transmitted. These data are sufficient for decoding.

In the following we present a numerical example for data compression using para-
metrized wavelets. As data we use a one-dimensional signal from contact less ultra-
sound measurements for non destructive evaluation of an Aluminum sheet (see Figure
1 left). Figure 1 right shows the “optimal” scaling function and the according wavelet
with 8 filter coefficients for approximating the data.
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0

1

2
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5

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

2

Scaling Function
Wavelet

Figure 1: Signal and “optimal” scaling function and wavelet.

In the particular example we have only used the coefficients of the scaling func-
tion expansion and have set all wavelet coefficients to zero. This is of course not a
realistic way of data compression, but more sophisticated approaches can be dealt with
analogously.

The error for the decoded data is shown in Figure 2. We also show the result using
the db4 (Daubechies 4) scaling function. In comparison the squared error (SE) is about
three times as high for db4 and the maximal error (ME) is about double. The related
software is available on request from the first named author.

4. Appendix: Bell Polynomials and Partitions

Bell polynomials have been introduced by E.T. Bell [3]. Since then Bell polynomi-
als have become a fundamental tool in combinatorics. One classical application of
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Figure 2: Error for the decoded data.

Bell polynomials is the compact representation of higher order derivatives of compos-
ite functions known as the Formula of Faa di Bruno (see Roman [23]). References on
Bell polynomials are Comtet [10], Riordan [21], and Roman [24]. For some recent
applications of Bell polynomials we refer to Cassisaricci [6] and Collins [9].

Definition 4.1. Let n, k ∈ N. The (exponential) partial Bell polynomials are defined by

Bn,k :=Bn,k(x1, . . . , xn−k+1) (4.1)

=
1
k! ∑

i1+···+ik=n
i j>0

(

n
i1, . . . , ik

)

xi1 · · ·xik (4.2)

= ∑
k1+···+kn=k

k1+2k2+···+nkn=n
ki≥0

n!
k1!k2! · · ·kn!

(x1

1!

)k1
(x2

2!

)k2 · · ·
(xn

n!

)kn
. (4.3)

This identity in particular shows that Bn,k ∈ Z [x1, . . . , xn−k+1]. We set Bn,0 = 0 and
B0,0 = 1. The (exponential) Bell polynomials are defined by

Yn =
n

∑
k=0

Bn,k ∈ Z [x1, . . . , xn] , for n ∈ N0.
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The first five Bell polynomials are:

Y0 = 1,

Y1 = x1,

Y2 = x2
1 + x2,

Y3 = x3
1 +3x1x2 + x3,

Y4 = x4
1 +6x2

1x2 +3x2
2 +4x1x3 + x4.

They satisfy the recurrence relation

Yn+1 (x1, . . . , xn+1) =
n

∑
i=0

(

n
i

)

Yn−i (x1, . . . , xn−i)xi+1, (4.4)

see for example Riordan [21, p. 36].

Definition 4.2. A partition of n ∈ N is a nonincreasing sequence of positive integers,
denoted by (λ1, . . . , λk), whose sum is n. Each λi is called a part of the partition. A
composition of n ∈ N is a sequence of positive integers whose sum is n.

Example 4.3. There are five partitions of 4:

(4), (31), (22), (211),(1111)

and eight compositions:

(4), (31), (13), (22), (211), (121), (112), (1111).

A partition of n in k parts is usually denoted by

1k12k2 · · ·nkn , with k1 +2k2 + · · ·+nkn = n, (4.5)

where ki ∈ N0 is the number of parts equal to i and k = k1 + · · ·+ kn. For instance

(211) = 122.

Using Definition 4.2 we see that the sums in (4.2), (4.3) are sums over all compositions,
partitions, respectively, of n in k parts.

The number of partitions of n is denoted by p(n). Equation (4.3) together with
(4.5) show that the number of monomials in the Bell polynomials Yn is the number of
partitions of n, which increases rapidly with n. For example p(7) = 15 and p(33) =
10143. For further background on partitions we refer to Andrews [1].

Acknowledgments. This work has been supported by the FWF (Fonds zur Förderung der wissen-
schaftlichen Forschung), grant Y-123 INF-N12. The authors are grateful to Dr. Peter Burgholzer
for providing the ultrasound measurement data Figure 1.
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Abstract We discuss parametrizations of filter coefficients of scaling functions and
compactly supported orthonormal wavelets with several vanishing moments. We intro-
duce the first discrete moments of the filter coefficients as parameters. The discrete
moments can be expressed in terms of the continuous moments of the related scaling
function. To solve the resulting polynomial equations we use symbolic computation
and in particular Gröbner bases. The cases of four to ten filter coefficients are discussed
and explicit parametrizations are given.

Keywords Orthonormal wavelets · Parametrization · Filter coefficients · Moments ·
Gröbner bases

1 Introduction

Over the last two decades wavelets have become a fundamental tool in many areas
of applied mathematics and engineering ranging from signal and image processing
to numerical analysis, see for example Daubechies [13], Mallat [26], and Strang and
Nguyen [35]. A function ψ ∈ L2(R) is an orthonormal wavelet if the family

ψ jk(x) = 2 j/2ψ(2 j x − k), for j, k ∈ Z,
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584 G. Regensburger

is an orthonormal basis of the Hilbert space L2(R). The first known example is the
Haar wavelet [16]

ψ(x) =

⎧
⎪⎨
⎪⎩

1, for 0 ≤ x < 1
2 ,

−1, for 1
2 ≤ x < 1,

0, otherwise.

Daubechies [12] introduced a general method to construct compactly supported
wavelets. It is based on scaling functions which satisfy a dilation equation

φ(x) =
N∑

k=0

hkφ(2x − k) (1)

given by a linear combination of real filter coefficients hk and dilated and translated
versions of the scaling function. We outline her construction in Sect. 2. The corres-
ponding scaling function for the Haar wavelet is the box function

φ(x) =
{

1, for 0 ≤ x < 1,

0, otherwise

with the filter coefficients h0 = h1 = 1. In general, there is no closed analytic form
for the scaling function, and for computations with wavelets only the filter coefficients
are used.

Conditions on the scaling function imply, using the dilation equation (1), constraints
on the filter coefficients. Orthonormality gives quadratic equations and vanishing
moments of the associated wavelet and normalization linear constraints. For the exis-
tence of a wavelet at least one vanishing moment is necessary. Daubechies wavelets
[12] have the maximal number of vanishing moments for a fixed number of filter
coefficients and so there are only finitely many solutions. See Sect. 2 for details.

Parametrizing all possible filter coefficients that correspond to compactly supported
orthonormal wavelets has been studied by several authors [20,25,29,31,34,37–39].
For a discussion and illustrations of scaling functions with six filter coefficients depen-
ding on two parameters see also [3] and [18]. Applications of parametrized wavelets
to compression are for example discussed in [17] and [30]. In all parametrizations
the filter coefficients are expressed in terms of trigonometric functions and there is
no natural interpretation of the angular parameters for the resulting scaling function.
Furthermore, one has to solve transcendental constraints for the parameters to find
wavelets with more than one vanishing moment.

In the proposed parametrization we introduce the first discrete moments of the
filter coefficients as parameters. The discrete moments can be expressed in terms of
the continuous moments of the scaling function, see Sect. 3. Moreover, we do not
want to parametrize all possible filter coefficients but only such with a high number of
vanishing moments. More precisely, we omit one vanishing moment condition from
the construction of Daubechies wavelets. We also use the fact that the even discrete
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moments are determined by the odd up to the number of vanishing moments, see
Sect. 3. We discussed a first parametrization using the same approach in [30]. In this
paper, we present new simplified parametrizations, discuss all computational aspects
and different cases in detail, and give a parametrization for ten filter coefficients and
at least four vanishing moments.

We solve the resulting parametrized polynomial equations for the filter coefficients
using symbolic computation and for the more involved equations in particular Gröbner
bases. Gröbner bases were introduced by Buchberger in [4], see also [5]. For further
details on Gröbner bases we refer to [1,6,11]. Applications of Gröbner bases to the
design of wavelets and filter coefficients are for example discussed in [8,9,15,23,24,
27,28,32]. The idea of using the first discrete moment as a parameter to simplify the
Gröbner basis computations was also used in Selesnick and Burrus [32] and Lebrun
and Selesnick [23].

In Sects. 4–7 we describe in detail the cases of four to ten filter coefficients. We give
explicit parametrizations and discuss several special parameter values, for example, for
the Daubechies wavelets. The corresponding Maple worksheet with all computations,
several MATLAB functions and a GUI to compute with and illustrate parametrized
wavelets are available on request from the author.

2 Equations for the filter coefficients

We outline the construction of orthonormal wavelets based on scaling functions and
recall the polynomial equations for the filter coefficients, see for example Daubechies
[13] or Strang and Nguyen [35].

Orthonormality of the integer translates {φ(x − l)}l∈Z in L2(R), that is,

∫
φ(x)φ(x − l)dx = δ0,l

implies, using the dilation equation (1), the quadratic equations

∑

k∈Z
hkhk−2l = 2δ0,l , for l ∈ Z, (2)

where we set hk = 0 for k < 0 and k > N . We can assume that h0hN �= 0. Then with
Eq. (2) we see that N must be odd and the number of filter coefficients even. We have
one nonhomogeneous equation

N∑

k=0

h2
k = 2 (3)

and the homogeneous equations

N∑

k=0

hkhk−2l = 0, for l = 1, . . . , (N − 1)/2. (4)
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If the filter coefficients satisfy the necessary conditions for orthogonality (2) and
the normalization

N∑

k=0

hk = 2, (5)

there exists a unique solution of the dilation equation (1) in L2(R)with support [0, N ]
and for which

∫
φ = 1, see Lawton [21]. For almost all such scaling functions the

integer translates {φ(x − l)}l∈Z are orthogonal, and then

ψ(x) =
N∑

k=0

(−1)khN−kφ(2x − k) (6)

is an orthonormal wavelet. Necessary and sufficient conditions for orthonormality
were given by Cohen [10] and Lawton [22], see also Daubechies [13, Chap. 6.3.]. The
only example with four filter coefficients that satisfies the Eqs. (2) and (5) and where
the integer translates of the corresponding scaling are not orthogonal is h0 = h3 = 1
and h1 = h2 = 0 with the scaling function

φ(x) =
{

1/3, for 0 ≤ x < 3,

0, otherwise.
(7)

Vanishing moments of the associated wavelet are related to several properties of
the scaling function and wavelet. For example, to the smoothness, the polynomial
reproduction and the approximation order of the scaling function, and the decay of
the wavelet coefficients for smooth functions, see Strang and Nguyen [35] and the
survey by Unser and Blu [36] for details. The condition that the first p moments of
the wavelet ψ vanish, that is,

∫
xlψ(x) dx = 0, for l = 0, . . . , p − 1

is using Eq. (6) equivalent to the sum rules

N∑

k=0

(−1)kklhk = 0, for l = 0, . . . , p − 1. (8)

We say that ψ has p vanishing moments. Since the vector space of all polynomials
with degree less then p is invariant under translation and dilation, we can equivalently
require vanishing moments of ψ(x + n − 1) with N = 2n − 1. This corresponds to
Daubechies choice [12,13] where the wavelet has support [1 − n, n]. For the compu-
tations we use the resulting linear equations

2n−1∑

k=0

(−1)n−khk(n − k)l = 0, for l = 0, . . . , p − 1
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since they have smaller coefficients. Note that the normalization of the filter coefficients
(5) and the first sum rule

N∑

k=0

(−1)khk = 0 (9)

are equivalent to
N∑

k=0
k even

hk =
N∑

k=0
k odd

hk = 1. (10)

The following proposition is a consequence of the first Newton identities, which
give a relation between power sums and elementary symmetric functions, see Bourbaki
[2, A.IV. 70] and Knuth [19, p. 497].

Proposition 1 Let x0, . . . , xn be variables of a polynomial ring over a commutative
ring. Then

(
n∑

k=0

x2
k

)
=

(
n∑

k=0

xk

)2

− 2

⎛
⎜⎜⎝

∑

0≤i< j≤n
j−i even

xi x j

⎞
⎟⎟⎠ − 2

⎛
⎜⎝

n∑

k=0
k even

xk

⎞
⎟⎠

⎛
⎜⎝

n∑

k=0
k odd

xk

⎞
⎟⎠ . (11)

Proof The Newton identities tell us in particular that

(
n∑

k=0

x2
k

)
=

(
n∑

k=0

xk

)2

− 2

⎛
⎝ ∑

0≤i< j≤n

xi x j

⎞
⎠ .

The last sum in this equation is

⎛
⎝ ∑

0≤i< j≤n

xi x j

⎞
⎠ =

⎛
⎜⎜⎝

∑

0≤i< j≤n
j−i even

xi x j

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

∑

0≤i< j≤n
j−i odd

xi x j

⎞
⎟⎟⎠

and the proposition follows by observing that

⎛
⎜⎜⎝

∑

0≤i< j≤n
j−i odd

xi x j

⎞
⎟⎟⎠ =

⎛
⎜⎝

n∑

k=0
k even

xk

⎞
⎟⎠

⎛
⎜⎝

n∑

k=0
k odd

xk

⎞
⎟⎠ .

��
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If the filter coefficients satisfy the homogeneous equations (4) from the orthonor-
mality conditions then

∑

0≤i< j≤n
j−i even

hi h j = 0.

Therefore we see with the identity (11) that the normalization and the first sum rule,
see Eqs. (5), (9) and (10) together with (4) imply the nonhomogeneous equation (3). So
we can replace the quadratic equation (3) by the linear equation (9), which simplifies
the computations.

3 Discrete and continuous moments

In this section, we discuss relations between the discrete moments

mn =
N∑

k=0

hkkn

of the filter coefficients and the continuous moments of the scaling function

Mn =
∫

xnφ(x) dx .

We first recall a well-known recursive relation between discrete and continuous
moments, see for example Strang and Nguyen [35, p. 396].

Let φ be a scaling function satisfying M0 = ∫
φ = 1. Then m0 = 2 and

Mn = 1

2n+1 − 2

n∑

i=1

(
n

i

)
mi Mn−i ,

mn =
(

2n+1 − 2
)

Mn −
n−1∑

i=1

(
n

i

)
mi Mn−i , for n > 0.

Using the recursion we obtain for the first moments

M1 = 1/2 m1

M2 = 1/6 m2
1 + 1/6 m2

M3 = 1/28 m3
1 + 1/7 m1m2 + 1/14 m3
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and

m1 = 2 M1

m2 = −4 M2
1 + 6 M2

m3 = 12 M3
1 − 24 M1 M2 + 14 M3.

Explicit formulas expressing the discrete moments in terms of the continuous and vice
versa are given in [30].

For the parametrization of the filter coefficients we use the fact that the even
moments are determined by the odd moments up to the number of vanishing moments,
see [30]. In more detail, if the first two moments of the associated wavelet vanish, then

m2 = m2
1/2, (12)

and if the first four moments vanish, we additionally have

m4 = −1/2 m4
1 + 2 m2

1m2 + 2 m1m3 − 7/2 m2
2 = −3/8 m4

1 + 2 m1m3. (13)

4 Four filter coefficients

In the case of four filter coefficients, we have the following system equations (norma-
lization, first sum rule, parameter m = m1, and orthogonality):

h0 + h1 + h2 + h3 = 2

h0 − h1 + h2 − h3 = 0

h1 + 2 h2 + 3 h3 = m

h0h2 + h1h3 = 0.

We solve the three linear equations for h0, substitute the solution into the quadratic
equation, and obtain

−2 h0
2 + (5 − m)h0 − 1/4 m2 + 2 m − 15/4 = 0. (14)

We first consider the solution

h0 = 5/4 − 1/4 m − 1/4
√

−m2 + 6 m − 5.

Since
−m2 + 6 m − 5 = −(m − 1)(m − 5), (15)

we can choose m ∈ [1, 5] to get real filter coefficients. We set m = a + 3 to obtain
parameter values symmetrically around zero. This correspond to a Tschirnhaus trans-
formation for the polynomial (15) and simplifies the expression for the filter coeffi-
cients. Substituting the solution for h0 into the solution for the linear equations we
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get:
h0 = 1/2 − 1/4 a − 1/4w
h1 = 1/2 − 1/4 a + 1/4w
h2 = 1/2 + 1/4 a + 1/4w
h3 = 1/2 + 1/4 a − 1/4w

(16)

with w = √
4 − a2 and a = m − 3 ∈ [−2, 2].

Notice that for a = −a we obtain the flipped filter coefficients.

4.1 Special parameter values

For a = 0 we get the filter coefficients (0, 1, 1, 0), which correspond to a translated
Haar scaling function and wavelet. The parameter values a = −2, 2 give also Haar
scaling functions with the filter coefficients (1, 1, 0, 0) and (0, 0, 1, 1).

The Daubechies wavelet has two vanishing moments, so we have one more sum
rule

2 h0 − h1 + h3 = 0.

Substituting the parametrized filter coefficients into this equations and solving for
a, we get the two solutions a = −√

3,
√

3 with the first discrete moments m =
3 − √

3, 3 + √
3. The first solution gives the famous Daubechies filters [12]

1/4 (1 + √
3, 3 + √

3, 3 − √
3, 1 − √

3) (17)

and the second the flipped version.
For a = −8/5 we get the rational filters (3/5, 6/5, 2/5,−1/5). These rational filter

coefficients give the smoothest scaling function with respect to the Hölder continuity,
see Daubechies [13, p. 242].

4.2 Second root

If we choose the second root

h0 = 5/4 − 1/4 m + 1/4
√

−m2 + 6 m − 5

for the quadratic equation (14) and apply again the Tschirnhaus transformation m =
a + 3, we obtain the parametrized filter coefficients:
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h0 = 1/2 − 1/4 a + 1/4w

h1 = 1/2 − 1/4 a − 1/4w

h2 = 1/2 + 1/4 a − 1/4w

h3 = 1/2 + 1/4 a + 1/4w

with w = √
4 − a2 and a = m − 3 ∈ [−2, 2].

Comparing this solution with the parametrized filter coefficients (16), we see thatw
is replaced by −w and so the two first and the two last filter coefficients are swapped.
Notice that again for a = −a we obtain the flipped filters.

For a = 0 we now get the filter coefficients (1, 0, 0, 1), which give the scaling
function (7) where the integer translates of the scaling function are not orthogonal.
The parameter values a = −2, 2 also give Haar scaling functions with the filter
coefficients (1, 1, 0, 0) and (0, 0, 1, 1). This parametrization does not contain filter
coefficients with a second vanishing moment. The corresponding scaling functions
are, compared to the parametrization (16), irregular.

5 Six filter coefficients

For six filter coefficients we have two vanishing moments, and we can use the relation
m2 = m2

1/2, see Eq. (12). This gives an additional linear constraint, and we have the
following linear equations with m = m1:

h0 + h1 + h2 + h3 + h5 + h4 = 2

−h0 + h1 − h2 + h3 − h4 + h5 = 0

−3 h0 + 2 h1 − h2 + h4 − 2 h5 = 0

h1 + 2 h2 + 3 h3 + 4 h4 + 5 h5 = m

h1 + 4 h2 + 9 h3 + 16 h4 + 25 h5 = m2/2

and the quadratic equations

h0h2 + h1h3 + h2h4 + h3h5 = 0

h0h4 + h1h5 = 0.

We solve the linear equations for h0, substitute the solution into the quadratic
equations and obtain:

− 8 h0
2 + (1/2 m2 − 7 m + 21)h0 − 1

64
m4 + 3

8
m3 − 13

4
m2 + 12 m − 253

16
= 0

2 h0
2+

(
−1/8 m2 + 7

4
m − 21

4

)
h0+ 1

256
m4 − 3

32
m3+ 13

16
m2 − 3 m + 253

64
= 0.

(18)
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Since the first equation is minus four times the second equation, we have, as in the
case of four filter coefficients, only one quadratic equation to solve. We first consider
the solution

h0 = 21

16
− 7

16
m + 1

32
m2 − 1

32

√
−m4 + 20 m3 − 136 m2 + 360 m − 260.

The Tschirnhaus transformation m = a + 5 for the polynomial

−m4 + 20 m3 − 136 m2 + 360 m − 260

yields

−a4 + 14 a2 + 15 = −
(

a2 − 15
) (

a2 + 1
)
.

So we get real filter coefficients for a ∈ [−√
15,

√
15] or the first discrete moment

m ∈ [5 − √
15, 5 + √

15]. Substituting the solution for h0 into the solution for the
linear equations, we get the following parametrized filter coefficients with at least two
vanishing moments:

h0 = −3/32 − 1/8 a + 1/32 a2 − 1/32w
h1 = 5/32 − 1/8 a + 1/32 a2 + 1/32w
h2 = 15/16 − 1/16 a2 + 1/16w
h3 = 15/16 − 1/16 a2 − 1/16w
h4 = 5/32 + 1/8 a + 1/32 a2 − 1/32w
h5 = −3/32 + 1/8 a + 1/32 a2 + 1/32w

(19)

with w = √−a4 + 14 a2 + 15 and a = m − 5 ∈ [−√
15,

√
15].

5.1 Special parameter values

The Daubechies wavelet has one more vanishing moment, that is, it satisfies the sum
rule

−9 h0 + 4 h1 − h2 − h4 + 4 h5 = 0.

Substituting the parametrized filter coefficients into this equations and solving for a,

we get one real solution a = −
√

5 + 2
√

10, which gives the filter coefficients

1/16 (1 + √
10 + w, 5 + √

10 + 3w, 10 − 2
√

10 + 2w,

10 − 2
√

10 − 2w, 5+√
10 − 3w, 1+√

10−w) (20)

with w =
√

5 + 2
√

10.
The Daubechies filters with four nonzero filter coefficients (17) satisfy two sum

rules and are therefore contained in this parametrization. Their first discrete moment
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is m = 3 − √
3. So here the corresponding parameter is a = −2 − √

3. We get a
translated version for a = −√

3.
For a = −√

15 we obtain

1/8 (3 + √
15, 5 + √

15, 0, 0, 5 − √
15, 3 − √

15).

The parameter a = −1 gives the first coiflet

1/16 (1 − √
7, 5 + √

7, 14 + 2
√

7, 14 − 2
√

7, 1 − √
7,−3 + √

7),

see Daubechies [14] and [13, Chap. 8.2.]. For a = 0 we get

1/32 (−3 − √
15, 5 + √

15, 30 + 2
√

15, 30 − 2
√

15, 5 − √
15,−3 + √

15).

The corresponding scaling functions and wavelets for a > 0 become increasingly
irregular.

5.2 Second root

If we choose the second solution for the quadratic equation (18) and apply the
Tschirnhaus transformation m = a + 5, we obtain:

h0 = −3/32 − 1/8 a + 1/32 a2 + 1/32w
h1 = 5/32 − 1/8 a + 1/32 a2 − 1/32w
h2 = 15/16 − 1/16 a2 − 1/16w
h3 = 15/16 − 1/16 a2 + 1/16w
h4 = 5/32 + 1/8 a + 1/32 a2 + 1/32w
h5 = −3/32 + 1/8 a + 1/32 a2 − 1/32w

with w = √−a4 + 14 a2 + 15 and a = m − 5 ∈ [−√
15,

√
15].

Notice that substituting a = −a gives the flipped filter coefficients from the para-
metrization (19).

6 Eight filter coefficients

For eight filter coefficients we have three vanishing moments, and we can use as in
the previous section the relation m2 = 1/2 m2

1, see Eq. (12). We have the following
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six linear equations with m = m1:

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
3 −2 1 0 −1 2 −3 4

−9 4 −1 0 −1 4 −9 16
7 6 5 4 3 2 1 0

49 36 25 16 9 4 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h7
h6
h5
h4
h3
h2
h1
h0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

2
0
0
0
m

1/2 m2

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)

and the quadratic equations

h0h2 + h1h3 + h3h5 + h2h4 + h4h6 + h5h7 = 0

h0h4 + h1h5 + h3h7 + h2h6 = 0

h0h6 + h1h7 = 0.

We solve the linear equations for h0 and h1 and substitute the solutions into the qua-
dratic equations. Then we compute a Gröbner basis with respect to the lexicographic
order with h1 >lex h0 treating m as a parameter, that is, we compute a Gröbner basis
in Q(m)[h1, h0].

The Gröbner basis has two elements. The first element is a quadratic polynomial
in h0 and the second linear in h1 and h0. We consider the following solution for the
quadratic equation from the Gröbner basis

h0 = − 1

512

m5 − 42 m4 + 684 m3 − 5416 m2 + 20840 m − 31088 + w

m2 − 14 m + 50

with w =
√
−(m8−56 m7+1336 m6−17696 m5+141792 m4−699328 m3+2049600 m2−3186176 m+1891904)(m−8)2.

We set m = a + 7, which corresponds to a Tschirnhaus transformation for the first
factor of the polynomial under the square root in w, and obtain

h0 = − 1

512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a − 15 + w

a2 + 1

with
w =

√
−(a8 − 36 a6 + 182 a4 − 1540 a2 + 945)(a − 1)2. (22)

To get real filter coefficients, we can choose a in

[−√
β,−√

α] or [√α,√β], (23)
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where α denotes the smaller and β the larger real root of

x4 − 36 x3 + 182 x2 − 1540 x + 945,

with numerical approximations

√
α = 0.8113601077 . . . and

√
β = 5.636256558 . . .

We substitute the solution for h0 into the linear equation from the Gröbner basis, solve
for h1 and obtain with w as in (22)

h1 = − 1

512

a6 − 10 a5 + 39 a4 − 28 a3 − 25 a2 + 86 a − 63 − (1 + a)w

a3 − a2 + a − 1
.

The denominator

a3 − a2 + a − 1 = (a − 1)(a2 + 1)

is zero for a = 1. We first assume a < 1. Then we can also simplify the root (22) and
obtain with the solution for the linear equations (21) the following parametrized filter
coefficients with at least three vanishing moments:

h0 = − 1

512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a − 15 + (1 − a)w

a2 + 1

h1 = − 1

512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a + 63 + (1 + a)w

a2 + 1

h2 = 1

512

3 a5 − 5 a4 − 102 a3 + 186 a2 − 261 a + 35 + 3(1 − a)w

a2 + 1

h3 = 1

512

3 a5 − 11 a4 − 70 a3 + 358 a2 − 229 a + 525 + 3(1 + a)w

a2 + 1

h4 = − 1

512

3 a5 + 11 a4 − 70 a3 − 358 a2 − 229 a − 525 + 3(1 − a)w

a2 + 1

h5 = − 1

512

3 a5 + 5 a4 − 102 a3 − 186 a2 − 261 a − 35 + 3(1 + a)w

a2 + 1

h6 = 1

512

a5 + 9 a4 + 30 a3 − 2 a2 − 23 a − 63 + (1 − a)w

a2 + 1

h7 = 1

512

a5 + 7 a4 − 2 a3 − 30 a2 − 55 a + 15 + (1 + a)w

a2 + 1

(24)

with

w =
√

−a8 + 36 a6 − 182 a4 + 1540 a2 − 945,

a = m − 7 < 1 and a in the intervals (23).
If we choose the second root for the quadratic equation from the Gröbner basis and

perform the same computations as before with the assumption a < 1, we obtain the
filter coefficients (24) with w replaced by −w.
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6.1 Different order on the variables

We now compute a Gröbner basis with respect to the lexicographic order with h0 >lex
h1. The Gröbner basis has again two elements. The first element is a quadratic poly-
nomial in h1 and the second linear in h0 and h1.

We consider the following solution for the quadratic equation from the Gröbner
basis

h1 = − 1

512

m5 − 44 m4 + 772 m3 − 6704 m2 + 28712 m − 48384 − w

m2 − 14 m + 50

with w =
√
−(m8−56 m7+1336 m6−17696 m5+141792 m4−699328 m3+2049600 m2−3186176 m+1891904)(m−6)2.

We set again a = m + 7 and obtain

h1 = − 1

512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a + 63 − w

a2 + 1

with
w =

√
−(a8 − 36 a6 + 182 a4 − 1540 a2 + 945)(a + 1)2. (25)

We get real filter coefficients for a in the same intervals (23) as in the previous section.
We substitute the solution for h1 into the linear equation from the second Gröbner
basis, solve for h0 and obtain with w as in (25)

h0 = − 1

512

a6 − 6 a5 − 9 a4 + 28 a3 − 25 a2 − 70 a − 15 + (a − 1)w

a3 + a2 + a + 1
.

The denominator

a3 + a2 + a + 1 = (a + 1)(a2 + 1)

is zero for a = −1. We assume a > −1. Then we can also simplify the root (25) and
obtain with the solution for the linear equations (21) the filter coefficients from Eq. (24)
with w replaced by −w. From the previous section we know that this parametrization
is also valid for a < 1 and hence for a in the intervals (23). Notice that substituting
a = −a in this parametrization gives the flipped filter coefficients from Eq. (24).

If we choose the second root for the quadratic equation from the Gröbner basis and
perform the same computations as before with the assumption a > −1, we obtain
the filter coefficients (24). Therefore the parametrization (24) is also valid for a in the
intervals (23).
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6.2 Special parameter values

The Daubechies wavelet satisfies one more sum rule

64 h0 − 27 h1 + 8 h2 − h3 + h5 − 8 h6 + 27 h7 = 0.

Substituting the parametrized filter coefficients (24) into this equations and solving
for a, we get two real solution a = −√

β,−√
α, where α denotes the smaller and β

the larger real root of

x4 − 28 x3 + 126 x2 − 1260 x + 1225

or numerically

a = −4.989213573 . . . ,−1.029063869 . . .

The first parameter gives the Daubechies wavelet with extremal phase [13, p. 195] and
the second the “least asymmetric” [13, p. 198]. Notice that the symbolic expression
for the parameter a with the parametrization (24) give us a closed form representation
of the filter coefficients of the Daubechies wavelet. Compare this with the results
obtained by Chyzak et al. [9], where also Gröbner bases are used, and the different
approach by Shann and Yen [33].

The Daubechies wavelet with six nonzero filter coefficients (20) has the first dis-
crete moment m = 5 −

√
5 + 2

√
10, so the corresponding parameter value for the

parametrization (24) is a = −2 −
√

5 + 2
√

10.

7 Ten filter coefficients

For ten filter coefficients we require four vanishing moments. We can therefore use
the two relations m2 = 1/2 m2

1 and m4 = −3/8 m4
1 + 2 m1m3, see Eqs. (12) and (13).

This gives two additional linear constraints and we have the following linear equations
with the two parameters a = m1 and c = m3:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1

−4 3 −2 1 0 −1 2 −3 4 −5
16 −9 4 −1 0 −1 4 −9 16 −25

−64 27 −8 1 0 −1 8 −27 64 −125
9 8 7 6 5 4 3 2 1 0
81 64 49 36 25 16 9 4 1 0

729 512 343 216 125 64 27 8 1 0
6561 4096 2401 1296 625 256 81 16 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h9
h8
h7
h6
h5
h4
h3
h2
h1
h0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
0
0
0
0
a

1/2 a2

c
− 3

8 a4 + 2 ac

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)
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Table 1 Number of real
solutions for f from (27)

Parameter a # Real solutions for c

(1.6417, 7.6167] Two

(7.6167, 9) Four

9 Two, singular point

(9, 10.3832] Four

(10.3832, 16.3583) Two

and the quadratic equations

h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 + h6h8 + h7h9 = 0

h0h4 + h1h5 + h2h6 + h3h7 + h4h8 + h5h9 = 0

h0h6 + h1h7 + h2h8 + h3h9 = 0

h0h8 + h1h9 = 0.

We solve the linear equations for h0 and substitute the solutions into the quadratic
equations. We compute a Gröbner basis with respect to the lexicographic order with
h0 >lex c treating a as a parameter, that is, a Gröbner basis in Q(a)[h0, c]. The Gröbner
basis consists of two elements. The first is the polynomial

f = 81 a12−2916 a11+40716 a10−864 a9c−155520 a9+31104 a8c − 2354328 a8

− 496512 a7c + 2880 a6c2 + 31658688 a7 + 3768768 a6c − 93312 a5c2

− 102669504 a6 − 4056192 a5c + 1540224 a4c2 − 3072 a3c3 − 590398848 a5

− 176214528a4c−15303168a3c2+55296a2c3+6210049216a4+1512364544a3c

+ 97677312 a2c2−489472 ac3+1024 c4 − 22429995264 a3 − 5357366784 a2c

− 358511616 ac2 + 1419264 c3 + 41210318592 a2 + 8252955648 ac

+ 548785152 c2−39607335936 a−4229148672 c+16394918400 (27)

in the two parameters a, c and has dega( f ) = 12 and degc( f ) = 4. All possible
parameters must lie on the real algebraic curve defined by the polynomial f . This curve
has genus eleven and two finite singular points with multiplicity two and coordinates

a = 9, c = 729/4 ± 3/8
√

210. (28)

We compute the discriminant f with respect to c. Approximating its zeros, we see
that we have real solutions for c if the first discrete moment

a ∈ [1.641693500 . . . , 16.35830649 . . .].

The number of real solutions for c is given in Table 1.
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The second element in the Gröbner basis is linear in h0. We solve this polynomial for
h0 and obtain with the solution for the linear equations (26) the following parametrized
filter coefficients with at least four vanishing moments:

h0= 1
36864

9 a6−180 a5+948 a4−48 a3c+9840 a3+960 a2c−116824 a2−9568 ac+32 c2+384480 a+31680 c−482976
a−9

h1=− 1
36864

9 a6−144 a5+624 a4−48 a3c+1536 a3+768 a2c+12824 a2−5728 ac+32 c2−237312 a+12672 c+665280
a−9

h2=− 1
9216

9 a6−180 a5+948 a4−48 a3c+8976 a3+960 a2c−99064 a2−9472 ac+32 c2+257760 a+30816 c−151200
a−9

h3= 1
9216

9 a6−144 a5+624 a4−48 a3c+2544 a3+768 a2c−9976 a2−5824 ac+32 c2−53280 a+13536 c+120960
a−9

h4= 1
6144

9 a6−180 a5+948 a4−48 a3c+8304 a3+960 a2c−88408 a2−9376 ac+32 c2+216288 a+29952 c−151200
a−9

h5=− 1
6144

9 a6−144 a5+624 a4−48 a3c+3360 a3+768 a2c−24904 a2−5920 ac+32 c2+27072 a+14400 c+12096
a−9

h6=− 1
9216

9 a6−180 a5+948 a4−48 a3c+7824 a3+960 a2c−82552 a2−9280 ac+32 c2+202464 a+29088 c−151200
a−9

h7= 1
9216

9 a6−144 a5+624 a4−48 a3c+3984 a3+768 a2c−34264 a2−6016 ac+32 c2+65952 a+15264 c−34560
a−9

h8= 1
36864

9 a6−180 a5+948 a4−48 a3c+7536 a3+960 a2c−79192 a2−9184 ac+32 c2+195552 a+28224 c−151200
a−9

h9=− 1
36864

9 a6−144 a5+624 a4−48 a3c+4416 a3+768 a2c−40360 a2−6112 ac+32 c2+88704 a+16128 c−60480
a−9

(29)

with a �= 9, c ∈ R such that f (a, c) = 0 with f from (27).

7.1 Special parameter values

For the Daubechies wavelet we have an additional sum rule which we add to the linear
equations (26). We solve the linear equations, substitute the solution into the quadratic
equations and obtain four polynomials in the two parameters a and c. We compute a
Gröbner basis with respect to the lexicographic order with c >lex a. It consists of two
polynomials. The first is a univariate polynomial of degree 16 in a. Solving for a, we
obtain four real solutions a = 9 ± √

α, 9 ± √
β, where α denotes the smaller and β

the larger positive real root of

x8 − 72x7 + 1692x6−20472x5 − 3258 x4 + 1386504 x3 − 8218980 x2 − 1640520 x + 16769025

or numerically

a = 2.387816036 . . . , 7.767314070 . . . , 10.23268592 . . . , 15.61218396 . . .

The second polynomial in the Gröbner basis has degree 15 in a but depends only
linearly on c. So we can express the corresponding values for the parameter c in terms
of the first discrete moment a and obtain the numerical approximations

c = 1.701845088 . . . , 109.6494477 . . . , 275.3639993 . . . , 953.0313413 . . .

The first choice for a and the corresponding c gives the Daubechies wavelet with
extremal phase [13, p. 195] and the second the “least asymmetric” [13, p. 198]. The
two other choices give the flipped versions. We have again a closed form of the filter
coefficients of the Daubechies wavelet with the symbolic expression for the parameters
a and c and the parametrization (29), compare with [9] and [33].
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600 G. Regensburger

To compute the filter coefficients for a = 9, we solve the linear equations (26)
with the parameter values (28) for h0 and substitute the solution into the quadratic
equations. Then we solve the four univariate polynomials and obtain two solutions
for h0 which give two different filter coefficients. The second choice for c from (28)
gives the flipped filter coefficients.
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1 Introduction

Wavelets and their generalizations are used in many areas of mathematics ranging
from harmonic analysis over numerical analysis to signal and image processing, see
for example Daubechies [11], Mallat [29], and Strang and Nguyen [42]. A function
ψ ∈ L2(R) is anorthonormal waveletif the family

ψjk(x) = 2j/2ψ(2jx − k) for j, k ∈ Z

of translated an dilated versions ofψ is an orthonormal basis of the Hilbert space
L2(R). Alfred Haar gave in his dissertation from 1909, published in [17], the first
example of an orthonormal wavelet

ψ(x) =





1, for 0 ≤ x < 1
2 ,

−1, for 1
2 ≤ x < 1,

0, otherwise,

which is now known as theHaar wavelet. Daubechies introduced in her seminal paper
[10] a general method to construct compactly supported wavelets. Herconstruction is

This work was supported by the Austrian Science Fund (FWF) under the SFB grant F1322.
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based onscaling functions, satisfying adilation equation

φ(x) =

N∑

k=0

hkφ(2x − k) (1.1)

given by a linear combination of realfilter coefficientshk and dilated and translated
versions of the scaling function; see the next section for an outline.

Imposing conditions on the scaling function gives, via the dilation equation (1.1),
constraints on the filter coefficients. Orthonormality implies quadratic equations and
vanishing moments of the associated wavelet and normalization linear constraints.
Daubechies wavelets [10] have the maximal number of vanishing moments for a fixed
number of filter coefficients, and so there are only finitely many solutions.Parametriz-
ing all possible filter coefficients that correspond to compactly supportedorthonormal
wavelets has been studied by several authors [21, 28, 33, 38, 41, 46, 47, 49]. All
parametrizations express the filter coefficients in terms of trigonometric functions, and
there is no natural interpretation of the angular parameters for the resulting scaling
function. Furthermore, one has to solve transcendental constraints for the parameters
to find wavelets with more than one vanishing moment.

We gave parametrizations of filter coefficients such that the corresponding wavelets
have several vanishing moments and that use the first discrete momentsas parameters
first in [36] and then simplified in [35]. See section 3 for the parametrizations of
four to eight filter coefficients with one parameter and at least one, two, and three
vanishing moments, respectively. To compute these parametrizations weused symbolic
computation and for the more involved equations in particular Gröbner bases, which
were introduced by Buchberger in [3], see also [4]. Other applicationsof Gröbner
bases to the design of wavelets and filter coefficients are for example discussed in
[6, 7, 16, 25, 26, 31, 32, 39].

As a first application of parametrized wavelets, we discussed in [36] howthey can
by used for compression by computing an optimal parameter for a given signal, see
also [18]. In this paper, we describe several other applications. In section 4, we discuss
the regularity of the scaling functions and wavelets corresponding to our parametriza-
tions. We construct wavelets that have a higher Hölder exponent than the Daubechies
wavelets. Filter design is another possible application of our parametrizations. We deal
with the construction of least asymmetric orthonormal wavelets in section 5.Finally,
we address the existence of rational filter orthogonal filter coefficients insection 6. For
example, we show that there are no orthogonal filters with six nonzero filter coeffi-
cients and at least two sum rules. A Maple worksheet with all computations,several
MATLAB functions to produce the figures and a GUI to compute with and illustrate
parametrized wavelets are available on request from the author.

2 Wavelets and moments

We outline the construction of orthonormal wavelets based on scaling functions and
recall the polynomial equations for the filter coefficients, see for example Daubechies
[11] or Strang and Nguyen [42].
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Orthonormality of the integer translates{φ(x − l)}l∈Z in L2(R), that is,
∫

φ(x)φ(x − l)dx = δ0,l

implies, using the dilation equation (1.1), the quadratic equations
∑

k∈Z
hkhk−2l = 2δ0,l for l ∈ Z (2.1)

where we sethk = 0 for k < 0 andk > N . We can assume thath0hN 6= 0. Then with
equation (2.1) we see thatN must be odd and the number of filter coefficients even.

If the filter coefficients satisfy the necessary conditions for orthogonality(2.1) and
the normalization

N∑

k=0

hk = 2, (2.2)

there exists a unique solution of the dilation equation (1.1) inL2(R) with support[0, N ]
and for which

∫
φ = 1, see Lawton [23]. For almost all such scaling functions the

integer translates{φ(x − l)}l∈Z are orthogonal, and then

ψ(x) =

N∑

k=0

(−1)khN−kφ(2x − k) (2.3)

is an orthonormal wavelet.
Necessary and sufficient conditions for orthonormality were given byCohen [8] and

Lawton [24], see also Daubechies [11, section 6.3]. The only examplewith four filter
coefficients that satisfies the equations (2.1) and (2.2) and where the integer translates
of the corresponding scaling are not orthogonal ish0 = h3 = 1 andh1 = h2 = 0 with
the scaling function

φ(x) =

{
1/3, for 0 ≤ x < 3,

0, otherwise.
(2.4)

The corresponding scaling function for the Haar wavelet is the box function

φ(x) =

{
1, for 0 ≤ x < 1,

0, otherwise,

with the filter coefficientsh0 = h1 = 1. In general, there is no closed analytic form
for the scaling function, and for computations with scaling functions and wavelets only
the filter coefficients are used.

Vanishing moments of the associated wavelet are related to several properties of the
scaling function and wavelet. For example, to regularity, the polynomial reproduction
and the approximation order of the scaling function, and the decay of the wavelet coef-
ficients for smooth functions, see Strang and Nguyen [42] and the survey [43] by Unser
and Blu for details. The condition that the firstp moments of the waveletψ vanish

∫
xlψ(x) dx = 0 for l = 0, . . . , p − 1
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is using equation (2.3) equivalent to thesum rules

N∑

k=0

(−1)kklhk = 0 for l = 0, . . . , p − 1. (2.5)

One then says thatψ hasp vanishing momentsor the filter coefficients satisfyp sum
rules.

Since we usediscrete moments

mn =

N∑

k=0

hkkn

of the filter coefficients as a parameters, we recall a well-known recursive relation
between discrete andcontinuous moments

Mn =

∫
xnφ(x) dx

of the scaling function. Letφ be a scaling function satisfyingM0 =
∫

φ = 1. Then
m0 = 2 and

Mn =
1

2n+1 − 2

n∑

i=1

(
n

i

)
miMn−i,

mn =
(
2n+1 − 2

)
Mn −

n−1∑

i=1

(
n

i

)
miMn−i for n > 0,

see for example Strang and Nguyen [42, p. 396]. Using the recursionwe obtain for the
first moments

M1 = 1/2m1,

M2 = 1/6m2
1 + 1/6m2,

M3 = 1/28m3
1 + 1/7m1m2 + 1/14m3

and
m1 = 2M1,

m2 = −4M2
1 + 6M2,

m3 = 12M3
1 − 24M1M2 + 14M3.

Explicit formulas expressing the discrete moments in terms of the continuous and vice
versa are given in [36].

3 Parametrizations

We discuss the parametrizations from [35] of four, six, and eight filter coefficients
corresponding respectively to orthonormal wavelets with at least one,two, and three
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vanishing moments. All families depend on the first discrete moment

m = m1 =

N∑

k=0

hkk

of the filter coefficients.

3.1 Four filter coefficients

We have the following parametrization of filter coefficients with at least one vanishing
moments:

h0 = 1/2 − 1/4 a − 1/4w,

h1 = 1/2 − 1/4 a + 1/4w,

h2 = 1/2 + 1/4 a + 1/4w,

h3 = 1/2 + 1/4 a − 1/4w

(3.1)

with w =
√

4 − a2 anda = m − 3 ∈ [−2, 2].
Note that fora = −a we obtain the flipped filter coefficients. Fora = 0 we get

the filter coefficients(0, 1, 1, 0), which correspond to a translated Haar scaling function
and wavelet. The parameter valuesa = −2, 2 give also Haar scaling functions with the
filter coefficients(1, 1, 0, 0) and(0, 0, 1, 1). TheDaubechies wavelethas two vanishing
moments, so we have one more sum rule

2h0 − h1 + h3 = 0.

Substituting the parametrized filter coefficients into this equations and solving fora, we
get the two solutionsa = −

√
3,

√
3 with the first discrete momentsm = 3−

√
3, 3+

√
3.

The first solution gives the famous Daubechies filters [10]

1/4 (1 +
√

3, 3 +
√

3, 3 −
√

3, 1 −
√

3) (3.2)

and the second the flipped version. See Figure 3.1 for plots of scaling functions for
various parameter values.

We have a second parametrization of filter coefficients with at least one vanishing
moment:

h0 = 1/2 − 1/4 a + 1/4w,

h1 = 1/2 − 1/4 a − 1/4w,

h2 = 1/2 + 1/4 a − 1/4w,

h3 = 1/2 + 1/4 a + 1/4w

(3.3)

with w =
√

4 − a2 anda = m − 3 ∈ [−2, 2].
Comparing this solution with the parametrized filter coefficients (3.1), we see thatw

is replaced by−w and so the two first and the two last filter coefficients are swapped.
Note that again fora = −a we obtain the flipped filters.
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√
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For a = 0 we now get the filter coefficients(1, 0, 0, 1), which give the scaling func-
tion (2.4) where the integer translates of the scaling function are not orthogonal. The
parameter valuesa = −2, 2 also give Haar scaling functions with the filter coefficients
(1, 1, 0, 0) and(0, 0, 1, 1). This parametrization does not contain filter coefficients with
a second vanishing moment. The corresponding scaling functions are,compared to the
parametrization (3.1), irregular, see section 4 for details.

3.2 Six filter coefficients

We have the following parametrization of filter coefficients with with at least twovan-
ishing moments:

h0 = −3/32 − 1/8 a + 1/32 a2 − 1/32w,

h1 = 5/32 − 1/8 a + 1/32 a2 + 1/32w,

h2 = 15/16 − 1/16 a2 + 1/16w

h3 = 15/16 − 1/16 a2 − 1/16w,

h4 = 5/32 + 1/8 a + 1/32 a2 − 1/32w,

h5 = −3/32 + 1/8 a + 1/32 a2 + 1/32w

(3.4)

with w =
√

−a4 + 14 a2 + 15 anda = m − 5 ∈ [−
√

15,
√

15].
The Daubechies wavelet has one more vanishing moment, that is, it satisfies the sum

rule
−9h0 + 4h1 − h2 − h4 + 4h5 = 0.

Substituting the parametrized filter coefficients into this equations and solving for a,
we get one real solutiona = −

√
5 + 2

√
10, which gives the filter coefficients

1/16 (1 +
√

10 + w, 5 +
√

10 + 3w, 10 − 2
√

10 + 2w,

10 − 2
√

10 − 2w, 5 +
√

10 − 3w, 1 +
√

10 − w)
(3.5)

with w =
√

5 + 2
√

10. The Daubechies filters with four nonzero filter coefficients
(3.2) satisfy two sum rules and are therefore contained in this parametrization. Their
first discrete moment ism = 3 −

√
3. So here the corresponding parameter isa =

−2 −
√

3. We get a translated version fora = −
√

3. Fora = −
√

15 we obtain

1/8 (3 +
√

15, 5 +
√

15, 0, 0, 5 −
√

15, 3 −
√

15).

The parametera = −1 gives the first coiflet

1/16 (1 −
√

7, 5 +
√

7, 14 + 2
√

7, 14 − 2
√

7, 1 −
√

7,−3 +
√

7),

see Daubechies [12] and [11, section 8.2]. Fora = 0 we get

1/32 (−3 −
√

15, 5 +
√

15, 30 + 2
√

15, 30 − 2
√

15, 5 −
√

15,−3 +
√

15).

See Figure 3.2 for plots of scaling functions for various parameter values. The corre-
sponding scaling functions and wavelets fora > 0 become increasingly irregular, see
section 4 for details.

XVII 323



198 G. Regensburger

0 5

0

0.5

1

1.5

0 5

0

0.5

1

1.5

0 5

0

0.5

1

1.5

0 5

0

0.5

1

1.5

0 5

0

0.5

1

1.5

0 5

0

0.5

1

1.5
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3.3 Eight filter coefficients

We have the following parametrization of filter coefficients with at least threevanishing
moments:

h0 = − 1

512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a − 15 + (1 − a)w

a2 + 1
,

h1 = − 1

512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a + 63 + (1 + a)w

a2 + 1
,

h2 =
1

512

3 a5 − 5 a4 − 102 a3 + 186 a2 − 261 a + 35 + 3(1 − a)w

a2 + 1
,

h3 =
1

512

3 a5 − 11 a4 − 70 a3 + 358 a2 − 229 a + 525 + 3(1 + a)w

a2 + 1
,

h4 = − 1

512

3 a5 + 11 a4 − 70 a3 − 358 a2 − 229 a − 525 + 3(1 − a)w

a2 + 1
,

h5 = − 1

512

3 a5 + 5 a4 − 102 a3 − 186 a2 − 261 a − 35 + 3(1 + a)w

a2 + 1
,

h6 =
1

512

a5 + 9 a4 + 30 a3 − 2 a2 − 23 a − 63 + (1 − a)w

a2 + 1
,

h7 =
1

512

a5 + 7 a4 − 2 a3 − 30 a2 − 55 a + 15 + (1 + a)w

a2 + 1

(3.6)

with
w =

√
−a8 + 36 a6 − 182 a4 + 1540 a2 − 945,

a = m − 7 anda in the intervals

[−
√

β,−√
α] or [

√
α,

√
β],

whereα denotes the smaller andβ the larger real root of

x4 − 36x3 + 182x2 − 1540x + 945,

with numerical approximations

√
α = 0.8113601077 . . . and

√
β = 5.636256558 . . . .

The Daubechies wavelet satisfies one more sum rule

64h0 − 27h1 + 8h2 − h3 + h5 − 8h6 + 27h7 = 0.

Substituting the parametrized filter coefficients (3.6) into this equations and solving for
a, we get two real solutiona = −√

β,−√
α, whereα denotes the smaller andβ the

larger real root of
x4 − 28x3 + 126x2 − 1260x + 1225
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or numerically
a = −4.989213573 . . . ,−1.029063869 . . . .

The first parameter gives the Daubechies wavelet with extremal phase[11, p. 195]
and the second the “least asymmetric” [11, p. 198]. The Daubechies wavelet with six
nonzero filter coefficients (3.5) has the first discrete moment

m = 5 −
√

5 + 2
√

10,

so the corresponding parameter value for the parametrization (3.6) is

a = −2 −
√

5 + 2
√

10 = −5.365197664 . . . .

See Figure 3.3 for plots of scaling functions for various parameter values.
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Figure 3.3: Scaling functions fora = −5.636256559,−5.365197664,−4.989213573
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4 Regularity of scaling functions and wavelets

In this section, we discuss the regularity or smoothness of the scaling functions and
wavelets corresponding to the parametrized filter coefficients from the previous section.
The regularity of a function can be measured in different ways, we consider here the
Hölder and Sobolev exponent.

We first recall the definitions. Forα = n + β, wheren ∈ N and0 ≤ β < 1, the
setCα = Cα(R) is defined as the set of all functionsf that aren times continuously
differentiable and such that thenth derivativef (n) is uniformlyHölder continuouswith
exponentβ, that is,

|f (n)(x + h) − f (n)(x)| ≤ C|h|β for all x, h ∈ R

whereC is a constant. Fors ≥ 0 the Sobolev spaceHs = Hs(R) consists of all
functionsf ∈ L2(R) such that(1 + |ξ|2)s/2f̂(ξ) ∈ L2(R), wheref̂ denotes the Fourier
transform off .

To measure the regularity or smoothness of a scaling functionφ, one is interested
respectively in the (optimal)Sobolev

smax = sup{s : φ ∈ Hs}

andHölder exponent
αmax = sup{α : φ ∈ Cα}.

For a scaling function the Ḧolder exponent satisfies [44]

αmax ∈ [smax − 1/2, smax]. (4.1)

The regularity of scaling functions is also related to vanishing moments of thecor-
responding wavelet. Villemoes [44] proved that ifφ ∈ Hn with n ∈ N, the filter
coefficients satisfyn+1 sum rules or equivalently the corresponding wavelet hasn+1
vanishing moments. So in particular ifφ ∈ Cn, then the filter coefficients satisfyn + 1
sum rules, see also [11, pp. 153–156].

Eirola [14] and Villemoes [44] independently showed how the optimal Sobolev ex-
ponent can be computed from the spectral radius of a matrix dependingon the filter
coefficients, see also Strang and Nguyen [42] for further details. To find the optimal
Hölder exponent is much more involved, see for example [9, 11, 13, 37], but Rioul
[37] gave an algorithm to compute good lower bounds for the Hölder exponent. The
algorithm produces monotonically increasing lower bounds with an increasing number
of iterations, but the storage and computational costs approximately double for each
additional iteration.

In Figures 4.1, 4.2 and 4.3 you can see plots of the Sobolev exponentof the corre-
sponding scaling functions and wavelets depending on one parameter. For four filter
coefficients the Sobolev exponents range from0.5 to 1 (parametrization (3.1)) and from
0 to 0.5 (parametrization (3.3)). The maximum1 is attained for the Daubechies wavelet
since all other filter coefficients satisfy only one sum rule and hence their Sobolev expo-
nent is necessarily less than one. We obtain numerically the maximal Sobolev exponent
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Figure 4.1: Sobolev exponent for scaling functions with four filter coefficients from
equation (3.1) (left) and (3.3) (right).
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Figure 4.2: Sobolev exponent for scaling functions with six filter coefficients from
equation (3.4).
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Figure 4.3: Sobolev exponent for scaling functions with eight filter coefficients from
equation (3.6).

for respectively six and eight filter coefficients

smax = 1.4150, 1.7756,

at the parameter values for the Daubechies wavelets and the minimum is

smax = 0.0399, 0.1393

with parameter values
a = 3.077681946, 5.131603420.

For more than six filter coefficients it is possible to construct wavelets with a higher
Sobolev exponents than the Daubechies wavelets by omitting more than one sum rule,
see [27, 30, 45].

In Figures 4.4, 4.5 and 4.6 you can see plots of lower bounds for the Hölder exponent
of the corresponding scaling functions and wavelets depending on one parameter, with
the bounds from equation (4.1). We used24 iteration in the algorithm from [37].

Note that for most, and for eight filter coefficients for all, parameters thecomputed
lower bound is higher than the lower boundsmax − 1/2. The negative lower bound
in Figure 4.5 indicates that the corresponding scaling function is not continuous. We
obtain numerically the maximal lower bound for the Hölder exponent for respectively
four, six and eight filter coefficients

α24 = 0.5776, 1.1386, 1.6344

with parameters

a = −1.66260325442517,−3.28211108661493,−4.93905744197576

and filter coefficients
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Figure 4.4: Lower bound for Ḧolder exponent for scaling functions with four filter
coefficients from equation (3.1).
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Figure 4.5: Lower bound for Ḧolder exponent for scaling functions with six filter
coefficients from equation (3.4).
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Figure 4.6: Lower bound for Ḧolder exponent for scaling functions with eight filter
coefficients from equation (3.6).

0.31887001724554, 0.59678079636075,
0.18112998275446,-0.09678079636075

0.21634225649014, 0.56180454136425, 0.35257937284659,
-0.08834519690163,-0.06892162933673, 0.02654065553738

0.15488273436983, 0.49644876596501, 0.45767418856225,
-0.00833281609981,-0.13761439998701, 0.01970151455156,
0.02505747705493,-0.00781746441676.

Daubechies and Lagarias [13] obtained the optimal Hölder exponents for the Dau-
bechies wavelets with a different method (four, six, and eight filter coefficients)

αmax = 0.5500, 1.0878, 1.6179,

where the last one is for the Daubechies wavelet with extremal phase. Sowe obtained
in all cases wavelets that have a higher Hölder exponent than the Daubechies wavelets.

Daubechies addressed in [12] and [11, p. 242] the question of findingwavelets with
more regularity. For four filter coefficients she obtained the rational filtercoefficients
(3/5, 6/5, 2/5,−1/5), which corresponds toa = −8/5 in (3.1), see also section 6.
With the methods from [13] she found that the Hölder exponent of the corresponding
scaling function is at least0.5864.

Lang and Heller [22] discussed the general optimization problem of maximizing
the Hölder exponent for a fixed number of filter coefficients. They found smoother
wavelets than the Daubechies wavelets for more than eight filter coefficients, but the
numerical method failed to find the more regular wavelets that we obtained using the
explicit parametrizations of the filter coefficients. This might be due to the fact that
Lang and Heller used a general purpose optimization routine while we coulddirectly
apply the golden section search for finding the maximum of a univariate function.
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5 Least asymmetric filters

It is well known [11, p. 252] that if a compactly supported orthonormalwavelet is
symmetric or antisymmetric around some axis, then it is the Haar wavelet. Symmetry
of the scaling function is in turn equivalent to symmetry of the filter coefficients, see
Belogay and Wang [2] and also Daubechies [12]. Here we say that the filter coefficients
aresymmetricaroundn0 ∈ Z/2 if

hn = h2n0−n,

where we sethk = 0 for k < 0 andk > N . Symmetric filters are often calledlinear
phase filterssince the filter coefficients are symmetric aroundn0 ∈ Z/2 if and only if
the phase of thefrequency response

h(ξ) =
∑

n

hneinξ

is a linear function ofξ, that is, if

h(ξ) = ein0ξ|h(ξ)|.

So we know that complete symmetry and orthogonality is not possible, and one can
only try to find the least asymmetric filter coefficients out of a fixed family. For ex-
ample, Daubechies discussed in [11] and [12] how to choose the least asymmetric out
of the finitely many wavelets with a maximal number of vanishing moments. Another
possibility is to omit some vanishing moments and use the additional degrees of free-
dom to find filters with partial symmetry. Several authors [1, 25, 40] discussed the
use of Gr̈obner bases to find orthogonal filter coefficients with partial symmetry where
several pairs of filters are equal. Zhao and Swamy [48] designed least asymmetric
orthogonal wavelets with several vanishing moments via numerical optimization.

An immediate application of our parametrized filter coefficients is to find symboli-
cally the least asymmetric filter coefficients using some criteria to measure symmetry.
In the following, we discuss some examples, where we minimize the sum of squares
error as in [48].

We want to find six filter coefficients satisfying two sum rules such that they are
almost symmetric around2, so that

h0 ≈ h4, h1 ≈ h3, h6 ≈ 0.

Using Maple, we find the minimum of the sum of squares error is attained ata = α,
whereα denotes the largest negative real root of

25 x10−30 x9−702 x8+652 x7+5866 x6−3256 x5−13140 x4−1036 x3+5797 x2−2730 x−5190

or numerically
a = −1.102986298 . . . .

The filter coefficients are:
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-0.090589559870111, 0.504872307867382, 1.206925694336121,
0.516001958861136,-0.116336134466010,-0.020874266728517.

See Figure 5.1 for the corresponding scaling function, which has a Sobolev exponent
smax = 1.0180 and a lower bound for the Ḧolder exponentα24 = 0.5370.
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Figure 5.1: Least asymmetric (around2) scaling function with six filter coefficients
and two sum rules.

Now we consider eight filter coefficients. First we want to find filter coefficients that
are almost symmetric around3, so that

h0 ≈ h6, h1 ≈ h5, h2 ≈ h4, h7 ≈ 0.

The minimum of the sum of squares error is attained ata = α, whereα denotes the
largest negative real root of

11025 x24−21000 x23−901900 x22+1407480 x21+25484946 x20−23935800 x19−280989500 x18

−149785464 x17+837190927 x16+6460372400 x15+4612440168 x14−53422512976 x13

−69302308420 x12+344858640016 x11−84085760856 x10−294800719088 x9+2435452393919 x8

−1913025285928 x7−18887356576348 x6+10024351195096 x5+51733811048402 x4

−17259269191640 x3−57876449779820 x2+8466676099560 x+21625605062145

or numerically
a = −0.8395579286 . . . .

The filter coefficients are:

-0.073484394510424,-0.071424517120364, 0.556147092523951,
1.154912201440016, 0.568048480655853,-0.135661369346454,

-0.050711178669381, 0.052173685026802.
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Figure 5.2: Least asymmetric (around3 left and2.5 right) scaling function with eight
filter coefficients and three sum rules.

See Figure 5.2 (left) for the corresponding scaling function, which hasa Sobolev ex-
ponentsmax = 1.6569 and a lower bound for the Ḧolder exponentα24 = 1.3080.

Finally, we want to design filters that are almost symmetric around2.5, so that

h0 ≈ h5, h1 ≈ h4, h2 ≈ h3, h6 ≈ 0, h7 ≈ 0.

This is related to the example considered in [1, 25], where the authors constructed using
Gröbner bases eight orthogonal filters with two sum rules such thath0 = h5, h1 = h4

andh2 = h3. The minimum of the sum of squares error is attained ata = α, whereα
denotes the second largest negative real root of

2025 x24−9000 x23−168020 x22+823000 x21+4733434 x20−27869720 x19−46538164 x18

+437384872 x17−40684609 x16−3591330192 x15+3105046936 x14+20835868016 x13

−35438686580 x12−64147246896 x11+233849168056 x10−48135550128 x9−894126414729 x8

+1033511750456 x7+2682874758716 x6−4634966862792 x5−4762513155302 x4

+10857513198280 x3+182957235580 x2−6268723929720 x+2258107786305

or numerically
a = −1.927469761 . . . .

The filter coefficients are:

-0.114678365799638, 0.127976021526492, 0.977783792709255,
0.990754350911186, 0.120334952341046,-0.133569326041206,
0.016559620749336, 0.014838953603528.

See Figure 5.2 (right) for the corresponding scaling function, which has a Sobolev
exponentsmax = 1.5026 and a lower bound for the Ḧolder exponentα24 = 1.0633.
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6 Rational filter coefficients

In this section, we address the existence of rational orthogonal filter coefficients. We
know from section 2 that filter coefficients are determined by quadratic equations for
orthonormality (2.1) and linear equations for normalization (2.2) and vanishing mo-
ments (2.5). Note that all these equations have integer coefficients, andwe want to
find a rational solution. This leads to “Hilbert’s 10th Problem overQ”, which asks
if there exists an algorithm for deciding the existence of rational points for asystem
of polynomial equations with integer coefficients. The answer is not known, and de-
spite centuries of effort, even for curves it is an open problem althoughmany results
and computational methods are known, see for example Poonen [34] for an introduc-
tion and further references. Using our parametrizations, we can reduce the question of
rational filter coefficients to finding rational points on curves and give some answers.

The case of four filter coefficients is not difficult. Daubechies [10] already gave a
rational parametrization of all orthogonal filter coefficients

h0 =
t (t − 1)

t2 + 1
, h1 =

1 − t

t2 + 1
, h2 =

t + 1

t2 + 1
, h3 =

t (t + 1)

t2 + 1

with t ∈ R. Note that fort = −t we obtain the flipped filter coefficients. The interval
−1 ≤ t ≤ 1 corresponds to the filter coefficients from (3.1) andt ≤ −1, 1 ≤ t to (3.3),
except for(1, 0, 0, 1), which are approached fort → ∞ andt → −∞.

The Daubechies wavelet corresponds tot = −1/
√

3. Computing the continued
fraction expansion of−1/

√
3, we obtain the periodic expansion

− 1√
3

= [−1; 2, 2, 1 ] = −1 +
1

2 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·
with the first convergents

−1, −1/2, −3/5, −4/7, −11

19
, −15

26
, −41

71
, −56

97
, −153

265
, −209

362
.

For further details on continued fractions see for example Khinchin [19]or Knuth [20].
Takingt = −209/362, we get a good rational approximation

1/174725 (119339, 206702, 55386,−31977)

for the Daubechies filters. Surprisingly, we obtain the filter coefficients corresponding
to the most regular scaling function found by Daubechies for the secondconvergent
t = −1/2, see section 4.

In parametrization (3.4) for six filter coefficients there appears only thesquare root

w =
√

−a4 + 14 a2 + 15.
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So the question of the existence of rational filters reduces to finding a rational point
(a, b) ∈ Q2 on the (hyperelliptic) algebraic curve defined by the equation

y2 = −x4 + 14x2 + 15 = −(x2 + 1)(x2 − 15). (6.1)

Proposition 6.1 There are no rational points on the curve defined by equation(6.1).

Proof. Substitutingx = X/Z andy = Y/Z2 in (6.1) and multiplying byZ4, we obtain

Y 2 = −(X2 + Z2)(X2 − 15Z2),

and we equivalently would have to find integersa, b, c with a andc coprime satisfying
this equation. Suppose that we had integersa, b, c satisfying

b2 = −(a2 + c2)(a2 − 15 c2). (6.2)

Then
b2 ≡ (a2 + c2)2 (mod 2)

and hence
b ≡ (a + c) (mod 2).

This implies that either

a ≡ 1, c ≡ 0 (mod 2) or a ≡ 0, c ≡ 1 (mod 2)

or, sincea andc are coprime,

a ≡ c ≡ 1 (mod 2).

In the first case, we get
(a2 + c2)2 ≡ 1 (mod 4).

But then by equation (6.2)

b2 ≡ −1 ≡ 3 (mod 4),

which is not possible since the only quadratic residues modulo4, that is, the integersd
for which

x2 ≡ d (mod 4)

has a solution, are
d ≡ 0, 1 (mod 4).

In the second case, we get

(a2 + c2)2 ≡ 4 (mod 16).

But then by equation (6.2)

b2 ≡ −4 ≡ 12 (mod 16),

which is not possible since the only quadratic residues modulo16 are

d ≡ 0, 1, 4, 9 (mod 16),

and the proposition is proved.
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Corollary 6.2 There are no rational orthogonal filters with six nonzero filter coeffi-
cients and at least two sum rules.

In parametrization (3.6) for eight filter coefficients, we have the square root

w =
√

−a8 + 36 a6 − 182 a4 + 1540 a2 − 945.

So we would have to find a rational point on the algebraic curve defined bythe equation

y2 = −x8 + 36x6 − 182x4 + 1540x2 − 945.

This is a nonsingular curve with genus3. Hence by Falting’s theorem [15] it has only
finitely many rational points, and so there are at most finitely many rationalorthogonal
filters with eight nonzero filter coefficients and at least three sum rules. So far we could
neither find rational points on this curve nor prove that there do not existany.

Acknowledgements.I would like to thank Josef Schicho for his comments and help
with the proof of Proposition 6.1 and the reviewers for useful remarks.
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