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Abstract We review our algebraic framework for linear boundary problems (con-
centrating on ordinary differential equations). Its starting point is an appropriate
algebraization of the domain of functions, which we have named integro-differential
algebras. The algebraic treatment of boundary problems brings up two new alge-
braic structures whose symbolic representation and computational realization is
based on canonical forms in certain commutative and noncommutative polynomial
domains. The first of these, the ring of integro-differential operators, is used for
both stating and solving linear boundary problems. The other structure, called
integro-differential polynomials, is the key tool for describing extensions of integro-
differential algebras. We use the canonical simplifier for integro-differential poly-
nomials for generating an automated proof establishing a canonical simplifier for
integro-differential operators. Our approach is fully implemented in the Theorema
system; some code fragments and sample computations are included.
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1 Introduction

1.1 Overall View

When problems from Analysis – notably differential equations – are treated by
methods from Symbolic Computation, one speaks of Symbolic Analysis, as in the
eponymous workshops of the FoCM conference series [34]. Symbolic Analysis
is based on algebraic structures, as all other symbolic branches, but its special
flavor comes from its connection with analytic and numeric techniques. As most
differential equations arising in the applications can only be solved numerically,
this connection is absolutely vital.

If symbolic techniques cannot solve “most” differential equations, what else can
they do? The answers are very diverse (reductions, normal forms, symmetry groups,
singularity analysis, triangularization etc), and in the frame of this paper we can only
point to surveys like [79] and [36, �2.11]. In fact, even the notion of “solving” is
quite subtle and can be made precise in various ways. Often a symbolic method will
not provide the “solution” in itself but valuable information about it to be exploited
for subsequent numerical simulation.

Our own approach takes a somewhat intermediate position while diverging
radically in another respect: Unlike most other symbolic methods known to us, we
consider differential equations along with their boundary conditions. This is not
only crucial for many applications, it is also advantageous from an algebraic point
of view: It allows to define a linear operator, called the Green’s operator, that maps
the so-called forcing function on the right-hand side of an equation to the unique
solution determined by the boundary conditions. This gives rise to an interesting
structure on Green’s operators and on boundary problems (Sect. 5). Algebraically,
the consequence is that we have to generalize the common structure of differential
algebras to what we have called integro-differential algebras (Sect. 3).

Regarding the solvability issues, the advantage of this approach is that it
uncouples the task of finding an algebraic representation of the Green’s operator
from that of carrying out the quadratures involved in applying the Green’s operator
to a forcing function. While the latter may be infeasible in a symbolic manner, the
former can be done by our approach (with numerical quadratures for integrating
forcing functions).

The research program just outlined has been pursued in the course of the SFB
project F013 (see below for a brief chronology), and the results have been reported
elsewhere [66, 70, 72]. For the time being, we have restricted ourselves to linear
boundary problems, but the structure of integro-differential polynomials [73] may
be a first stepping stone towards nonlinear Green’s operators. Since the algebraic
machinery for Green’s operators is very young, our strategy was to concentrate first
on boundary problems for ordinary differential equations (ODEs), with some first
steps towards partial differential equations (PDEs) undertaken more recently [74].
For an application of our methods in the context of actuarial mathematics, we refer
to [2], for a more algebraic picture from the skew-polynomial perspective see [67].
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1.2 New Results

In the present paper, we will present a new confluence proof for the central data
structure used in our approach: As the algebraic language for Green’s operators,
the integro-differential operators (Sect. 4) are defined as a ring of noncommutative
polynomials in infinitely many variables, modulo an infinitely generated ideal.
While the indeterminates represent the basic operations of analysis (differentiation,
integration, extraction of boundary values and multiplication by one of infinitely
many coefficient functions), this ideal specifies their interaction (e.g. the fundamen-
tal theorem of calculus describing how differentiation and integration interact). Our
new proof is fully automated within the TH9OREM8 system (Sect. 2), using a generic
noncommutative polynomial reduction based on a noncommutative adaption of
reduction rings [22]; see also [83] for a short outline of the proof.

In a way, the new proof completes the circle started with the ad-hoc confluence
proof in [69]. For the latter, no algebraic structure was available for coping with
certain expressions that arise in the proof because they involved generic coefficient
functions along with their integrals and derivatives (rather than the operator
indeterminates modeling integration and differentiation!), while this structure is now
provided by the afore-mentioned integro-differential polynomials (Sect. 6). Roughly
speaking, this means within the spectrum between rewrite systems (completion
by the Knuth-Bendix procedure) and Gröbner bases (completion by Buchberger’s
algorithm), we have moved away from the former towards the latter [18]. We will
come back to this point later (Sect. 7).

Moreover, the paper includes the following improvements and innovations: The
setting for Gröbner bases and the Buchberger algorithm are introduced generically
for commutative and noncommutative rings (allowing infinitely many variables
and generators), based on reduction rings and implemented in the TH9OREM8
system (Sect. 2). The presentation of integro-differential algebras is streamlined
and generalized (Sect. 3). For both of the main computational domains – integro-
differential operators and integro-differential polynomials – we have a basis free
description while a choice of basis is only need for deciding equality (Sects. 4, 6).
The construction of integro-differential polynomials, which was sketched in [73], is
carried out in detail (Sect. 6). In particular, a complete proof of the crucial result on
canonical forms (Theorem 42) is now given.

1.3 Chronological Outline

As indicated above, this paper may be seen as a kind of target line for the research
that we have carried out within Project F1322 of the SFB F013 supported by the
Austrian Science Fund (FWF). We have already pointed out the crucial role of
analysis/numerics in providing the right inspirations for the workings of Symbolic
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Analysis. The development of this project is an illuminating and pleasant case in
point. It was initiated by the stimulating series of Hilbert Seminars conducted jointly
by Bruno Buchberger and Heinz W. Engl from October 2001 to July 2002, leading
to the genesis of Project F1322 as a spin-off from Projects F1302 (Buchberger) and
F1308 (Engl). Triggered by the paper [42], the idea of symbolic operator algebras
emerged as a common leading theme. It engendered a vision of transplanting certain
ideas like the Moore-Penrose inverse on Hilbert spaces from their homeground in
functional analysis into a new domain within Symbolic Analysis, where powerful
algebraic tools like Gröbner bases are available [9, 19, 20, 24]. This vision even-
tually crystallized in the algebraic machinery for computing Green’s operators as
described before.

In the early stage of the project, those two main tools from analysis (Moore-
Penrose inverse) and algebra (Gröbner bases) were welded together in a rather
ad-hoc manner, but it did provide a new tool for solving boundary problems [71].
In the course of the dissertation [69], a finer analysis led to a substantial simpli-
fication where the Moore-Penrose inverse was superseded by a purely algebraic
formulation in terms of one-sided inverses and the expensive computation of a
new noncommutative Gröbner basis for each boundary problem was replaced by
plain reduction modulo a fixed Gröbner basis for modeling the essential operator
relations. The resulting quotient algebra (called “Green’s polynomials” at that time)
is the precursor of the integro-differential operators described below (Sect. 4). The
final step towards the current setup was the reformulation and generalization in a
differential algebra setting [72] and in an abstract linear algebra setting [66].

The advances on the theoretical side were paralleled by an early implementation
of the algorithm for computing Green’s operators. While the ad-hoc approach
with computing Gröbner bases per-problem was carried out by the help of NCAl-
gebra, a dedicated Mathematica package for noncommutative algebra [42], the
fixed Gröbner basis for simplifying Green’s operator was implemented in the
TH9OREM8 system [26]; see Sect. 2 for a general outline of this system. As the new
differential algebra setting emerged, however, it became necessary to supplant this
implementation by a new one. It was again integrated in the TH9OREM8 system, but
now in a much more intimate sense: Instead of using a custom-tailored interface as
in [69], the new package was coded directly in the TH9OREM8 language using the
elegant structuring constructs of functors [25]. Since this language is also the object
language of the provers, this accomplishes the old ideal of integrating computation
and deduction.

The presentation of several parts of this paper – notably Sects. 3–5 – benefited
greatly from a lecture given in the academic year 2009/10 on Symbolic Integral
Operators and Boundary Problems by the first two authors. The lecture was
associated with the Doctoral Program “Computational Mathematics: Numerical
Analysis and Symbolic Computation” (W1214), which is a follow-up program to
the SFB F013. We would like to thank our students for the lively discussions and
valuable comments.
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1.4 Overview of the Paper

We commence by having a closer look at the TH9OREM8 system (Sect. 2), which
will also be used in all sample computations presented in subsequent sections;
both the sample computations and the TH9OREM8 program code is available in an
executable Mathematica notebook from www.theorema.org. We discuss canonical
simplifiers for quotient structures and Gröbner bases in reduction rings, and we
give a short overview of the functors used in building up the hierarchy of the
algebraic structures used in the computations. The main structure among these is
that of an integro-differential algebra (Sect. 3), which is the starting point for the
integro-differential operators as well as the integro-differential polynomials. Since
the former are, in turn, the foundation for computing Green’s operators for boundary
problems, we will next summarize the construction of integro-differential operators
and their basic properties (Sect. 4), while the algorithms for solving and factoring
boundary problems are explained and exemplified thereafter (Sect. 5). Driving
towards the focus point of this paper, we describe then the algebra of integro-
differential polynomials (Sect. 6), which will be the key tool to be employed for
the confluence proof. Since this proof is reduced to a computation in TH9OREM8,
we will only explain the main philosophy and show some representative fragments
(Sect. 7). We wind up with some thoughts about open problems and future work
(Sect. 8).

2 Data Structures for Polynomials in Theorema

2.1 The Theorema Functor Language

The TH9OREM8 system [26] was designed by B. Buchberger as an integrated
environment for proving, solving and computing in various domains of mathe-
matics. Implemented on top of Mathematica, its core language is a version of
higher-order predicate logic that contains a natural programming language such that
algorithms can be coded and verified in a unified formal frame. In this logic-internal
programming language, functors are a powerful tool for building up hierarchical
domains in a modular and generic way. They were introduced and first implemented
in TH9OREM8 by B. Buchberger. The general idea – and its use for structuring those
domains in which Gröbner bases can be computed – is described in [22, 25], where
one can also find references to pertinent early papers by B. Buchberger. See also [87]
for some implementation aspects of functor programming.

The notion of functor in TH9OREM8 is akin to functors in ML, not to be
confused with the functors of category theory. From a computational point of
view, a TH9OREM8 functor is a higher-order function that produces a new domain

www.theorema.org
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from given domains, where each domain is considered as a bundle of operations
(including relations qua boolean-valued operations – in particular also carrier
predicates). Operations in the new domain are defined in terms of operations in
the underlying domains.

Apart from this computational aspect, functors also have an important reasoning
aspect – a functor transports properties of the input domains to properties of the
output domain, typical examples being the various “preservation theorems” in
mathematics: “If R is a ring, then RŒx� is also a ring”. This means the functor
R 7! RŒx� preserves the property of being a ring, in other words: it goes from
the “category of rings” to itself. In this context, a category is simply a collection
of domains characterized by a common property (a higher-order predicate on
domains).

See below for an example of a functor named LexWords. It takes a linearly
ordered alphabet L as input domain and builds the word monoid over this alphabet:

Definition "Word Monoid", any L ,

LexWords L Functor W, any v, w, , , , ,

W
w

is tuple w

i 1, , w L
wi

W

v
W
w v w

,
W

True

W
False

,
W

,
L

W

Here N� , N� are sequence variables, i.e. they can be instantiated with finite sequences
of terms. The new domain W has the following operations: WŒ2� denotes the carrier
predicate, the neutral element is given by WŒ��, the multiplication W[�] is defined as
concatenation, and WŒ>� defines the lexicographic ordering on W.

In the following code fragments, we illustrate one way of building up polyno-
mials in TH9OREM8 starting from the base categories of fields with ordering and
ordered monoids. Via the functor FreeModule, we construct first the free vector
space V over a field K generated by the set of words in an ordered monoid W. The
elements of V are described by VŒ2� as lists of pairs, each pair containing one (non-
zero) coefficient from K and one basis vector from W, where the basis vectors are
ordered according to the ordering on W. The operations of addition, subtraction and
scalar multiplication are defined recursively, using the operations on K and W:
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Definition "Free Module", any K, W ,

FreeModule K, W Functor V, any c, d, x, y, , , A, x, y ,

V
x where z x ,

is-tuple x

i 1, ,z

is-tuple xi
xi 2

is-coeff
V

xi 1

is-bvec
V

xi 2

i 1, ,z 1
xi 2

W
xi 1 2

is-bvec
V W

is-coeff
V

c
K
c c 0

K

0
V

c, , x
V

d, , y

c, x
V

d, , y
W

d, c, , x
V

y
W

c
K
d, x

V
y c

K
d 0

K

x
V

y otherwise

x
V
0

0
V
y

c
V

d, , y c
K
d, c

V
y

c, , x
V
d c

K
d, x

V
d

By the MonoidAlgebra functor we extend this domain, introducing a multi-
plication using the corresponding operations in K and W:

MonoidAlgebra K, W where V FreeModule K, W ,

Functor P, any c, d, f, g, , , m, n ,

linear operations from V

multiplication

P
g

f
P

c, , m
P

d, , n c
K
d,

W P
c,

P
n

P
m

P
d, , n

The new domain inherits the structure on the elements of V.
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The main advantage of the above construction is that it is fully generic: Not only
can it be instantiated for different coefficient rings (or fields) and different sets of
indeterminates, it comprises also the commutative and noncommutative case (where
W is instantiated respectively by a commutative and noncommutative monoid).

2.2 Quotient Structures and Canonical Simplifiers

In algebra (and also in the rest of mathematics), one encounters quotient structures
on many occasions. The general setting is a setAwith various operations (an algebra
in the general sense used in Sect. 6) and a congruence relation � on A, meaning
an equivalence relation that is compatible with all the operations on A. Then one
may form the quotient A=�, which will typically inherit some properties of A.
For example, A=� belongs to the category of rings if A does, so we can view the
quotient construction A 7! A=� as a functor on the category of rings.

But for computational purposes, the usual set-theoretic description of A=� as
a set of equivalence classes is not suitable (since each such class is typically
uncountably infinite). We will therefore use an alternative approach that was
introduced in [27] as a general framework for symbolic representations. The starting
point is a canonical simplifier for A=�, meaning a map � WA! A such that

�.a/ � a and �.a/ D �.a0/ whenever a � a0: (1)

The set QA D �.A/ is called the associated system of canonical forms for A=�.
Clearly canonical simplifiers exist for every quotientA=�, but for computational

purposes the crucial question is whether � is algorithmic. Depending on A=�, it
may be easy or difficult or even impossible to construct a computable � WA! A. In
the examples that we will treat, canonical simplifiers are indeed available.

Canonical simplifiers are also important because they allow us to compute in the
quotient structure. More precisely, one can transplant the operations on A to QA by
defining !.a1; : : : ; an/ D �.!.a1; : : : ; an// for every operation ! on A. With these
new operations, one may easily see that QA is isomorphic to the quotient A=�; see
the Theorem “Canonical simplification and computation” in [27, p. 13].

There is an intimate relation between canonical forms and normal forms for
rewrite systems (Sect. 4 contains some basic terminology and references). In
fact, every rewrite system ! on an algebraic structure A creates an equivalence
relation �, the symmetric closure of

�!. Thus a � a0 if and only if a and
a0 can be connected by an equational chain (using the rewrite rules in either
direction). Typically, the relation � will actually be a congruence on A, so that the
quotientA=� has a well-defined algebraic structure. Provided the rewrite system is
noetherian, the normal forms of! are then also canonical forms for A=�. Hence
we will often identify these terms in a rewriting context.

For our implementation, we use canonical simplifiers extensively. In fact, the
observation made above about computing in the quotient structure is realized by a
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TH9OREM8 functor, which is applied at various different places. HereA is typically
a K-algebra, with the ground field K being� or computable subfields of� and�.

2.3 Reduction Rings and Gröbner Bases

For defining reduction on polynomials, we use the reduction ring approach in the
sense of [17, 22]. For commutative reduction rings, see also [81, 82]; for another
noncommutative approach we refer to [57–59].

To put it simply, a reduction ring is a ring in which Gröbner bases can be done.
A full axiomatization for the commutative case is given in [17]. If such rings satisfy
certain additional axioms (defining the category of so-called “Gröbner rings”), then
Gröbner bases can be computed by iterated S-polynomial reduction in the given
ring – this is the Gröbner Ring Extension Theorem, stated and proved in [17].

A detailed presentation of their construction in the TH9OREM8 setting was given
in [21, 23]; it is the starting point for our current work. At this point we do not give
an axiomatic characterization for noncommutative reduction rings, but we do use a
construction that is similar to the commutative setting. Thus we endow a polynomial
domain P, built via the MonoidAlgebra functor with word monoid W and
field K, with the following three operations: a noetherian (partial) ordering, a binary
operation least common reducible, and a binary operation reduction multiplier. The
noetherian ordering is defined in the usual way in terms of the given orderings on K
and W.

The basic idea of reduction multipliers is to answer the question: “With which
monomial do I have to multiply a given polynomial so that it cancels the leading
term of another given polynomial?” In the noncommutative case, the corresponding
operation rdm splits into left reduction multiplier lrdm and its right counterpart
rrdm defined as follows:

lrdm
P

c, , m , d, , n
1
K
, lquot

W
, rdm

K
c, d 0

K W

0
P

otherwise

rrdm
P

c, , m , d, , n
rdm
K

c, d , rquot
W

, rdm
K

c, d 0
K W

0
P

otherwise

Here the divisibility relation j on W checks whether a given word occurs within
another word, and the corresponding quotients lquot and rquot yield the word
segments respectively to the left and to the right of this occurrence. Since the scalars
from K commute with the words, it is an arbitrary decision whether one includes it
in the right (as here) or left reduction multiplier. In typical cases, this scalar factor
is just rdm[c,d] D c/d.

The operations relating Gröbner bases are introduced via a functor which is
called GroebnerExtension. It defines polynomial reduction using reduction
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multipliers (note that this includes also the commutative case, where one actually
needs only one reduction multiplier, the other one being unity):

hred
G

f, g f
P
lrdm

P
f, g

P
g

P
rrdm

P
f, g

The next step is to introduce reduction modulo a system of polynomials. For
some applications (like the integro-differential operators described in Sect. 4), it
is necessary to deal with infinite reduction systems: the polynomial ring contains
infinitely many indeterminates, and reduction is applied modulo an infinite set of
polynomials. In other words, we want to deal with an infinitely generated ideal in
an infinitely generated algebra.

This is a broad topic, and we cannot hope to cover it in the present scope.
In general one must distinguish situations where both the generators of the ideal
and the algebra are parametrized by finitely many families involving finitely many
parameters and more general algebras/ideals where this is not so. In the latter
case, one works with finite subsets, and all computations are approximate: one
never catches the whole algebraic picture. Fortunately, the applications we have
in mind – in particular the integro-differential operators – are of the first type where
full algorithmic control can be achieved. However, most of the common packages
implementing noncommutative Gröbner bases do not support such cases [55, 56].
For some recent advances, we refer the reader to [3, 14, 43, 51] as well as
Ufnarovski’s extensive survey chapter [86].

Let us point out just one important class of decidable reductions in infinitely
generated algebras – if an infinite set of (positively weighted) homogeneous
polynomials is given, which is known to be complete for each given degree (see [51]
for the proof) since one can compute a truncated Gröbner basis of such a graded
ideal, which is finite up to a given degree. But if the given set is not homogeneous
or cannot be clearly presented degree by degree, basically nothing can be claimed
in general. Unfortunately, the applications we have in mind seem to be of this type.

In our setting, infinitely generated ideals are handled by an algorithmic operation
for instantiating reduction rules. The reduction of polynomial f modulo a system S
is realized thus:

hredp
G

f, l, g, r f
P
l

P
g

P
r

hred
G

f, S where q S f , hredp
G

f, q1, q2, q3

where S[f] is the operation that decides if there exists g modulo which f can
be reduced, and it returns a triple containing the g and the left/right reduction
multipliers needed for performing the reduction.

The main tool for the Gröbner bases construction, namely the notion of S-
polynomial, can now be defined in terms of the least common reducible:

spol
G

f, g where L lcrd
P

f, g , hredp
G

L, f
G
hredp

G
L, g
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Here lcrd[f,g] represents the smallest monomial that can be reduced both
modulof and modulog, built from the least common reducible of the corresponding
coefficients in K and the least common multiple of the words in W:

lcrd
P

c, , m , d, , n lcrd
K

c, d , lcm
W

,

In our setting, the lcrd[c,d] can of course be chosen as unity since we work
over a field K, but in rings like � one would have to use the least common multiple.

Finally, Gröbner bases are computed by the usual accumulation of S-
polynomials reduction, via the following version of Buchberger algorithm [24]:

Gb
G

R, S where pairs Ri, Rj
i 1, , R

j 1, , R

Ri Rj , Gb
G

R, pairs, S

Gb
G

R, , S R

Gb
G

R, f, g , m , S where h tred
G

spol
G

f, g , S ,

Gb
G

R, m , S h 0
P

Gb
G

R h, h R m R h , S otherwise

Total reduction modulo a system, denoted here by tred, is computed by iteratively
performing reductions, until no more reduction is possible. The above implemen-
tation of Buchberger’s algorithm is again generic since it can be used in both
commutative and noncommutative settings. For finitely many indeterminates, the
algorithm always terminates in the commutative case (by Dickson’s Lemma); in the
noncommutative setting, this cannot be guaranteed in general. For our applications
we also have to be careful to ensure that the reduction systems we use are indeed
noetherian (Sect. 4).

3 Integro-Differential Algebras

For working with boundary problems in a symbolic way, we first need an algebraic
structure having differentiation along with integration. In the following definitions,
one may think of our standard example F D C1.�/, where @ D 0 is the usual
derivation and

�
the integral operator

f 7!
Z x

a

f .�/ d�

for a fixed a 2 �.
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3.1 Axioms and Basic Properties

Let K be a commutative ring. We first recall that .F ; @/ is a differential K-algebra
if @WF ! F is a K-linear map satisfying the Leibniz rule

@.fg/ D @.f / gC f @.g/: (2)

For convenience, we may assumeK � F , and we write f 0 as a shorthand for @.f /.
The following definition [72] captures the algebraic properties of the Fundamental
Theorem of Calculus and Integration by Parts.

Definition 1. We call .F ; @;
�
/ an integro-differential algebra if .F ; @/ is a

commutative differential K-algebra and
�

is a K-linear section (right inverse) of
@, i.e.

.
�
f /0 D f; (3)

such that the differential Baxter axiom

.
�
f 0/.

�
g0/C �

.fg/0 D .� f 0/g C f .� g0/ (4)

holds.

We refer to @ and
�

respectively as the derivation and integral of F and to (3) as
section axiom. Moreover, we call a section

�
of @ an integral for @ if it satisfies (4).

For the similar notion of differential Rota-Baxter algebras, we refer to [39] but see
also below.

Note that we have applied operator notation for the integral; otherwise, for
example, the section axiom (3) would read .

�
.f //0 D f , which is quite unusual at

least for an analyst. We will likewise often use operator notation for the derivation,
so the Leibniz rule (2) can also be written as @fg D .@f /gC f .@g/. For the future
we also introduce the following convention for saving parentheses: Multiplication
has precedence over integration, so

�
f

�
g is to be parsed as

�
.f

�
g/.

Let us also remark that Definition 1 can be generalized: First, no changes are
needed for the noncommutative case (meaning F is noncommutative). This would
for example be an appropriate setting for matrices with entries in F D C1Œa; b�,
providing an algebraic framework for the results on linear systems of ODEs. Second,
one may add a nonzero weight in the Leibniz axiom, thus incorporating also discrete
models where @ is the difference operator defined by .@f /k D fkC1 � fk . The nice
thing is that all other axioms remain unchanged. For both generalizations confer
also to [39].

We study first some direct consequences of the section axiom (3). For further
details on linear left and right inverses, we refer for example to [13, p. 211] or to [63]
in the context of generalized inverses. We also introduce the following names for the
projectors and modules associated with a section of a derivation.



Symbolic Analysis for Boundary Problems 285

Definition 2. Let .F ; @/ be a differentialK-algebra and
�

a K-linear section of @.
Then we call the projectors

J D � ı @ and E D 1 � � ı @
respectively the initialization and the evaluation of F . Moreover, we refer to

C D Ker.@/ D Ker.J/ D Im.E/ and I D Im.
�
/ D Im.J/ D Ker.E/

as the submodules of respectively constant and initialized functions.

Note that they are indeed projectors since J ı J D � ı .@ ı �
/ ı @ D J by (3),

which implies E ı E D 1� J� JC J ı J D E. As is well known [13, p. 209], every
projector is characterized by its kernel and image – they form a direct decomposition
of the module into two submodules, and every such decomposition corresponds to
a unique projector. We have therefore a canonical decomposition

F D C u I ;

which allows to split off the “constant part” of every “function” in F .
Before turning to the other axioms, let us check what all this means in the

standard example F D C1.�/ with @ D d
dx

and
� D R x

a . Obviously, the
elements of C are then indeed the constant functions f .x/ D c, while I consists
of those functions that satisfy the homogeneous initial condition f .a/ D 0. This
also explains the terminology for the projectors: Here Ef D f .a/ evaluates f at
the initialization point a, and Jf D f � f .a/ enforces the initial condition. Note
that in this example the evaluation E is multiplicative; we will show below that this
holds in any integro-differential algebra.

The Leibniz rule (2) and the differential Baxter axiom (4) entail interesting
properties of the two submodules C and I . For understanding these, it is more
economic to forget for a moment about integro-differential algebras and turn to the
following general observation about projectors on an algebra. We use again operator
notation, giving precedence to multiplication over the linear operators.

Lemma 3. Let E and J be projectors on a K-algebra with E C J D 1, set

C D Im.E/ D Ker.J / and I D Ker.E/ D Im.J /:

Then the following statements are equivalent:

1. The projector E is multiplicative, meaning Efg D .Ef /.Eg/.
2. The projector J satisfies the identity .Jf /.Jg/C Jfg D .Jf /g C f .Jg/ .
3. The submodule C is a subalgebra and the submodule I an ideal.

Proof. 1., 2. Multiplicativity of E D 1 � J just means

fg � Jfg D fg � .Jf /g � f .Jg/C .Jf /.Jg/:
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1.) 3. This follows immediately because C is the image and I the kernel of the
algebra endomorphismE .
3.) 1. Let f; g be arbitrary. Since the given K-algebra is a direct sum of C and
I , we have f D fC C fI and g D gC C gI for fC D Ef; gC D Eg 2 C and
fI D Jf; gI D Jg 2 I . Then

Efg D EfCgC C EfCgI C EfIgC C EfIgI
Since I is an ideal, the last three summands vanish. Furthermore,C is a subalgebra,
so fCgC 2 C . This implies EfCgC D fC gC because E is a projector onto C . ut

This lemma is obviously applicable to integro-differential algebras F with the
projectors E D E and J D J and with the submodules C D C and I D I
because the differential Baxter axiom (4) is exactly condition 2. From now on, we
will therefore refer to C as the algebra of constant functions and to I as the ideal
of initialized functions. Moreover, we note that in any integro-differential algebra
the evaluation E D 1 � � ı @ is multiplicative, meaning

Efg D .Ef /.Eg/: (5)

Altogether we obtain now the following characterization of integrals (note that the
requirement that C be a subalgebra already follows from the Leibniz axiom).

Corollary 4. Let .F ; @/ be a differential algebra. Then a section
�

of @ is an
integral if and only if its evaluation E D 1 � � ı @ is multiplicative, and if and
only if I D Im.

�
/ is an ideal.

Note that the ideal I corresponding to an integral is in general not a differential
ideal of F . We can see this already in the standard example C1Œ0; 1�, where I
consists of all f 2 C1Œ0; 1� with f .0/ D 0. Obviously I is not differentially
closed since x 2 I but x0 D 1 62 I .

The above corollary implies immediately that an integro-differential algebra F
can never be a field since then the only possibilities for I would be 0 and F .
The former case is excluded since it means that Ker.@/ D F , contradicting the
surjectivity of @. The latter case corresponds to Ker.@/ D 0, which is not possible
because @1 D 0.

Corollary 5. An integro-differential algebra is never a field.

In some sense, this observation ensures that all integro-differential algebras are
fairly complicated. The next result points in the same direction, excluding finite-
dimensional algebras.

Proposition 6. The iterated integrals 1;
�
1;

� �
1; : : : are all linearly independent

overK . In particular, every integro-differential algebra is infinite-dimensional.

Proof. Let .un/ be the sequence of iterated integrals of 1. We prove by induction
on n that u0; u1; : : : ; un are linearly independent. The base case n D 0 is trivial. For
the induction step from n to nC1, assume c0u0C� � �CcnC1unC1 D 0. Applying @nC1
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yields cnC1 D 0. But by the induction hypothesis, we have then also c0 D � � � D
cn D 0. Hence u0; : : : ; unC1 are linearly independent. ut

Let us now return to our discussion of the differential Baxter axiom (4). We will
offer an equivalent description that is closer to analysis. It is more compact but
less symmetric. (In the noncommutative case one has to add the opposite version –
reversing all products – for obtaining equivalence.)

Proposition 7. The differential Baxter axiom (4) is equivalent to

f
�
g D �

fgC �
f 0� g; (6)

in the presence of the Leibniz axiom (2) and the section axiom (3).

Proof. For proving (6) note that since I is an ideal, f
�
g is invariant under the

projector J and thus equal to
�
.f

�
g/0 D �

f 0� g C �
fg by the Leibniz axiom (2)

and the section axiom (3). Alternatively, one can also obtain (6) from (4) if one
replaces g by

�
g in (4). Conversely, assuming (6) we see that I is an ideal of F ,

so Corollary 4 implies that
�

satisfies the differential Baxter axiom (4). ut
For obvious reasons, we refer to (6) as integration by parts. The usual formula-

tion
�
f G0 D f G � �

f 0G is only satisfied “up to a constant”, or if one restricts G
to Im.

�
/. Substituting G D �

g then leads to (6). But note that we have now a more
algebraic perspective on this well-known identity of Calculus: It tells us how I is
realized as an ideal of F .

Sometimes a variation of (6) is useful. Applying
�

to the Leibniz axiom (2) and
using the fact that E D 1 � J is multiplicative (5), we obtain

�
fg0 D fg � �

f 0g � .Ef /.Eg/; (7)

which we call the evaluation variant of integration by parts (a form that is also used
in Calculus). Observe that, we regain integration by parts (6) upon replacing g by�
g in (7) since E

�
g D 0.

Note that in general one cannot extend a given differential algebra to an integro-
differential algebra since the latter requires a surjective derivation. For example, in
.KŒx2�; x@/ the image of @ does not contain 1. As another example (cf. Sect. 6), the
algebra of differential polynomials F D Kfug does not admit an integral in the
sense of Definition 1 since the image of @ does not contain u.

How can we isolate the integro part of an integro-differential algebra? The
disadvantage (and also advantage!) of the differential Baxter axiom (4) is that it
entangles derivation and integral. So how can one express “integration by parts”
without referring to the derivation?

Definition 8. Let F be a K-algebra and
�

a K-linear operation satisfying

.
�
f /.

�
g/ D �

f
�
g C �

g
�
f: (8)

Then .F ;
�
/ is called a Rota-Baxter algebra (of weight zero).
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Rota-Baxter algebras are named after Glen Baxter [7] and Gian-Carlo Rota [75];
see also [37,38] for further details. In the following, we refer to (8) as Baxter axiom;
in contrast to the differential Baxter axiom (4), we will sometimes also call it the
pure Baxter axiom.

One might now think that an integro-differential algebra .F ; @;
�
/ is a differ-

ential algebra .F ; @/ combined with a Rota-Baxter algebra .F ;
�
/ such that the

section axiom (3) is satisfied. In fact, such a structure was introduced independently
by Guo and Keigher [39] under the name differential Rota-Baxter algebras. But we
will see that an integro-differential algebra is a little bit more – this is why we also
refer to (8) as “weak Baxter axiom” and to (4) and (6) as “strong Baxter axioms”.

Proposition 9. Let .F ; @/ be a differential algebra and
�

a section for @. Then
�

satisfies the pure Baxter axiom (8) if and only if I D Im.
�
/ is a subalgebra of F .

In particular, .F ;
�
/ is a Rota-Baxter algebra for any integro-differential algebra

.F ; @;
�
/.

Proof. Clearly (8) implies that I is a subalgebra of F . Conversely, if .
�
f /.

�
g/ is

contained in I , it is invariant under the projector J and must therefore be equal to�
@ .

�
f /.

�
g/ D �

f
�
g C �

g
�
f by the Leibniz axiom (2). ut

So the strong Baxter axiom (4) requires that I be an ideal, the weak Baxter
axiom (8) only that it be a subalgebra. We will soon give a counterexample for
making sure that (4) is indeed asking for more than (8), see Example 14. But before
this we want to express the difference between the two axioms in terms of a linearity
property. Recall that both @ and

�
were introduced as K-linear operations on F .

Using the Leibniz axiom (2), one sees immediately that @ is even C -linear. It is
natural to expect the same from

�
, but this is exactly the difference between (4)

and (8).

Proposition 10. Let .F ; @/ be a differential algebra and
�

a section for @. Then
�

satisfies the differential Baxter axiom (4) if and only if it satisfies the pure Baxter
axiom (8) and is C -linear.

Proof. Assume first that
�

satisfies the differential Baxter axiom (4). Then the pure
Baxter axiom (8) holds by Proposition 9. For proving

�
cg D c

�
g for all c 2 C

and g 2 F , we use the integration-by-parts formula (6) and c0 D 0.
Conversely, assume the pure Baxter axiom (8) is satisfied and

�
is C -linear. By

Proposition 7 it suffices to prove the integration-by-parts formula (6) for f; g 2 F .
Since F D C uI , we may first consider the case f 2 C and then the case f 2 I .
But the first case follows from C -linearity; the second case means f D � Qf for
Qf 2 F , and (6) becomes the pure Baxter axiom (8) for Qf and g. ut

Let us now look at some natural examples of integro-differential algebras, in
addition to our standard examples C1.�/ and C1Œa; b�.

Example 11. The analytic functions on the real interval Œa; b� form an integro-
differential subalgebra C!Œa; b� of C1Œa; b� overK D � or K D �. It contains in
turn the integro-differential algebra KŒx; eKx� of exponential polynomials, defined
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as the space of allK-linear combinations of xne�x , with n 2 � and � 2 K . Finally,
the algebra of ordinary polynomialsKŒx� is an integro-differential subalgebra in all
cases.

All the three examples above have algebraic analogs, with integro-differential
structures defined in the expected way.

Example 12. For a fieldK of characteristic zero, the formal power seriesKŒŒx�� are
an integro-differential algebra. One sets @xk D kxk�1 and

�
xk D xkC1=.k C 1/;

note that the latter needs characteristic zero. The formal power series contain
a highly interesting and important integro-differential subalgebra: the holonomic
power series, defined as those whose derivatives span a finite-dimensionalK-vector
space [29, 77].

Of course KŒŒx�� also contains (an isomorphic copy of) the integro-differential
algebra of exponential polynomials. In fact, one can define KŒx; eKx� algebraically
as a quotient of the free algebra generated by the symbols xk and e�x , with �
ranging overK . Derivation and integration are then defined in the obvious way. The
exponential polynomials contain the polynomial ringKŒx� as an integro-differential
subalgebra. WhenK D � orK D �, we use the notationKŒx� andKŒx; eKx� both
for the analytic and the algebraic object since they are isomorphic.

The following example is a clever way of transferring the previous example to
coefficient fields of positive characteristic.

Example 13. Let K be an arbitrary field (having zero or positive characteristic).
Then the algebra H.K/ of Hurwitz series [46] over K is defined as the K-vector
space of infinite K-sequences with the multiplication defined as

.an/ � .bn/ D
 

nX
iD0

 
n

i

!
aibn�i

!

n

for all .an/; .bn/ 2 H.K/. If one introduces derivation and integration by

@ .a0; a1; a2; : : : / D .a1; a2; : : : /;�
.a0; a1; : : : / D .0; a0; a1; : : : /;

the Hurwitz series form an integro-differential algebra .H.K/; @;
�
/, as explained

by [47] and [37]. Note that as an additive group, H.K/ coincides with the formal
power seriesKŒŒz��, but its multiplicative structure differs: We have an isomorphism

1X
nD0

an zn 7! .nŠ an/

from KŒŒz�� to H.K/ if and only if K has characteristic zero. The point is that one
can integrate every element of H.K/, whereas the formal power series zp�1 does
not have an antiderivative in KŒŒz�� if K has characteristic p > 0. ut
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Now for the promised counterexample to the claim that the section axiom would
suffice for merging a differential algebra .F ; @/ and a Rota-Baxter algebra .F ;

�
/

into an integro-differential algebra .F ; @;
�
/.

Example 14. SetR D KŒy�=.y4/ forK a field of characteristic zero and define @ on
F D RŒx� as usual. Then .F ; @/ is a differential algebra. Let us define a K-linear
map

�
on F by �

f D � �
f C f .0; 0/ y2; (9)

where
� � is the usual integral on RŒx� with xk 7! xkC1=.k C 1/. Since the second

term vanishes under @, we see immediately that
�

is a section of @. For verifying the
pure Baxter axiom (8), we compute

.
�
f /.

�
g/ D .� �

f /.
� �
g/C y2 � ��

g.0; 0/ f C f .0; 0/ g�C f .0; 0/ g.0; 0/ y4;�
f

�
g D �

f
�� �
g C g.0; 0/ y2� D � �

f
� �
g C g.0; 0/ y2 � �

f:

Since y4 � 0 and the ordinary integral
� � fulfills the pure Baxter axiom (8), this

implies immediately that
�

does also. However, it does not fulfill the differential
Baxter axiom (4) because it is not C -linear: Observe that C is here Ker.@/ D R, so
in particular we should have

�
.y � 1/ D y � � 1. But one checks immediately that the

left-hand side yields xy, while the right-hand side yields xy C y3. ut

3.2 Ordinary Integro-Differential Algebras

The following example shows that our current notion of integro-differential algebra
includes also algebras of “multivariate functions”.

Example 15. Consider F D C1.�2/ with the derivation @u D ux C uy . Finding
sections for @ means solving the partial differential equation ux C uy D f . Its
general solution is given by

u.x; y/ D
Z x

a

f .t; y � x C t/ dt C g.y � x/;

where g 2 C1.�/ and a 2 � are arbitrary. Let us choose a D 0 for simplicity. In
order to ensure a linear section, one has to choose g D 0, arriving at

�
f D

Z x

0

f .t; y � x C t/ dt;

Using a change of variables, one may verify that
�

satisfies the pure Baxter
axiom (8), so .F ;

�
/ is a Rota-Baxter algebra.
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We see that the constant functions C D Ker.@/ are given by .x; y/ 7! c.x � y/
with arbitrary c 2 C1.�/, while the initialized functions I D Im.

�
/ are those

F 2 F that satisfy F.0; y/ D 0 for all y 2 �. In other words, C consists
of all functions constant on the characteristic lines x � y D const, and I of
those satisfying the homogeneous initial condition on the vertical axis (which plays
the role of a “noncharacteristic initial manifold”). This is to be expected since�

integrates along the characteristic lines starting from the initial manifold. The
evaluation EWF ! F maps a function f to the function .x; y/ 7! f .0; y � x/.
This means that f is “sampled” only on the initial manifold, effectively becoming
a univariate function: the general point .x; y/ is projected along the characteristics
to the initial point .0; y � x/.

Since E is multiplicative on F , Lemma 3 tells us that .F ; @;
�
/ is in fact an

integro-differential algebra. Alternatively, note that I is an ideal and that
�

is C -
linear. Furthermore, we observe that here the polynomials are given by KŒx�. ut

In the following, we want to restrict ourselves to boundary problems for ordinary
differential equations. Hence we want to rule out cases like Example 15. The most
natural way for distinguishing ordinary from partial differential operators is to look
at their kernels since only the former have finite-dimensional ones. Note that in
the following definition we deviate from the standard terminology in differential
algebra [48, p. 58], where ordinary only refers to having a single derivation.

From now on, we restrict the ground ring K to a field. We can now characterize
when a differential algebra is ordinary by requiring that C be one-dimensional over
K , meaning C D K .

Definition 16. A differential algebra .F ; @/ is called ordinary if dimK Ker.@/ D 1.

Note that except for Example 15 all our examples have been ordinary integro-
differential algebras. The requirement of ordinariness has a number of pleasant
consequences. First of all, the somewhat tedious distinction between the weak and
strong Baxter axioms disappears since now F is an algebra over its own field of
constants K D C . Hence

�
is by definition C -linear, and Lemma 10 ensures that

the pure Baxer axiom (8) is equivalent to the differential Baxter axiom (4). Let us
summarize this.

Corollary 17. In an ordinary integro-differential algebra, the constant functions
coincide with the ground field, and the strong and weak Baxter axioms are
equivalent.

Recall that a character on an algebra (or group) is a multiplicative linear
functional; this may be seen as a special case of the notion of character in
representation theory, namely the case when the representation is one-dimensional.
In our context, a character on an integro-differential algebra F , is a K-linear map
'WF ! K satisfying '.fg/ D '.f / '.g/ and a fortiori also '.1/ D 1. So we just
require ' to be a K-algebra homomorphism, as for example in [52, p. 407].

Ordinary integro-differential algebras will always have at least one character,
namely the evaluation: One knows from Linear Algebra that a projector P onto
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a one-dimensional subspace Œw� of a K-vector space V can be written as P.v/ D
'.v/w, where 'WV ! K is the unique functional with '.w/ D 1. If V is moreover
a K-algebra, a projector onto K D Œ1� is canonically described by the functional '
with normalization '.1/ D 1. Hence multiplicative projectors like E can be viewed
as characters. In the next section, we consider other characters on F ; for the moment
let us note E as a distinguished character. We write F � for the set of all nonzero
characters on a K-algebra F , in other words all algebra homomorphisms F ! K .

One calls a K-algebra augmented if there exists a character on it. Its kernel I
is then known as an augmentation ideal and forms a direct summand of K; see for
example [33, p. 132]. Augmentation ideals are always maximal ideals (generalizing
the C1Œa; b� case) since the direct sum F D K u I induces a ring isomorphism
F=I Š K . Corollary 4 immediately translates to the following characterization of
integrals in ordinary differential algebras.

Corollary 18. In an ordinary differential algebra .F ; @/, a section
�

of @ is an
integral if and only if its evaluation is a character if and only if I D Im.

�
/ is an

augmentation ideal.

3.3 Initial Value Problems

It is clear that in general we cannot assume that the solutions of a differential
equation with coefficients in F are again in F . For example, in F D KŒx�, the
differential equation u0 � u D 0 has no solution. In fact, its “actual” solution space
is spanned by u.x/ D ex ifK D � orK D �. So in this case we should have taken
the exponential polynomials F D KŒx; eKx� for ensuring that u 2 F . But if this
is the case, we can also solve the inhomogeneous differential equation u0 � u D f

whose general solution is Kex C ex� e�xf , with
� D � x

0
as usual. Of course we

can also incorporate the initial condition u.0/ D 0, which leads to u D ex� e�xf .
This observation generalizes: Whenever we can solve the homogeneous dif-

ferential equation within F , we can also solve the initial value problem for the
corresponding inhomogeneous problem. The classical tool for achieving this explic-
itly is the variation-of-constants formula [30, p. 74], whose abstract formulation is
given in Theorem 20 below.

As usual [64], we will write F Œ@� for the ring of differential operators with
coefficients in F , see also Sect. 4. Let

T D @n C cn�1@n�1 C � � � C c0
be a monic (i.e. having leading coefficient 1) differential operator in F Œ@� of degree
n. Then we call u1; : : : ; un 2 F a fundamental system for T if it is a K-basis for
Ker.T /, so it yields the right number of solutions for the homogeneous differential
equation T u D 0. A fundamental system will be called regular if its associated
Wronskian matrix
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W.u1; : : : ; un/ D

0
BBB@

u1 � � � un
u0
1 � � � u0

n
:::

: : :
:::

u.n�1/
1 � � � u.n�1/

n

1
CCCA

is invertible in F n�n or equivalently if its Wronskian detW.u1; : : : ; un/ is invertible
in F . Of course this alone implies already that u1; : : : ; un are linearly independent.

Definition 19. A monic differential operator T 2 F Œ@� is called regular if it has a
regular fundamental system.

For such differential operators, variation of constants goes through – the canon-
ical initial value problem can be solved uniquely. This means in particular that
regular differential operators are always surjective.

Theorem 20. Let .F ; @;
�
/ be an ordinary integro-differential algebra. Given a

regular differential operator T 2 F Œ@� with degT D n and a regular fundamental
system u1; : : : ; un 2 F , the canonical initial value problem

T u D f
Eu D Eu0 D � � � D Eu.n�1/ D 0 (10)

has the unique solution

u D
nX
iD1

ui
�
d�1 dif (11)

for every f 2 F , where d D detW.u1; : : : ; un/, and di is the determinant of the
matrix Wi obtained from W by replacing the i -th column by the n-th unit vector.

Proof. We can use the usual technique of reformulating T u D f as a system
of linear first-order differential equations with companion matrix A 2 F n�n. We
extend the action of the operators

�
; @; E componentwise to F n. Setting now

Ou D W�
W �1 Of

with Of D .0; : : : ; 0; f /> 2 F n, we check that Ou 2 F n is a solution of the first-
order system Ou0 D AOuC Of with initial condition E.Ou/ D 0. Indeed we have Ou0 D
W 0�W �1 Of C WW �1 Of by the Leibniz rule and AW D W 0 since u1; : : : ; un are
solutions of T u D 0; so the differential system is verified. For checking the initial
condition, note that E

�
W �1 Of is already the zero vector, so we have also E.Ou/ D 0

since E is multiplicative.
Writing u for the first component of Ou, we obtain a solution of the initial value

problem (10), due to the construction of the companion matrix. Let us now compute
Og D W �1 Of . Obviously Og is the solution of the linear equation system W Og D Of .
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Hence Cramer’s rule, which is also applicable for matrices over rings [53, p. 513],
yields Ogi as d�1dif and hence

u D .W� Og/1 D
nX
iD1

ui
�
d�1 dif

since the first row of W is .u1; : : : ; un/.
For proving uniqueness, it suffices to show that the homogeneous initial value

problem only has the trivial solution. So assume u solves (10) with f D 0 and
choose coefficients c1; : : : ; cn 2 K such that

u D c1u1 C � � � C cnun:

Then the initial conditions yield E.W c/ D 0 with c D .c1; : : : ; cn/> 2 Kn. But we
have also E.W c/ D .EW /c because E is linear, and det EW D E.detW / because it
is moreover multiplicative. Since detW 2 F is invertible, EW 2 Kn�n is regular,
so c D .EW /�10 D 0 and u D 0. ut

4 Integro-Differential Operators

With integro-differential algebras, we have algebraized the functions to be used
in differential equations and boundary problems, but we must also algebraize the
operators inherent in both – the differential operators on the left-hand side of the
former, and the integral operators constituting the solution of the latter. As the name
suggests, the integro-differential operators provide a data structure that contains
both of these operator species. In addition, it has as a third species the boundary
operators needed for describing (global as well as local) boundary conditions of any
given boundary problem for a LODE.

4.1 Definition

The basic idea is similar to the construction of the algebra of differential operators
F Œ@� for a given differential algebra .F ; @/. But we are now starting from an
ordinary integro-differential algebra .F ; @;

�
/, and the resulting algebra of integro-

differential operators will accordingly be denoted by F Œ@;
�
�. Recall that F Œ@� can

be seen as the quotient of the free algebra generated by @ and f 2 F , modulo the
ideal generated by the Leibniz rule @f D f @Cf 0. For F Œ@;

�
�, we do the same but

with more generators and more relations. In the following, all integro-differential
algebras are assumed to be ordinary.
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Apart from
�

, we will also allow a collection of “point evaluations” as new
generators since they are needed for the specification of boundary problems. For
example, the local boundary condition u.1/ D 0 on a function u 2 F D C1Œ0; 1�
gives rise to the functional E1 2 F� defined by u 7! u.1/. As one sees immediately,
E1 is a character on F , meaning E1.uv/ D E1.u/ E1.v/ for all u; v 2 F . This
observation is the key for algebraizing “point evaluations” to an arbitrary integro-
differential algebra where one cannot evaluate elements as in C1Œ0; 1�. We will
see later how the characters serve as the basic building blocks for general local
conditions like 3u.�/ � 2u.0/ or global ones like

� 1
0
�u.�/ d�. Recall that we write

F � for the set of all characters on integro-differential algebra F . In Sect. 3 we have
seen that every integro-differential algebra .F ; @;

�
/ contains at least one character,

namely the evaluation E D 1 � �
@ associated with the integral. Depending on the

application, one may add other characters.

Definition 21. Let .F ; @;
�
/ be an ordinary integro-differential algebra over a

fieldK and˚ � F �. The integro-differential operators F˚ Œ@;
�
� are defined as the

free K-algebra generated by @, and
�

, the “functions” f 2 F , and the characters
' 2 ˚ [ fEg, modulo the rewrite rules in Table 1. If ˚ is understood, we write
F Œ@;

�
�.

The notation U � f , used in the right-hand side of some of the rules above, refers
to the action of U 2 F h@; � i on a function f 2 F ; in particular, f � g denotes
the product of two functions f; g 2 F . It is an easy matter to check that the rewrite
rules of Table 1 are fulfilled in .F ; @;

�
/, so we may regard � as an action of F Œ@;

�
�

on F . Thus every element T 2 F Œ@;
�
� acts as a map T WF ! F .

We have given the relations as a rewrite system, but their algebraic meaning is
also clear: If in the free algebra F h@; � i of Definition 21 we form the two-sided
ideal g generated by the left-hand side minus right-hand side for each rule, then
F˚ Œ@;

�
� D F h@; � i=g. Note that there are infinitely many such rules since each

choice of f; g 2 F and '; 2 ˚ yields a different instance (there may be just
finitely many characters in ˚ but the coefficient algebra F is always infinite), so g
is an infinitely generated ideal (it was called the “Green’s ideal” in [70] in a slightly
more special setting). Note that one gets back the rewrite system of Table 1 if one
uses the implied set of generators and a suitable ordering (see Sect. 7).

The reason for specifying g via a rewrite system is of course that we may use it
for generating a canonical simplifier for F Œ@;

�
�. This can be seen either from the

term rewriting or from the Gröbner basis perspective: In the former case, we see
Table 1 as a confluent and terminating rewrite system (modulo the ring axioms); in
the latter case, as a noncommutative Gröbner basis with noetherian reduction (its
elements are of course the left-hand side minus right-hand side for each rule). While

Table 1 Rewrite rules for integro-differential operators

fg ! f � g @f ! f @C @ � f �
f

� ! .
� � f / � � �

.
� � f /

' !  @' ! 0
�
f @ ! f � �

.@ � f /� .E � f / E
'f ! .' � f / ' @

� ! 1
�
f ' ! .

� � f / '
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we cannot give a detailed account of these issues here, we will briefly outline the
Gröbner basis setting since our new proof in Sect. 7 will rely on it.

4.2 Noncommutative Gröbner Bases

As detailed in Sect. 2, it is necessary for our application to deal with infinitely
generated ideals and an arbitrary set of indeterminates. The following description
of such a noncommutative Gröbner basis setting is based on the somewhat dated
but still highly readable Bergman paper [9]; for a summary see [28, �3.3]. For other
approaches we refer the reader to [61, 62, 85, 86].

Let us first recall some notions for abstract reduction relations [4]. We consider
a relation ! � A � A for a set A; typically ! realizes a single step in
a simplification process like the transformation of integro-differential operators
according to Table 1. The transitive closure of ! is denoted by

C!, its reflexive-
transitive closure by

�!. We call a 2 A irreducible if there is no a0 2 A with
a! a0; we write A# for the set of all irreducible elements. If a

�! a0 with a0 2 A#,
we call a0 a normal form of a, denoted by # a D a0 in case it is unique.

If all elements are to have a unique normal form, we have to impose two
conditions: termination for banning infinite reductions and confluence reuniting
forks. More precisely, ! is called terminating if there are no infinite chains
a1! a2! : : : and confluent if for all a; a1; a2 2 A the fork a1

� a
�! a2 finds a

reunion a1
�! a0

� a2 for some a0 2 A. If! is both terminating and confluent, it
is called convergent.

Turning to noncommutative Gröbner bases theory, we focus on reduction
relations on the free algebra KhXi over a commutative ring K in an arbitrary
set of indeterminates X ; the corresponding monomials form the free monoid hXi.
Then a reduction system for KhXi is a set ˙ � hXi � KhXi whose elements
are called rules. For a rule � D .W; f / and monomials A;B 2 hXi, the K-module
endomorphism ofKhXi that fixes all elements of hXi except sendingAWB toAfB
is denoted by A�B and called a reduction. It is said to act trivially on a 2 KhXi if
the coefficient of AWB in a is zero.

Every reduction system˙ induces the relation!˙ � KhXi�KhXi defined by
setting a!˙ b if and only if r.a/ D b for some reduction acting nontrivially on a.
We call its reflexive-transitive closure

�!˙ the reduction relation induced by˙ , and
we say that a reduces to b when a

�!˙ b. Accordingly we can speak of irreducible
elements, normal forms, termination and confluence of ˙ .

For ensuring termination, one can impose a noetherian monoid ordering on hXi,
meaning a partial ordering such that 1<A for all A2 hXi and such that B <B 0
implies ABC <AB 0C for A;B;B 0; C 2 hXi. Recall that for partial (i.e. not nec-
essarily total) orderings, noetherianity means that there are no infinite descending
chains or equivalently that every nonempty set has a minimal element [8, p. 156].
Note that in a noetherian monoid ordering (like the divisibility relation on natural
numbers), elements are not always comparable.
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Now if one has a noetherian monoid ordering on hXi, then˙ will be terminating
provided it respects < in the sense that W 0 < W for every rule .W; f / 2 ˙ and
every nonzero monomial W 0 of f . (Let us also remark that the condition 1 < A

from above might as well be dropped, as in [9]: The given rewrite system cannot
contain a rule 1 ! f since then W < 1 for at least one nonzero monomial W
of f , so 1 > W > WW > � � � would yield an infinite descending chain. Such rules
precluded, it is not stringent that constants in K be comparable with the elements
in X . But since it is nevertheless very natural and not at all restrictive, we stick to
the monoid orderings as given above.)

It is typically more difficult to ensure confluence of a reduction system ˙ .
According to the definition, we would have to investigate all forks a1

� a
�! a2,

which are usually infinite in number. The key idea for a practically useful criterion
is to consider only certain minimal forks (called ambiguities below, following
Bergman’s terminology) and see whether their difference eventually becomes zero.
This was first described by Buchberger in [24] for the commutative case; see
also [19, 20]. The general intuition behind minimal forks is analyzed in [18],
where Gröbner bases are compared with Knuth-Bendix completion and Robinson’s
resolution principle.

An overlap ambiguity of ˙ is given by a quintuple .�; 	; A;B; C / with ˙-rules
� D .W; f /, 	 D .V; g/ and monomials A;B;C 2 hXinf1g such that W D AB

and V D BC . Its associated S-polynomial is defined as f C�Ag, and the ambiguity
is called resolvable if the S-polynomial reduces to zero. (In general one may also
have so-called inclusion ambiguities, but it turns out that one can always remove
them without changing the resulting normal forms [9, �5.1]. Since the reduction
system of Table 1 does not have inclusion ambiguities, we will not discuss them
here.)

For making the connection to ideal theory, we observe that every reduction
system ˙ gives rise to a two-sided ideal I˙ generated by all elements W � f
for .W; f / 2 ˙ ; we have already seen this connection for the special case of the
integro-differential operators. Note that a

�!˙ 0 is equivalent to a 2 I˙ .
In the given setting, the task of proving convergence can then be attacked by the

so-called Diamond Lemma for Ring Theory, presented as Theorem 1.2 in Bergman’s
homonymous paper [9]; see also Theorem 3.21 in [28]. It is the noncommutative
analog of Buchberger’s criterion [19] for infinitely generated ideals. (In the version
given below, we have omitted a fourth equivalent condition that is irrelevant for our
present purposes.)

Theorem 22. Let ˙ be a reduction system for KhXi and � a noetherian monoid
ordering that respects ˙ . Then the following conditions are equivalent:

• All ambiguities of ˙ are resolvable.
• The reduction relation

�!˙ is convergent.
• We have the direct decompositionKhXi D KhXi# u I˙ as K-modules.

When these conditions hold, the quotient algebra KhXi=I˙ may be identified with
the K-moduleKhXi#, having the multiplication a � b D # ab.
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We will apply Theorem 22 in Sect. 7 for proving that Table 1 constitutes a
Gröbner basis for the ideal g. Hence we may conclude that F Œ@;

�
� can be identified

with the algebra F h@; � i# of normal forms, and this is what gives us an algorithmic
handle on the integro-differential operators. It is thus worth investigating these
normal forms in some more detail.

4.3 Normal Forms

We start by describing a set of generators, which will subsequently be narrowed
to the normal forms of F˚ Œ@;

�
�. The key observation is that in any monomial we

never need more than one integration while all the derivatives can be collected at its
end.

Lemma 23. Every integro-differential operator in F˚ Œ@;
�
� can be reduced to a

linear combination of monomials f '
�
g @i , where i 	 0 and each of f; ';

�
; g;  

may also be absent.

Proof. Call a monomial consisting only of functions and functionals “algebraic”.
Using the left column of Table 1, it is immediately clear that all such monomials
can be reduced to f or ' or f '. Now let w be an arbitrary monomial in the
generators of F˚ Œ@;

�
�. By using the middle column of Table 1, we may assume

that all occurrences of @ are moved to the right, so that all monomials have the form
w D w1 � � �wn@i with i 	 0 and each of w1; : : : ;wn either a function, a functional
or

�
. We may further assume that there is at most one occurrence of

�
among the

w1; : : : ;wn. Otherwise the monomials w1 � � �wn contain
� Qw�

, where each Qw D f '

is an algebraic monomial. But then we can reduce

� Qw� D .� f '/� D .� � f /'�

by using the corresponding rule of Table 1. Applying these rules repeatedly, we
arrive at algebraic monomials left and right of

�
(or just a single algebraic monomial

if
�

is absent). ut
In TH9OREM8, the integro-differential operators over an integro-differential

algebra F of coefficient functions are built up by FreeIntDiffOp[F ,K]. This
functor constructs an instance of the monoid algebra with the word monoid over the
infinite alphabet consisting of the letters @ and

�
along with a basis of F and with

all multiplicative characters induced by evaluations at points in K:

Definition "IntDiffOp", any , K ,
IntDiffOp , K where FreeIntDiffOp , K , GreenSystem , K

QuotAlg GBNF ,
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In this code fragment, the GreenSystem functor contains the encoding of the
aforementioned rewrite system (Table 1), here understood as a noncommutative
Gröbner basis. Normal forms for total reduction modulo infinite Gröbner bases are
created by the GBNF functor, while the QuotAlg functor constructs the quotient
algebra from the corresponding canonical simplifier (see Sect. 2 for details). For
instance, multiplying the integral operator

�
by itself triggers an application of the

Baxter rule:

Compute 1, " " 1, " " FormatP

A x x A

Here integral operators are denoted by A, following the notation in the older
implementation [70].

We turn now to the normal forms of boundary conditions. Since they are intended
to induce mappings F ! K , it is natural to define them as those integro-differential
operators that “end” in a character ' 2 ˚ . For example, if ' is the point evaluation
E1 considered before, the composition E1@ describes the local condition u0.1/ D 0,
the composition E1

�
the global condition

� 1
0
u.�/ d� D 0. In general, boundary

conditions may be arbitrary linear combinations of such composites; they are known
as “Stieltjes conditions” in the literature [15, 16].

Definition 24. The elements of the right ideal

j˚/ D ˚ �F˚ Œ@;
�
�

are called boundary conditions over F .

It turns out that their normal forms are exactly the linear combinations of local
and global conditions as in the example mentioned above. As a typical representative
over F D C1.�/, one may think of an element like

E0@
2 C 3 E� � 2 E2�

�
sin x;

written as u00.0/C 3 u.�/� 2� 2�
0

sin �u.�/ d� in traditional notation.

Proposition 25. Every boundary condition of j˚/ has the normal form

X
'2˚

 X
i2�

a';i '@
i C '�

f'

!
; (12)

with only finitely many a';i 2 K and f' 2 F nonzero.

Proof. By Lemma 23, every boundary condition of j˚/ is a linear combination of
monomials having the form
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w D 
f '�
g @i or w D 
f '@i (13)

where each of f; g; ';  may also be missing. Using the left column of Table 1, the
prefix 
f ' can be reduced to a scalar multiple of a functional, so we may as well
assume that f and ' are not present; this finishes the right-hand case of (13). For
the remaining case w D 
�

g @i , assume first that  is present. Then we have


 .
�
g / D 
 .� � g/ D .
� � g/ 
 D .
� � g/ ;

so w is again a scalar multiple of  @i , and we are done. Finally, assume we have
w D 
�

g@i . If i D 0, this is already a normal form. Otherwise we obtain

w D 
 .� g@/ @i�1 D .
 � g/ 
@i�1 � 
�
g0@i�1 � .E � g/ E@i�1;

where the first and the last summand are in the required normal form, while the
middle summand is to be reduced recursively, eventually leading to a middle term
in normal form˙
�

g0@0 D ˙
�
g0. ut

Most expositions of boundary problems – both analytic and numeric ones –
restrict their attention to local conditions, even more specifically to those with
just two point evaluation (so-called two-point boundary problems). While this is
doubtless the most important case, there are at least three reasons for considering
Stieltjes boundary conditions of the form (12).

• They arise in certain applications (e.g. heat radiated through a boundary) and in
treating ill-posed problems by generalized Green’s functions [70, p. 191].

• As we shall see (Sect. 5), they are needed for factoring boundary problems.
• Their algebraic description as a right ideal is very natural.

Hence we shall always mean all of j˚/ when we speak of boundary conditions.
Let us now turn to the other two ingredients of integro-differential operators: We

have already mentioned the differential operators F Œ@�, but we can now see them as
a subalgebra of F˚ Œ@;

�
�. They have the usual normal forms since the Leibniz rule

is part of the rewrite system. Analogously, we introduce the subalgebra of integral
operators generated by the functions and

�
. Using Lemma 23, it is clear that the

normal forms of integral operators are F itself and linear combinations of f
�
g,

and the only rule applicable to them is
�
f

� ! � � � in Table 1. Since we have
already included F in F Œ@�, we introduce F Œ

�
� as the F -bimodule generated by�

so that it contains only the monomials of the form f
�
g.

Finally, we must consider the two-sided ideal .˚/ of F˚ Œ@;
�
� generated by ˚

whose elements are called boundary operators. A more economical description
of .˚/ is as the left F -submodule generated by j˚/ because by Lemma 23
any w
 Qw with w; Qw 2 F Œ@;

�
� can be reduced to f '

�
g @i
 Qw. Note that .˚/

includes all finite dimensional projectors P along Stieltjes boundary conditions.
Any such projector can be described in the following way: If u1; : : : ; un 2 F and
ˇ1; : : : ; ˇn 2 j˚/ are biorthogonal (meaning ˇi .uj / D ıij ), then
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P D
nX
iD1

ui ˇi W F ! F (14)

is the projector onto Œu1; : : : ; un�whose kernel is the subspace of all u 2 F such that
ˇ.u/ D 0 for all ˇ 2 Œˇ1; : : : ; ˇn�. See for example [50, p. 71] or [66] for details.
Note that all elements of .˚/ have the normal form (14), except that the .uj / need
not be biorthogonal to the .ˇi /.

We can now characterize the normal forms of F˚ Œ@;
�
� in a very straightforward

and intuitive manner: Every monomial is either a differential operator or an integral
operator or a boundary operator. Hence every element of F˚ Œ@;

�
� can be written

uniquely as a sum T C G C B , with a differential operator T 2 F Œ@�, an integral
operatorG 2 F Œ

�
�, and a boundary operator B 2 .˚/.

Proposition 26. For an integro-differential algebra F and characters ˚ � F �,
we have the direct decomposition F˚ Œ@;

�
� D F Œ@�u F Œ

�
�u .˚/.

Proof. Inspection of Table 1 confirms that all integro-differential operators having
the described sum representation T CGCP are indeed in normal form. Let us now
prove that every integro-differential operator of F˚ Œ@;

�
� has such a representation.

It is sufficient to consider its monomials w. If w starts with a functional, we obtain
a boundary condition by Proposition 25; so assume this is not the case. From
Lemma 23 we know that

w D f '�
g @i or w D f '@i ;

where each of '; g;  may be absent. But w 2 .˚/ unless ' is absent, so we may
actually assume

w D f �
g @i or w D f @i :

The right-hand case yields w 2 F Œ@�. If  is present in the other case, we may
reduce

�
g to .

� � g/ , and we obtain again w 2 .˚/. Hence we are left with
w D f

�
g@i , and we may assume i > 0 since otherwise we have w 2 F Œ

�
�

immediately. But then we can reduce

w D f .� g@/ @i�1 D f �g � �
.@ � g/ � .E � g/ E

�
@i�1

D .fg/ @i�1 � f �
.@ � g/ @i�1 � .E � g/ f E @i�1;

where the first term is obviously in F Œ@� and the last one in .˚/. The middle term
may be reduced recursively until the exponent of @ has dropped to zero, leading to
a term in F Œ

�
�. ut

We can observe the direct decomposition F˚ Œ@;
�
� D F Œ@�uF Œ

�
�u .˚/ in the

following sample multiplication of
�
@ and @@xex

�
:
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Compute 1, " ", " " 1, " ", " ", " ", 1, 1 , " " FormatP

2 E 2 x 2 x x 2 x A x x A x x D

As in the previous computation, A stands for the integral
�

, moreover D for the
derivation @, and E for the evaluation. As we can see, the sum is composed of one
differential operator (the last summand), two integral operators (in the middle), and
three boundary operators (the first summands). Observe also that the input operators
are not in normal form but the output operator is.

4.4 Basis Expansion

Regarding the canonical forms for F Œ@;
�
�, there is one more issue that we have

so far swept under the rug. The problem is that in the current setup elements like
x@C 3x2@ and .xC 3x2/@ are considered distinct normal forms. More generally, if
f C g D h holds in F , there is no rule that allows us to recognize that f C g 2
F Œ@;

�
� and h 2 F Œ@;

�
� are the same. Analogously, if � Qf D Qg holds in F with

� 2 K , then � Qf and Qg are still considered to be different in F Œ@;
�
�. A slightly

less trivial example is when f D .cos x/.cos2 x2/ and g D �.sin x/.sin x2/ so
that h D cos .x C x2/. What is needed in general is obviously a choice of basis for
F . But since such a choice is always to some degree arbitrary, we would like to
postpone it as much as possible.

An unbiased way of introducing all K-linear relations in F is simply to collect
them in all in the two-sided ideal

l D .f C g � h; � Qf � Qg j f C g D h and � Qf D Qg in F / � F h@; � i;
which we shall call the linear ideal. Since l C g corresponds to a unique ideal Ql in
F Œ@;

�
�, the necessary refinement of F Œ@;

�
� can now be defined as

F #Œ@;
�
� D F Œ@;

�
�=Ql Š F h@; � i=.lC g/

whose elements shall be called expanded integro-differential operators. Note that
Ql is really the “same” ideal as l except that now f; g; h; Qf ; Qg 2 F Œ@;

�
�. By the

isomorphism above, coming from the Third Isomorphism Theorem [31, Theorem
1.22], we can think of F #Œ@;

�
� in two ways: Either we impose the linear relations on

F Œ@;
�
� or we merge them in with the Green’s ideal – let us call these the a-posteriori

and the combined approach, respectively.
For computational purposes, we need a ground simplifier on the free algebra [70,

p. 525], which we define here as a K-linear canonical simplifier for F h@; � i=l.
Since all reduction rules of Table 1 are (bi)linear in f; g 2 F , any ground simplifier
descends to a canonical simplifier � on F #Œ@;

�
�. In our implementations, � always
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operates by basis expansion (see below), but other strategies are conceivable. We
can apply � either a-posteriori or combined:

• In the first case we apply � as a postprocessing step after computing the normal
forms with respect to Table 1. We have chosen this approach in the upcoming
Maple implementation [49].

• In the combined approach, � may be used at any point during a reduction along
the rules of Table 1. It may be more efficient, however, to use � on the rules
themselves to create a new reduction system on F h@; � i; see below for an
example. We have taken this approach in our earlier implementation [69,70] and
in the current implementation.

Generally the first approach seems to be superior, at least when � tends to create
large expressions that are not needed for the rewriting steps of Table 1; this is what
typically happens if the ground simplifier operates by basis expansion.

Assume now we choose a K-basis .bi /i2I of F . If . Obi/i2I is the dual basis, we
can describe the linear ideal more economically as

l D
�
f �

X
i2I
Obi .f / bi j f 2 F

�
;

so the linear basis .bi /i2I gives rise to an ideal basis for l. Its generators f �Pi � � �
can be oriented to create a ground simplifier � Wf 7! P

i � � � effecting basis
expansion.

If one applies now such a ground simplifier coming from a basis .bi /i2I in the
combined approach, one can restrict the generators of F h@; � i to basis elements
bi 2 F rather than all f 2 F , and the reduction rules can be adapted accordingly.
For example, when F contains the exponential polynomials, the Leibniz rule @f !
f @C .@ � f / gets instantiated for f D xex as @.xex/! .xex/@C ex C x, where
the right-hand side now has three instead of two monomials! This is why the choice
of basis was built into the definition of the precursor of F #Œ@;

�
� as in [70].

Before leaving this section on integro-differential operators, let us mention
some interesting related work on these objects, carried out from a more algebraic
viewpoint. In his papers [5, 6], Bavula establishes an impressive list of various
(notably ring-theoretic) properties for algebras of integro-differential operators. The
setup considered in these papers is, on the one hand, in many respects more general
since it deals with partial rather than ordinary differential operators but, on the other
hand, the coefficients are restricted to polynomials.

Seen from the more applied viewpoint taken here, the most significant difference
is the lack of multiple point evaluations (and thus boundary conditions). Apart
from these obvious differences, there is also a somewhat subtle difference in the
meaning of E D 1 � � ı @ that we have tried to elucidate in a skew-polynomial
setting [67]. The upshot is that while our approach views E as a specific evaluation
(the prototypical example is given after Definition 2), it does not have a canonical
action in V. Bavula’s setting (and neither in our skew-polynomial approach). This is
a subtle but far-reaching difference that deserves future investigation.
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5 Applications for Boundary Problems

In this section we combine the tools developed in the previous sections to build
an algorithm for solving linear boundary problems over an ordinary integro-
differential algebra; see also [72] for further details. We also outline a factorization
method along a given factorization of the defining differential operator applicable
to boundary problems for both linear ordinary and partial differential equations;
see [66] in an abstract linear algebra setting and [74] for an overview.

For motivating our algebraic setting of boundary problems, let us consider
our standard example of an integro-differential algebra .F ; @;

�
/ with the integral

operator � W f 7!
Z x

0

f .�/ d�

for F D C1Œ0; 1�. The simplest two-point boundary problem reads then as follows:
Given f 2 F , find u 2 F such that

u00 D f;
u.0/ D u.1/ D 0: (15)

In this and the subsequent examples, we letD and A denote respectively the deriva-
tion @ and the integral operator

�
. Moreover, we denote by L the corresponding

evaluation E, which is the character

L W f 7! f .0/:

To express boundary problems we need additionally the evaluation at the endpoint
of the interval

R W f 7! f .1/:

Note that u is annihilated by any linear combination of these functionals so that
problem (15) can be described by the pair .D2; ŒL;R�/, where ŒL;R� is the subspace
generated by L, R in the dual space F�.

The solution algorithm presupposes a constructive fundamental system for the
underlying homogeneous equation but imposes no other conditions (in the literature
one often restricts to self-adjoint and/or second-order boundary problems). This
is always possible (relative to root computations) in the important special case of
LODEs with constant coefficient.

5.1 The Solution Algorithm

In the following, we introduce the notion of boundary problem in the context of ordi-
nary integro-differential algebras. Unless specified otherwise, all integro-differential
algebras in this section are assumed to be ordinary and over a fixed field K .
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Definition 27. Let .F ; @;
�
/ be an ordinary integro-differential algebra. Then a

boundary problem of order n is a pair .T;B/, where T 2 F Œ@� is a regular
differential operator of order n and B � jF �/ is an n-dimensional subspace of
boundary conditions.

Thus a boundary problem is specified by a differential operator T and a boundary
space B D Œˇ1; : : : ; ˇn� generated by linearly independent boundary conditions
ˇ1; : : : ; ˇn 2 jF �/. In traditional notation, the boundary problem .T;B/ is then
given by

T u D f;
ˇ1u D � � � D ˇnu D 0: (16)

For a given boundary problem, we can restrict to a finite subset ˚ � F �, with the
consequence that all subsequent calculations can be carried out in F˚ Œ@;

�
� instead

of F Œ@;
�
�. We will disregard this issue here for keeping the notation simpler.

Definition 28. A boundary problem .T;B/ is called regular if for each f 2 F
there exists a unique solution u 2 F in the sense of (16).

The condition requiring T to have the same order as the dimension of B
in Definition 27 is only necessary but not sufficient for ensuring regularity: the
boundary conditions might collapse on Ker.T /. A simple example of such a singular
boundary problem is .�D2; ŒLD;RD�/ using the notation from before; see also [70,
p. 191] for more details on this particular boundary problem.

For an algorithmic test of regularity, one may also apply the usual regularity
criterion for two-point boundary problems, as described in [66]. Taking any
fundamental system of solutions u1; : : : ; un for the homogeneous equation, one can
show that a boundary problem .T;B/ is regular if and only if the evaluation matrix

ˇ.u/ D

0
B@
ˇ1.u1/ � � � ˇ1.un/
:::

: : :
:::

ˇn.u1/ � � � ˇn.un/

1
CA 2 Kn�n

is regular.
For a regular boundary problem .T;B/, we can now define its Green’s operator

G as the linear operator mapping a given forcing function f 2 F to the unique
solution u 2 F of (16). It is characterized by the identities

TG D 1 and Im.G/ D B?;

where B? D fu 2 F j ˇ.u/ D 0 for all ˇ 2 Bg is the subspace of all “functions”
satisfying the boundary conditions. We also write
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G D .T;B/�1

for the Green’s operator of .T;B/.
The investigation of singular boundary problems (i.e. non-regular ones) is very

enlightening but leads us too far afield; we shall investigate it at another junction.
Let us just mention that it involves so-called modified Green’s operators and
functions [80, p. 216] and that is paves the way to an interesting non-commutative
analog of the classical Mikusiński calculus [60].

We will now recast Theorem 20 in the language of Green’s operators of initial
value problems. Given a regular differential operator T of order n, the theorem
implies that the initial value problem .T; ŒE; E@; : : : ; E@n�1�/ is regular. We call its
Green’s operator the fundamental right inverse of T and denote it by T �.

Corollary 29. Let .F ; @;
�
/ be an ordinary integro-differential algebra and let T 2

F Œ@� be a regular differential operator of order n with regular fundamental system
u1; : : : ; un. Then its fundamental right inverse is given by

T � D
nX
iD1

ui
�
d�1di 2 F Œ@;

�
�; (17)

where d; d1; : : : ; dn are as in Theorem 20.

Before turning to the solution algorithm for boundary problems, let us also
mention the following practical formula for specializing Corollary 29 to the
important special case of LODEs with constant coefficients, which could also be
proved directly e.g. via the Lagrange interpolation formula. For simplicity, we
restrict ourselves to the case where the characteristic polynomial is separable.

Corollary 30. Let .F ; @;
�
/ be an ordinary integro-differential algebra and con-

sider the differential operator T D .@��1/ � � � .@��n/ 2 F Œ@� with �1; : : : ; �n 2 K
mutually distinct. Assume each u0 D �i u; E � u D 1 has a solution u D e�i x 2 F
with reciprocal u�1 D e��i x 2 F . Then we have

T � D
nX
iD1

�i e
�i x

�
e��i x;

where ��1
i D .�i � �1/ � � � .�i � �i�1/.�i � �iC1/ � � � .�i � �n/.

Proof. Let us write V for the n� n Vandermonde determinant in �1; : : : ; �n and Vi
for the .n � 1/ � .n � 1/ Vandermonde determinant in �1; : : : ; �i�1; �iC1; : : : ; �n.
Evaluating the quantities of (17), one sees immediately that

d D e.�1C����n/x V and di D .�1/nCi e.�1C���C�i�1C�iC1C���C�n/x Vi :
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Hence we have di=d D .�1/nCi e��i x Vi=V . Using the well-known formula for
the Vandermonde determinant, one obtains di=d D �i e

��i x , and now the result
follows from Corollary 29. ut

Summarizing our earlier results, we can now give a solution algorithm for
computing G D .T;B/�1, provided we have a regular fundamental system
u1; : : : ; un for T u D 0 and a K-basis ˇ1; : : : ; ˇn for B. The algorithm proceeds
in three steps:

1. Construct the fundamental right inverse T � 2 F Œ@;
�
� as in Corollary 29.

2. Determine the projector P DPn
iD1ui Q̌i 2 F Œ@;

�
� as in (14).

3. Compute G D .1 � P/T � 2 F Œ@;
�
�.

Theorem 31. The above algorithm computes the Green’s operator G 2 F Œ@;
�
�

for any regular boundary problem .T;B/.

Proof. See [72]. ut
The computation of Green’s operators for boundary problems for ODEs using

the above algorithm takes on the following concrete form in TH9OREM8 code.

GreensOp
P

F, 1 Proj
P

,F RightInv
P

F

Here B is a basis for the boundary space and F a regular fundamental system.
Let us consider again example (15): Given f 2 F , find u 2 F such that

u00 D f;
u.0/ D u.1/ D 0:

The Green’s operatorG of the boundary problem can be obtained by our implemen-
tation via the following computation

G GreensOp D2, L, R

A x x B x A x x B x

where we use the notation from before: Au D R x
0

u.�/ d�, Lu D u.0/, Ru D u.1/

and in addition,Bu D R 1
x

u.�/ d�. The corresponding Green’s function is computed
in an immediate postprocessing step:

GreensFct G

g x,
x

xx x

x
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As noted in [70], the Green’s function provides a canonical form for the Green’s
operator. Moreover, one can obtain the function u.x/ and thus solve the boundary
problem through knowledge of the Green’s function in the following identity:

u.x/ D Gf.x/ D
Z 1

0

g.x; �/f .�/ d�:

By replacing the Green’s function obtained above in the latter integral we obtain

u.x/ D .x � 1/
Z x

0

�f .�/ d� C x
Z 1

x

.� � 1/f .�/ d�:

Furthermore, we can look at some specific instances of the forcing function f .x/.
Let us first consider the simple example f .x/ D x. By an immediate calculation,
we obtain the expression for the action of G on f .x/, which is u.x/:

GreensOpAct G, x

x

6

2x4

3
x3

5

6

The expression for the solution function u.x/ can easily become more complicated,
as we can see in the next example, where we consider the instance

f .x/ D e2x C 3x2sinx3:

Relying on Mathematica for handling symbolic integration, we obtain:

GreensOpAct G, 2 x 3x2 Sin x 3

1

4

2 x

4

x

4

2 x

4

3

2
2 x x 2 x x2 9 xCos 1

1

9
xCos 3 18 xCos x 27x2Cos x

9

2
x3Cos x

9

2
x4Cos x

2

9
xCos 3x

1

3
x2Cos 3x

1

2
x3Cos 3x

1

2
x4Cos 3x

45

4
xSin 1

1

36
xSin 3

27Sin x

2
27 xSin x

45

4
x2Sin x

27

2
x3Sin x

1

18
Sin 3x

1

9
xSin 3x

5

12
x2Sin 3x

1

2
x3Sin 3x

As a last example, let us consider f .x/ D sin sin x. As we can notice below, it
cannot be integrated with Mathematica:

GreensOpAct G, Sin Sin x

1

x

x x Sin Sin
0

x

x Sin Sin
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In order to carry out the integrals involved in the application of the Green’s operator
to a forcing function, one can use any numerical quadrature method (as also
available in many computer algebra systems).

5.2 Composing and Factoring Boundary Problems

In the following, we discuss the composition of boundary problems corresponding
to their Green’s operators. We also describe how factorizations of a boundary
problem along a given factorization of the defining operator can be characterized
and constructed. We refer again to [66, 72] for further details. We assume that
all operators are defined on suitable spaces such that the composition is well-
defined. It is worth mentioning that the following approach works in an abstract
setting, which includes in particular boundary problems for linear partial differential
equations (LPDEs) and systems thereof; for simplicity, we will restrict ourselves in
the examples to the LODE setting.

Definition 32. We define the composition of boundary problems .T1;B1/ and
.T2;B2/ by

.T1;B1/ ı .T2;B2/ D .T1T2;B1 � T2 CB2/:

So the boundary conditions from the first boundary problem are “translated” by
the operator from the second problem. The composition of boundary problems is
associative but in general not commutative. The next proposition tells us that the
composition of boundary problems preserves regularity.

Proposition 33. Let .T1;B1/ and .T2;B2/ be regular boundary problems with
Green’s operators G1 and G2. Then .T1;B1/ ı .T2;B2/ is regular with Green’s
operatorG2G1 so that

..T1;B1/ ı .T2;B2//
�1 D .T2;B2/

�1 ı .T1;B1/
�1:

The simplest example of composing two boundary (more specifically, initial
value) problems for ODEs is the following. Using the notation from before, one
sees that

.D; ŒL�/ ı .D; ŒL�/ D .D2; ŒLD�C ŒL�/ D .D2; ŒL;LD�/:

Let now .T;B/ be a boundary problem and assume that we have a factorization
T D T1T2 of the defining differential operator. We refer to [66, 72] for a
characterization and construction of all factorizations

.T;B/ D .T1;B1/ ı .T2;B2/

into boundary problems. In particular, if .T;B/ is regular, it can be factored into
regular boundary problems: the left factor .T1;B1/ is unique, while for the right
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factor .T2;B2/ we can choose any subspace B2 � B that makes the problem
regular. We can compute the uniquely determined boundary conditions for the
left factor by B1 D B � G2, where G2 is the Green’s operator for some regular
right factor .T2;B2/. By factorization, one can split a problem of higher order
into subproblems of lower order, given a factorization of the defining operator.
For algorithms and results about factoring ordinary differential operators we refer
to [64, 78, 84].

Given a fundamental system of the differential operator T and a right inverse of
T2, one can factor boundary problems in an algorithmic way as shown in [66] and
in an integro-differential algebra [72]. As described in [74], we can also compute
boundary conditions B2 � B such that .T2;B2/ is a regular right factor, given
only a fundamental system of T2. The unique left factor can be then computed as
explained above. This allows us to factor a boundary problem if we can factor the
differential operator and compute a fundamental system of only one factor. The
remaining lower order problems can then also be solved by numerical methods.

Here is how we can compute the boundary conditions of the left and right factor
problems for the boundary problem .D2; ŒL;R�/ from previous example (15), along
the trivial factorization with T1 D T2 D D. The indefinite integral A D R x

0
is the

Green’s operator for the regular right factor .D; ŒL�/.

Fact D, D, L, R , R

A B , L

This factorization reads in traditional notation as

u0 D fR 1
0

u.�/ d� D 0 ı
u0 D f
u.0/ D 0 D

u00 D f
u.0/ D u.1/ D 0 :

Note that the boundary condition for the unique left factor is an integral (Stieltjes)
boundary condition.

We consider as a second example the fourth order boundary problem [72,
Example 33]:

u0000 C 4u D f;
u.0/ D u.1/ D u0.0/ D u0.1/ D 0: (18)

Factoring the boundary problem along D4 C 4 D .D2 � 2i/.D2 C 2i/, we obtain
the following boundary conditions for the factor problems.

Fact D2 2 , D2 2 , L, R, L D, R D , 1 x, 1 x

A Complex 1,1 x B Complex 1,1 x, A Complex 1, 1 x B Complex 1, 1 x , L, R
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6 Integro-Differential Polynomials

In this section, we describe the algebra of integro-differential polynomials [73]
obtained by adjoining an indeterminate function to a given integro-differential
algebra .F ; @;

�
/. Intuitively, these are all terms that one can build using an

indeterminate u, coefficient functions f 2 F and the operations C; �; @; � ,
identifying two terms if one can be derived from the other by the axioms of integro-
differential algebras and the operations in F . A typical term for .KŒx�; @;

�
/ looks

like this:

.4uu0� .x C 3/u03/.u0� u002/C �
x6uu005� .x2 C 5x/u3u02� u

From the computational point of view, a fundamental problem is to find a canonical
simplifier (see Sect. 2) on these objects. For example, the above term can be
transformed to

4uu02� xu03� u002 C 4uu02� u002� xu03 C 12uu02� u03� u002 C 12uu02� u002� u03

C �
x6uu005� x2u3u02� uC 5� x6uu005� xu3u02� u:

by the Baxter axiom and the K-linearity of the integral.
As outlined in the next subsection, a notion of polynomial can be constructed for

any variety in the sense of universal algebra. (In this general sense, an algebra is
a set with an arbitrary number of operations, and a variety is a collection of such
algebras satisfying a fixed set of identities. Typical examples are the varieties of
groups, rings, and lattices.)

For sample computations in the algebra of integro-differential polynomials, we
use a prototype implementation of integro-differential polynomials, based on the
TH9OREM8 functor mechanism (see Sect. 2).

6.1 Polynomials in Universal Algebra

In this subsection, we describe the idea of the general construction of polynomials
in universal algebra [45]. We refer to [54] for a comprehensive treatment; see also
the surveys [1, 27]. For the basic notions in universal algebra used below, see for
example [4] or [32, Chap. 1].

Let V be a variety defined by a set E of identities over a signature ˙ . Let
A be a fixed “coefficient domain” from the variety V , and let X be a set of
indeterminates (also called “variables”). Then all terms in the signature ˙ with
constants (henceforth referred to as coefficients) in A and indeterminates in X

represent the same polynomial if their equality can be derived in finitely many steps
from the identities in E and the operations inA. The set of all such terms T˙.A[X/
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modulo this congruence� is an algebra in V , called the polynomial algebra for V
in X over A and denoted by AV ŒX�.

The polynomial algebra AV ŒX� contains A as a subalgebra, and A [ X is a
generating set. As in the case of polynomials for commutative rings, we have the
substitution homomorphism in general polynomial algebras. Let B be an algebra in
V . Then given a homomorphism '1WA! B and a map '2WX ! B , there exists a
unique homomorphism

'WAV ŒX�! B

such that '.a/ D '1.a/ for all a 2 A and '.x/ D '2.x/ for all x 2 X . So in a
categorical sense the polynomial algebra AV ŒX� is a free product of the coefficient
algebra A and the free algebra over X in V ; see also [1].

For computing with polynomials, we will construct a canonical simplifier on
AV ŒX� with associated system of canonical forms R. As explained before (Sect. 2),
the canonical simplifier provides for every polynomial in AV ŒX�, represented by
some term T , a canonical form R 2 R that represents the same polynomial, with
different terms in R representing different polynomials; see also [54, p. 23].

The set R must be large enough to generate all of AV ŒX� but small enough to
ensure unique representatives. The latter requirement can be ensured by endowing
a given set of terms with the structure of an algebra in the underlying variety.

Proposition 34. Let V be a variety over a signature ˙ , let A be an algebra in V
andX a set of indeterminates. If R � T˙.A[X/ is a set of terms with A[X � R
that can be endowed with the structure of an algebra in V , then different terms in
R represent different polynomials in AV ŒX�.

Proof. Since R can be endowed with the structure of an algebra in the variety V
and A [X � R, there exists a unique substitution homomorphism

'WAV ŒX�! R

such that '.a/ D a for all a 2 A and '.x/ D x for all x 2 X . Let

�WR ! AV ŒX�

denote the restriction of the canonical map associated with �. Then we have ' ı
�.R/ D R for all R 2 R, so � is injective, and different terms in R indeed
represent different polynomials. ut

As a well-known example, take the polynomial ring RŒx� in one indeterminate
x over a commutative ring R, which is AV ŒX� for A D R and X D fxg with
V being the variety of commutative unital rings. The set of all terms of the form
anx

n C � � � C a0 with coefficients ai 2 R and an ¤ 0 together with 0 is a system of
canonical forms for RŒx�. One usually defines the polynomial ring directly in terms
of these canonical forms. Polynomials for groups, bounded lattices and Boolean
algebras are discussed in [54] along with systems of canonical forms.
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6.2 Differential Polynomials

For illustrating the general construction described above, consider the algebra of
differential polynomials over a commutative differential K-algebra .F ; @/ in one
indeterminate function u, usually denoted by F fug. Clearly this is AV ŒX� for A D
F andX D fugwith V being the variety of differentialK-algebras. Terms are thus
built up with the indeterminate u, coefficients from F and the operationsC; �; @; a
typical example being

@2.f1u
2 C u/@.f2u

3/C @3.f3u/:

By applying the Leibniz rule and the linearity of the derivation, it is clear that every
polynomial is congruent to a K-linear combination of terms of the form

f

1Y
iD0

uˇii ; (19)

where f 2 F , the notation un is short for @n.u/, and only finitely many ˇi 2 �
are nonzero. In the following, we use the multi-index notation f uˇ for terms of this
form. For instance, u.1;0;3;2/ is the multi-index notation for u.u00/3.u000/2. The order
of a differential monomial uˇ is given by the highest derivative appearing in uˇ or
�1 if ˇ D 0.

Writing R for the set of all K-linear combinations of terms of the form (19), we
already know that every polynomial is congruent to a term in R. When F D KŒx�,
a typical element of R is given by

.3x3 C 5x/ u.1;0;3;2/ C 7x5u.2;0;1/ C 2xu.1;1/:

To show that R is a system of canonical forms for F fug, by Proposition 34 it
suffices to endow R with the structure of a commutative differential algebra. As
a commutative algebra, R is just the polynomial algebra in the infinite set of
indeterminates u0; u1; u2; : : :. For defining a derivation in a commutative algebra,
by the Leibniz rule and K-linearity, it suffices to specify it on the generators. Thus
R becomes a differential algebra by setting @.uk/ D ukC1. One usually defines
the differential polynomials directly in terms of these canonical forms, see for
example [48].

6.3 Integro Polynomials

We outline the integro polynomials over a Rota-Baxter algebra as in Definition 8.
This is related to the construction of free objects in general Rota-Baxter algebras;
we refer to [41] for details and references. By iterating the Baxter axiom (8), one
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obtains a generalization that is called the shuffle identity on F :

.
�
f1

� � � � � fm/ � .� g1� � � � � gn/ DX �
h1

� � � � � hmCn (20)

Here the sum ranges over all shuffles of .f1; : : : ; fm/ and .g1; : : : ; gn/; see [65, 68,
76] for details. The sum consists of

�
mCn
n

�
shuffles, obtained by “shuffling” together�

f1
� � � � � fm and

�
g1

� � � � � gn as words over the letters
�
fi and

�
gj , such that the

inner order in the words is preserved. For instance, we have

.
�
f1

�
f2/ � .

�
g1/ D

�
f1

�
f2

�
g1 C

�
f1

�
g1

�
f2 C

�
g1

�
f1

�
f2:

for the simple m D 2; n D 1 case.
The integro polynomials over F are defined as AV ŒX� for A D F and X D fug

with V being the variety of Rota-Baxter algebras over K . The full construction of
the canonical forms for integro polynomials is included in the following subsection.
But it is clear that by expanding products of integrals by the shuffle identity, every
integro polynomial is congruent to a K-linear combination of terms of the form

f uk
�
f1u

k1
� � � � � fmukm (21)

with f; f1; : : : ; fm 2 F and k; k1; : : : ; km 2 �. However, they cannot be canonical
forms, since terms like

�
.f C g/u and

�
f uC �

gu or
�
�f u and �

�
f u represent

the same polynomials.
Writing R for the set of all K-linear combinations of terms of the form (21),

the multiplication of two elements of R can now be defined via (20) as follows.
Since the product of (21) with another term gul

�
g1ul1

� � � � � gnuln should clearly be
given by fg ukCl .

�
f1uk1

� � � � � fmukm/ .
�
gulg1ul1

� � � �fnuln/, it remains to define
the so-called shuffle product on integral terms (those having the form (21) with
f D 1 and k D 0). This can be achieved immediately by using (20) with fiuki and
gj ulj in place of fi and gj , respectively. It is easy to see that the shuffle product is
commutative and distributive with respect to addition.

The shuffle product can also be defined recursively [68]. Let J and QJ range over
integral terms (note that 1 is included as the special case of zero nested integrals).
Then we have

.
�
f ukJ / � .� Qf u

Qk QJ / D .� f uk/ t J � .� Qf u
Qk QJ /C .� Qf u

Qk/ t .� f ukJ / � QJ ; (22)

where tWR � R ! R denotes the operation of nesting integrals (with the
understanding that � binds stronger than t), defined on basis vectors by

�
F1

� � � � � Fm t �
G1

� � � � �Gn D �
F1

� � � � � Fm�
G1

� � � � �Gn; (23)

and extended bilinearly to all of R. Here Fi and Gj stand for fiuki and gj ulj ,
respectively. For example,

�
F1

�
F2 and

�
G1 can be multiplied as
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.
�
F1/t .

�
F2/ � .

�
G1/C .

�
G1/t 1 � .

�
F1

�
F2/ D .

�
F1/t .

�
F2

�
G1C

�
G1

�
F2/

C .�G1/ t .�F1�F2/ D �
F1

�
F2

�
G1 C

�
F1

�
G1

�
F2 C

�
G1

�
F1

�
F2;

analogous to the previous computation.

6.4 Representing Integro-Differential Polynomials

In the following, we describe in detail the universal algebra construction of the
integro-differential polynomials and their canonical forms. We refer to [39, 40] for
the related problem of constructing free objects in differential Rota-Baxter algebras.
We consider the variety of integro-differential algebras. Its signature ˙ contains:
the ring operations, the derivation @, the integral

�
, the family of unary “scalar

multiplications” .��/�2K , and for convenience we also include the evaluation E. The
identities E are those of aK-algebra, thenK-linearity of the three operators @,

�
, E,

the Leibniz rule (2), the section axiom (3), the Definition 2 of the evaluation, and
the differential Baxter axiom (6).

Definition 35. Let .F ; @;
�
/ be an integro-differential algebra. Then the algebra

of integro-differential polynomials in u over F , denoted by F fug in analogy to the
differential polynomials, is the polynomial algebraAV ŒX� forA D F andX D fug
with V being the variety of integro-differential algebras overK .

Some identities following from E describe basic interactions between operations
in F : the pure Baxter axiom (8), multiplicativity of the evaluation (5), the identities

E2 D E; @E D 0; E
� D 0; �

.Ef /g D .Ef /� g; (24)

and the variant (7) of the differential Baxter axiom connecting all three operations.
We need to introduce some notational conventions. We use f; g for coefficients

in F , and V for terms in T˙.F [ fug/. As for differential polynomials, we write
un for the nth derivative of u. Moreover, we write

V.0/ for E.V / and u.0/˛ for
1Y
iD0

ui .0/
˛i ;

where ˛ is a multi-index.
As a first step towards canonical forms, we describe below a system of terms

that is sufficient for representing every integro-differential polynomial (albeit not
uniquely as we shall see presently).

Lemma 36. Every polynomial in F fug can be represented by a finite K-linear
combination of terms of the form
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f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n; (25)

where f; f1; : : : ; fn 2 F , and each multi-index as well as n may be zero.

Proof. The proof is done by induction on the structure of terms, using the above
identities (8), (5), (20) and (24) of integro-differential algebras. ut
With the aid of the previous lemma we can determine the constants of F fug.
Proposition 37. Every constant in F fug is represented as a finite sum

P
˛ c˛u.0/˛

with constants c˛ in F .

Proof. By the identity
�
@ D 1 � E, a term V represents a constant in F fug if and

only if E.V / � V . Since V is congruent to a finite sum of terms of the form (25)
and since Im.E/ D C , the identities for E imply that V is congruent to a finite sum
of terms of the form c˛u.0/˛. ut

The above representation (25) of the integro-differential polynomials is not
unique since for example when trying to integrate differential polynomials by using
integration by parts, terms like

�
f u0 and f u � �

f 0u � f .0/ u.0/

are equivalent. It becomes even more tedious to decide that, for instance,

2x u.0/.3;1/u.1;3;0;4/
�
.2x3 C 3x/ u.1;2;3/

�
.x C 2/ u.2/

and

4x u.0/.3;1/u.1;3;0;4/
�
x3u.1;2;3/

�
x u.2/ C 6x u.0/.3;1/u.1;3;0;4/

�
x u.1;2;3/

�
.x C 2/ u.2/

C12x u.0/.3;1/u.1;3;0;4/
�
x u.1;2;3/

�
u.2/

represent the same polynomial. In general, the following identity holds:

Lemma 38. We have

�
V uˇkk ukC1 � 1

ˇk C 1
�
V uˇkC1

k � �
V 0uˇkC1

k � V.0/ uk.0/
ˇkC1� (26)

where k; ˇk 	 0.

Proof. Using (7) and the Leibniz rule, the left-hand side becomes

�
.V uˇkk /.uk/

0 � V uˇkC1
k � �

V 0uˇkC1
k � ˇk

�
V uˇkk ukC1 � V.0/ uk.0/

ˇkC1;

and the equation follows by collecting the
�
V uˇkk ukC1 terms. ut
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The important point to note here is that if the highest derivative in the differential
monomial uˇ of order k C 1 appears linearly, then the term

�
f uˇ is congruent to a

sum of terms involving differential monomials of order at most k. This observation
leads us to the following classification of monomials; confer also [10, 35].

Definition 39. A differential monomial uˇ is called quasiconstant if ˇ D 0,
quasilinear if ˇ 6D 0 and the highest derivative appears linearly; otherwise it is
called functional. An integro-differential monomial (25) is classified according to
its outer differential monomial uˇ , and its order is defined to be that of uˇ.

Proposition 40. Every polynomial in F fug can be represented by a K-linear
combination of terms of the form

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n; (27)

where f; f1; : : : ; fn 2 F , the multi-indices ˛; ˇ as well as n may be zero and the
u�1 ; : : : ; u�n are functional.

Proof. By Lemma 36 we can represent every polynomial in F fug as a K-linear
combination of terms of the form

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n; (28)

where the multi-indices and n can also be zero. Let us first prove by induction on
depth that every term can be written as in (28) but with nonzero multi-indices �k .
The base case n D 1 is trivial since

�
f1 can be pulled to the front. For the induction

step we proceed from right to left, using the identity

�
f

�
V � �

f � � V � �
V

�
f

implied by the pure Baxter axiom (8).
For proving that every multi-index �k in (28) can be made functional, we use

noetherian induction with respect to the preorder on J D �
f1u�1

� � � � � fnu�n that
first compares depth and then the order of u�1 . One readily checks that the left-hand
side of (26) is greater than the right-hand side with respect to this preorder, provided
that V is of this form.

Applying Lemma 38 inductively, a term
�
f1u�1 is transformed to a sum of terms

involving only integral terms with functional differential monomials, and the base
case n D 1 follows. As induction hypothesis, we assume that all terms that are
smaller than J D f u.0/˛uˇ

�
f1u�1

� � � � � fnu�n can be written as a sum of terms
involving only functional monomials. Since

�
f2u�2

� � � � � fnu�n is smaller than J , it
can be written as sum of terms involving only functional monomials; we may thus
assume that u�2 ; : : : ; u�n are all functional. Since �1 is nonzero, we are left with the
case when u�1 is quasilinear. Applying again Lemma 38 inductively, we can replace
u�1 in J by a sum of terms involving only integral terms with functional differential
monomials. The induction step follows then by the linearity of

�
. ut
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For implementing the integro-differential polynomials in TH9OREM8 we use
the functor hierarchy described in Sect. 2. The multi-index representation uˇ for
terms of the form (19) is realized by the monoid �� of natural tuples with finitely
many nonzero entries, generated by a functor named TuplesMonoid. The nested
integrals

�
f1u�1

� � � � � f nu�n are represented as lists of pairs of the form hfk; �ki,
with fk 2 F and �k 2 ��. The terms of the form (25) are then constructed via a
cartesian product of monoids as follows:

Definition "Term Monoid for IDP", , N ,
TermMonoid , N TuplesMonoid N TuplesMonoid N TuplesMonoid TuplesMonoid N

any

Using this construction, the integro-differential polynomials are built up by
the functor FreeModule[F ,B] that constructs the F -module with basis B. It is
instantiated with F being a given integro-differential algebra and B the term monoid
just described. We will equip this domain with the operations defined as below,
using a functor named IntDiffPol[F ,K]. Later in this section we will present
some sample computations.

6.5 Canonical Forms for Integro-Differential Polynomials

It is clear thatK-linear combinations of terms of the form (27) are still not canonical
forms for the integro-differential polynomials since by the linearity of the integral,
terms like

f
�
.g C h/u and f

�
guC f �

hu

or terms like
f

�
�gu and �f

�
gu

with f; g; h 2 F and � 2 K represent the same polynomial. To solve this problem,
we can consider terms of the form (27) modulo these identities coming from
linearity in the “coefficient” f and the integral, in analogy to the ideal l introduced
in Sect. 4 for F #Œ@;

�
�. Confer also [39], where the tensor product is employed for

constructing free objects in differential Rota-Baxter algebras. In the following, we
assume for simplicity that F is an ordinary integro-differential algebra.

More precisely, let R denote the set of terms of the form (27) and consider the
free K-vector space generated by R. We identify terms

f u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n

with the corresponding basis elements in this vector space. Then we factor out the
subspace generated by the following identities (analogous to the construction of the
tensor product):
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f U
�
f1u

�1
� � � � � .fk C Qfk/u�k � � � � � fnu�n

D f U �
f1u

�1
� � � � � fku�k

� � � � � fnu�n C f U �
f1u

�1
� � � � � Qfku�k

� � � � � fnu�n

f U
�
f1u

�1
� � � � � .�fk/u�k� � � � � fnu�n D �f U �

f1u
�1

� � � � � fku�k
� � � � � fnu�n

Here U is short for u.0/˛uˇ , and there are actually two more identities of the same
type for ensuringK-linearity in f . We write ŒR� for this quotient space and denote
the corresponding equivalence classes by

Œf u.0/˛uˇ
�
f1u

�1
� � � � � fnu�n �: (29)

By construction, the quotient module ŒR� now respects the linearity relations

Œf U
�
f1u

�1
� � � � � .fk C Qfk/u�k� � � � � fnu�n �

D Œf U �
f1u

�1
� � � � � fk� � � � � fnu�n�C Œf U �

f1u
�1

� � � � � Qfk� � � � � fnu�n �
Œf U

�
f1u

�1
� � � � � .�fk/u�k� � � � � fnu�n � D �Œf U �

f1u
�1

� � � � � fku�k
� � � � � fnu�n�:

together with the ones for linearity in f .
As for the tensor product, we have canonical forms for the factor space by

expanding the “coefficient” f and all the fk in (29) with respect to a K-basis B
for F , assuming B contains 1. Then every polynomial can be written as aK-linear
combination of terms of the form

bu.0/˛uˇ
�
b1u

�1
� � � � � bnu�n ; (30)

where b; b1; : : : ; bn 2 B with the condition on multi-indices as in Proposition 40.
To show that terms of the form (30) are canonical forms for the integro-

differential polynomials, we endow the quotient space ŒR� with an integro-
differential structure and invoke Proposition 34. For this we define the operations on
the generators (29) and check that they respect the above linearity relations on ŒR�.

First, we define a multiplication on ŒR�. Let R0 � R denote the K-subspace
generated by integral terms

�
f1u�1

� � � � � fnu�n , including 1 2 R as the case n D 0.
Clearly, the nesting operation (23) can be defined in a completely analogous manner
on such integral terms (the only difference being that we have now derivatives of
the indeterminate). Since it is clearly K-linear, it induces an operation tW ŒR0� �
ŒR0� ! ŒR0�. The next step is to define the shuffle product on R0 just as in (22),
again with obvious modifications. Passing to the quotient yields the shuffle product
� W ŒR0� � ŒR0� ! ŒR0�. This product is finally extending to a multiplication on all
of ŒR� by setting

Œf u.0/˛uˇJ �Œ Qf u.0/ Q̨u
Q̌ QJ � D Œf Qf u.0/˛CQ̨uˇC Q̌

.J � QJ /�
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where J and QJ range over R0. Let us compute an example:

MultIDP u 0 1 u 2 " " 3 x u 1,1 " " x2 u 0,2 , 3 u 0 2,3 u 3,1 " " x u 1,0,1

18 u 0 3,3 u 5,1 x u 1,1 u 0,2 x2 u 0,2 27 u 0 3,3 u 5,1 x u 1,1 x2 u 0,2 u 0,2

27 x u 0 3,3 u 6,2 x u 1,1 x2 u 0,2
9

2
x u 0 3,3 u 7,1 u 0,2 x2 u 0,2

27 u 0 4,4 u 5,1 x u 1,1 x2 u 0,2
3

2
u 0 5,3 u 5,1 u 0,2 x2 u 0,2

Since the multiplication on F and the shuffle product are commutative, associative,
and distributive over addition, the multiplication on ŒR� is well-defined and gives
ŒR� the structure of a commutativeK-algebra.

The definition of a derivation @ on this algebra is straightforward, using the fact
that it should respect K-linearity and the Leibniz rule (treating also the u.0/˛ as
constants), that it should restrict to the derivation on differential polynomials (which
in turn restricts to the derivation on F ), and finally that it should also satisfy the
section axiom (3). Here is a sample computation:

DiffIDP u 0 1 u 2,1 " " x u 1,0,2 " " 3 x2 u 0,2 3 u 0 2,3 u 3,2 " " 2 x3 4 x u 2,1

6 u 0 1 u 1,2 x u 1,0,2 x2 u 0,2 3 u 0 1 u 2,0,1 x u 1,0,2 x2 u 0,2

3 x u 0 1 u 3,1,2 x2 u 0,2 18 u 2,3 u 2,3 x3 u 2,1 24 x 6 x3 u 0 2,3 u 5,3

12 u 0 2,3 u 3,1,1 x3 u 2,1 8 x u 0 2,3 u 6,1,1 3 u 0 5,3 u 2,3 2 u 0 5,3 u 3,1,1

0

Using the K-linearity of this derivation, one verifies immediately that it is well-
defined. From the definition it is clear that K-linear combinations of generators of
the form Œu.0/˛� are constants for @, and one can also check that all constants are
actually of this form.

Finally, we define a K-linear integral on the differential K-algebra .ŒR�; @/.
Since we have to distinguish three different types of integrals, here and subsequently

we will use the following notation: the usual big integral sign
Z

for the integration

to be defined, the small integral sign
�

for the elements of R as we have used it
before, and

R
F for the integral on F .

The definition of the integral on ŒR� is recursive, first by depth and then by order
of uˇ, following the classification of monomials from Definition 39. In the base case
of zero depth and order, we put

Z
Œf u.0/˛� D ŒRFf �Œu.0/˛�: (31)

Turning to quasiconstant monomials, we use the following definition (which
actually includes the base case when J D 1):

Z
Œf u.0/˛J � D Œu.0/˛.RFf /J � � Œu.0/˛

�
.
R
Ff /J

0�: (32)



Symbolic Analysis for Boundary Problems 321

In the quasilinear case we write the generators in form

Œf u.0/˛V uˇkk ukC1J � with V D uˇ00 � � � uˇk�1

k�1

and construct the integral via (26). Writing s D ˇkC1, we have uˇkk ukC1 D .usk/0=s,
so we can define
Z
Œf u.0/˛V .usk/

0J � D Œf u.0/˛V uskJ �� Œu.0/˛�
Z
Œf VJ �0Œusk�� f .0/ Œu.0/˛Cˇ OJ �;

(33)
where we write f .0/ for E.f / and OJ is 1 for J D 1 and zero otherwise. In the
functional case, we set

Z
Œf u.0/˛uˇJ � D Œu.0/˛� f uˇJ �; (34)

so here we can just let the integral sign slip into the equivalence class. One may
check that the integral is well-defined in all the cases by an easy induction proof,
usingK-linearity of the integral, the evaluation on F , and the derivation on ŒR�.

Here is a small example of an integral computed in the quasiconstant case (note
that IntIDP corresponds to the big integral and "

�
" to

�
in our notation):

IntIDP u 0 1 " " x u 1,0,2 " " x2 2 u 1,2

2 x u 0 1 x u 1,0,2 u 1,2 x u 0 1 x u 1,0,2 x2 u 1,2 2 u 0 1 x2 u 1,0,2 u 1,2

u 0 1 x2 u 1,0,2 x2 u 1,2

The next example computes an integral in the quasilinear case:

IntIDP u 0 3,2 u 2,1 " " x u 1,0,2 " " x2 u 1,1

1

6
u 0 5,2 x u 4,0,2

1

6
u 0 3,2 u 2 x u 4,0,2

1

6
x2x2 u 0 3,2 u 5 x u 1,0,2

1

6
u 0 5,2 u 3 x u 1,0,2

Note that all differential monomials within integrals are functional again, as it must
be by our definition of ŒR�.

By construction the integral defined above is a section of the derivation on ŒR�.
So for showing that ŒR� is an integro-differential algebra with operations, it remains
only to prove the differential Baxter axiom (4). Equivalently, we can show that the
evaluation

E D 1 �
Z
@

is multiplicative by Corollary 4.
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Recall that the algebra of constants C in .ŒR�; @/ consists of K-linear combina-
tions of generators of the form Œu.0/˛�. By a short induction proof, we see that

Z
Œu.0/˛�ŒR� D Œu.0/˛�

Z
ŒR�: (35)

Hence the integral is homogeneous over the constants.
For showing that the evaluation is multiplicative, we first reassure ourselves that

it operates in the expected way on integro-differential monomials.

Lemma 41. We have

E Œf u.0/˛uˇJ � D f .0/ Œu.0/˛Cˇ OJ �;

where OJ is 1 for J D 1 and zero otherwise as in (33).

Proof. Note that E is C -linear by (35), so we can omit the factor u.0/˛. Assume
first ˇ D 0. Then by the quasiconstant case (32) of the definition of the integral, we
have

E ŒfJ � D ŒfJ � �
Z
ŒfJ �0 D ŒfJ � � Œ.RFf 0/J �C

Z
Œ.
R

Ff
0/J 0� �

Z
ŒfJ 0�;

which by
R
Ff

0 D f � f .0/ gives

f .0/ ŒJ � � f .0/
Z
ŒJ �0 D f .0/Œ OJ �

because Z
ŒJ �0 D ŒJ � for J ¤ 1

by the functional case (34) and zero for J D 1. If ˇ ¤ 0 is of order k, we write
uˇ D V usk with s ¤ 0, and we compute

E Œf uˇJ � D Œf V uskJ � �
Z
Œf V uskJ �

0 D f .0/ Œu.0/ˇ OJ �

by the quasilinear case (33) and the Leibniz rule. ut
Theorem 42. With the operations defined as above, .ŒR�; @;

Z
/ has the structure

of an integro-differential algebra.

Proof. As mentioned above, it suffices to prove that E is multiplicative, and we need
only do this on the generators. Again omitting the u.0/˛, we have to check that

E Œf uˇJ �Œ Qf u
Q̌ QJ � D EŒf Qf uˇC Q̌

.J � QJ /� D EŒf uˇJ � � EŒ Qf u
Q̌ QJ �:
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The case J D QJ D 1 follows directly from Lemma 41 and the multiplicativity of E
in F . Otherwise the shuffle product J � QJ is a sum of integral terms, each of them
unequal one. Using again Lemma 41 and the linearity of E, the evaluation of this
sum vanishes, as does EŒf uˇJ � � EŒ Qf u Q̌ QJ �. ut

Since ŒR� is an integro-differential algebra, we can conclude by Proposition 40
and Proposition 34 that ŒR� leads to canonical forms for integro-differential
polynomials, up to the linearity relations: After a choice of basis, terms of the
form (30) constitute a system of canonical forms for F fug. In the TH9OREM8
implementation, we actually compute in ŒR� and do basis expansions only for
deciding equality.

7 From Rewriting to Parametrized Gröbner Bases

Equipped with the integro-differential polynomials, we can now tackle the task
of proving the convergence of the reduction rules in Table 1. As explained in
Sect. 4, we will use the Diamond Lemma (Theorem 22) for this purpose. First of
all we must therefore construct a noetherian monoid ordering > on F h@; � i that
is compatible with the reduction rules. In fact, there is a lot of freedom in defining
such a >. It is sufficient to put @ > f for all f 2 F and extend this to words
by the graded lexicographic construction. The resulting partial ordering is clearly
noetherian (since it is on the generators) and compatible with the monoid structure
(by its grading). It is also compatible with the rewrite system because all rules reduce
the word length except for the Leibniz rule, which is compatible because @ > f .

Thus it remains to prove that all ambiguities of Table 1 are resolvable, and we
have to compute the corresponding S-polynomials and reduce them to zero. On the
face of it, there are of course infinitely many of these, suitably parametrized by
f; g 2 F and '; 2 ˚ . For example, let us look at the minimal fork generated by�

u
�

v
�

. In this case, the rule
�
f

�
may be applied either with f D u or with f D v

yielding the reductions

�
u
�

v
�

. &
.
� � u/ � v

� � �
.
� � u/v� �

u .
� � v/ � � �

u
�
.
� � v/

with the S-polynomial p D .� � u/ � v
� � �

.
� � u/v� � �

u .
� � v/ � C �

u
�
.
� � v/. But

actually we should not call p an S-polynomial since it represents infinitely many:
one for each choice of u; v 2 F .

How should one handle this infinitude of S-polynomials? The problem is that
for reducing S-polynomials like p one needs not only the relations embodied in the
reduction of Table 1 but also properties of the operations @;

� WF ! F acting on
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u; v 2 F . Since these computations can soon become unwieldy, one should prefer
a method that can be automated. There are two options that may be pursued:

• Either one retreats to the viewpoint of rewriting, thinking of Table 1 as a
two-level rewrite system. On the upper level, it applies the nine parametrized
rules with f; g 2 F and '; 2 ˚ being arbitrary expressions. After each
such step, however, there are additional reductions on the lower level for
applying the properties of @;

� WF ! F on these expressions. Using a custom-
tailored reduction system for the lower level, this approach was used in the old
implementation for generated an automated confluence proof [70].

• Or one views an S-polynomial like p nevertheless as a single element, not
in F h@; � i but in OF h@; � i with OF D F fu; vg. With this approach, one
remains within the paradigm of parametrized Gröbner bases, and the interlocked
operation of the two levels of reduction is clarified in a very coherent way: The
upper level is driven by the canonical simplifier on OF Œ@;

�
�, the lower level by

that on F fu; vg.
It is the second approach that we will explain in what follows.

Using OF h@; � i instead of F h@; � i takes care of the parameters f; g 2 F but
then there are also the characters '; 2 ˚ . The proper solution to this problem
would be to use a refined version of integro-differential polynomials that starts from
a whole family .

�
'
/'2˚ of integrals instead of the single integral

�
, thus leading to

a corresponding family of evaluations u.'/ instead of the single evaluation u.0/. We
plan to pursue this approach in a forthcoming paper. For our present purposes, we
can take either of the following positions:

• The characters '; may range over an infinite set ˚ , but they are harmless since
unlike the f; g 2 F they do not come with any operations (whose properties
must be accounted for by an additional level of reduction). In this case, Table 1
is still an infinitely generated ideal in OF h@; � i, and we have to reduce infinitely
many S-polynomials. But the ambiguities involving characters are all of a very
simple nature, and their reduction of their S-polynomials is straightforward.

• Alternatively, we may restrict ourselves to a finite set of characters (as in most
applications!) so that Table 1 actually describes a finitely generated ideal in
OF h@; � i, and we need only consider finitely many S-polynomials.

The second alternative is somewhat inelegant due to the proliferation of instances
for rules like ' !  . In our implementation, we have thus followed the first
alternative with a straightforward treatment of parametrization in '; but we will
ignore this issue in what follows.

We can now use the new TH9OREM8 implementation for checking that the nine
rules in Table 1 form a Gröbner basis in OF h@; � i. As explained before, we use
the Diamond Lemma for this purpose (note that the noetherian monoid ordering >
applies also to OF h@; � i except that we have now just two generators u; v 2 OF D
F fu; vg instead of all f 2 F ). Hence it remains to check that all S-polynomials
reduce to zero. We realize this by using the appropriate functor hierarchy, as follows.
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We first build up the algebra of the integro-differential polynomials having, in turn,
integro-differential polynomials as coefficients, via the functor

IntDiffPolysŒIntDiffPolysŒF ;K�;K�

and we denote the resulting domain by �. Then we consider an instance of the
functor constructing the integro-differential operators over �. Finally, the compu-
tations are carried out over the algebra created by the GroebnerExtension
functor taking the latter instance as input domain, that allows to perform polynomial
reduction, S-polynomials and the Gröbner basis procedure.

Of course, the S-polynomials are generated automatically, but as a concrete
example we check the minimal fork considered above:

ReducePol " " u 1 " " v 1 " " " " " " u 1 v 1 " "

" " u 1 " " v 1 " " " " u 1 " " " " v 1

0

As it turns out, there are 17 nontrivial S-polynomials, and they all reduce to zero.
This leads us finally to the desired convergence result for F Œ@;

�
�.

Theorem 43. The system of Table 1 represents a noncommutative Gröbner basis in
F h@; � i for any graded lexicographic ordering satisfying @ > f for all f 2 F .

Proof. By the Diamond Lemma we must show that all S-polynomials p 2 F h@; � i
reduce to zero. Since they may contain at most two parameters f; g 2 F , let us write
them as p.f; g/. But we have just observed that the corresponding S-polynomials
p.u; v/ 2 OF h@; � i with OF D F fu; vg reduce to zero. Using the substitution
homomorphism

'W OF ! F ; .u; v/ 7! .f; g/;

lifted to OF Œ@;
�
� ! F Œ@;

�
� in the obvious way, we see that p.f; g/ D ' p.u; v/

reduces to zero as well. ut
From the conclusion of the Diamond Lemma, we can now infer that Table 1 indeed
establishes a canonical simplifier for F Œ@;

�
�.

8 Conclusion

The algebraic treatment of boundary problems is a new development in Symbolic
Analysis that takes its starting point in differential algebra and enriches its structures
by introducing an explicit notion of integration and boundary evaluations. Recall the
three basic tools that we have introduced for this purpose:



326 M. Rosenkranz et al.

• The category of integro-differential algebras .F ; @;
�
/ for providing a suitable

notion of “functions”. (As explained in Sect. 2, here we do not think of categories
and functors in the sense of Eilenberg and Maclane – this is also possible and
highly interesting but must be deferred to another paper.)

• The functor creating the associated integro-differential operators F Œ@;
�
� as a

convenient language for expressing boundary problems (differential operators,
boundary operators) and their solving Green’s operators (integral operators).

• The functor creating the associated integro-differential polynomials F fug, which
describe the extension of an integro-differential algebra by a generic function u.

In each of these three cases, the differential algebra counterpart (i.e. without the
“integro-”) is well-known, and it appears as a rather simple substructure in the
full structure. For example, the differential polynomials F fug over a differential
algebra .F ; @/ are simple to construct since the Leibniz rule effectively flattens
out compound terms. This is in stark contrast to an integro-differential algebra
.F ; @;

�
/, where the Baxter rule forces the presence of nested integrals for ensuring

closure under integration.
The interplay between these three basic tools is illustrated in a new confluence

proof : For an arbitrary integro-differential algebra .F ; @;
�
/, the rewrite system for

the integro-differential operators F Œ@;
�
� is shown to be a noncommutative Gröbner

basis by the aid of the integro-differential polynomials F fu; vg. Having a confluent
rewrite system leads to a canonical simplifier, which is crucial for the algorithmic
treatment as expounded in Sect. 2.

Regarding our overall mission – the algebraic treatment of boundary problems
and integral operators – we have only scratched the surface, and much is left to
be done. We have given a brief overview of solving, multiplying and factoring
boundary problems in Sect. 5. But the real challenge lies ahead, namely how to
extend our framework to:

• Linear Boundary Problems for LPDEs: As mentioned at the start of Sect. 5,
the algebraic framework for multiplying and factoring boundary problems is
set up to allow for LPDEs; see [66] for more details. But the problematic
issue is how to design a suitable analog of F Œ@;

�
� for describing integral and

boundary operators (again the differential operators are obvious). This involves
more than replacing @ by @=@x; @=@y and

�
by

� x
0
,
� y
0

because even the simplest
Green’s operators employ one additional feature: the transformation of variables,
along with the corresponding interaction rules for differentiation (chain rule) and
integration (substitution rule); see [74] for some first steps in this direction.

• Nonlinear Boundary Problems: A radically new approach is needed for that, so it
seems appropriate to concentrate first on boundary problems for nonlinear ODEs
and systems thereof. A natural starting point for such an investigation is the
differential algebra setting, i.e. the theory of differential elimination [11, 12, 44].
By incorporating initial or boundary conditions, we can use explicit integral oper-
ators on equations, in addition to the usual differential operators (prolongations).
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As a consequence, the natural objects of study would no longer be differential
but integro-differential polynomials.

We are well aware that such an approach will meet with many difficulties that
will become manifest only as we progress. Nevertheless, we are confident that an
algebraic – and indeed symbolic – treatment along these lines is possible.
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(2010). http://www.math.ucsd.edu/�ncalg/
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