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We introduce an algebraic operator framework to study discounted penalty functions in renewal risk
models. For inter-arrival and claim size distributions with rational Laplace transform, the usual integral
equation is transformed into a boundary value problem, which is solved by symbolic techniques. The
factorization of the differential operator can be lifted to the level of boundary value problems, amounting
to iteratively solving first-order problems. This leads to an explicit expression for theGerber–Shiu function
in terms of the penalty function.
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1. Introduction

We consider the collective renewal risk model introduced
by SparreAndersen (1957) that describes the amount of free capital
U(t) at time t in an insurance portfolio by

U(t) = u+ ct −
N(t)∑
k=1

Xk.

Here N(t) is a renewal process that counts the number of claims
incurred during the time interval (0, t], the constant c is the
premium rate and the random variables (Xk)k≥0 denote the claim
sizes that occur at random times (Tk)k≥0, with τk = Tk − Tk−1 i.i.d.
random variables denoting the k-th interclaim (or inter-arrival)
time (T0 = 0). The initial surplus (after the claim at time 0 is paid)
is given by u ≥ 0. Moreover, (Xk)k≥0 and (τk)k≥1 are assumed to
be independent. Ruin occurs when the surplus process becomes
negative for the first time, so the time of ruin is given by

Tu = inf{t | U(t) < 0}

and the ruin probability of a company having initial capital u is
given by

ψ(u) = P(Tu <∞ | U(0) = u).

The net profit condition cE(Tk) > E(Xk) is imposed to ensure that
ψ(u) < 1 for all u ≥ 0.
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Denoting by f (x, y, t | u) the joint probability density function
of the surplus immediately before ruin U(Tu−), the deficit at ruin
|U(Tu)| and the time of ruin Tu, we have∫
∞

0

∫
∞

0

∫
∞

0
f (x, y, t | u)dxdydt = ψ(u).

Letw(x, y) be a penalty function, nonnegative for x ≥ 0, y ≥ 0.
Then for u ≥ 0, the expected discounted penalty function (also
called Gerber–Shiu function) is defined by

m(u) = E
(
e−δTu w(U(Tu−), |U(Tu)|) 1Tu<∞ | U(0) = u

)
=

∫
∞

0

∫
∞

0

∫
∞

0
e−δt w(x, y) f (x, y, t | u)dxdydt,

where δ > 0 is a discount rate.
Since the introduction of this function in the compound Poisson

model in the papers of Gerber and Shiu (1997, 1998), there has
been a vast literature on its analysis and extensions tomore general
models. Li and Garrido (2004) and Gerber and Shiu (2005)were the
first to investigate the Gerber–Shiu function in renewal models.
In this paper we will concentrate on a new method for deriving
explicit expressions for m(u) in the case of renewal models. In
the renewal context, explicit expressions are usually restricted
to models where the claim size distribution and in particular
the interclaim distribution are (a subclass of) distributions with
rational Laplace transform (which includes Erlang and phase-type
distributions as well asmixtures of these); see alsoWillmot (1999)
and Li andGarrido (2005b). Ourmethod is perfectly suitable for this
class of distributions.
The established methods for deriving explicit expressions for

functions arising in risk theory (e.g. ruin probability, Laplace
transform of the time to ruin, Gerber–Shiu function) are either
based on defective renewal equations or integral equations
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(Volterra of second kind). Specifically, starting with the defective
renewal equation satisfied by the Gerber–Shiu function, Lin and
Willmot (2000) propose a solution expressed in terms of the
tail of a compound geometric distribution. For particular claim
sizes (combinations of exponentials, mixture of Erlangs) they
derive explicit analytic solutions for this distribution. In Willmot
(2007) this defective renewal equation method is adapted to
the analysis of renewal risk models with arbitrary distributions.
Another strategy, based on the defective renewal equation, was
suggested in the classical compound Poissonmodel by Drekic et al.
(2004). They useMathematica to obtain themoments of the time to
ruin, based on the systemof defective renewal difference equations
derived by Lin and Willmot (2000). In this paper, we introduce an
algebraic operator approachwith symbolic techniques for deriving
explicit expressions for Gerber–Shiu functions. These techniques
are easy to implement, and their further analysis can draw on the
full potential of current computer algebra systems.
In general renewal models,m(u) can alternatively be expressed

as the solution of a Volterra integral equation of the second kind
and hence as a Neumann series, see Gerber and Shiu (1998). Under
the further assumption that the interclaim times have rational
Laplace transform, the integral equation can be transformed into
an integro-differential equation (IDE) with suitable boundary
conditions. For the solution of the IDE, due to its convolution
structure, Laplace transforms are often the key tool to derive
explicit solutions; see e.g. Cheng and Tang (2003), Albrecher and
Boxma (2005) and Li and Garrido (2005b). Landriault and Willmot
(2008) obtain explicit expressions for the Laplace transform
that can be inverted back by partial fractions, for arbitrary
interclaim times and Coxian claim sizes. However, explicitly
inverting the Laplace transform is in general difficult. Li and
Garrido (2004) solved the IDE for Erlang(n) [E(n)] (sum of n
independent exponential random variables) interclaim times by
repeatedly integrating the integro-differential equation satisfied
by the Gerber–Shiu function.
In the present paper, we want to advocate an alternative

approach to derive explicit expressions for the Gerber–Shiu
function in renewal models. For interclaim time distributions
with rational Laplace transform—or equivalently if the interclaim
density satisfies a linear ordinary differential equations (LODE)
with constant coefficients—we first use the systematic approach
of Constantinescu (2006) to transform the integral equation
for m(u) into an integro-differential equation. If the claim size
distribution also has a rational Laplace transform, the IDE can
be further reduced to a linear boundary value problem with
appropriate boundary conditions (Section 2). Evaluating the IDE
and its derivatives at 0 and imposing regularity conditions at∞,
we supplement the differential equation with sufficiently many
boundary conditions so that the Gerber–Shiu function is uniquely
determined. This program considerably extends the approach
of Chen et al. (2007), who derived a LODE for m(u) in a Poisson
jump-diffusion process with phase-type jumps and solved it
explicitly for penalty functions that depend only on the deficit at
ruin.
Having arrived at a linear boundary problem, we employ the

symbolicmethod developed in Rosenkranz (2005) and Rosenkranz
and Regensburger (2008) for computing the integral operator
(Green’s operator) that maps the penalty function to the corre-
sponding Gerber–Shiu function; see Section 3 for a brief descrip-
tion of this approach. Based on an algebraic operator framework,
this method uses noncommutative Gröbner bases for transform-
ing integro-differential and boundary operators to normal forms.
Whereas the classical version of this method works only for

boundary value problems on compact intervals, we extend the
approach to problems on the positive half-line in Section 4. There
we consider operators on functions vanishing at infinity, which is
the appropriate setup for our purposes.
In Section 5 we present the solution of the boundary value
problem in terms of the Green’s operator. The method relies on
the factorization of the differential operator using the roots of the
Lundberg fundamental equation. This factorization is then lifted to
the level of boundary value problems: One can iteratively solve a
sequence of first-order boundary value problemswith appropriate
boundary conditions. It turns out that there is a crucial difference
between the roots with positive and negative real part and that
there are natural links to the so-called Dickson–Hipp operator.
Altogether, this approach allows one to compute the Gerber–Shiu
function up to quadratures.
In previous papers e.g. Li and Garrido (2004) and Chen

et al. (2007), the boundary conditions of the IDE are computed
recursively in terms of derivatives ofm(u) at zero. In Section 6, we
use an integrating factormethodwith different integration bounds
and exploit the Vandermonde-type structure of the resulting
matrix for directly deriving an explicit expression for each of these
boundary values. This in turn makes it possible to arrive at a
fully explicit formula for m(u) in terms of the penalty function.
An illustration of our method for E(n) interclaim times with E(m)
claim sizes is given in Section 7. The method also covers more
general models like the case of renewal risk models perturbed by
a Brownian motion treated in Section 8. We conclude in Section 9
by discussing possible extensions of this approach.

2. Reduction to a boundary value problem

Consider T1 to be the epoch of the first claim. Since ruin cannot
occur in the interval (0, T1), by the standard renewal argument
of Feller (1971, p. 183–184) one has

m(u) = E
(
e−δT1m(u+ cT1 − X1)

)
=

∫
∞

0
e−δt fτ (t)

(∫ u+ct

0
m(u+ ct − y)

+

∫
∞

u+ct
w(u+ ct, y− u− ct)

)
fX (y)dydt, (1)

for any claim size density fX and interclaim time density fτ . Due to
the net profit condition, themodel satisfies the regularity condition

lim
u→∞

m(u) = 0. (2)

Define the polynomial

pτ (x) = xn + an−1xn−1 + · · · + a0, (3)

where aj are real numbers for j = 0, 1, . . . , n, and a0 6= 0.
Assume that fτ satisfies a linear ordinary differential equationwith
constant coefficients, compactly written in operator notation as

pτ

(
d
dt

)
fτ (t) = 0, (4)

where ddt is the differentiation operator. For convenience, we con-
sider those LODE representations of fτ with almost homogeneous
initial conditions

f (k)τ (0) = 0 (k = 0, . . . , n− 2),

f (n−1)τ (0) = a0.
(5)

The Laplace transform of such a distribution is a rational function
that has only a constant as the numerator.
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Remark 1. One can express any densitywhich is a convolution of n
exponential densitieswith parametersλi in the aboveway, namely
the polynomial (3) is

pτ (x) =
n∏
i=1

(x+ λi), (6)

with almost homogenous initial conditions (5). In the special case
of exponentials with the same parameter λ, this is an Erlang(n)
density fτ (t) = 1

(n−1)!λ
ntn−1e−λt , satisfying Eq. (4) with almost

homogenous initial conditions (5) and polynomial

pτ (x) = (x+ λ)n. (7)

Under assumption (4) one cannowuse the technique of integration
by parts as in Theorem 3 of Constantinescu (2006, Sec. 3.2) to
obtain from (1) the integro-differential equation

p∗τ

(
c
d
du
− δ

)
m(u) = a0

∫ u

0
m(u− y)dFX (y)+ a0 ω(u), (8)

where the derivatives ofm are assumed to exist and to be bounded.
Here ω(u) =

∫
∞

u w(u, y− u)dFX (y) and

p∗τ (x) = (−1)
nxn + (−1)n−1an−1xn−1 + · · · + a0,

where p∗τ (
d
dt ) denotes the adjoint operator of the operator pτ (

d
dt )

defined through
〈
pτ ( ddt )f , g

〉
=
〈
f , p∗τ (

d
dt )g

〉
with 〈f , g〉 =

∫
∞

0 f (x)
g(x)dx together with (5). In addition to the model regularity
condition (2), we will derive in Section 6 the initial values Mi
(i = 0, . . . , n−1) of the IDE (8) through a variation of the classical
integrating factor method of Gerber and Shiu (1998), obtaining

m(0) = M0,m′(0) = M1, . . . ,m(n−1)(0) = Mn−1. (9)

Together with (2), these boundary conditions make the boundary
value problem regular.

Remark 2. Note that the same analysis also works for the case
in which the boundary conditions are not of homogeneous type
(as for instance would be the case for a mixture of Erlangs). In
that case the Laplace transform of fτ has a polynomial numerator
of lower degree than of the polynomial in the denominator. As a
consequence, one obtains further integral terms on the right-hand
side of (8), leading to a slightly more cumbersome procedure.

Define the polynomial

pX (x) = xn + bn−1xn−1 + · · · + b0. (10)

If moreover the claim size density fX satisfies a LODEwith constant
coefficients

pX

(
d
dy

)
fX (y) = 0,

and (for simplicity) almost homogeneous boundary conditions

f (k)X (0) = 0 (k = 0, . . . , n− 2),

f (n−1)X (0) = b0,

then the Gerber–Shiu function satisfies a well-posed boundary
value problem, namely the LODE

pX

(
d
du

)
p∗τ

(
c
d
du
− δ

)
m(u)

= a0b0m(u)+ a0pX

(
d
du

)
ω(u) (11)
together with boundary conditions (2) and (9). The characteristic
equation

pX (s)p∗τ (cs− δ)− a0b0 = 0 (12)

of (11) is the Lundberg fundamental equation of this model. Since
both the claim sizes and the inter-arrival times have rational
Laplace transforms, we know by the results in Li and Garrido
(2005a) and Landriault and Willmot (2008) that this equation has
exactly n roots with positive andm roots with negative real part as
long as δ > 0. Note that we exclude the limiting case δ = 0, which
is equivalent to having 0 as a solution of the Lundberg equation;
see Section 5 for a brief discussion of this case.

3. An algebraic operator approach for boundary value prob-
lems

In order to solve the boundary value problem for (11)
we will employ the symbolic computation approach developed
in Rosenkranz and Regensburger (2008) and Rosenkranz (2005).
As this approach is targeted at boundary value problems for LODE
in general differential algebras, we have to extract and adapt the
parts needed for our present purposes.
As we can restrict ourselves to LODE with constant coefficients,

we first consider two-point boundary value problems on a compact
interval [a, b]: Given a forcing function f (x) ∈ C[a, b], find a
solution g(x) ∈ Cn[a, b] of

(Dn + cn−1Dn−1 + · · · + c1D+ c0) g = f ,
β1(g) = · · · = βn(g) = 0,

(13)

where D = d
dx , ci are real numbers and the boundary con-

ditions βi are linear combinations of g(a), . . . , g(n−1)(a) and
g(b), . . . , g(n−1)(b).
Note that the boundary conditions in (13) are homogeneous. As

one easily sees, the solution for the general case of inhomogeneous
boundary conditions is given by the solution of (13) plus the
particular solution of the simple boundary value problem with
inhomogeneous boundary conditions but f = 0.
The boundary value problem (13) is called regular if for

every f there exists a unique g or equivalently if the associated
homogeneous problem only has the trivial solution. This can be
checked by testing whether the matrix formed by evaluating
the boundary conditions on a fundamental system is regular; for
details see Kamke (1967, p. 184). In this case, there is a well-
defined operator G: C[a, b] → Cn[a, b] mapping f 7→ g , known
as the Green’s operator of (13). While G is usually represented
by its associated Green’s function (Stakgold, 2000), the operator
formulation is more practical in the present setting.
An essential feature of the symbolic operator calculus is

that it allows one to compose two boundary value problems
(in particular those of the form (13)) such that the composite
Green’s operator is given by the composition of the constituent
Green’s operators. For solving boundary value problems, the other
direction is more important: Any factorization of the underlying
differential operator can be lifted to a factorization of boundary
value problems. Since we are dealing with differential operators
with constant coefficients, we can actually achieve a factorization
into first-order boundary value problems. For more details on
composing and factoring boundary value problems for LODE,
we refer again to Rosenkranz and Regensburger (2008). The
theory is developed in an abstract algebraic setting, including
in principle also boundary value problems for linear partial
differential equations, in Regensburger and Rosenkranz (2009).
In the present setting, we can describe the first-order Green’s

operators as follows. Writing

A =
∫ x
a , B =

∫ b
x , and F =

∫ b
a = A+ B,
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and

Aσ = eσ xAe−σ x, Bρ = eρxBe−ρx, and Fσρ = eσ xFe−ρx

for ρ, σ ∈ C, the basic first-order boundary value problems, with
respect to each of the end points of the interval, (D − σ) g =
f , g(a) = 0 and (D − ρ) g = −f , g(b) = 0, have respectively Aσ
and Bρ as their Green’s operators as one can see by the fundamental
theorem of calculus. Written as operator identities, this means in
particular that{
(D− σ)Aσ = 1,
(D− ρ)Bρ = −1,

(14)

so Aσ and−Bρ are right inverses of respectively D − σ and D − ρ
on C[a, b]. By Rosenkranz (2005, Table 1), we obtain furthermore
for any ρ̃, σ̃ ∈ C{
(σ − σ̃ ) AσAσ̃ = Aσ − Aσ̃
(ρ̃ − ρ) BρBρ̃ = Bρ − Bρ̃
(ρ − σ) AσBρ = Aσ + Bρ − Fσρ

(15)

on C[a, b]; the first two are called resolvent identities (Yosida,
1995). For the extension to non-compact intervals in Section 4
we mention an alternative, purely algebraic, way to derive (15),
namely as a consequence of conditions that will be simpler to
establish in the more general case:

Lemma 1. The identities (15) are algebraic consequences of{Aσ (D− σ)Aσ̃ = Aσ̃
Bρ(D− ρ)Bρ̃ = −Bρ̃
Aσ (D− σ)Bρ = Bρ − Fσρ

(16)

and the identities (14).

Proof. By (14),we haveAσ = Aσ (D−σ̃ )Aσ̃ = Aσ (σ−σ̃+D−σ)Aσ̃ ,
which equals (σ − σ̃ ) AσAσ̃ + Aσ̃ because of (16); analogously for
the other two identities of (15). �

4. Operators on functions vanishing at infinity

In the next section, we need the case a = 0 and b = ∞. So we
consider the Banach algebra (C0, ‖·‖∞) of all continuous functions
f : [0,∞) → C vanishing at infinity (Conway, 1990, p. 65). The
subalgebra of C0 consisting of n-times continuously differentiable
functions is denoted by Cn0 . The following proposition makes
precise in how far the situation on C[a, b] carries over toC0; confer
also Butzer and Berens (1967, Prop. 1.3.12) for the case of bounded
uniformly continuous functions on R.

Proposition 2. For ρ∈C with Re(ρ)>0, we have continuous inte-
gral operators

A−ρ, Bρ, e−ρxA, Be−ρx:C0 → C10 (17)

with norm bounded by 1/Re(ρ), and the identities (14) and (15) are
valid for all ρ, ρ̃, σ , σ̃ ∈ C with Re(ρ), Re(ρ̃) > 0 and Re(σ ),
Re(σ̃ ) < 0.

Proof. Let η = Re(ρ). We first check that the operators (17) map
C0 into C0. For A−ρ we use that

|A−ρ f (x)| ≤ e−ηx
∫ y

0
eηξ |f (ξ)|dξ + e−ηx

∫ x

y
eηξ |f (ξ)|dξ

for all f ∈ C0 and x ≥ y ≥ 0. Fixing ε > 0, the first summand
is smaller than ε/2 for x ≥ x0(ε, y) because η > 0. Since f ∈ C0,
we have |f (ξ)| < εη/2 for all ξ ≥ y0(ε), so the second summand
is smaller than ε/2 for x ≥ y0(ε) and y = y0(ε). Thus we obtain
|A−ρ f (x)| < ε for all x ≥ max{y0(ε), x0(ε, y0(ε))}. Using a
similar argument as for the second summand, we obtain Bρ f ∈ C0.
One immediately checks that e−ρxA and Be−ρx map even bounded
functions into C0.
Next we verify that the operators are continuous. The norm

bound for A−ρ follows from |A−ρ f (x)| ≤ e−ηx ‖f ‖∞
∫ x
0 e

ηξdξ and
e−ηx

∫ x
0 e

ηξdξ ≤ 1/η; similarly for e−ρxA and Be−ρx. For Bρ we use
the representation

Bρ f (x) =
∫
∞

0
e−ρξ f (ξ + x)dξ (18)

and the fact that
∫
∞

0 e
−ηξdξ = 1/η.

Nowwe turn to differentiability and identities (14). For A−ρ this
follows immediately from the fundamental theorem of calculus.
Using representation (18), the difference quotient (Bρ f (x + h) −
Bρ f (x))/h is given by

eρh − 1
h

∫
∞

h
e−ρξ f (ξ + x)dξ −

1
h

∫ h

0
e−ρξ f (ξ + x)dξ,

which converges to ρ Bρ f (x) − f (x) as h → 0. Finally, e−ρxAf is
differentiable again by the fundamental theorem and Be−ρxf =
e−ρxBρ f is differentiable because Bρ f is by what we have just seen.
It remains to prove the identities (15) and (16); by Lemma 1 it

suffices to show the latter. These are an easy consequence of the
fact that

Aσ (D− σ)f (x) = f (x)− eσ xf (0) and Bρ(D− ρ)f (x) = −f (x)

for all f ∈ C10 . The identity for Aσ carries over from the bounded
case and is even valid on C1[0,∞), the one for Bρ follows from the
representation (18) and integration by parts. �

Remark 3. Note that Bρ also appears in the literature as the
Dickson–Hipp operator (Dickson and Hipp, 2001; Li and Garrido,
2004), and the second equation of (15) is also used in these papers.
The crucial contribution of the present result is the third equation
of (15), i.e. the interaction between the Dickson–Hipp operator Bρ
and its counterpart Aσ .

We write E0 ⊂ C0 for the subalgebra of exponential polynomials
spanned by xje−ρx with Re(ρ) > 0.

Proposition 3. The subalgebra E0 is dense in C0, and the opera-
tors (17)map E0 into itself.

Proof. Density follows from the Stone–Weierstrass Theorem for
locally compact spaces (Conway, 1990, p. 147). For proving that
the operators (17) map E0 into itself, one uses induction on j and
integration by parts. �

Note that—by the same reasoning—the operators Aρ and Bρ also
map E0 into itself if Re(ρ) = 0 but they are no longer continuous.
This proposition provides an alternative approach to proving

the identities (14) and (15): Since E0 is dense in C0 and the
operators are continuous, it suffices to prove them for exponential
polynomials—this can be done by an elementary computation and
induction on j. Density arguments of this type could also be useful
for generalizing to larger function spaces like Lp or spaces based on
regular variation (Bingham et al., 1987).

5. Solving boundary value problems on the half-line

For computing the Gerber–Shiu function, themethod described
in Section 2 leads to a boundary value problem on the half-line. In
fact, we can rewrite Eq. (11) as

Tm = f , (19)
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with

T = pX

(
d
du

)
p∗τ

(
c
d
du
− δ

)
− a0b0

and f (u) = a0 pX

(
d
du

)
ω(u),

initial values m(i)(0) = Mi, and regularity condition m(∞) = 0.
As noted earlier (beginning of Section 3), it suffices to consider
the corresponding homogeneous boundary conditions and incor-
porate the boundary values in specific settings afterwards (Sec-
tions 7 and 8).
So let us now consider the general boundary value problem on

the half-line with homogeneous boundary conditions,

Tg = f ,

g(0) = · · · = g(m−1)(0) = 0 and g ∈ C0,
(20)

where the forcing function f is required to vanish at infinity.
We assume that the characteristic equation of T has dis-

tinct roots, which we divide into ρ1, . . . , ρn with positive and
σ1, . . . , σm with negative real part (for the case of roots with zero
real part see the discussion at the end of the section). Thuswe have
the differential operator T = TρTσ with

Tρ = (D− ρ1) · · · (D− ρn) and Tσ = (D− σ1) · · · (D− σm).

Note that in order to have a regular boundary value problem, it is
sufficient to prescribem initial conditions even though the order of
T ism+n. This is due to the regularity condition g∈C0: The general
solution g of the associated homogeneous differential equation
Tg = 0 is a linear combination of eρjx and eσix, where all terms with
positive roots must vanish and the remaining m coefficients are
determined by them conditions at zero.
The crucial point is that it is possible to factor this boundary

value problem along T = TρTσ into the regular boundary value
problems

Tσ g = h,
g(0) = · · · = g(m−1)(0) = 0 and Tρh = f ,

h ∈ C0
(21)

with forcing function f ∈ C0.

Lemma 4. The boundary value problems (21) have

Gσ = Aσ1 · · · Aσm =
m∑
i=1

aiAσi and

Gρ = (−1)n Bρ1 · · · Bρn =
n∑
j=1

bjBρj

with

ai =
m∏

k=1,k6=i

(σi − σk)
−1 and

bj = −
n∏

k=1,k6=j

(ρj − ρk)
−1

as their Green’s operators, so g = Gσh and h= Gρ f , where
∏1
k=1,k6=1

= 1.

Proof. Let us first prove the identity for Gσ by induction (the case
for Gρ is analogous). The base case m = 1 is trivial, so assume the
identity form− 1. Then (15) yields

Aσ1 · · · Aσm−1Aσm =
m−1∑
i=1

aiAσi −
(m−1∑
i=1

m∏
k=1,k6=i

(σi − σk)
−1
)
Aσm
and we are done since the parenthesis is equal to−am by the well-
known partial fraction formula.
By Proposition 2, the Green’s operators Gρ and Gσ mapC0 toCm0

and Cn0 , respectively, and (14) yields TσGσ = 1 and TρGρ = 1. It
remains to check that Gσ f satisfies the initial conditions. For that
we prove for all i < m the identity

DiGσ =
i∑
l=0

hi−l(σ1, . . . , σl+1) Aσl+1 · · · Aσm , (22)

where hi−l denotes the complete homogeneous symmetric polyno-
mial of degree i−l in the indicated variables (Stanley, 1999, p. 294);
the claim then follows because Aσ1 f (0), . . . , Aσm f (0) = 0. The
base case i = 0 is trivial, so assume (22) for i − 1. Using DAσl+1 =
1+ σl+1 Aσl+1 from (14), this gives

DiGσ =
i−1∑
l=0

hi−l−1(σ1, . . . , σl+1)DAσl+1 · · · Aσm

=

i−1∑
l=1

(
hi−l(σ1, . . . , σl)+ σl+1hi−l−1(σ1, . . . , σl+1)

)
× Aσl+1 · · · Aσm + σ

i
1 Aσ1 · · · Aσm + Aσi+1 · · · Aσm

after a little rearrangement. But the parenthesized factor in the
sum simplifies to hi−l(σ1, . . . , σl+1), while the outlying summands
also have the right factors hi−0(σ1) = σ i1 and hi−i(σ1, . . . , σj+1) =
1, respectively. �

Theorem 5. The boundary value problem (20) has the Green’s
operator

GσGρ =
m∑
i=1

n∑
j=1

cij(Aσi + Bρj − Fσiρj)

=

m∑
i=1

n∑
j=1

cij
(
eσixA(e−σix − e−ρjx)+ (eρjx − eσix)Be−ρjx

)
where cij = aibj (ρj − σi)−1, i.e. g = GσGρ f .

Proof. Let f ∈ C0. From Proposition 2 we know that G = GσGρ
maps f into Cm+n0 . By the previous lemma, Gf satisfies the
differential equation and the initial conditions. For proving that G
has the indicated sum representations, we use again Lemma 4, the
identities (15) and the definition of Fσiρj . �

If some of the ρj have zero real part, the above Green’s
operator G no longer maps C0 into itself, so the boundary value
problems (20) cannot be expected to have a solution for all f ∈ C0.
But if Gf ∈ C0, it is the unique solution of (20); by the observations
after Proposition 3, this is particularly true for f ∈ E0.

6. Initial values for E(n) risk processes

The next step for solving the boundary value problem for (19)
is to determine the initial values Mi of (9). We consider the case
of E(n) distributed interclaim times (under assumption that m
has bounded derivatives). Using (7) in the integro-differential
equation (8), we obtain(
−c
d
du
+ (λ+ δ)

)n
m(u) = λn

∫ u

0
m(u− y)dFX (y)+ λnω(u)

(23)

with the corresponding Lundberg fundamental equation

(−cz + (λ+ δ))n − λn f̂X (z) = 0, (24)
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where f̂X (z) = E(e−zX ) is the Laplace transform of fX (u). Eq. (24)
has exactly n solutions ρi (i = 1, . . . , n) with positive real part,
according to Li and Garrido (2004).
We will use a similar integrating factors technique as the one

proposed in Gerber and Shiu (1998) and arrive at a system of
linear equations in the initial values that we can solve explicitly.
A different choice of the integration bounds will simplify some
steps compared to a related approach of Li and Garrido (2004). The
change of variables and order of integration used in Gerber and
Shiu (1998) is then not necessary here. Let usmultiply (23) by e−ρiu
for each i = 1, . . . , n, and then integrate from u = ∞ to u = x to
arrive at
n∑
j=0

(
n
j

)
(−c)j(λ+ δ)(n−j)

∫ x

∞

e−ρium(j)(u)du

= λn
∫ x

∞

e−ρiu
∫ u

0
m(u− y)dFX (y)du+ λn

∫ x

∞

e−ρiuω(u)du.

Now we use integration by parts together with

lim
u→∞

e−ρium(j)(u) = 0 (j = 0, . . . , n, i = 1, . . . , n)

to obtain∫ x

∞

e−ρium(j)(u)du =
j−1∑
k=0

e−ρixρki m
(j−k−1)(x)+ ρ ji Ii(x),

where Ii(x) =
∫ x

∞

e−ρium(u)du.

Then evaluating each equation at x = 0, we note that the left-hand
side and the right-hand side terms pertaining to Ii(0) cancel due
to (24) evaluated at z = ρi. Also we see that in the right-hand side
the second integral is actually −ω̂(ρi), the Laplace transform of ω
evaluated at ρi. We obtain a system of n equations in n unknown
variablesm(k)(0)
n∑
j=1

(
n
j

)
(−c)j(λ+ δ)n−j

j−1∑
k=0

ρki m
(j−k−1)(0) = −λnω̂(ρi)

for k = 0, . . . , n− 1. Collecting and rearranging the terms, we get
n−1∑
k=0

m(k)(0)
n−k−1∑
j=0

(
n
j

)(
−
λ+ δ

c

)j
ρ
(n−k−1)−j
i︸ ︷︷ ︸

pn−k−1(ρi)

= −

(
−
λ

c

)n
ω̂(ρi), (25)

for i = 1, . . . , n. Note that the polynomials

pk(x) =
k∑
j=0

(
n
k− j

)(
−
λ+ δ

c

)k−j
xj (26)

appearing in the coefficients ofm(n−k−1)(0) are monic of degree k.
We express the system in matrix form Ax = b asp0(ρ1) · · · pn−1(ρ1)...

. . .
...

p0(ρn) · · · pn−1(ρn)


m

(n−1)(0)
...

m(0)(0)


= −

(
−
λ

c

)nω̂(ρ1)...
ω̂(ρn)

 .
According to Cramer’s rule, the solution of this system of equations
is of the form

m(k)(0) =
det(Bn−1−k)
det(A)

(k = 0, . . . , n− 1), (27)
where Bk is the n × n matrix obtained from A by replacing the
(k+ 1)-th column of A by the right-hand side b.
The following result generalizes the formula for m(0) given

in Gerber and Shiu (2005, Eq. 8.1).

Proposition 6. The k-th derivative of the expected discounted
penalty function evaluated at zero has the form

m(k)(0) = (−1)k
(
λ

c

)n n∑
i=1

ω̂(ρi) S(ρ ′i , k)∏
l=1,...,n;
l6=i

(ρl − ρi)
, (28)

for k = 0, . . . , n− 1, where ρ ′i = (ρ1, . . . , ρi−1, ρi+1, . . . , ρn) and

S(ρ ′i , k) =
k∑
j=0

(
−
λ+ δ

c

)j (n− 1+ j
j

)
ek−j(ρ ′i ),

with ek the elementary symmetric polynomials of degree k.

Proof. According to Krattenthaler (1999), the determinant of the
matrix A is the same as the Vandermonde determinant Vn =
Vn(ρ1, . . . , ρn) so

det(A) =
∏

1≤i<j≤n

(ρj − ρi).

We will show that the determinant of Bk is the product of a
Vandermonde determinant and a linear combination of symmetric
polynomials in the ρi and ω̂(ρi). Expanding along the (n − k)-th
column, one gets

det(Bn−1−k) =
n∑
i=1

(−1)i+n−kbi det(Ai,n−k),

where Ai,k is the (n−1)×(n−1)matrix obtained from A by remov-
ing the i-th row and the k-th column. By applying Corollary A.2 of
the Appendix to the matrix Ai,k and observing that

q(x) =
(
1−

λ+ δ

c
x
)n
−

(
1+

(
−
λ+ δ

c
x
)n)

,

we obtain

det(Ai,n−k) = Vn−1(ρ ′i )
k∑
j=0

djek−j(ρ ′i ),

where

dj =
[
xj
] (−1)j + ((1− λ+δ

c x)
n
−
(
1+

(
−
λ+δ
c x
)n))j+1

(1− λ+δ
c x)

n −
(
−
λ+δ
c x
)n

and [xj] f (x) = f (j)(0)/j! denotes the coefficient of xj of a power
series f (x). We will show below that

dj =
(
−
λ+ δ

c

)j (n− 1+ j
j

)
. (29)

Inserting the resulting formula for the determinant Ai,k into the
expansion of det(Bk) in Cramer’s rule, we get

m(k)(0) =
(
−
λ

c

)n n∑
i=1

(−1)i+n−k+1ω̂(ρi)
Vn−1(ρ ′i )
Vn

k∑
j=0

djek−j(ρ ′i ),

which after cancelation of the Vandermode terms leads to the
result stated.
It remains to show Eq. (29). From Eq. (34) we get that (−1)jdj =

[xj]
∑j
m=0(−q(x))

m. Since j < n we can safely add terms of order
at least n to q(x). We do this and replace q(x)with (1− λ+δ

c x)
n
−1.
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Inserting the modified q(x) and expanding the expression, we
obtain
j∑

m=0

(−q(x))m =
j∑

m=0

(−1)m
((
1−

λ+ δ

c
x
)n
− 1

)m
=

j∑
m=0

m∑
l=0

(m
l

)
(−1)l

nl∑
h=0

(
nl
h

)(
−
λ+ δ

c
x
)h

=

nm∑
h=0

(
−
λ+ δ

c
x
)h j∑

m=0

m∑
l=0

(−1)l
(m
l

)(nl
h

)
,

so that dj =
(
λ+δ
c

)j∑j
m=0

∑m
l=0(−1)

l
(m
l

) ( nl
j

)
. Rearranging and

using the simple binomial identities of Graham et al. (1989, 5.10
and 5.14), we can simplify the double sum to

j∑
l=0

(−1)l
(
nl
j

) j∑
m=0

(m
l

)
=

j∑
l=0

(−1)l
(
j+ 1
l+ 1

)(
nl
j

)

=

j+1∑
l=0

(−1)l+1
(
j+ 1
l

)(
n(l− 1)
j

)
+

(
−n
j

)

= (−1)j
(
n− 1+ j
j

)
−

j+1∑
l=0

(−1)l
(
j+ 1
l

)(
n(l− 1)
j

)
.

Finally, the last sum vanishes due to Graham et al. (1989, 5.42)
since it is the (j+ 1)-th difference of

(
n(l−1)
j

)
as a polynomial in l,

which is only of degree j. �

Since the Gerber–Shiu function is the unique solution of (19), it
has the form

m(u) = GσGρ f (u)+mp(u),

where GσGρ is given in Theorem 5 and mp(u) is the particular
solution obtained as a linear combination of the eσiu, with factors
determined by the initial values from Proposition 6.

7. Explicit solution for E(n) risk processes with E(m) claims

Let us now specialize the differential equation (11) for the
Gerber–Shiu function to the case of Erlang(n, λ) interclaim times
and Erlang(m, µ) claim sizes, with discount rate δ > 0. From the
previous section we get n boundary conditions. As described in
Section 5 one in fact needs m boundary conditions, so we assume
m ≤ n (otherwise, one can derive the remaining conditions by
evaluating higher derivatives of the integro-differential equation
(23)). We obtain a boundary value problem for the differential
equation Tm = f with D = d

du , where

T = (D+ µ)m (−c D+ λ+ δ)n − λnµm,

f (u) =
λnµm

(m− 1)!
(D+ µ)m

∫
∞

u
w(u, y− u) ym−1e−µydy (30)

and boundary conditions (2) and (9). To apply the results from
Section 5, we can choose any sufficiently smooth penalty function
w(x, y) such that limu→∞ f (u) = 0. By Proposition 3 this includes
all bivariate exponential polynomials whose terms xiyjeαxeβy
satisfy α < β < µ.
Since the characteristic equation for T is the Lundberg funda-

mental equation, we know from the general results mentioned in
Section 2 that it has n roots ρ1, . . . , ρn with positive real part and
m roots σ1, . . . , σm with negative real part. So we have the factor-
ization

T = TρTσ = (D− ρ1) · · · (D− ρn)(D− σ1) · · · (D− σm),
and Theorem 5 gives us the Green’s operator for the corresponding
homogeneous boundary value problem.
Writing f̂ for the Laplace transform of f and using the definition

of the corresponding operators, we obtain from Theorem 5 the
explicit form of the Gerber–Shiu function

m(u) =
m∑
i=1

n∑
j=1

cij

((∫ u

0
eσi(u−ξ) +

∫
∞

u
eρj(u−ξ)

)

× f (ξ)dξ − f̂ (ρj)eσiu
)
+mp(u) (31)

with

cij = −
m∏

k=1,k6=i

(σi − σk)
−1

n∏
k=1,k6=j

(ρj − ρk)
−1 (ρj − σi)

−1.

With the initial values from formula (28) the computation of the
particular solution mp satisfying the inhomogeneous boundary
conditions reduces to solving a system of linear equations,
obtained from imposing the condition that the particular solution
satisfies these given initial conditions, i.e. (mp)(i)(0) = Mi. As
remarked in Section 5, formula (31) remains valid for suitable f also
in the limiting case δ = 0, which is equivalent to having 0 among
the ρ1, . . . , ρn.
So the problem of computing the Gerber–Shiu function for a

given penalty function is reduced to quadratures: Since symbolic
algorithms for evaluating one-dimensional integrals are very
powerful (Bronstein, 2005) and easily accessible in current
computer algebra systems, one will often obtain an explicit
expression for the Gerber–Shiu function. Otherwise one can resort
to standard numerical methods for obtaining approximations.
In the particular case n = 2,m = 1 one has

T = (D+ µ) (−c D+ λ+ δ)2 − λ2µ,

f (u) = λ2µ (D+ µ)
∫
∞

u
w(u, y− u) e−µydy.

After calculating the particular solution using the initial value from
Proposition 6, we obtain the Gerber–Shiu function in the explicit
form

m(u) =
eσu

ρ1 − ρ2

(
f̂ (ρ1)
ρ1 − σ

−
f̂ (ρ2)
ρ2 − σ

−

(
λ

c

)2(
ω̂(ρ1)− ω̂(ρ2)

))

−
1

ρ1 − ρ2

∫
∞

u

(
1

ρ1 − σ
eρ1(u−ξ) −

1
ρ2 − σ

eρ2(u−ξ)
)
f (ξ) dξ

+
1

ρ1 − σ

1
ρ2 − σ

∫ u

0
eσ(u−ξ) f (ξ)dξ,

where one should recall that ρ1, ρ2 are the positive roots and σ
is the negative root of the fundamental Lundberg equation. For
example, when w(x, y) = xjyk with j and k positive integers, one
obtains
∆µk

k!λ2
m(u) = −

ρ2 − σ

(ρ1 + µ)j

×

(
jΓ
(
j, (ρ1 + µ)u

)
eρ1u +

j!
c2

(ρ1 − σ
ρ1 + µ

− c2
)
eσu
)

+
ρ1 − σ

(ρ2 + µ)j

(
jΓ
(
j, (ρ2 + µ)u

)
eρ2u +

j!
c2

(ρ2 − σ
ρ2 + µ

− c2
)
eσu
)

−
ρ1 − ρ2

(σ + µ)j

(
jΓ
(
j, (σ + µ)u

)
− j!

)
eσu,

where ∆ = (ρ1 − ρ2)(ρ1 − σ)(ρ2 − σ) is the square root of
the discriminant associated to the fundamental Lundberg equation
and Γ (a, x) =

∫
∞

x t
a−1e−tdt is the incomplete Gamma function.

This formula extends Eq. (3.8) of Cheng andTang (2003) and similar
exampleswith n = 2 fromLi andGarrido (2004, 2005b) andGerber
and Shiu (2005).
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8. Explicit solution for the classical perturbed risk model

For the case of an Erlang(n, λ) risk model perturbed by a
Brownian motion, the Gerber–Shiu function satisfies an integro-
differential equation as given in Constantinescu (2006)(
−
σ̃ 2

2
d2

du2
− c

d
du
+ λ+ δ

)n
m(u)

= λn
∫ u

0
m(u− x)fX (x)dx+ λnω(u), (32)

where σ̃ is the diffusion coefficient. Since the differential operator
of this equation has constant coefficients, the method introduced
in this paper applies. As before, for claimdistributionswith rational
Laplace transform, the equation reduces to a LODE. For instance, in
the case of E(m, µ) claim sizes, this LODEhas the same form Tm = f
with D = d

du , with

T = (D+ µ)m
(
−
σ̃ 2

2
D2 − c D+ λ+ δ

)n
− λnµm,

and f (u) as in (30) and the appropriate boundary conditions. The
characteristic equation for T is again the fundamental Lundberg
equation.
Also in this case we can derive explicit expressions for the

Gerber–Shiu function. To exemplify, we consider the well-known
case of a compound Poisson process perturbed by a Brownian
motionwith exponential claim sizes, E(1,λ)–E(1,µ) in the notation
introduced here. Then the LODE is of order three, with

T = (D+ µ)
(
−
σ̃ 2

2
D2 − c D+ λ+ δ

)
− λµ

and

f (u) = λµ (D+ µ)
∫
∞

u
w(u, y− u) e−µydy.

The initial value at zero m(0) = w(0, 0) is in this case simply
the penalty function evaluated at zero. Since according to Li and
Garrido (2005a), in the case of a compound Poisson risk model
perturbed by a Brownian motion, the Lundberg equation has only
one positive solution that we will denote ρ, we can apply the
integrating factor technique only once. It yields the linear equation

σ̃ 2

2
m′(0)+

(
ρ
σ̃ 2

2
+ c

)
m(0) = λω̂(ρ), (33)

which we can solve for m′(0). With these initial values, we can
compute the particular solution and Eq. (31) leads to

m(u) = −
1

(ρ − σ1)(ρ − σ2)

∫
∞

u
eρ(u−ξ)f (ξ)dξ

−
f̂ (ρ)
σ2 − σ1

(
eσ1u

ρ − σ1
−
eσ2u

ρ − σ2

)
+

1
σ2 − σ1

∫ u

0

(
eσ1(u−ξ)

ρ − σ1
−
eσ2(u−ξ)

ρ − σ2

)
f (ξ)dξ

+
1

σ2 − σ1

(
[σ2m(0)−m′(0)]eσ1u + [−σ1m(0)+m′(0)]eσ2u

)
as an explicit expression for theGerber–Shiu function. This formula
generalizes Eq. (4.6) of Chen et al. (2007) for the case of exponential
claim sizes and Example 1 of Li andGarrido (2005a) for exponential
inter-arrival times.
9. Conclusion

We have shown that the link between symbolic computation
and risk theory can be mutually fruitful and can be utilized to
identify fully explicit expressions for the Gerber–Shiu function in
general renewalmodels in terms of the employed penalty function.
In the presented approach, Laplace transforms only enter in a very
restricted form:

• Only the Laplace transform of the penalty (not of the
Gerber–Shiu function) is computed. This has the advantage that
one does not need artificial analyticity conditions onm.
• Moreover, the Laplace transform of the penalty is only
evaluated at ρ1, . . . , ρn, the positive solutions of the Lundberg
equation, for computing the boundary values.
• No inverse Laplace transform is involved. This is in contrast to
manyprevious papers that give explicit formulae for the Laplace
transform of the Gerber–Shiu function, which often cannot be
inverted in closed form.

In principle, the symbolic method introduced in this paper can
be extended tomodels that include investment aswell as tomodels
with interclaim time densities that satisfy ODEs with polynomial
coefficients as long as the spectral structure of the Lundberg
fundamental equation is still tractable. This will be pursued in
future research. The factorization approach for boundary value
problems generalizes in principle also to partial differential
equations (Regensburger and Rosenkranz, 2009), which in the
context of risk theory means that more general models including
onemore variable could be considered. Finally, themethodmay be
applicable in boundary value problems that occur in other contexts
in risk theory.
The formulas developed in this paper can easily be imple-

mented in a computer algebra system, which in turn allows to
quickly perform (quantitative and graphical) sensitivity analysis of
the corresponding discounting penalty functions with respect to
parameter and penalty changes.
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Appendix. A generalized vandermonde determinant

For computing the initial values in Proposition 6 we are led to
consider the n× n alternant matrix

A =

p0(x1) · · · pn−1(x1)...
. . .

...
p0(xn) · · · pn−1(xn)


with polynomials pi(x) = ai,ixi + · · · + ai,0 with ai,i = 1. In the
special case pi(x) = xi this is the usual Vandermonde matrix with
the determinant Vn in the indeterminates x1, . . . , xn, but det A =
Vn holds in general (Krattenthaler, 1999, Prop. 1).
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We want to compute the (k, l) minor of A, the determinant of
the (n− 1)× (n− 1)matrix Ak,l obtained by deleting the k-th row
and the l-th column. It suffices to consider

An,l =


p0(x1) · · · pl−1(x1) pl+1(x1) · · · pn−1(x1)
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

p0(xn−1) · · · pl−1(xn−1) pl+1(xn−1) · · · pn−1(xn−1)


since

A(x1, . . . , xn)k,l = A(x1, . . . , xk−1, xk+1, . . . , xn, xk)n,l.

For pi(x) = xi it is known (Heineman, 1929) that det An,l/Vn−1
yields the elementary symmetric polynomial en−1−l in x1, . . . , xn−1.

Proposition A.1. We have

det An,l
Vn−1

= en−1−l

+

n−1∑
j=l+1

(∑
J

(−1)j+l+maj1,j2aj2,j3 · · · ajm,jm+1

)
en−1−j,

where the inner sum ranges over J = (j1, . . . , jm+1) such that m ≥ 1
and j = j1 > · · · > jm+1 = l.

Proof. Writing xj for the column vector (xj1, . . . , x
j
n−1)

T, the
determinant of the matrix

An,l =

(
0∑
r=0

a0,rxr · · ·

l−1∑
r=0

al−1,rxr
l+1∑
r=0

al+1,rxr · · ·

n−1∑
r=0

an−1,rxr
)

is given by multilinearity as

0∑
r0=0

· · ·

l−1∑
rl−1=0

l+1∑
rl+1=0

· · ·

×

n−1∑
rn−1=0

cr det(xr0 , . . . , xrl−1 , xrl+1 , . . . , xrn−1)

with cr = a0,r0 · · · al−1,rl−1al+1,rl+1 · · · an−1,rn−1 . Observe that for
the first l indices r0, . . . , rl−1 there always exist some i < j < l
such that ri = rj unless ri = i for all i < l. Since the determinant
vanishes for the cases ri = rj and the pi are monic (i.e., ai,i = 1),
the determinant reduces to
l+1∑
rl+1=l

· · ·

n−1∑
rn−1=l

al+1,rl+1 · · · an−1,rn−1

× det(x0, . . . , xl−1, xrl+1 , . . . , xrn−1)

where rl+1, . . . , rn−1 can be restricted to mutually distinct indices.
We view the indices as the permutations r: {l, . . . , n −

1} → {l, . . . , n − 1} satisfying rs ≤ s for s > l; note
that rl is determined as the index omitted in rl+1, . . . , rn−1. By
the monotonicity condition on r , all cycles without l in the
cycle representation of r are trivial: If we have a nontrivial
cycle (j1 . . . jm+1), with jm+1 6= l we are led to the
contradiction j1> rj1 = j2> · · · > jm+1 > rjm+1= j1. Consequently
r either possesses only one nontrivial cycle (j1 . . . jm+1) with
j1 > · · · > jm+1 = l, unless r is the identity. Since the pi are monic,
the factor of the determinant ∆r occurring in the above sum is
given by aj1,j2 · · · ajm,jm+1 in the former and by 1 in the latter case.
For finding∆r , we use row expansion for computing

(−1)l+n−1∆r = det
(
x0 · · · xl−1 xl xrl+1 · · · xrn−1
0 · · · 0 1 0 · · · 0

)
.

This determinant is the result of r acting on the columns of the
determinant

det
(
x0 · · · xj−1 xj xj+1 · · · xn−1

0 · · · 0 1 0 · · · 0

)
= (−1)j+n−1en−1−j Vn−1

according to the abovementioned result on Vandermondeminors.
Since r as a cycle of lengthm+ 1 has sign (−1)m, this yields

∆r = (−1)j+l+men−1−j Vn−1,

which proves the formula. �

Note that the inner sum in Proposition A.1 can also be inter-
preted as ranging over all ordered subsets of {l, . . . , j} containing
l and j. It can be simplified further in the following special case,
which we use in Section 6. We give two representations, one in
terms of compositions and the other using generating functions.
Here we use the customary notation [xi] f (x) for the coefficient of
xi in a power series f (x).

Corollary A.2. If pi(x) = a0xi + · · · + ai, a0 = 1, the formula in
Proposition A.1 simplifies to

det An,l
Vn−1

= en−1−l +
n−1∑
j=l+1

(−1)j−l

×

(∑
m≥1

(−1)m
∑
d1,...,dm

ad1 . . . adm

)
en−1−j,

where the inner sum ranges over d1, . . . , dm > 0 such that d1+· · ·+
dm = j− l. Using generating functions, we have also

det An,l
Vn−1

=

n−1−l∑
j=0

([
xj
] (−1)j + q(x)j+1

1+ q(x)

)
en−1−l−j,

where q(x) = a1x+ · · · + an−1xn−1.

Proof. Applying the above remark to the case ai,j = ai−j, the inner
sum in Proposition A.1 gives∑
j>j2>···>jm>l

(−1)maj−j2aj2−j3 · · · ajm−1−jmajm−l

=

∑
d1,...,dm>0,∑
i
di=j−l

(−1)mad1 . . . adm

for j > l, since the differences d1 = j− j2, d2 = j2 − j3, . . . , dm =
jm − l can take arbitrary nonnegative values, provided they sum
up to j − l. Now the first formula follows by multiplying with
(−1)j+l = (−1)j−l.
For the second formula observe that the sum over the

compositions of j − l that appears within the bracket of the first
formula is equal to the coefficient of xj−l in the product
m∏
i=1

(
a1x+ · · · + an−1xn−1

)
= q(x)m,

form ≤ j− l; form > j− l the sum over the composition is empty.
Note that this even covers the cases m = 0, for which the term is
zero except for j− l = 0, when it becomes one. The stated formula
then follows by

(−1)j−l
j−l∑
m=0

[xj−l](−q(x))m = (−1)j−l[xj−l]
1− (−q(x))j−l+1

1+ q(x)

= [xj−l]
(−1)j−l + q(x)j−l+1

1+ q(x)
. � (34)
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As a final remark note that the determinant takes an even
simpler form if the pi are not ‘reversed’ as they are in the previous
corollary.

Corollary A.3. If pi(x)=aixi+· · ·+a0, the formula in PropositionA.1
simplifies to

det An,l
Vn−1

= en−1−l +
n−1∑
j=l+1

(
al

j−1∏
k=l+1

(ak − 1)
)
en−1−j,

Proof. The proof proceeds in a similar way as for the previous
corollary. Here we have the case ai,j = aj, so the inner sum in
Proposition A.1 evaluates to∑
{j2,...,jm}⊆{l+1,...,j−1},

j>j2>···>jm>l

(−1)maj2 · · · ajmajm+1 = al
j−1∏
k=l+1

(ak − 1),

and the rest follows. �
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