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We propose a general algorithmic approach to noncommutative 
operator algebras generated by additive operators using quotients 
of tensor rings that are defined by tensor reduction systems. 
Skew polynomials are a well-established tool covering many cases 
arising in applications. However, integro-differential operators over 
an arbitrary integro-differential algebra do not fit this structure, 
for example. Instead of using parametrized Gröbner bases in 
free algebras, as has been used so far in the literature, we use 
Bergman’s basis-free analog in tensor rings. Since reduction rules 
are given by module homomorphisms, the tensor setting often 
allows for a finite reduction system. A confluent tensor reduction 
system enables effective computations based on normal forms. 
Using tensor rings, we can also model integro-differential operators 
with matrix coefficients, where constants are not commutative.
To have smaller reduction systems, we develop a generalization 
of Bergman’s setting. It allows overlapping domains of reduction 
homomorphisms, which also make the algorithmic verification of 
the confluence criterion more efficient. Moreover, we discuss a 
heuristic approach to complete a given reduction system to a 
confluent one in analogy to Buchberger’s algorithm and Knuth–
Bendix completion. Integro-differential operators are used to illus-
trate the tensor setting, verification of confluence, and completion 
of tensor reduction systems. We also introduce a confluent reduc-
tion system and normal forms for integro-differential operators 
with linear substitutions, which have applications in delay dif-
ferential equations. Verification of the confluence criterion and 
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1. Introduction

Skew polynomial rings are used in the literature for an algebraic and algorithmic treatment of 
many common operators like differential and difference operators; see e.g. the works by Chyzak and 
Salvy (1998); Li (2002); Bueso et al. (2003); Chyzak et al. (2005); Levandovskyy (2005) or the recent 
overview by Gómez-Torrecillas (2014). Normal forms for skew polynomials are given by the standard 
polynomial basis. However, normal forms for univariate integral operators are sums of terms of the 
form f

∫
g . We show that quotients of tensor rings are useful for algebraic modeling of and algorithmic 

computations with additive operators. The framework provided uses a quotient of a tensor ring by a 
two-sided ideal for constructing a ring of operators, constructing quotients of such rings of operators 
by one-sided ideals would be a separate problem. Tensor rings naturally capture the multiadditivity 
of composition of additive operators. In addition, they allow basis-free treatment of multiplication 
operators resp. coefficients. In particular, the coefficient ring is not required to be finitely presented. 
Moreover, for integro-differential operators, they also cover arbitrary rings of constants which neither 
have to be fields nor commutative rings but need to contain a unit element.

We are not aware that tensor reduction systems in tensor rings have been used so far in the liter-
ature for an algorithmic treatment of operator algebras. For applications of noncommutative Gröbner 
bases in the free polynomial algebra to operator algebras, we refer to Helton et al. (1998), Helton 
and Stankus (1999), Rosenkranz et al. (2003) and the references on integro-differential operators in 
Section 4. An overview on Gröbner-Shirshov bases for various algebraic structures is given in Bokut 
and Chen (2014); see, in particular, Guo et al. (2013), Gao et al. (2014), Gao et al. (2015), Gao and 
Guo (2017) in connection with differential type, integro-differential, and Rota–Baxter type operators.

For computing in quotients of tensor rings by two-sided ideals, we use Bergman’s analog (Bergman, 
1978) of Gröbner bases in tensor rings, which we explain in Section 2 along with the underlying al-
gebraic structures. Bergman’s confluence criterion for tensor reduction systems involves computations 
in the tensor ring, but determining the structure of normal forms reduces to a combinatorial prob-
lem on words. We generalize Bergman’s tensor setting in Section 3 by introducing the concept of 
specialization. As a first example for our setting with specialization, we present integro-differential 
operators (IDOs) over an arbitrary integro-differential ring in Section 4. There we give a confluent 
tensor reduction system together with the corresponding normal forms. In Section 5, we introduce 
IDOs with linear substitutions. For completing a tensor reduction system to a confluent one, we give 
a heuristic method along the lines of Buchberger’s algorithm in Section 6 and we discuss various 
problems arising in this context. In each section, we comment about the computational aspects. The 
Mathematica package TenReS can be obtained at http :/ /gregensburger.com /softw /tenres/ along with 
example files; see also Hossein Poor et al. (2016b) for further details on the package.

Throughout this paper rings are not necessarily commutative unless stated otherwise, but they are 
always assumed to have a unit element (of multiplication). Furthermore, we use operator notation, 
e.g. we write ϕ1 instead of ϕ(1) or ∂ f g = (∂ f )g + f ∂ g for the Leibniz rule ∂( f g) = ∂( f )g + f ∂(g). 
All our operators act from the left, in particular, a product AB acts on f as (A ◦ B)( f ).

1.1. Comparison with conference paper

A two-level version of Bergman’s setting in tensor algebras has been introduced already in Hos-
sein Poor et al. (2016a). In contrast, in the present paper we deal with the more general structure of 
tensor rings instead of tensor algebras. We introduce a generalization and simplification of the two-
level tensor setting in Section 3. New aspects treated are deletion criteria for excluding ambiguities 
from consideration (see Section 2.3.1) and the heuristic completion process discussed in Section 6. 

http://gregensburger.com/softw/tenres/
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The example presented in Section 4 is more general as it allows also noncommutative differential 
rings and Section 5 contains an entirely new example.

We also need to correct some minor mistakes in Hossein Poor et al. (2016a). The definition of 
� in Eq. (8) should include the requirement that ϕ1 = 1. Lemma 4.2 should be replaced by the 
weaker statement of Lemma 15 of the present paper, the proof of Theorem 4.6 needs to be adapted 
accordingly, cf. the proof of Theorem 20. Also, the equation immediately before Lemma 4.4 has to be 
replaced by the equation immediately before Lemma 17 in the present paper.

1.2. Introductory example

We use the well-known example of differential operators to briefly discuss several approaches 
for modeling rings of operators. Recall that differential operators with polynomial coefficients (Weyl 
algebra) over a field K ⊇Q can be defined as the quotient algebra

K 〈X, D〉/(D X − X D − 1)

of the free polynomial algebra K 〈X, D〉 by a two-sided ideal; see for example Coutinho (1995). Let 
now (R, ∂) be a commutative differential ring and let K denote its ring of constants. If R is a finitely 
presented K -algebra, then also the differential operators R〈∂〉 are a finitely presented K -algebra anal-
ogous to the Weyl algebra.

Skew polynomials are a well-established approach that only introduces finitely many rules for 
differential operators over arbitrary differential rings R (e.g. rational functions): they are represented 
by defining a multiplication on normal forms 

∑
f i∂

i based on the commutation rule

∂ · f = f ∂ + ∂ f .

Viewed as construction by generators and relations, this amounts to (potentially) infinitely many re-
lations, one for each generator of R .

In the following, we motivate and illustrate informally tensor reduction systems. For a commuta-
tive differential ring, the construction leads to a quotient of the tensor algebra as in Hossein Poor et 
al. (2016a). The commutation rule for skew polynomials above corresponds to a reduction homomor-
phism for tensors below. The ring R is regarded as the coefficient ring of skew polynomials, whereas 
in the tensor construction below R is just considered as a K -module and we tensor over the ring K
only. Hence for the multiplication in R , we need to introduce an additional reduction homomorphism 
for tensors.

Example 1. Consider a commutative differential ring (R, ∂) and let K denote its ring of constants. By 
the Leibniz rule, the derivation ∂ : R → R is a K -module homomorphism. Since R is commutative, 
also the multiplication operators induced by f ∈ R mapping g �→ f g are K -module homomorphisms. 
Let MD = K∂ denote the free left K -module generated by the symbol ∂ . The identities in the K -tensor 
algebra K 〈M〉 on the K -module M = R ⊕ K∂ reflect the identities coming from the K -linearity of the 
operators and their compositions, where the tensor product is interpreted as composition of operators.

To incorporate the additional identities, we use reduction rules defined by K -module homomor-
phisms on certain submodules of the tensor algebra. Corresponding to the composition of multiplica-
tion operators and the Leibniz rule, we consider two homomorphisms defined by

f ⊗ g �→ f g and ∂ ⊗ f �→ f ⊗ ∂ + ∂ f .

These two reduction rules induce the two-sided ideal J = ( f ⊗ g− f g, ∂ ⊗ f − f ⊗ ∂ − ∂ f | f , g ∈ R)

which we use to define the K -algebra of differential operators as the quotient algebra

R〈∂〉 = K 〈M〉/ J .

We want to obtain unique normal forms in the quotient by applying the reduction rules above. A ten-
sor of the form

∂ ⊗ f ⊗ g
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corresponds to an overlap ambiguity of these two rules, since it can be reduced by the homomor-
phisms in different ways to obtain either

( f ⊗ ∂ + ∂ f )⊗ g or ∂ ⊗ ( f g).

For checking resolvability of the ambiguity the S-polynomial formed by the difference of these alter-
natives should be reducible to zero. In the present case, it reduces to zero because of the Leibniz rule 
in R . More explicitly, for all f , g ∈ R we have

SP(∂ ⊗ f , f ⊗ g)= ( f ⊗ ∂ + ∂ f )⊗ g − ∂ ⊗ ( f g)

→ f ⊗ g ⊗ ∂ + f ⊗ ∂ g + (∂ f )g − f g ⊗ ∂ − ∂( f g)

→ f g ⊗ ∂ + f ∂ g + (∂ f )g − f g ⊗ ∂ − ∂( f g)

= f ∂ g + (∂ f )g − ∂( f g)= 0.

Another ambiguity is expressed by tensors of the form f ⊗ g ⊗ h and is resolvable as well. Since all 
ambiguities are resolvable, we obtain normal forms in terms of irreducible tensors

∂⊗ j and f ⊗ ∂⊗ j. �
For differential operators with matrix coefficients, we let R be a ring of matrices over some (com-

mutative) differential ring. Then not only R is a noncommutative differential ring, but also its ring of 
constants K is no longer commutative and elements of K do not commute with elements of R . Con-
sequently, R is not a K -algebra anymore. More generally, we consider an arbitrary differential ring 
R . It is a bimodule over its ring of constants K and tensoring over K leads to a construction of the 
differential operators as a quotient of the tensor ring instead of the tensor algebra.

Example 2. For an arbitrary (not necessarily commutative) differential ring (R, ∂), ∂ is a K -bimodule 
homomorphism of R whereas multiplication operators g �→ f g in general are only right K -module 
homomorphisms. We consider the K -tensor ring K 〈M〉 on the K -bimodule M = R ⊕MD , where MD is 
a K -bimodule non-freely generated by ∂ . The identities in the tensor ring K 〈M〉 reflect the identities 
coming from the additivity of the operators and their compositions. Reduction rules are K -bimodule 
homomorphisms defined by the same formulae as above. For details see Example 8 later. �
2. Tensor reduction systems

In this section, we describe analogs of Gröbner bases in tensor rings following Bergman (1978)
using standard notation for rewriting systems from Baader and Nipkow (1998). First we outline the 
construction and some properties of the K -tensor ring K 〈M〉 on a K -bimodule M over a arbitrary 
ring K with unit element. If K is commutative and the left and right scalar multiplication on M agree, 
then K 〈M〉 is the tensor algebra on M , which is a generalization of the noncommutative polynomial 
algebra on a set of indeterminates. In contrast to the noncommutative polynomials, in the tensor ring 
the “coefficients” in K do not commute with the “indeterminates”. For further details on tensor rings 
and proofs see, for example, Cohn (2003), Rowen (1991). A Gröbner basis theory for free bimodules 
has been presented in Kobayashi (2005) and for bimodules over Poincaré-Birkhoff-Witt (PBW) algebras 
in Román García and Román García (2005), Levandovskyy (2005).

2.1. Basics of tensor rings

From now, K denotes a ring (not necessarily commutative) with unit element. A K -bimodule is a 
left K -module M which is also a right K -module satisfying the associativity condition (km)l = k(ml)
for all m ∈ M and k, l ∈ K . By a K -ring we understand a ring R that is a K -bimodule such that 
(xy)z = x(yz) for any x, y, z in R or K . Even when K is commutative, the notion of K -ring is more 
general than the notion of K -algebra, because the action of K need not centralize the ring, that is, we 
do not require kr = rk for k ∈ K and r ∈ R . In other words, the difference can be described by saying 
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that whereas a K -algebra (K commutative) is a ring R with a homomorphism from K to the center 
of R , a K -ring is a ring R with a ring homomorphism from K to R . In particular, if K is a subring of 
some ring R , then R is a K -ring.

We first recall basic properties of the tensor product on K -bimodules. Let M1, . . . , Mn be 
K -bimodules. Given an abelian group (A, +), we say that β : M1 × · · · ×Mn → A is a balanced map if 
it is multiadditive and it satisfies

β(m1, . . . ,mik,mi+1, . . . ,mn)= β(m1, . . . ,mi,kmi+1, . . . ,mn)

for all k ∈ K , m j ∈ M j , where i = 1, . . . , n − 1 and j = 1, . . . , n. By the definition of the tensor product, 
there exists an abelian group M1 ⊗ · · · ⊗ Mn together with a balanced map

⊗: M1 × · · · × Mn → M1 ⊗ · · · ⊗ Mn.

We write m1 ⊗ · · · ⊗mn for the image of (m1, . . . , mn) under ⊗. The universal property of the ten-
sor product states that if β : M1 × · · · × Mn → A is any balanced map, then there exists a unique 
homomorphism β : M1 ⊗ · · · ⊗ Mn → A such that

β(m1 ⊗ · · · ⊗mn)= β(m1, . . . ,mn).

Note that, if M1, . . . , Mn are K -bimodules, then M1 ⊗ · · · ⊗ Mn is again a K -bimodule with scalar 
multiplications

k(m1 ⊗ · · · ⊗mn)= km1 ⊗ · · · ⊗mn and (m1 ⊗ · · · ⊗mn)k=m1 ⊗ · · · ⊗mnk.

We denote the tensor product of M with itself over K by M⊗n = M ⊗ · · · ⊗ M (n factors) and its 
elements are called tensors. In particular, M⊗1 = M and we interpret M⊗0 as the K -bimodule Kε , 
where ε denotes the empty tensor. Elements of the form m1 ⊗ · · · ⊗mn ∈ M⊗n with m1, . . . , mn ∈ M , 
are called pure tensors and they generate M⊗n as a K -bimodule. As a K -bimodule, the tensor ring 
K 〈M〉 is defined as the direct sum K 〈M〉 = ⊕∞

n=0 M⊗n with multiplication M⊗r × M⊗s → M⊗(r+s)

given by the balanced map

(m1 ⊗ · · · ⊗mr,m̃1 ⊗ · · · ⊗ m̃s) �→m1 ⊗ · · · ⊗mr ⊗ m̃1 ⊗ · · · ⊗ m̃s,

which can be extended to K 〈M〉 by biadditivity. In general, the K -bimodule K 〈M〉 with this multipli-
cation is a ring with ε being its unit element. Note that by the homomorphism K → K 〈M〉 mapping 
k �→ kε the tensor ring K 〈M〉 is a K -ring.

The K -tensor algebra on a K -module M with K commutative is a special case of the K -tensor ring 
by viewing M as a K -bimodule with identical scalar multiplication from left and right. Note that for 
a free K -module M with basis X , the K -tensor algebra K 〈M〉 is isomorphic to the noncommutative 
polynomial algebra K 〈X〉. It has the set of all products x1 ⊗ · · · ⊗ xn for x1, . . . , xn ∈ X as a K -module 
basis, i.e. elements in K 〈X〉 have a unique representation as K -linear combinations of such products.

The analogous situation for tensor rings is more involved. The free K -bimodule on a set X is given 
by K⊗ZZX⊗ZK , where ZX denotes the free left Z-module on X . The K -tensor ring over the free 
K -bimodule on X is isomorphic to the free K -ring on X , which is generated as a K -bimodule by 
the set of all products x1 ⊗ k2x2 ⊗ · · · ⊗ knxn such that x1, . . . , xn ∈ X and k2, . . . , kn ∈ K . Note that 
the representation of elements of the free K -ring on X in terms of such products is not unique, in 
contrast to the noncommutative polynomial algebra. Since bimodules have coefficients on both sides 
and coefficients do not commute with indeterminates, even the free K -bimodule generated by {x1}
gives rise to non-uniqueness: k1x1k3 + k2x1k1 = k3x1k1 + k1x1k2 for k3 = k1 + k2 ∈ K .

2.2. Diamond Lemma in tensor rings

Now we are ready to explain the setting for reduction systems in tensor rings following Bergman 
(1978, Sec. 6). Let (Mx)x∈X be a family of K -bimodules indexed by a set X . The modules Mx play the 
role of the indeterminates in the noncommutative polynomial algebra.
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We denote the free monoid on X by 〈X〉 and its unit element by ε . The free monoid 〈X〉 can also 
be regarded as the word monoid over the alphabet X with ε as the empty word. For every word 
W = x1 . . . xn ∈ 〈X〉, we denote the tensor product of the corresponding bimodules by

MW := Mx1 ⊗ · · · ⊗ Mxn .

In particular, we have Mε = Kε for the empty word/tensor ε . The pure tensors m1⊗· · ·⊗mn ∈ MW
with mi ∈ Mxi play the role of the monomials in the tensor ring. We consider the direct sum

M :=
⊕
x∈X

Mx (1)

and the K -tensor ring on M:

K 〈M〉 =
∞⊕

n=0

M⊗n =
⊕

W∈〈X〉
MW . (2)

Every tensor t ∈ K 〈M〉 can be written as a sum of pure tensors. However, in contrast to linear com-
binations of monomials in the noncommutative polynomial algebra, this representation is not unique. 
This happens because already M⊗n is not freely generated as a K -bimodule by the pure tensors, e.g. 
m1 ⊗m3 +m2 ⊗m1 =m3 ⊗m1 +m1 ⊗m2 in M⊗2 for m3 =m1 +m2 ∈ M . Still, using bimodule ho-
momorphisms, one can define reductions analogous to polynomial reduction for (non-)commutative 
Gröbner bases.

Definition 3. Let M be given by Eq. (1). A reduction rule for K 〈M〉 is given by a pair (W , h) of a word 
W ∈ 〈X〉 and a K -bimodule homomorphism h : MW → K 〈M〉. For a reduction rule r = (W , h) and 
words A, B ∈ 〈X〉, we define a reduction as the K -bimodule homomorphism

hA,r,B : K 〈M〉→ K 〈M〉
acting as idA ⊗ h ⊗ idB on M AW B and the identity on all other MV with V ∈ 〈X〉 and V �= AW B .

For a pure tensor a ⊗ w ⊗ b ∈ M AW B with a ∈ M A , w ∈ MW , and b ∈ MB , the reduction hA,r,B is 
given by

a⊗ w ⊗ b �→ a⊗ h(w)⊗ b.

So, as for polynomial reduction, we “replace” the “leading monomial” w by the “tail” h(w) given by 
the homomorphism h.

Let t ∈ K 〈M〉. A reduction hA,r,B acts trivially on t , i.e. hA,r,B(t) = t , if the summand of t in M AW B
is zero, see Eq. (2). A reduction rule r = (W , h) reduces t to s ∈ K 〈M〉 if a reduction hA,r,B for some 
A, B ∈ 〈X〉 acts non-trivially on t and hA,r,B(t) = s and we write t →r s.

A reduction system for K 〈M〉 is a set � of reduction rules. Every reduction system � induces a 
reduction relation →� on tensors by defining t →� s for t, s ∈ K 〈M〉 if t →r s for some reduction rule 
r ∈�. Fixing a reduction system �, we say that t ∈ K 〈M〉 can be reduced to s ∈ K 〈M〉 by � if t = s or 
there exists a finite sequence of reduction rules r1, . . . , rn in � such that

t →r1 t1 →r2 · · · →rn−1 tn−1 →rn s

and we write t
∗→� s. In other words, ∗→� denotes the reflexive transitive closure of the reduction 

relation →� .
The set of irreducible words 〈X〉irr ⊆ 〈X〉 consists of those words having no subwords from the set 

{W | (W , h) ∈�}. We define the K -subbimodule of irreducible tensors as

K 〈M〉irr =
⊕

W∈〈X〉irr

MW . (3)

We also need to consider partial orders on 〈X〉. A semigroup partial order on 〈X〉 is a partial order 
≤ on 〈X〉 such that B < B̃ ⇒ ABC < AB̃C for all A, B, B̃, C ∈ 〈X〉. If in addition ε ≤ A, for all A ∈ 〈X〉, 
then it is called a monoid partial order. It is called Noetherian if there are no infinite descending chains.
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Remark 4. Note that a lexicographic order on 〈X〉 is not a semigroup order. However, a (weighted) 
degree-lexicographic order of the words is a semigroup (total) order on 〈X〉 and it is Noetherian if X
is finite. Given a semigroup S with a semigroup partial order � on it and a semigroup homomorphism 
ϕ : 〈X〉 → S , we can define the induced semigroup partial order on 〈X〉 by

V ≤ W :⇔ V = W or ϕ(V )≺ ϕ(W ).

For example, for S = N with the usual order and the homomorphism given by ϕ(x0) = 1 for x0 ∈ X
and ϕ(x) = 0 for x ∈ X \ {x0}, the induced partial order just compares the degree in x0. Given two 
semigroups S1 and S2 with corresponding semigroup partial orders ≤1 and ≤2 respectively, we can 
combine them lexicographically to obtain a semigroup partial order on S = S1 × S2 by

(a1,a2)≤ (b1,b2) :⇔ a1 <1 b1 or a1 = b1 and a2 ≤2 b2.

A semigroup partial order ≤ is compatible with a reduction system � if for all reduction rules 
(W , h) ∈�,

h(MW )⊆
⊕

V <W

MV .

If a compatible semigroup partial order is Noetherian, then there do not exist infinite sequences of 
reductions in �. In other words, the reduction relation →� is terminating or Noetherian. So, in that 
case, every t ∈ K 〈M〉 can be reduced in finitely many steps to an irreducible tensor

t
∗→� s ∈ K 〈M〉irr

and such an s is called a normal form of t . In general, a tensor can have different normal forms. If 
t ∈ K 〈M〉 has a unique normal form, we denote it by t↓� .

For ensuring unique normal forms for reduction systems on tensor rings, we state below Bergman’s 
analog of Buchberger’s criterion for Gröbner bases (Buchberger, 1965). In the context of Gröbner-
Shirshov bases for various algebraic structures this is also referred to as the Composition-Diamond 
Lemma; see e.g. the survey by Bokut and Chen (2014).

Let � be a reduction system. We study the cases when two different reductions act non-trivially 
on tensors in MW for W ∈ 〈X〉.

Definition 5. An overlap ambiguity is given by two (not necessarily distinct) reduction rules 
(W , h), (W̃ , ̃h) ∈� and nonempty words A, B, C ∈ 〈X〉 such that

W = AB and W̃ = BC .

It is called resolvable if for all pure tensors a ∈ M A , b ∈ MB , and c ∈ MC the S-polynomial can be 
reduced to zero:

h(a⊗ b)⊗ c − a⊗ h̃(b⊗ c)
∗→� 0.

An inclusion ambiguity is given by distinct reduction rules (W , h), (W̃ , ̃h) ∈� and words A, B, C ∈ 〈X〉
with W = B and W̃ = ABC . It is called resolvable if for all pure tensors a ∈ M A , b ∈ MB , and c ∈ MC

the S-polynomial can be reduced to zero: a ⊗ h(b) ⊗ c − h̃(a ⊗ b ⊗ c) ∗→� 0.

With slight abuse of notation, we refer to S-polynomials of an overlap or inclusion ambiguity, 
respectively, by

SP(AB, BC) or SP(B, ABC).

A reduction system � induces the two-sided reduction ideal

I� := (t − h(t) | (W ,h) ∈� and t ∈ MW )⊆ K 〈M〉. (4)

For studying operator algebras, we want to compute in the factor ring K 〈M〉/I� . If all ambiguities are 
resolvable, then we can do this effectively using reductions in K 〈M〉 and the corresponding normal 
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forms with respect to →� . This is the confluence criterion (condition 1. below) that we will check 
algorithmically, for a brief discussion see the following subsection.

Theorem 6. (Bergman, 1978) Let K be a ring, let (Mx)x∈X be a family of K -bimodules indexed by a set X, and 
let M =⊕

x∈X Mx. Let � be a reduction system on K 〈M〉 and let ≤ be a Noetherian semigroup partial order 
on 〈X〉 that is compatible with �. Then the following are equivalent:

1. All ambiguities of � are resolvable.
2. Every t ∈ K 〈M〉 has a unique normal form t↓� .
3. K 〈M〉/I� and K 〈M〉irr are isomorphic as K -bimodules.

If these conditions hold, then we can define a multiplication on K 〈M〉irr by s · t := (s ⊗ t)↓� so that K 〈M〉/I�
and K 〈M〉irr are isomorphic as K -rings.

Note that our definition of resolvability above differs from the definition used by Bergman. Actu-
ally, he uses two different notions for resolvability of ambiguities, which we briefly describe below. 
Both of them are weaker than our Definition 5 in general. However, if every tensor has a unique nor-
mal form, then all three definitions of resolvability are equivalent. Hence Theorem 6 holds regardless 
which of these three notions of resolvability is used. One slightly weaker notion only requires the 
existence of a tensor t ∈ K 〈M〉 such that

h(a⊗ b)⊗ c
∗→� t

∗←� a⊗ h̃(b⊗ c) or a⊗ h(b)⊗ c
∗→� t

∗←� h̃(a⊗ b⊗ c),

respectively, in other words, the two different results of the reductions of a ⊗ b ⊗ c are joinable. 
Another even weaker notion is the following, which depends on semigroup partial order ≤.

Definition 7. We call an overlap or inclusion ambiguity with words A, B, C ∈ 〈X〉 ≤-resolvable if and 
only if all its S-polynomials are contained in the bimodule I ABC generated by⋃

V∈〈X〉
V <ABC

{t − s | t ∈ MV and t →� s ∈ K 〈M〉}.

If the semigroup partial order ≤ is compatible with �, then this bimodule is contained in a “trun-
cation” I� ∩⊕

V∈〈X〉
V <ABC

MV of the reduction ideal I� .

Example 8. We revisit Example 2 to study it formally in the tensor ring setting. Let (R, ∂) be a 
differential ring and let K denote its ring of constants. We consider the K -bimodule MR = R (indexed 
by the letter R). In addition, we consider the free left K -module MD = K∂ generated by ∂ (indexed 
by the letter D), which we view as a K -bimodule with right multiplication defined by

c∂ · d= cd∂,

for all c, d ∈ K . This definition is based on left K -linearity of the operation ∂ on R:

(c∂d) f = c∂(df )= (cd∂) f .

Let M = MR ⊕ MD be the module of basic operators. Then words over the alphabet X = {R, D} index 
the direct summands of the K -tensor ring K 〈M〉.

We interpret elements f ∈ R as multiplication operators, ∂ as the derivation on R , and the tensor 
product ⊗ as the composition of operators. So we consider the reduction system � = {rRR, rDR} with 
the reduction rules

rRR = (RR, f ⊗ g �→ f g) and rDR = (DR, ∂ ⊗ f �→ f ⊗ ∂ + ∂ f )

corresponding to the composition of multiplication operators and the Leibniz rule. Then the ring of 
differential operators can be defined as the quotient
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R〈∂〉 = K 〈M〉/I�

of the tensor ring by the two-sided reduction ideal. The informal definition of the reduction homo-
morphisms above can be made formal in the following way. First, since

MR × MR → MR

( f , g) �→ f g

is a balanced map, it induces a well-defined homomorphism MRR → MR of abelian groups. This 
homomorphism can be verified to be even a K -bimodule homomorphism, which we use to define 
rRR . Extending the definition

β(∂, f ) := f ⊗ ∂ + ∂ f

by

β(c∂, f ) := β(∂, cf ),

we obtain a balanced map β : MD × MR → MRD ⊕ MR , since

β(c∂ · d, f )= β(cd∂, f )= β(∂, cdf )= β(c∂,df ).

Like above, β induces a K -bimodule homomorphism MDR → MRD ⊕ MR constituting rDR .
So any semigroup partial order ≤ on 〈X〉 with RR > R, as well as DR > RD and DR > R is com-

patible with �, e.g. the degree-lexicographic order with D > R. There are two overlap ambiguities. 
The S-polynomials of the first ambiguity reduce to zero in two steps:

SP(RR,RR)= ( f g)⊗ h− f ⊗ (gh)→rRR ( f g)h− f (gh)= 0.

We already have seen in Example 2 that the S-polynomials SP(DR, RR) reduce to the Leibniz rule 
in R . Hence by Theorem 6 every t ∈ K 〈M〉 has a unique normal form t↓� in K 〈M〉irr, where

K 〈M〉irr = Kε ⊕ MR ⊕ MD ⊕ (MR ⊗ MD)⊕ M⊗2
D ⊕ (MR ⊗ M⊗2

D )⊕ · · ·
since 〈X〉irr = {ε, R, D, RD, D2, RD2, . . .}. In other words, t↓� can be written as a sum of pure tensors 
of the form ε, f , ∂, f ⊗ ∂, ∂ ⊗ ∂, f ⊗ ∂ ⊗ ∂, . . . and we recover the well-known normal forms of 
differential operators. �
Remark 9. If some α ∈ Mx corresponds to a left K -linear operator, like ∂ ∈ MD above, then for the 
right scalar multiplication of left multiples of α, we always have

cα · d= cdα

with c, d ∈ K ; see also Eq. (12). As soon as such an operator is present, the ring over which the 
tensors are formed has to contain K in order to incorporate the corresponding relations directly into 
the tensor ring.

2.3. Computational aspects

Considering the algorithmic aspects of Theorem 6, we assume that we have a finite reduction 
system � over a finite alphabet X . Moreover, a compatible Noetherian semigroup partial order has to 
be assumed.

For generating the set of ambiguities, we only need to work in the word monoid 〈X〉. Likewise, 
determining the set of irreducible words 〈X〉irr is a purely combinatorial problem on words as well, cf. 
the proofs of Theorems 27 and 32. For checking resolvability of ambiguities, it suffices to work with 
S-polynomials constructed from general elements of the basic bimodules Mx . The result of a reduction 
step, i.e. the application of a homomorphism from the reduction system, needs to be simplified in 
the tensor ring. This involves application of properties of the tensor product and of identities in the 
bimodules, like the Leibniz rule in the example above. In practice, the reduction to zero often can be 
detected heuristically without having a canonical simplifier in the bimodules.
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The package TenReS provides routines to generate all ambiguities and corresponding S-
polynomials of a reduction system given by the user. It also includes routines for computing in the 
tensor ring. Identities needed for computing in the bimodules of Eq. (1) have to be implemented by 
the user in each concrete case.

In contrast to specifying new identities in the polynomial resp. term algebra, already the construc-
tive specification of reduction homomorphisms in the tensor setting is not clear in general.

2.3.1. Deletion criteria
For polynomial rings there are two classical deletion criteria for excluding critical pairs from con-

sideration: the product criterion and the chain criterion. We want to consider their analogs for excluding 
ambiguities from the confluence check for tensor reduction systems.

There is no need for an analog of the product criterion as it is already built into the definition of 
ambiguities of tensor reduction rules. If rules (W , h), (W̃ , ̃h) ∈� are such that no word of length less 
than |W | + |W̃ | contains both W and W̃ as subwords, then the rules do not have any ambiguities 
among them anyway. Hence we focus only on the chain criterion. The following lemma is an analog 
of Lemma 5.11 in Mora (1994).

Lemma 10. Let ≤ be a semigroup partial order on 〈X〉 compatible with the reduction system �. Let r1, r2 ∈�

have an overlap ambiguity with A, B, C ∈ 〈X〉, i.e. r1 = (AB, g) and r2 = (BC, h). Let r3 = (V , f ) ∈� where 
V is a subword of W = ABC such that one of the following cases holds.

1. V is a subword of A = LV R and the inclusion ambiguity of r1 and r3 with L, V , R B is ≤-resolvable.
2. V is a subword of B = LV R and the two inclusion ambiguities of r1 and r3 with AL, V , R and of r2 and 

r3 with L, V , RC are ≤-resolvable.
3. V is a subword of C = LV R and the inclusion ambiguity of r2 and r3 with BL, V , R is ≤-resolvable.
4. V is a subword of AB = LV R (with nonempty V 1, V 2 such that V = V 1 V 2 and B = V 2 R) and the 

inclusion ambiguity of r1 and r3 with L, V , R as well as the overlap ambiguity of r2 and r3 with V 1, V 2, RC
are ≤-resolvable.

5. V is a subword of BC = LV R (with nonempty V 1, V 2 such that V = V 1 V 2 and B = LV 1) and the overlap 
ambiguity of r1 and r3 with AL, V 1, V 2 as well as the inclusion ambiguity of r2 and r3 with L, V , R are 
≤-resolvable.

6. There are nonempty L, R such that V = LB R (with A = A1L and C = RC2) and the overlap/inclusion am-
biguity of r1 and r3 with A1, LB, R as well as the overlap/inclusion ambiguity of r2 and r3 with L, B R, C2
are ≤-resolvable.

Then the overlap ambiguity of r1 and r2 with A, B, C is ≤-resolvable.

Proof. For all cases there are canonical choices for W1, W2 such that W = W1 LV RW2 (resp. W =
W1LB RW2 in the last case). For a pure tensor t ∈ MW we have that the corresponding S-polynomial 
is equal to hε,r1,C (t) − hA,r2,ε (t) = t1 + t2 with t1 := hε,r1,C (t) − t3, t2 := t3 − hA,r2,ε(t), and t3 :=
hW1 L,r3,RW2(t) (resp. t3 := hW1,r3,W2 (t) in the last case). According to Definition 7, we show that 
t1, t2 ∈ IW .

In Case 3, we directly verify t1 = g(a ⊗ b) ⊗ (c − hL,r3,R(c)) − (a ⊗ b − g(a ⊗ b)) ⊗ hL,r3,R(c) ∈ IW

with a ∈ M A , b ∈ MB , and c ∈ MC such that t = a ⊗b ⊗ c. Otherwise, by assumption, all S-polynomials 
of r1 and r3 are contained in I S1 , where S1 = AB V 2 in Case 5, S1 = AB R in Case 6, and S1 = AB
in the remaining cases. Then, there is m1 ∈ MT1 , where T1 ∈ 〈X〉 is such that W = S1T1, and an 
S-polynomial s1 of r1 and r3 such that t1 = s1 ⊗m1. Hence t1 ∈ I S1 ⊗ MT1 ⊆ I S1 T1 = IW .

Analogously, we directly verify t2 ∈ IW in Case 1. In the remaining cases we let S2 := BC (resp. 
S2 := V 1 BC in Case 4 and S2 := LBC in Case 6). Then, we have t2 =m2 ⊗ s2 for some S-polynomial 
s2 of r2 and r3 and some m2 ∈ MT2 , where T2 ∈ 〈X〉 is such that W = T2 S2. We conclude t2 ∈
MT2 ⊗ I S2 ⊆ IW , since s2 ∈ I S2 by assumption.

Consequently, t1 and t2 are in IW in all cases. Hence the same applies to the S-polynomial 
hε,r1,C (t) − hA,r2,ε (t) and the overlap ambiguity of r1 and r2 with A, B, C is ≤-resolvable. �
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Note that V might be a subword of W in multiple ways, so we need to specify which ambiguities 
of r1, r3 resp. r2, r3 are ≤-resolvable in order to be able to conclude that the given ambiguity of r1, r2
is ≤-resolvable. A similar statement can be obtained for inclusion ambiguities of r1 and r2.

3. Tensor setting with specialization

Direct application of Bergman’s tensor setting requires the sum in Eq. (1) to be direct. As a con-
sequence, domains of reduction rules in a reduction system cannot overlap, even their tensor factors 
cannot overlap. In order to emulate overlapping domains (or factors), reduction rules have to be split 
into several smaller parts so that domains of those smaller rules do not overlap. Thus computa-
tions with such reduction systems can be inconvenient and inefficient in practice as the smaller rules 
technically are just individual rules that need to be applied separately. Moreover, this leads to some 
redundancy in the investigation of ambiguities and S-polynomials. Sticking to the above definition of 
reduction systems for tensor rings, this situation cannot be avoided.

Example 11. Note that in Example 8 irreducible tensors still have some relations among them when 
acting as operators. For instance, kε ∈ M⊗0 and k ∈ M both act by multiplying with k ∈ K . So we 
need an additional reduction rule reducing k ∈ M to kε ∈ M⊗0 for k ∈ K . Fixing a direct complement 
R = K ⊕ R̃ in R for defining the reduction rule

rK = (K,1 �→ ε),

would cause the splitting of the rule rRR into four rules rKK, rKR̃, rR̃K, rR̃R̃ and similarly rDR would split 
into two rules. The aim of this section is to introduce a framework that allows the rule rK to coexist 
with rRR and rDR . �

In order to remedy this situation, the aim of this section is to introduce a more flexible tensor 
setting where the definable reduction systems are much more general. While the induced reduction 
relations are also more general, the corresponding reduction ideals are not, however.

Definition 12. Let M be a K -bimodule. We call a family (Mz)z∈Z of K -subbimodules of M a decom-
position with specialization, if M =∑

z∈Z Mz and there exists a subset X ⊆ Z such that

1. we have the direct sum decomposition M =⊕
x∈X Mx and

2. for every z ∈ Z the corresponding module Mz satisfies

Mz =
⊕

x∈S(z)

Mx (5)

where S(z) := {x ∈ X | Mx ⊆ Mz} is the set of specializations of z.

Note that this definition implies S(x) = {x} for x ∈ X . In the following, we define a framework for 
tensor reduction systems that are based on such a decomposition with specialization. To this end, we 
fix a K -bimodule M , alphabets X ⊆ Z , and a decomposition (Mz)z∈Z of M with specialization.

For words W = w1 . . . wn ∈ 〈Z〉 we define the corresponding subbimodule of K 〈M〉 as before by 
MW := Mw1 ⊗ · · · ⊗ Mwn . Because of Eq. (5), any MW is then a direct sum of certain MV , V ∈ 〈X〉. 
For a precise statement we can extend the notion of specialization from the alphabet Z to the whole 
word monoid 〈Z〉 by the definition below such that we have the following generalization of Eq. (5):

MW =
⊕

V∈S(W )

MV .

Definition 13. For W = w1 . . . wn ∈ 〈Z〉 we define the set of specializations of W by

S(W ) := {v1 . . . vn ∈ 〈X〉 | ∀i : vi ∈ S(wi)}
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Remark 14. Note that for V ∈ 〈X〉 and W ∈ 〈Z〉 the bimodules MV and MW either intersect only in 0
or MV is contained in MW . Note further that the specializations of W ∈ 〈Z〉 are also given by

S(W )= {V ∈ 〈X〉 | MV ⊆ MW }.

Definition 3 carries over by replacing X with Z . For such a reduction system � over Z we define 
the reduction ideal I� by Eq. (4) and we define 〈X〉irr as the set of words from 〈X〉 containing no 
subwords from the set⋃

(W ,h)∈�

S(W ).

Based on 〈X〉irr we define K 〈M〉irr as in Eq. (3). Furthermore, for every reduction system � over Z
we call its reformulation as a reduction system over X the refined reduction system �X , which is given 
by

�X :=
⋃

(W ,h)∈�

{(V ,h|MV ) | V ∈ S(W )}. (6)

Lemma 15. Let � be a reduction system over Z and let �X be its refinement on X. Then the reduction ideals 
and the irreducible words are the same for � and for �X . Moreover, also K 〈M〉irr stays the same.

Proof. Follows immediately from the definitions. �
Note that, however, the refined reduction system does not define the same reduction relation. In 

general, we neither have →�X⊆→� nor →�⊆→�X . We only have →� ⊆ ∗→�X in general.

Definition 16. We call a partial order ≤ on 〈Z〉 consistent with specialization if for all words V , W ∈ 〈Z〉
with V < W we also have Ṽ < W̃ for all specializations Ṽ ∈ S(V ) and W̃ ∈ S(W ).

Note that the above definition implies that W is incomparable to all elements in S(W ), except 
possibly W itself, which can be seen by considering the two cases V ∈ S(W ) and W ∈ S(V ) in the 
definition.

A semigroup partial order ≤ on 〈Z〉 is compatible with a reduction system � over Z if for all 
(W , h) ∈� we have

h(MW )⊆
∑

V∈〈Z〉
V <W

MV .

If ≤ is consistent with specialization, then for any W̃ ∈ S(W ) we have
∑

V∈〈Z〉
V <W

MV ⊆
⊕

V∈〈X〉
V <W̃

MV .

Lemma 17. Let � be a reduction system over Z and let ≤ be a semigroup partial order on 〈Z〉 consistent with 
specialization and compatible with �. Then the restricted order ≤ on 〈X〉 is compatible with �X .

Proof. By definition of �X , For any reduction rule (W̃ , ̃h) ∈ �X there is (W , h) ∈ � such that W̃ ∈
S(W ) and h̃ = h|MW̃

. So, by our assumptions, we have

h̃(MW̃ )= h(MW̃ )⊆ h(MW )⊆
∑

V∈〈Z〉
V <W

MV ⊆
⊕

V∈〈X〉
˜

MV . �

V <W



J. Hossein Poor et al. / Journal of Symbolic Computation 85 (2018) 247–274 259
We need to generalize the notion of ambiguities to account for the fact that the sum K 〈M〉 =∑
W∈〈Z〉 MW is not necessarily direct anymore.

Definition 18. Let (W , h), (W̃ , ̃h) ∈ � be two (not necessarily distinct) reduction rules and let 
A, B1, B2, C ∈ 〈Z〉 be nonempty words with

W = AB1, W̃ = B2C, and S(B1)∩ S(B2) �= ∅,
then we call this an overlap ambiguity. An overlap ambiguity is called resolvable if for all pure tensors 
a ∈ M A , b ∈ MB1 ∩ MB2 , and c ∈ MC the S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c − a⊗ h̃(b⊗ c)
∗→� 0.

Similarly, an inclusion ambiguity is given by two distinct reduction rules (W , h), (W̃ , ̃h) ∈ � and 
words A, B1, B2, C ∈ 〈Z〉 with W = B1, W̃ = AB2C , and S(B1) ∩ S(B2) �= ∅. An inclusion ambiguity is 
called resolvable if for all pure tensors a ∈ M A , b ∈ MB1 ∩ MB2 , and c ∈ MC the S-polynomial can be 
reduced to zero: a ⊗ h(b) ⊗ c − h̃(a ⊗ b ⊗ c) ∗→� 0.

If B1 �= B2 for an overlap or inclusion ambiguity, then we say that the ambiguity is with specializa-
tion.

Again, we use SP(AB1, B2C) or SP(B1, AB2C), respectively, to refer to S-polynomials of an overlap 
or inclusion ambiguity.

Remark 19. Note that in total there now can be four types of ambiguities: in addition to the two 
types of ambiguities (without specialization) of Definition 5 there are also corresponding versions 
with specialization as defined above.

With these definitions we can prove the following generalization of Bergman’s result. In order to 
prove properties of the reduction system � over Z we apply Bergman’s result (Theorem 6) to the 
refined reduction system �X over X .

Theorem 20. Let M be a K -bimodule and let (Mz)z∈Z be a decomposition with specialization. Let � be a 
reduction system over Z on K 〈M〉 and let ≤ be a Noetherian semigroup partial order on 〈Z〉 consistent with 
specialization and compatible with �. Then the following are equivalent:

1. All ambiguities of � are resolvable.
2. Every t ∈ K 〈M〉 has a unique normal form t↓� .
3. K 〈M〉/I� and K 〈M〉irr are isomorphic as K -bimodules.

Moreover, if these conditions are satisfied, then we can define a multiplication on K 〈M〉irr by s · t := (s ⊗ t)↓�

so that K 〈M〉/I� and K 〈M〉irr are isomorphic as K -rings.

Proof. First, we prove the implication 2. ⇒ 1. Any S-polynomial of an ambiguity of � is of the form 
h(t) − h̃(t) for some pure tensor t ∈ K 〈M〉 and reductions h and h̃ of �. Let H1 be a composition of 
reductions of � such that H1(h(t)) ∈ K 〈M〉irr and let H2 be a composition of reductions of � such 
that H2(H1(h̃(t))) ∈ K 〈M〉irr. Then H2 ◦ H1 reduces the S-polynomial to zero since t has a unique 
normal form w.r.t. �.

The rest of the proof is reduced to Theorem 6 via properties of the refined reduction system �X . 
Lemma 15 shows that we can replace the reduction system � by its refinement �X without changing 
the reduction ideal or K 〈M〉irr , hence statement 3. holds for � if and only if it holds for �X . Further-
more, we note that every S-polynomial of �X is also an S-polynomial of � and that ∗→� ⊆ ∗→�X , 
hence statement 1. holds for �X if it holds for �. If statement 2. holds for �X , then by ∗→� ⊆ ∗→�X

and the fact that K 〈M〉irr does not change it also holds for �. Finally, Lemma 17 implies that �X and 
the restriction of ≤ to 〈X〉 satisfy the assumptions of Theorem 6, which concludes the proof. �
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Note that for W , W̃ ∈ 〈Z〉 having a common specialization, i.e. S(W ) ∩ S(W̃ ) �= ∅, there does not 
necessarily exist V ∈ 〈Z〉 such that S(V ) = S(W ) ∩ S(W̃ ). In general, the intersection of two modules 
is given by

MW ∩ MW̃ =
⊕

V∈S(W )∩S(W̃ )

MV =
n⊗

k=1

⊕
x∈S(wk)∩S(w̃k)

Mx,

where W = w1 . . . wn and W̃ = w̃1 . . . w̃n .

Example 21. Consider alphabets X = {x1, x2, x3} and Z = X ∪ {y1, y2} with M y1 = Mx1 ⊕ Mx3

and M y2 = Mx2 ⊕ Mx3 . The words W = x1 y2 y1 and W̃ = y1 y2 y2 in 〈Z〉 satisfy S(W ) ∩ S(W̃ ) =
{x1x2x3, x1x3x3} �= ∅. We have MW ∩ MW̃ = Mx1 ⊗ M y2 ⊗ Mx3 . So, in this case, there even exists a 
word V = x1 y2x3 that satisfies S(V ) = S(W ) ∩ S(W̃ ) and MV = MW ∩ MW̃ . �
Example 22. Consider alphabets X = {x1, x2, x3, x4} and Z = X ∪ {y1, y2} with S(yi) = X \ {x5−i}. 
The words W = y1 and W̃ = y2 satisfy S(W ) ∩ S(W̃ ) = {x1, x2} �= ∅ and there is no word V with 
S(V ) = S(W ) ∩ S(W̃ ). �

In order to describe the intersection of modules in terms of words again it will be convenient to 
also consider another partial order � on 〈Z〉, which is induced by the natural partial order, given by 
set inclusion, on all sets of the form S(W ) ⊆ 〈X〉. In other words, we have V � W in 〈Z〉 if and only 
if S(V ) ⊆ S(W ), which holds if and only if MV is contained in MW .

In addition, for a set S ⊆ 〈Z〉 we define the K -bimodule

M S :=
∑
W∈S

MW ⊆ K 〈M〉 (7)

with M S being the trivial bimodule {0} if S is empty. We also define

lb(S) := {V ∈ 〈Z〉 | V � W for all W ∈ S}
as the set of all lower bounds of S with respect to the partial order �. Note that this implies⋂

W∈S

MW = Mlb(S) = Mlb(S)∩〈X〉

where we have lb(S) ∩ 〈X〉 =⋂
W∈S S(W ). If � satisfies the ascending chain condition, it is enough 

to consider only maximal elements of lb(S) for 
⋂

W∈S MW = Mlb(S) .

Example 23. Consider alphabets X = {x1, x2, x3, x4, x5, x6} and Z = X ∪ {y1, y2, y3, z1, z2} with 
S(yi) = {xi, xi+1} and S(zi) = X \ {x7−i}. The words W = z1 and W̃ = z2 satisfy S(W ) ∩ S(W̃ ) =
{x1, x2, x3, x4} �= ∅ and there is no word V with S(V ) = S(W ) ∩ S(W̃ ). We have lb(W , W̃ ) =
{x1, x2, x3, x4, y1, y2, y3} and the maximal elements of lb(W , W̃ ) are y1, y2, y3. As explained above, 
we have MW ∩MW̃ = Mlb(W ,W̃ ) = Mlb(W ,W̃ )∩〈X〉 = M{y1,y2,y3} . In this example, we can even find words 
such that the intersection is a direct sum of as few modules as possible: MW ∩MW̃ = M y1 ⊕M y3 . �
3.1. Multi-level setting

Our two-level tensor setting presented at ISSAC 2016 (Hossein Poor et al., 2016a, Sec. 4) can be 
generalized to obtain a multi-level tensor setting, which in turn is a special case of the setting pre-
sented above. We briefly describe how the multi-level tensor setting looks like. To this end, we first 
recall when one direct sum decomposition of M is a refinement of another.

For two families of K -bimodules with M =⊕
x∈X Mx =⊕

y∈Y M y , we say that (Mx)x∈X is a refine-
ment of (M y)y∈Y if there exists a partition (X y)y∈Y of X such that

1. X y = {x} for all y ∈ X ∩ Y and
2. M y =⊕

x∈X Mx for all y ∈ Y .

y
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For the multi-level setting we consider a family of alphabets (Xi)i∈I each corresponding to a direct 
sum decomposition M =⊕

x∈Xi
Mx , the “levels”. On the index set I we can define a partial order �

such that i � j if and only if (Mx)x∈Xi is a refinement of (Mx)x∈X j . We require that the set I has a 
least element 0 ∈ I w.r.t. �, i.e. there exists a finest level that is a refinement of all levels. Defining 
X := X0 and Z :=⋃

i∈I Xi we easily recognize this as a special case of the above tensor setting with 
specialization.

Conversely, each instance of the tensor setting with specialization can be viewed as multi-level 
by letting X0 := X and completing each Mz , z ∈ Z \ X , into a level of its own: M = Mz ⊕ Mz with 
Mz :=

⊕
x∈X\S(z) Mx . The resulting order � on I := {0} ∪ (Z \ X) may be far from total, it may even be 

trivial apart from 0 � i.
The multi-level setting is worth mentioning mainly because of the following property. If � is a 

total order on I , i.e. if all levels are nested, then for any W , W̃ ∈ 〈Z〉 with S(W ) ∩ S(W̃ ) �= ∅, there 
exists (at least one) V ∈ 〈Z〉 such that S(V ) = S(W ) ∩ S(W̃ ), i.e. MV = MW ∩ MW̃ .

3.2. Computational aspects

Many properties that we discussed for Bergman’s tensor setting also hold for the tensor setting 
with specialization we introduced above. For instance, determining ambiguities and irreducible words 
is done just on the level of words. In the following, we discuss the differences of the two settings.

The main computational benefit of Theorem 20 compared to Theorem 6 lies in the fact that for the 
confluence criterion we only need to check ambiguities of � over the alphabet Z and no computations 
with �X are needed. Computing with the refined reduction system over X instead, generally would 
lead to a higher number of ambiguities, since one reduction rule in � can give rise to many reduction 
rules in �X . Only for determination of irreducible words we restrict to 〈X〉.

If we formulate our reduction system � over the alphabet Z , instead of using some �̃ over the 
smaller alphabet X for the same reduction ideals I�̃ = I� , we may be able to considerably reduce 
the size of the reduction system. This may happen in two different ways. First, assume a partition of 
X such that some homomorphisms in �̃ are defined by the same formula and the homomorphisms 
differ only by the choice of their domain and the corresponding words are obtained as specializations 
from some template. Then the corresponding reduction rules from �̃ could be merged into one re-
duction rule in �. This is exactly what happens for �̃ = �X . Second, also extending the domain of 
some homomorphism from �̃ may contribute to obtaining a smaller reduction system �. So usually 
we will have �̃ ⊂�X .

The package TenReS also provides routines for generating all overlap and inclusion ambiguities 
with specialization together with their corresponding S-polynomials. For a detailed comparison of 
Bergman’s setting and our generalization for the example of IDOs see (Hossein Poor et al., 2016a).

4. Integro-differential operators

Integro-differential operators over a field of constants were introduced in Rosenkranz (2005), 
Rosenkranz and Regensburger (2008) to study algebraic and algorithmic aspects of linear ordinary 
boundary problems. The construction made use of a parametrized Gröbner basis in infinitely many 
variables coming from a basis of the coefficient algebra; see also the survey (Rosenkranz et al., 2012) 
for an automated confluence proof and (Regensburger, 2016) for related references. For polynomial co-
efficients, also generalized Weyl algebras (Bavula, 2013), skew polynomials (Regensburger et al., 2009), 
and noncommutative Gröbner bases (Quadrat and Regensburger, 2017) have been used to study them. 
In this section, we apply the tensor setting with specialization introduced above to the construction of 
normal forms for integro-differential operators (IDOs) over an arbitrary integro-differential ring. First, 
we define an integro-differential ring analogous to the definition of an integro-differential algebra in 
Rosenkranz et al. (2012), Guo et al. (2014).

Definition 24. Let (R, ∂) be a differential ring such that ∂ R = R . Moreover, let 
∫ : R → R be a bimod-

ule homomorphism over the ring of constants in R , such that

∂
∫

f = f (8)
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for all f ∈ R . We call (R, ∂, 
∫
) an integro-differential ring if the evaluation

E f := f − ∫
∂ f (9)

is multiplicative, i.e. for all f , g ∈ R we have

E f g = (E f )Eg.

The following lemma shows that in any integro-differential ring, the evaluation E maps to the con-
stants such that it acts as the identity on them, in particular, it is also a homomorphism of rings with 
unit element. Moreover, the ring R can be decomposed as direct sum of constant and non-constant 
“functions”.

Lemma 25. Let (R, ∂, 
∫
) be an integro-differential ring with constants K . Then, we have E1 = 1, E f ∈ K for 

all f ∈ R, and

R = K ⊕ ∫
R,

as direct sum of K -bimodules.

Proof. We first compute E1 = 1 − ∫
∂1 = 1 and ∂E f = ∂( f − ∫

∂ f ) = ∂ f − ∂ f = 0. For any f ∈ R , we 
have f = E f + f −E f = E f +∫

∂ f and hence R = K +∫
R . Let f ∈ K ∩∫

R and g ∈ R such that f = ∫
g . 

Then 0 = ∂ f = ∂
∫

g = g , which implies f = 0. �
For the rest of this section, we fix an arbitrary integro-differential ring (R, ∂, 

∫
) and we denote its 

ring of constants by K . By an operator, we understand in the following a K -bimodule homomorphism 
from R to R . For example, the operations ∂, 

∫
, E can be viewed as operators.

Following Lemma 25, we consider the direct sum decomposition R = K ⊕ ∫
R and the correspond-

ing K -bimodules

MK = K and MR̃ =
∫

R (10)

(indexed by the symbols K and R̃). Note that the elements of MK and MR̃ are not interpreted as func-
tions but as left multiplication operators g �→ f g induced by those functions. For studying boundary 
value problems algebraically, we also need to deal with other multiplicative “functionals” on R with 
the same properties as E, so we consider the set

� := {ϕ : R → K | ϕ is a K -bimodule homomorphism with ϕ f g = (ϕ f )ϕg and ϕ1= 1}.
(11)

Instead, one can also consider � as a proper subset (containing E) of the full set defined above. This 
amounts to working with a smaller ring of operators later. For the operators ∂ , 

∫
, E, and ϕ ∈ �̃ with 

�̃=� \ {E}, we consider the free left K -modules

MD = K∂, MI = K
∫
, ME = K E, MΦ̃ = K �̃ (12)

generated by them (indexed by the symbols D, I, E, and Φ̃). We view these modules as K -bimodules 
with right multiplication defined by

cα · d= cdα

where α ∈ {∂, 
∫
, E} ∪�̃ and c, d ∈ K , since the generators of these modules correspond to left K -linear 

operators. We define two alphabets

X = {K, R̃,D, I,E,Φ̃} and Z = X ∪ {R,Φ}, (13)

with the K -bimodules (Mx)x∈X defined in Eqs. (10) and (12) as well as

MR = MK ⊕ MR̃ and MΦ = ME ⊕ M ˜ . (14)
Φ
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Now, we define the module M by

M := MR ⊕ MD ⊕ MI ⊕ MΦ, (15)

which turns (Mz)z∈Z into a decomposition with specialization.
In order to compute with these operators, we need to collect identities they satisfy in form of a 

reduction system. To this end, we first list identities following immediately from their definitions (like 
multiplicativity of functionals, K -linearity, and the Leibniz rule) and some of their consequences that 
hold in R . For all f , g ∈ R and ϕ, ψ ∈�:

ϕ f g = (ϕ f )ϕg ∂
∫

g = g
ψϕg = ϕg

∫
∂ g = g − Eg

E
∫

g = 0
∫

f ϕg = (
∫

f )ϕg
∂ f g = f ∂ g + (∂ f )g

∫
f ∂ g = f g − ∫

(∂ f )g − (E f )Eg
∂ϕg = 0

∫
f
∫

g = (
∫

f )
∫

g − ∫
(
∫

f )g

The identities that do not follow immediately from the definitions are E
∫

g = 0, integration by parts
∫

f ∂ g = f g − ∫
(∂ f )g − (E f )Eg,

and the Rota–Baxter identity∫
f
∫

g = (
∫

f )
∫

g − ∫
(
∫

f )g

for the integral. They can either be verified directly or we obtain them in Section 6 as a consequence 
of S-polynomial computations. All identities listed above correspond to identities for operators acting 
on g ∈ R . The reduction system � over the alphabet 〈Z〉 is given by Table 1, defined in terms of all 
f , g ∈ R and ϕ, ψ ∈�.

In analogy to the definition of reduction homomorphisms in Section 2, the informal definitions in 
Table 1 have to be made formal. For instance,

βID(
∫
, ∂) := ε − E

is extended to a balanced map on MI × MD via

βID(c
∫
,d∂) := cdβID(

∫
, ∂)

and similarly

βIRΦ(
∫
, f ,ϕ) := ∫

f ⊗ ϕ

Table 1
Reduction rules for IDOs.

K 1 �→ ε
RR f ⊗ g �→ f g
ΦR ϕ ⊗ f �→ (ϕ f )ϕ
ΦΦ ψ ⊗ ϕ �→ ϕ
EI E⊗ ∫ �→ 0
DR ∂ ⊗ f �→ f ⊗ ∂ + ∂ f
DΦ ∂ ⊗ ϕ �→ 0
DI ∂ ⊗ ∫ �→ ε
IΦ

∫ ⊗ ϕ �→ ∫
1⊗ ϕ

ID
∫ ⊗ ∂ �→ ε − E

II
∫ ⊗ ∫ �→ ∫

1⊗ ∫ − ∫ ⊗ ∫
1

IRΦ
∫ ⊗ f ⊗ ϕ �→ ∫

f ⊗ ϕ
IRD

∫ ⊗ f ⊗ ∂ �→ f − ∫ ⊗ ∂ f − (E f )E
IRI

∫ ⊗ f ⊗ ∫ �→ ∫
f ⊗ ∫ − ∫ ⊗ ∫

f
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with ϕ ∈� is extended to a balanced map on MI × MR × MΦ by

βIRΦ(c
∫
, f ,

∑
i

ciϕi) :=
∑

i

βIRΦ(
∫
, cf ci,ϕi).

Definition 26. Let (R, ∂, 
∫
) be an integro-differential ring with constants K . We call

R〈∂,
∫
,�〉 := K 〈M〉/ J

the ring of integro-differential operators, where J is the two-sided reduction ideal induced by the re-
duction system obtained from Table 1.

In order to compute in R〈∂,
∫
,�〉 we want to analyze the reduction system defined by Table 1

according to Theorem 20 above and determine normal forms of tensors. Following the definition 
in Eq. (6), the refined reduction system �X is obtained, according to Eq. (14), by splitting rules 
whose words contain R or Φ into “smaller” rules using S(R) = {K, R̃} and S(Φ) = {E, Φ̃}. For ex-
ample, the reduction rule (ΦR, h) ∈ � is split into the rules (W , h|MW ) ∈ �X where W ∈ S(ΦR) =
{EK, ER̃, Φ̃K, Φ̃R̃}.

Theorem 27. Let (R, ∂, 
∫
) be an integro-differential ring with constants K and let � be the set of multiplicative 

K -bimodule homomorphisms given by Eq. (11). Let M be defined by Eqs. (14) and (15) and let the reduction 
system � be defined by Table 1.

Then every t ∈ K 〈M〉 has a unique normal form t↓� , which is given by a sum of pure tensors of the form

f ⊗ ϕ ⊗ ∂⊗ j or f ⊗ ϕ ⊗ ∫ ⊗ g

where j ∈N0 , each of f , g ∈ MR̃ and ϕ ∈� may be absent, and ϕ⊗ ∫
does not specialize to E ⊗ ∫

. Moreover,

R〈∂,
∫
,�〉 ∼= K 〈M〉irr

as K -rings, where the multiplication on K 〈M〉irr is defined by s · t := (s ⊗ t)↓� .

Proof. We consider the alphabets X and Z given by Eq. (13). This turns (Mz)z∈Z into a decomposition 
with specialization for the module M , see Definition 12. For defining a Noetherian monoid partial 
order ≤ on 〈Z〉 that is compatible with �, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃.

For instance, we could use a degree-lexicographic order with I > D >Φ > R on 〈{R,D, I,Φ}〉 ⊆ 〈Z〉 or 
other degree-lexicographic orders with D > R and I > R. We extend it to a monoid partial order on 
〈Z〉 based on Definition 16 in order to make it consistent with specialization. Then by the package
TenReS we verify that all ambiguities of � are resolvable, see Section 4.1. Hence by Theorem 20
every element of K 〈M〉 has a unique normal form and K 〈M〉/I� ∼= K 〈M〉irr as K -rings.

It remains to determine the explicit form of elements in K 〈M〉irr. To do so, we determine the 
set of irreducible words 〈X〉irr in 〈X〉. Irreducible words containing only the letters K and R̃ have 
to avoid the subwords K and S(RR) = {KK, KR̃, R̃K, R̃R̃}, hence only the words ε and R̃ are left. 
The irreducible words containing only E and Φ̃ are exactly ε , E, and Φ̃, since they have to avoid 
the subwords S(ΦΦ) = {EE, EΦ̃, Φ̃E, Φ̃Φ̃}. Altogether, we see that the irreducible words containing 
only the letters K, R̃, E, and Φ̃ are given by the set {ε, R̃, E, Φ̃, R̃E, R̃Φ̃}, since they also have to 
avoid the subwords S(ΦR) = {EK, ER̃, Φ̃K, Φ̃R̃}. Allowing also the letter D, we have to avoid the 
subwords coming from S(DR) = {DK, DR̃} and S(DΦ) = {DE, DΦ̃}. Therefore, we can only append 
words D j with j ∈ N0 to the irreducible words determined so far, in order to obtain all elements 
of 〈X〉irr not containing the letter I. Finally, we also consider the letter I. Since subwords EI and DI

have to be avoided, the first occurrence of I in an irreducible word can only be preceded by ε , R̃, Φ̃, 
or R̃Φ̃. We also have to avoid the subwords S(IΦ) = {IE, IΦ̃}, ID, and II, so any letter immediately 
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following I has to be R̃. In addition, we have to avoid the subwords S(IRΦ) = {IKE, IKΦ̃, IR̃E, IR̃Φ̃}, 
S(IRD) = {IKD, IR̃D}, and S(IRI) = {IKI, IR̃I}, so the letter I cannot be followed by a subword of length 
greater than one. Altogether, the elements of 〈X〉irr are of the form

R̃V D j or R̃Φ̃IR̃,

where j ∈ N0 and each of R̃, Φ̃, and V ∈ S(Φ) = {E, Φ̃} may be absent. The normal forms follow 
from Eq. (3). �

Note that the formulae given in Table 1 above to define the reduction system for the tensor ring 
are the same as the formulae presented in Table 2 in Hossein Poor et al. (2016a) for the tensor al-
gebra with commutative K . Here we use these formulae to define K -bimodule homomorphisms via 
balanced maps instead of defining K -module homomorphisms via multilinear maps. The same ambi-
guities need to be considered for checking confluence and we obtain the same structure of normal 
forms. Differences arise only from R now being a K -ring instead of a K -algebra.

4.1. Computational aspects

In the following, we briefly discuss computational details of the tensor setting with specialization 
for integro-differential operators. Applying TenReS to the reduction system �, in total 52 ambiguities 
and corresponding S-polynomials are generated. Among them, there are 4 ambiguities for which the 
corresponding S-polynomials are zero anyway, for instance

SP(DΦ,EI)= 0⊗ ∫ − ∂ ⊗ 0= 0.

The S-polynomials of 48 remaining ambiguities are reduced to zero by applying automatically the 
implementation of rules from �, identities in R and identities in MD , MI and MΦ . The complete 
computation is included in the example files of the package. Here we consider a few concrete in-
stances of ambiguities. For example, we use the definition of E in R in the reduction of the following 
S-Polynomial

SP(IRD,DΦ)= ( f − ∫ ⊗ ∂ f − (E f )E)⊗ ϕ − ∫ ⊗ f ⊗ 0

→rIRΦ f ⊗ ϕ − (
∫
∂ f )⊗ ϕ − (E f )E⊗ ϕ

= f ⊗ ϕ − ( f − E f )⊗ ϕ − (E f )E⊗ ϕ

= E f ⊗ ϕ − (E f )E⊗ ϕ→rΦΦ E f ⊗ ϕ − (E f )ϕ→rK 0.

As another example, we use the definition of the right multiplication in the K -bimodule MI in the 
following reduction

SP(IΦ,ΦR)= (
∫

1⊗ ϕ)⊗ f − ∫ ⊗ (ϕ f )ϕ→rIΦ

∫
1⊗ ϕ ⊗ f − ϕ f (

∫
1⊗ ϕ)

→rΦR

∫
1⊗ (ϕ f )ϕ − ϕ f (

∫
1⊗ ϕ)

= (
∫

1ϕ f )⊗ ϕ − ϕ f (
∫

1⊗ ϕ)= (ϕ f )
∫

1⊗ ϕ − ϕ f (
∫

1⊗ ϕ)

= ϕ f (
∫

1⊗ ϕ)− ϕ f (
∫

1⊗ ϕ)= 0.

There are 41 ambiguities without specialization. The remaining 11 ambiguities consist of 4 overlap 
ambiguities with specialization and 7 inclusion ambiguities with specialization. For example,

SP(IRΦ,EI)= (
∫

f ⊗ E)⊗ ∫ − ∫ ⊗ f ⊗ 0→rEI 0,

and

SP(K,DR)= ∂ ⊗ ε ⊗ ε − 1⊗ ∂ →rK ∂ − ∂ = 0.

We emphasize again that the confluence criterion of Theorem 20 directly works with the reduction 
system �, no computations with the refined reduction system �X over X are needed.
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5. Integro-differential operators with linear substitutions

In this section, we apply our tensor setting with specialization to extend the ring of integro-
differential operators by adding linear substitution operators. An important motivation for studying 
this ring comes from the work by Quadrat (2015). In this paper, such operators and their com-
mutation rules are used for an algorithmic approach to Artstein’s integral transformation of linear 
differential systems with delayed inputs to linear differential system without delays. IDOs with linear 
substitutions also address the univariate case in Rosenkranz et al. (2015), where algebraic aspects of 
multivariate integration with linear substitutions are studied. Moreover, they provide an algebraic set-
ting for dealing with delay differential equations and the corresponding initial and boundary problems 
in general.

A delay differential equation is an ordinary differential equation in which the derivative at a certain 
time depends on the solution at prior times; see, for example, Hale and Verduyn Lunel (1993), Smith 
(2011). A general first-order constant delay equation has the form

y′(x)= f (x, y(x), y(x− b1), y(x− b2), . . . , y(x− bn))

where the time delays b j for 1 ≤ j ≤ n are positive constants. A homogeneous linear first-order time-
delay equation with one constant delay has the form

y′(x)= A(x)y(x)+ B(x)y(x− b).

The chain rule and integration by substitution from calculus describe the interaction of linear 
substitutions f (ax − b) with differentiation and integration. More formally, let σa,b denote the linear 
substitution operator mapping a smooth function f (x) to f (ax − b) for a nonzero constant a and an 
arbitrary constant b. Then

∂xσa,b f (x)= af ′(ax− b)= aσa,b∂x f (x)

and

x∫

0

σa,b f (t)dt =
x∫

0

f (at − b)dt = 1

a

ax−b∫

−b

f (t)dt = 1

a
σa,b

x∫

0

f (t)dt − 1

a
Eσa,b

x∫

0

f (t)dt.

Following these identities, we want to define an integro-differential ring with linear substitutions. 
In what follows, C = K ∩Z(R) denotes the ring of elements of K which commute with all elements 
of R and C∗ denotes its group of units. In order to find a proper algebraic setting, we will add an 
axiomatization of linear substitution operations to an integro-differential ring.

Definition 28. Let (R, ∂, 
∫
) be an integro-differential ring with constants K and let

S := {σa,b | a ∈ C∗, b ∈ C}
where σa,b : R → R are multiplicative K -bimodule homomorphisms on R fixing the constants K such 
that

σ1,0 f = f , σa,bσc,d f = σac,bc+d f (16)

and

∂σa,b f = aσa,b∂ f (17)

for all a, c ∈ C∗ , b, d ∈ C and f ∈ R . Then we call (R, ∂, 
∫
, S) an integro-differential ring with linear 

substitutions.

Remark 29. The set S along with composition can be considered as a group of K -bimodule homo-
morphisms on R . The neutral element is σ1,0 and the inverse for σa,b ∈ S is given by

σ−1
a,b = σa−1,−ba−1 .

So the elements in S actually are automorphisms.
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As in analysis, integration by substitution is a consequence of the chain rule and the fundamental 
theorem of calculus.

Lemma 30. Let (R, ∂, 
∫
, S) be an integro-differential ring with linear substitutions. For all σa,b ∈ S and f ∈ R,

∫
σa,b f = a−1(id− E)σa,b

∫
f . (18)

Proof. We first apply 
∫

to Eq. (17). So
∫
∂σa,b f = ∫

aσa,b∂ f = a
∫
σa,b∂ f .

By Eq. (9), we substitute 
∫
∂σa,b f with (id− E)σa,b f and multiply the resulting equation by a−1. This 

gives the identity
∫
σa,b∂ f = a−1(id− E)σa,b f ,

which implies Eq. (18) by just replacing f with 
∫

f . �
In the sequel, we fix an integro-differential ring with linear substitutions (R, ∂, 

∫
, S) with con-

stants K and evaluation E = id− ∫
∂ . We consider the modules MK , MR̃ , MD , MI , ME , MΦ̃ , MR , and 

MΦ which are introduced in Eqs. (10), (12), and (14). In addition, we add the free left K -module

MG := K S.

We also view it as a K -bimodule with the right multiplication defined by cσa,b · d = cdσa,b with 
c, d ∈ K . It has the direct sum decomposition

MG = MN ⊕ MG̃

such that MN := Kσ1,0 is the K -bimodule generated by the trivial substitution σ1,0 = id and MG̃ :=
K S̃ is the K -bimodule generated by all linear substitutions in S̃ = S \ {σ1,0}. Therefore we take the 
alphabets

X := {K, R̃,D, I,E,Φ̃,N, G̃}, Z := X ∪ {R,Φ,G}. (19)

With the K -bimodules

MR = MK ⊕ MR̃, MΦ = ME ⊕ MΦ̃, MG = MN ⊕ MG̃, (20)

we define

M := MR ⊕ MD ⊕ MI ⊕ MΦ ⊕ MG. (21)

Then (Mz)z∈Z is a decomposition with specialization.
In addition to the identities of IDOs that we collected in Section 4, the identities for IDOs with 

linear substitutions include additional identities involving the substitution operators. Again, we first 
collect some identities involving substitution operations that hold in R . For all f , g ∈ R , ϕ ∈ � and 
σa,b, σc,d ∈ S we have:

σ1,0 g = g σa,bσc,d g = σac,bc+d g

σa,b f g = (σa,b f )(σa,b g) ∂σa,b g = aσa,b∂ g

σa,bϕg = ϕg
∫

f σa,b g = a−1(id− E)σa,b
∫
(σ−1

a,b f )g

The only identity above that does not follow immediately from Definition 28 is
∫

f σa,b g = a−1(id− E)σa,b
∫
(σ−1

a,b f )g.
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Table 2
New reduction rules for IDOs with linear substitutions.

N σ1,0 �→ ε

GR σa,b ⊗ f �→ σa,b f ⊗ σa,b

GΦ σa,b ⊗ ϕ �→ ϕ

GG σa,b ⊗ σc,d �→ σac,bc+d

DG ∂ ⊗ σa,b �→ aσa,b ⊗ ∂

IG
∫ ⊗ σa,b �→ a−1(ε − E)⊗ σa,b ⊗

∫
IRG

∫ ⊗ f ⊗ σa,b �→ a−1(ε − E)⊗ σa,b ⊗
∫ ⊗ σ−1

a,b f

It can be verified by replacing f with (σ−1
a,b f )g in Lemma 30 and then using multiplicativity of σa,b . 

Corresponding reduction rules to these identities in R are listed in Table 2.
In order to obtain our reduction system � over the alphabet 〈Z〉, we consider reduction rules of 

the Table 1 along with the reduction rules of the Table 2 simultaneously.

Definition 31. Let (R, ∂, 
∫
, S) be an integro-differential ring with linear substitutions. We call

R〈∂,
∫
,�, S〉 := K 〈M〉/ J

the ring of integro-differential operators with linear substitutions, where J is the two-sided reduction 
ideal induced by the reduction system obtained from adjoining Table 2 to Table 1.

Similar to the previous example, the refined reduction system �X is obtained, according to 
Eq. (20), by splitting rules whose words contain R, Φ or G into “smaller” rules using S(R) = {K, R̃}, 
S(Φ) = {E, Φ̃} and S(G) = {N, G̃}. Following Theorem 20, we determine normal forms of tensors in 
R〈∂,

∫
,�, S〉.

Theorem 32. Let (R, ∂, 
∫
, S) be an integro-differential ring with linear substitutions and let M be as in 

Eqs. (21) and (20) and let the reduction system � be defined by Tables 1 and 2. Then every t ∈ K 〈M〉 has 
a unique normal form given by a sum of pure tensors

f ⊗ ϕ ⊗ σa,b ⊗ ∂⊗ j or f ⊗ ϕ ⊗ σa,b ⊗
∫ ⊗ g,

where j ∈N0 , each of f , g ∈ MR̃ , ϕ ∈� and σa,b ∈ S̃ may be absent, and ϕ ⊗ σa,b ⊗
∫

does not specialize to 
E ⊗ ∫

. Moreover, with defining the multiplication s · t := (s ⊗ t)↓� on K 〈M〉irr

R〈∂,
∫
,�, S〉 ∼= K 〈M〉irr.

Proof. We consider the alphabets X and Z as defined in Eq. (19). Then (Mz)z∈Z is a decomposition 
with specialization for the module M , see Definition 12. For defining a Noetherian monoid partial 
order ≤ on 〈Z〉 that is compatible with �, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃, GR > RG, DG > GD, IG > EGI, IRG > EGIR.

For instance, on 〈Y 〉 with Y = {R, D, I, Φ, G} we first define a monoid order by

V ≤ W :⇔ Ṽ ≺ W̃ or Ṽ = W̃ and V � W ,

where Ṽ and W̃ are obtained by removing all occurrences of Φ, cf. Remark 4, and � is the degree-
lexicographic order with I � D � G �Φ � R on 〈Y 〉. Then, we extend ≤ to a monoid partial order on 
〈Z〉 based on Definition 16 in order to make it consistent with specialization.

Then by the package TenReS we verify that all ambiguities of � are resolvable, see Section 5.1. 
Hence by Theorem 20 every element of K 〈M〉 has a unique normal form and K 〈M〉/I� ∼= K 〈M〉irr as 
K -rings.
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It remains to determine the explicit form of elements in K 〈M〉irr . To do so, we determine the set 
of irreducible words 〈X〉irr in 〈X〉. Note that �IDO ⊂ �, where �IDO is given by Table 1. Hence the 
irreducible words w.r.t. � are among the irreducible words w.r.t. �IDO. In Theorem 27, we already 
determined the irreducible words that do not contain the letters N and G̃ to be of the form

R̃V D j or R̃Φ̃IR̃,

where j ∈N0 and each of R̃, Φ̃, and V ∈ S(Φ) may be absent.
The irreducible words containing only N and G̃ are exactly ε and G̃, since they have to avoid 

the subwords N and S(GG) = {NN, NG̃, G̃N, G̃G̃}. The irreducible words in 〈X〉irr also have to avoid 
subwords from S(GR), S(GΦ), S(DG), S(IG), and S(IRG). Hence they are of the form

R̃V G̃D j or R̃V G̃IR̃,

where j ∈N0 and each of R̃, G̃, and V ∈ S(Φ) may be absent and V G̃I does not specialize to EI. The 
normal forms follow from Eq. (3). �
5.1. Computational aspects

In the following, we shortly mention some computational details of the tensor setting with special-
ization for integro-differential operators with linear substitutions. Applying TenReS to the reduction 
system � given by Tables 1 and 2, in total 87 ambiguities and corresponding S-polynomials are gen-
erated. All ambiguities are resolvable and the automatic verification can be found in the example files 
of the package. There are 66 ambiguities without specialization. For instance,

SP(IRΦ,EI)= (
∫

f ⊗ E)⊗ ∫ − ∫ ⊗ f ⊗ 0→rEI

∫
f ⊗ 0= 0,

and

SP(IG,GR)= (a−1σa,b ⊗
∫ − a−1E⊗ σa,b ⊗

∫
)⊗ f − ∫ ⊗ (σa,b f ⊗ σa,b)

= a−1σa,b ⊗
∫ ⊗ f − a−1E⊗ σa,b ⊗

∫ ⊗ f − ∫ ⊗ σa,b f ⊗ σa,b →rIRG 0.

The remaining 21 ambiguities consist of 5 overlap ambiguities with specialization and 16 inclusion 
ambiguities with specialization. They all involve the following three reduction rules (over X)

(K,1 �→ ε), (EI,E⊗ ∫ �→ 0), (N,σ1,0 �→ ε)

and their S-polynomials can be reduced to zero. For example,

SP(N,DG)= ∂ ⊗ ε − σ1,0 ⊗ ∂ →rN ∂ − ∂ = 0,

and

SP(N, IRG)= ∫ ⊗ f − (ε − E)⊗ σ1,0 ⊗
∫ ⊗ f →rN E⊗ σ1,0 ⊗

∫ ⊗ f →rN E⊗ ∫ ⊗ f →rEI 0.

6. Completion of tensor reduction systems

For computing in the quotient ring K 〈M〉/I� , we would like to compute with a system of repre-
sentatives. By Theorem 6, the irreducible tensors K 〈M〉irr are such a system if the tensor reduction 
system is confluent. If the reduction system is not confluent, we want to construct a confluent one 
that generates the same reduction ideal of Eq. (4).

Like Buchberger’s algorithm (Buchberger, 1965) and Knuth–Bendix completion (Knuth and Bendix, 
1970), the completion process involves adding new rules corresponding to non-resolvable ambiguities 
(S-polynomials resp. critical pairs); see also Buchberger (1987). Obstructions for general algorithms 
are inherited from the noncommutative polynomial algebra case (Mora, 1994), e.g., deciding existence 
of finite Gröbner bases and the undecidability of the word problem. Unlike noncommutative Gröb-
ner basis computations and Knuth–Bendix completion, where we have semi-decision algorithms, the 
method we describe for completing tensor reduction systems involves also non-algorithmic steps. One 
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of the main difficulties is to define a new reduction homomorphism based on the S-polynomials of 
a non-resolvable ambiguity. Since for verification of confluence, a compatible semigroup partial order 
is sufficient, one can also start the completion process with a compatible semigroup partial order in-
stead of a total one. Extending this order in a compatible way may not always be possible. We refer 
also to Caboara (1993), Gritzmann and Sturmfels (1993) for variants of Buchberger’s algorithm in the 
commutative case that do not assume a total term ordering as input.

Before we discuss aspects of the completion process for tensor reduction systems more formally 
below, we have a look at a few concrete non-resolvable ambiguities. We start with the following 
reduction rules for integro-differential operators that follow immediately from the definition:

�0 = {(K,1 �→ ε), (RR, f ⊗ g �→ f g), (ΦR,ϕ ⊗ f �→ (ϕ f )ϕ), (ΦΦ,ψ ⊗ ϕ �→ ϕ),

(DR, ∂ ⊗ f �→ f ⊗ ∂ + ∂ f ), (DΦ, ∂ ⊗ ϕ �→ 0), (DI, ∂ ⊗ ∫ �→ ε), (ID,
∫ ⊗ ∂ �→ ε − E)}

On 〈Z〉 we define a partial order ≤ based on the length of words with the additional property that 
DR > RD. Generating from it the minimal partial order that is consistent with specialization means 
that we also have to define DK > KD, DK > R̃D, DR̃ > KD, and DR̃ > R̃D. In order to obtain the 
minimal semigroup partial order generated by that, we not only have to define ADRB > ARDB for 
any A, B ∈ 〈Z〉, but also for all k ≥ 2 the general condition A1DRA2DR . . .DRAk > A1RDA2RD . . .RDAk
for all Ai ∈ 〈Z〉 along with all 22k−2 specializations R ∈ {K, R̃}. The resulting semigroup partial order 
≤ is compatible with �0.

The rules rDI and rID have two overlap ambiguities with each other, one is resolvable and one is 
not. The latter has S-polynomial

SP(ID,DI)= (ε − E)⊗ ∫ − ∫ ⊗ ε =−E⊗ ∫
.

This trivially gives rise to the new rule

(EI,E⊗ ∫ �→ 0).

The rules rID and rDR have a non-resolvable overlap ambiguity with S-polynomials

SP(ID,DR)= (ε − E)⊗ f − ∫ ⊗ ( f ⊗ ∂ + ∂ f )→rΦR
f − (E f )E− ∫ ⊗ f ⊗ ∂ − ∫ ⊗ ∂ f .

While we could reduce further, by using rK for example, we will not be able to reduce to zero for all 
f ∈ R . Based on the expression above, however, we can introduce a new rule

(IRD,
∫ ⊗ f ⊗ ∂ �→ f − (E f )E− ∫ ⊗ ∂ f )

that allows to reduce all the S-polynomials of the overlap ambiguity of rID and rDR to zero. This 
rule gives rise to a non-resolvable overlap ambiguity with rDI among others. The corresponding S-
polynomials can be reduced to

SP(IRD,DI)= ( f − (E f )E− ∫ ⊗ ∂ f )⊗ ∫ − ∫ ⊗ f ⊗ ε →rEI f ⊗ ∫ − ∫ ⊗ ∂ f ⊗ ∫ − ∫ ⊗ f .

We would like to have a new reduction homomorphism on MIRI that reduces the tensor 
∫ ⊗ ∂ f ⊗ ∫

to f ⊗ ∫ − ∫ ⊗ f . Replacing f by 
∫

f , we arrive at the definition

(IRI,
∫ ⊗ f ⊗ ∫ �→ ∫

f ⊗ ∫ − ∫ ⊗ ∫
f ).

Finally, we consider the inclusion ambiguity (with specialization) of this new rule with rK , which 
has irreducible S-polynomials

SP(K, IRI)= ∫ ⊗ ε ⊗ ∫ − (
∫

1⊗ ∫ − ∫ ⊗ ∫
1)= ∫ ⊗ ∫ − ∫

1⊗ ∫ + ∫ ⊗ ∫
1.

At this point, the leading term is not determined by our partial order above. We decide to have the 
new rule

(II,
∫ ⊗ ∫ �→ ∫

1⊗ ∫ − ∫ ⊗ ∫
1)

and extend ≤ accordingly to have it compatible with the new rule. Similarly, the overlap ambiguity 
of rIRD and rDΦ gives rise to the rule rIRΦ , which in turn has an inclusion ambiguity with rK giving 
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rise to rIΦ . Thereby we obtain the reduction system given in Table 1. The whole completion process 
for both Table 1 and 2 can be found in the example files of the TenReS package.

In the following, we discuss these issues more formally. For a better overview we consider three 
different tensor settings starting with the special case of a total order for Bergman’s original setting, 
which already covers most issues that may arise during the completion process. Incrementally we 
discuss the problems arising in more general situations below. After that we illustrate some of those 
problems by revisiting the computations done for �0 above.

Bergman’s tensor setting with a total order Based on the direct sum decomposition (2) into word mod-
ules MW we define the support of a tensor t ∈ K 〈M〉 by

supp(t) := {W ∈ 〈X〉 | πW (t) �= 0}, (22)

where πW denotes the canonical projection onto the direct summand MW of K 〈M〉. For each non-
resolvable ambiguity, the following points have to be considered.

• We apply a sequence of reductions uniformly to the bimodule generated by S-polynomials to 
obtain a new bimodule Sred generated by reduced S-polynomials. It is not necessary to have 
Sred ⊆ K 〈M〉irr.

• Among all possible supports supp(Sred) = {supp(t) | t ∈ Sred} we pick some nonempty support 
S ∈ supp(Sred), e.g. a maximal element of supp(Sred) w.r.t. ⊆. The total order ≤ determines a 
maximal element W ∈ S , determining the “leading term” of the corresponding tensors in Sred.

• A new homomorphism h should be defined on MW that allows to reduce t ∈ Sred ∩ M S with 
πW (t) �= 0 to zero, where M S is defined in Eq. (7) as the sum of all modules MV with V ∈ S . In 
addition, h has to be defined such that id−h maps MW into I� , i.e. the reduction ideal stays the 
same I� = I�∪{(W ,h)} . To discuss this we consider the subbimodule N of Sred generated by all t ∈
Sred∩M S with πW (t) �= 0. This bimodule N is contained in Sred∩M S , but they are not necessarily 
equal. If πW : N → MW is bijective, then it is natural to define h via h(πW (t)) = πW (t) − t . Such 
a homomorphism may not exist for two reasons.
– If there are distinct t1, t2 ∈ N with πW (t1) = πW (t2), then we cannot have h(πW (t1)) =

πW (t1) − t1 and h(πW (t2)) = πW (t2) − t2 at the same time. In that case, we need to be con-
tent with some homomorphism g : MW → N such that h(t) = t − g(t) and πW ◦ g = id. As a 
consequence t1 − t2 ∈ Sred may still not be reducible to zero with � ∪ {(W , h)}.

– If there is a t ∈ MW that is not in πW (N), then it is not clear how to define h on all of MW so 
that ≤ is still compatible with � ∪ {(W , h)}, in particular πW (h(MW )) = {0}, without violating 
I� = I�∪{(W ,h)} . Instead of N , considering the larger bimodule Ñ := Sred ∩⊕

V≤W MV might 
satisfy πW (Ñ) = MW . If not, it may be necessary to split some modules Mx , x ∈ X , further in 
order to turn πW (N) or πW (Ñ) into a word module MV over some new alphabet X .

• Finally, we include the new reduction rule (W , h) into �. If supp(Sred) �= {∅, S}, then it may 
happen that the new rule is not sufficient to reduce all elements of Sred to zero. In that case, we 
need to check resolvability of the current ambiguity again.

Bergman’s tensor setting with a partial order The only new issue that appears with a partial order ≤ on 
words that is not a total order, is that the “leading term” of tensors in Sred may not be determined by 
the order. If the selected support S ∈ supp(Sred) does not have a greatest element already, we need 
to choose a word W ∈ S so that we can extend the semigroup partial order in a compatible way, i.e. 
W becomes the greatest element of S . Such a choice is not guaranteed to exist.

Tensor setting with specialization The first thing to note is that we cannot have a total order on 〈Z〉
that is consistent with specialization (as long as Z �= X). All points of the above discussion apply 
also to decompositions of M with specialization except that supp(Sred) should now be defined as 
supp(Sred) =⋃{supp(t) | t ∈ Sred} where for a particular tensor t we now define supp(t) as the set of 
“all possible supports”

supp(t) := {S ⊆ 〈Z〉 | t ∈ M S ,∀W , W̃ ∈ S : πW (t) �= 0∧ S(W )∩ S(W̃ )= ∅}.
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Other than that, no new fundamental obstacles arise in this setting. We just add a few remarks.
It can be advantageous to pick supports with words associated to bigger modules in order to con-

struct reduction homomorphisms h with larger domains. Also, it can be useful to introduce additional 
letters to the alphabet Z in order to collect some of the bimodules appearing in the process. We 
illustrate some of the points discussed formally by revisiting the concrete ambiguities treated above.

The first and simplest case above was the overlap ambiguity of rID and rDI with words I, D, and I. 
All S-polynomials are irreducible w.r.t. �0 and the bimodule generated by them has supp(Sred) =
{∅, {EI}, {ΦI}}. Picking S = {ΦI} and W =ΦI would lead to πW |Sred not being surjective onto MW . So 
the choice S = {EI} and W = EI is preferable and we can define the homomorphism h : MW → K 〈M〉
of rEI by h(πW (t)) = πW (t) − t = 0 in this case.

For the overlap ambiguity of rID and rDR we applied the reduction hε,rΦR,ε to all S-polynomials. 
The bimodule generated by them now has

supp(Sred)= {∅, {K,E, IKD}, {R̃, IR̃D, IK}, {R̃, IR̃D, ˜IR}, {R̃, IR̃D, IR},
{R,E, IRD, IK}, {R,E, IRD, IR̃}, {R,E, IRD, IR}, . . . }.

The chosen partial order ≤ determines a greatest element of most S ∈ supp(Sred). Picking S ∈
supp(Sred) with the largest M S gives S = {R, Φ, IRD, IR} and W = IRD so that πW : Sred → MW is 
bijective. This allows for a straightforward definition of rIRD again.

A more interesting case is the overlap ambiguity of rIRD and rDR with words IR, D, R. After apply-
ing the reduction hε,rEI,ε to all S-polynomials the bimodule generated by them has

supp(Sred)= {∅, {KI, IK}, {R̃I, IKI, IR̃}, {RI, IKI, IR}, {R̃I, IR̃I, IR̃}, {RI, IR̃I, IR}, {R̃I, IRI, IR̃},
{RI, IRI, IR}, {RI, IR}, {KI, R̃I, IKI, IK, IR̃}, . . . }.

Picking again one S ∈ supp(Sred) with the largest M S gives S = {RI, IRI, IR} and W = IRI. Now N =
Sred and πW : Sred → MW is surjective but not injective. We choose the bimodule homomorphism 
g : MW → Sred to be defined by g(

∫ ⊗ f ⊗ ∫
) = ∫ ⊗ f ⊗ ∫ + ∫ ⊗ ∫

f − ∫
f ⊗ ∫

. It satisfies πW ◦ g = id
and we define the homomorphism h : MW → K 〈M〉 of rIRI by h := id − g . While hε,rIRI,ε does not 
map Sred to {0}, the image contains only elements of the form c ⊗ ∫ − ∫ ⊗ c with c ∈ K , which are 
reducible to zero by �0.

The last ambiguity dealt with explicitly above is the inclusion ambiguity (with specialization) of 
rIRI and rK . Its S-polynomials are irreducible and we have

supp(Sred)= {∅, {II, R̃I, IR̃}, {II, R̃I, IR}, {II,RI, IR̃}, {II,RI, IR}}.
As pointed out already, the partial order does not determine a greatest element within any of the 
possible supports. Since πW : Sred → MW is not surjective except for W = II, we would have to split 
MR̃ further in order to define a new reduction rule on πW (Sred) in all other cases. So we choose 
W = II and extend the semigroup partial order such that II > R̃I and II > IR̃.

7. Concluding remarks

A ring of operators may not be finitely presented by generators and relations, it may not even 
be finitely generated. The tensor setting nonetheless often allows to have a finite decomposition of 
the module M of basic operators together with a finite reduction system. Reduction rules need to be 
defined by homomorphisms due to non-uniqueness of the representation of tensors. In addition, ho-
momorphisms collect families of relations into one reduction rule. If a reduction system is confluent, 
the normal forms are unique as tensors while tensors themselves do not have unique representations 
in terms of pure tensors. Both the theoretical concepts and the concrete formulae for the reduction 
systems in the examples presented essentially are the same when working in the tensor algebra or in 
the tensor ring.

In comparison to Bergman’s tensor setting, our tensor setting with specialization allows more flex-
ibility in defining a reduction system for a given ring of operators. This is achieved by relaxing the 
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restriction that the submodules of M that are used for defining the reduction homomorphisms have 
to form a direct sum. As a consequence, reduction systems can be smaller and reduction is more 
efficient by avoiding unnecessary splitting.

Already when we compare quotients of the tensor algebra with quotients of the free algebra 
we note some important differences. All computations in quotients of the free algebra happen on 
two levels: polynomial arithmetic in the free algebra and polynomial reduction modulo the ideal. 
Computations in the K -algebra K 〈M〉 actually take place on three levels. The additional level are 
computations in the module M and its submodules Mz . Analogous to the free algebra there are com-
putations in K 〈M〉 coming from the properties of the tensor product and the reduction system that 
acts by applying the reduction homomorphisms.

Depending on the choice of the module M and its decomposition, certain identities of operators 
either are dealt with by the reduction system or only within the module M . One extreme case occurs 
when M already is the whole K -ring of operators. Then the reduction system only consists of the rules 
1 �→ ε and m1 ⊗m2 �→m1m2 which do not expose any structure of the ring of operators. Another 
extreme case occurs when M is some module that generates the ring of operators and all Mz are 
cyclic. Then the reduction system has to encode all identities among those generators, which makes it 
harder to have a finite reduction system. For instance, any confluent reduction system for IDOs with 
polynomial coefficients K [x]〈∂,

∫
,E〉, Q ⊆ K , is infinite if M is just generated by x, ∂ , 

∫
, and E. In 

between those two extreme cases there is the opportunity to encode only part of the identities by 
the reduction system and “hide” the remaining ones inside the modules Mz . For instance, following 
the construction of K [x]〈∂,

∫
,E〉, Q ⊆ K , given in Section 4 the module M consists of K [x] and the 

modules generated by ∂ , 
∫

, and E and the confluent reduction system given in Table 1 with R = K [x]
is finite. Finiteness of this reduction system can be understood by recalling that reduction rules can 
collect many identities of the same form into one reduction homomorphism.

In principle, if M is a free module, one could reformulate each reduction rule in terms of reduction 
rules on individual basis elements and work in the free algebra without making use of tensors. Con-
sequently, computations with the reduction system would then have to use basis expansion in each 
step. In the tensor setting, however, we do not need to fix a basis of the module M . It is enough to 
work with the decomposition into modules Mz , which also enables working with non-free modules. 
This even allows to consider arbitrary modules M that are not concrete but carry a certain algebraic 
structure. For example, the reduction systems and the computations for checking their confluence in 
Sections 4 and 5 do not rely on a concrete integro-differential ring R .

Based on the normal forms, a confluent reduction system for a ring of operators enables to autom-
atize many computations and proofs involving these operators. The confluent reduction systems given 
for IDOs and IDOs with linear substitutions can be used e.g. to prove the Taylor formula, to compute 
Green’s operators of linear ordinary boundary problems, or to support computations in Artstein’s re-
duction of linear time-delay systems. Since K is neither required to be a field nor commutative, we 
can directly consider operators with matrix coefficients to model systems. Elements in R can even 
model matrices of generic size. The tensor setting can also be used to model other rings of operators. 
For example, we already have results for IDOs with more general types of functionals or a discrete 
analog of IDOs.
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