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General Polynomial Reduction with THHOREMY Functors:
Applications to Integro-Differential Operators and Polynomials

Bruno Buchberger Georg Regensburger Markus Rosenkranz Loredana Tec

General Polynomial Reduction. We outline a prototype implementation of the algorithms for integro-differential opera-
tors/polynomials in [12]. Our approach based on a generic implementation of noncommutative monoid rings with reduction,
programmed in the functors language of the THJOREMY system. The integro-differential operators—realized by a suitable
quotient of noncommutative polynomials over a given integro-differential algebra—can be used for solving and manipulat-
ing boundary problems for linear ordinary differential equations. For describing extensions of integro-differential algebras
algorithmically, we use integro-differential polynomials.

We use a fixed Grobner basis for normalizing integro-differential operators. Grobner bases were invented by Buch-
berger [2, 3] for commutative polynomials and reinvented in [1] for noncommutative ones. While [9] analyzes the compu-
tational aspects of the latter, it does not support two features that are important for our present setting: the usage of infinitely
many indeterminates and reduction modulo an (algorithmic) infinite system of polynomials.

Among the systems implementing noncommutative Grobner bases, most address certain special classes (e.g. algebras of
solvable type or homogeneous polynomials) which do not include our present case. To our best knowledge, none of these allow
polynomials with infinitely many indeterminates and reduction modulo an infinite system of polynomials. For details, see the
website http://www.ricam.oeaw.ac.at/Groebner—Bases—Implementations.

Our implementation, although targeted at the integro-differential applications described below, follows a generic approach
that encompasses commutative/noncommutative polynomials as well as one/two-sided reduction. Polynomial rings are formu-
lated as monoid rings (leading to the standard commutative or noncommutative polynomials by employing the additive monoid
N” or the word monoid {x1,...,x,}*, respectively), while polynomial reduction is realized by a noncommutative adaption of re-
duction rings (rings with so-called reduction multipliers) in the sense of [4, 14]; for a noncommutative approach along different
lines, we refer to [8].

The THIOREMY Functor Language. The generic implementation of monoid rings with reduction multipliers is realized
through functors whose principle and implementation in the THIOREMY version of higher order predicate logic were intro-
duced by B. Buchberger. The general idea—and its use for structuring those domains in which Groebner bases computation is
possible—is described in [4, 5], where you also find references to original and early papers by B. Buchberger on the subject.
For a general discussion of functor programming, see also [15].

The THIOREMY system is designed as an integrated environment for doing mathematics [6], in particular proving, com-
puting, and solving in various domains of mathematics. Its core language is higher-order predicate logic, containing a natural
programming language such that algorithms can be coded and verified in a unified formal frame. Functors are a powerful tool
for realizing a modular and generic build-up of hierarchical domains in mathematics. For speeding up computations, one may
also use the new Java-to-Theorema compiler described in the recent thesis [16].

Starting from the base category of rings and monoids, the monoid ring is the crucial functor that builds up polynomials.
After adding reduction multipliers, the functions for enumerating Groebner bases are added by virtue of an extension functor (a
functor that leaves previous operations unchanged and adds new ones). Obviously, the coefficient rings may in turn be monoid
rings, and there are also various functors for composing useful monoid rings: word monoids, cartesian products, free products.

Anticipating the explanations given in the following two sections, let us here state one inferesting example of a chain of
functors that can be realized in our system: integro-differential operators over exponential polynomials with an undetermined
function. This proceeds in three stages: Starting with say Q, the exponential polynomials are obtained as the monoid ring
with N x Q as monoid. The second step is the functor of integro-differential polynomials, the last step the functor of integro-
differential operators.

Integro-Differential Operators. The notion of integro-differential operators [13] is a generalization of the “Green’s poly-
nomials” of [11]. They can be seen as an algebraic analog of differential, integral and boundary operators in the context of
linear ordinary differential equations (LODEs). They are particularly useful for treating boundary problems for LODEs as
they express both the problems statement (differential equation and boundary conditions) and its solution operator (an integral
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operator usually called “Green’s operator”). We have described methods for solving and factoring boundary problems in [13]
and an abstract (inconstructive) framework in [10].

The implementation of integro-differential operators proceeds along the lines sketched above: A monoid ring is built up for
the word monoid over the infinite alphabet consisting of the letters d and [ along with all basis elements XM (neN,LeQ) of
the exponential polynomials. Then we factor out the nine (parametrized) rewrite rules described in Table 1 of [13, 12], which
form a Grobner basis in the underlying polynomial ring. This is achieved by working with the normal forms of the polynomial
reduction induced by these rules.

Integro-Differential Polynomials. The integro-differential polynomials over a given integro-differential algebra, intro-
duced in [12], have a slightly different flavor: They form a commutative algebra (since multiplication is understood pointwise
and not by composition as above) modelling nonlinear differential and integral operators with an indeterminate u, so a typical
element would be [ (x*uu' [ (xe**u?u”® [u)). Another interpretation is that they are certain functions (of x) involving an “un-
known” function (namely u). This means one can describe extensions of a given integro-differential algebra by forming suitable
quotients of the integro-differential polynomials over it.

An elegant abstract characterization of integro-differential polynomials is in terms of a general polynomial algebra [7] in the
variety of integro-differential algebras. For computational purposes, we have introduced a canonical simplifier for the induced
congruence (identifying different expressions denoting the same integro-differential polynomial), which thus solves the word
problem in this variety. The resulting functor is somewhat similar to the monoid ring (where polynomial reduction provides
a canonical simplifier), but some operations need special attention: the multiplication of canonical forms involves the shuffle
product, and the integral must be computed by a careful case distinction on the differential exponents.
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