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Abstract

We start from a parametrized system of d generalized polynomial equa-
tions (with real exponents) for d positive variables, involving n generalized
monomials with n positive parameters. Existence and uniqueness of a so-
lution for all parameters (and for all right-hand sides) is equivalent to the
bijectivity of a family of generalized polynomial/exponential maps.

We characterize the bijectivity of the family of exponential maps in
terms of two linear subspaces arising from the coefficient and exponent
matrices, respectively. In particular, we obtain conditions in terms of sign
vectors of the two subspaces and a nondegeneracy condition involving the
exponent subspace itself. Thereby, all criteria can be checked effectively.

Moreover, we characterize when the existence of a unique solution is
robust with respect to small perturbations of the exponents or/and the
coefficients. In particular, we obtain conditions in terms of sign vectors of
the linear subspaces or, alternatively, in terms of maximal minors of the
coefficient and exponent matrices.

Keywords: Birch’s theorem, global invertibility, Hadamard’s theorem,
Descartes’ rule, sign vectors, oriented matroids, perturbations, robustness

AMS subject classification: 12D10 · 26C10 · 52B99 · 52C40

1 Introduction

Given two matrices W = (w1, . . . , wn), W̃ = (w̃1, . . . , w̃n) ∈ R
d×n with d ≤ n

and full rank, consider the parametrized system of generalized polynomial equa-
tions

n
∑

j=1

wij cj x
w̃1j

1 · · ·x
w̃dj

d = yi, i = 1, . . . , d

for d positive variables xi > 0 (and right-hand sides yi), involving the ‘mono-

mials’ cj x
w̃1j

1 · · ·x
w̃dj

d = cj x
w̃j

, j = 1, . . . , n, in particular, the n positive pa-
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rameters cj > 0. In other words, x ∈ R
d
>0, y ∈ R

d, and c ∈ R
n
>0. As in the

theory of fewnomials [15, 23], the monomials are given, however, with a positive
parameter associated to every monomial.

Writing the vector of monomials as c◦xW̃ ∈ R
n
>0, thereby introducing xW̃ ∈ R

n
>0

as (xW̃ )j = xw̃j

and denoting componentwise multiplication by ◦, yields the
compact form

W (c ◦ xW̃ ) = y.

Note that, for the existence of a positive solution x, the right-hand side y must
lie in the interior of C = coneW , the polyhedral cone generated by the columns
of W . The question arises whether the above equation system has a unique
positive solution x ∈ R

d
>0, for all right-hand sides y ∈ C◦ ⊆ R

d and all positive
parameters c ∈ R

n
>0. This question is equivalent to whether the generalized

polynomial map fc : R
d
>0 → C◦ ⊆ R

d,

fc(x) = W (c ◦ xW̃ )

or, equivalently, the exponential map Fc : R
d → C◦ ⊆ R

d,

Fc(x) = W (c ◦ eW̃
Tx)

is bijective for all c ∈ R
n
>0.

In the context of generalized chemical reaction networks [18, 19], the question
is equivalent to whether every set of complex-balanced equilibria (an ‘expo-
nential manifold’) intersects every stoichiometric compatibility class (an affine
subspace) in exactly one point. For a motivation from Chemical Reaction Net-
work Theory, see Appendix A or [9]. In the context of classical chemical reaction
networks, the assumption of mass-action kinetics implies W = W̃ , and in this
case there is indeed exactly one complex-balanced equilibrium in every stoichio-
metric compatibility class.

In case W = W̃ , the map Fc also appears in toric geometry [11], where it is
related to moment maps, and in statistics [20], where it is related to log-linear
models. The following result guarantees the bijectivity of Fc for all c > 0. It is
a variant of Birch’s Theorem [25, 20, 6].

Theorem 1 ([11], Section 4.2). Let W = W̃ . Then the map Fc is a real analytic
isomorphism of Rd onto C◦ for all c > 0.

In this work, we characterize the bijectivity of the map Fc for all c > 0 (for
given coefficients W and exponents W̃ ) in terms of (sign vectors of) the linear
subspaces S = kerW ⊆ R

n and S̃ = ker W̃ ⊆ R
n. Thereby we extend previous

results, in particular, sufficient conditions for bijectivity [18, 17, 9]. Moreover,
we characterize the robustness of bijectivity with respect to small perturbations
of the exponents W̃ or/and the coefficients W , corresponding to small pertur-
bations of the subspaces S̃ and S (in the Grassmannian).

Our main technical tool is Hadamard’s global inversion theorem which essen-
tially states that a C1-map is a diffeomorphism if and only if it is locally invert-
ible and proper. By previous results [8, 18], the map Fc is locally invertible for
all c > 0 if and only if it is injective for all c > 0 which can be characterized
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in terms of sign vectors of the subspaces S and S̃. Most importantly, we show
that Fc is proper if and only if it is ‘proper along rays’ and that properness for
all c > 0 can be characterized in terms of sign vectors of S and S̃, together with
a nondegeneracy condition depending on the subspace S̃ itself.

The crucial role of sign vectors in the characterization of existence and unique-
ness of positive solutions to parametrized polynomial equations suggests a com-
parison with Descartes’ rule of signs for univariate polynomials. Consider a
univariate polynomial and order the monomials by their exponents. Now, let
s be the number of sign changes in the sequence of (nonzero) coefficients, and
let p be the number of positive roots (where multiple roots are counted sep-
arately). Then, Descartes’ rule [24] states that p ≤ s and s − p is even. As
shown by Laguerre [16, 14] the same statement holds for generalized monomials
(with real exponents). More recently it has been shown that the upper bound
is sharp [1]: for given sign sequence, there exist coefficients such that p = s.
Hence a sharp Descartes’ rule states that a univariate polynomial has exactly
one positive solution for all coefficients with given signs if and only if there is
exactly one sign change. Indeed, this statement follows from our main result (for
univariate polynomials). Hence our main result can be seen as a multivariate
generalization of the sharp Descartes’ rule for exactly one positive solution.

Organization of the work

In Section 2, we introduce the familiy of exponential maps Fc with c > 0 and
discuss previous results on injectivity.

In Section 3, we present our main result, Theorem 13, characterizing the bi-
jectivity of the family Fc, and the crucial Lemmas 11 and 16, regarding the
properness of Fc. In Subsection 3.1, we discuss two extreme cases regarding
the geometry of C = coneW , the polyhedral cone generated by the columns
of W . Namely, C = R

d or C is pointed. In the latter case, we present necessary
conditions for the surjectivity of Fc. In Subsection 3.2, we show that the bi-
jectivity of the family Fc cannot be characterized in terms of sign vectors only,
cf. Example 21. Still, there are sufficient conditions for bijectivity in terms of
sign vectors or in terms of faces of the Newton polytope.

In Section 4, we study the robustness of bijectivity. In Subsection 4.1, we con-
sider perturbations of the exponents W̃ and show that robustness of bijectivity
is equivalent to robustness of injectivity which can be characterized in terms
of sign vectors, cf. Theorem 32. The criterion involves the closure of a set
of sign vectors and represents another sufficient condition for bijectivity. In
Subsection 4.2, we consider perturbations of the coefficients W and characterize
robustness of bijectivity again in terms of sign vectors (including another closure
condition), cf. Theorem 38. In particular, robustness of bijectivity implies that
either C = R

d or C is pointed. In the latter case, the faces of C are minimally
generated. Finally, in Subsection 4.3, we express the closure condition in terms
of maximal minors of W and W̃ . Further, we consider general perturbations
(of both exponents and coefficients) and characterize robustness of bijectivity
in terms of sign vectors and maximal minors, cf. Theorem 42.

Finally, we provide appendices on (A) a motivation from Chemical Reaction
Network Theory, (B) oriented matroids, and (C) a theorem of the alternative.
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Notation

We denote the positive real numbers by R>0 and the nonnegative real numbers
by R≥0. We write x > 0 for x ∈ R

n
>0 and x ≥ 0 for x ∈ R

n
≥0. For vectors

x, y ∈ R
n, we denote their scalar product by x · y and their componentwise

(Hadamard) product by x ◦ y.

For a vector x ∈ R
n, we obtain the sign vector sign(x) ∈ {−, 0,+}n by applying

the sign function componentwise, and we write

sign(S) = {sign(x) | x ∈ S}

for a subset S ⊆ R
n.

For a vector x ∈ Fn with F = R or F = {−, 0,+}, we denote its support
by supp(x) = {i | xi 6= 0}. For a subset X ⊆ Fn, we say that a nonzero
vector x ∈ X has (inclusion-)minimal support, if supp(x′) ⊆ supp(x) implies
supp(x′) = supp(x) for all nonzero x′ ∈ X .

For a sign vector τ ∈ {−, 0,+}n, we introduce

τ− = {i | τi = −}, τ0 = {i | τi = 0}, and τ+ = {i | τi = +}.

In particular, supp(τ) = τ− ∪ τ+. For a subset Σ ⊆ {−, 0,+}n, we write

Σ⊕ = Σ ∩ {0,+}n.

The inequalities 0 < − and 0 < + induce a partial order on {−, 0,+}n: for sign
vectors τ, ρ ∈ {−, 0,+}n, we write τ ≤ ρ if the inequality holds componentwise.
The product on {−, 0,+} is defined in the obvious way. For τ, ρ ∈ {−, 0,+}n,
we write τ · ρ = 0 (τ and ρ are orthogonal) if either τiρi = 0 for all i or there
exist i, j with τiρi = − and τjρj = +. For a set Σ ⊆ {−, 0,+}n, we introduce
the orthogonal complement

Σ⊥ = {τ ∈ {−, 0,+}n | τ · ρ = 0 for all ρ ∈ Σ} .

Moreover, for τ, ρ ∈ {−, 0,+}n, we define the composition τ ◦ ρ ∈ {−, 0,+}n as
(τ ◦ ρ)i = τi if τi 6= 0 and (τ ◦ ρ)i = ρi otherwise.

For a matrix W ∈ R
d×n, we denote its column vectors by w1, . . . , wn ∈ R

d. For
any natural number n, we define [n] = {1, . . . , n}. For W ∈ R

d×n with d ≤ n
and I ⊆ [n] of cardinality d, we denote the square submatrix of W with column
indices in I by WI .

2 Families of exponential maps

Let W ∈ R
d×n, W̃ ∈ R

d̃×n be matrices with d, d̃ ≤ n and full rank. Further, let

C = coneW ⊆ R
d

be the cone generated by the columns of W . Since W has full rank, the cone C
has nonempty interior C◦. Finally, let c > 0. We define the exponential map

Fc : R
d̃ → C◦ ⊆ R

d

x 7→ W (c ◦ eW̃
Tx) =

n
∑

i=1

ci e
w̃i·xwi

(1)
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and the related subspaces

S = kerW ⊆ R
n and S̃ = ker W̃ ⊆ R

n. (2)

Note that injectivity and surjectivity of Fc only depend on S and S̃. In fact, let

V ∈ R
d×n, Ṽ ∈ R

d̃×n be such that kerV = S, ker Ṽ = S̃, and let

Gc(x) = V (c ◦ eṼ
Tx)

be the corresponding exponential map. Then V = UW , Ṽ = ŨW̃ for invertible

matrices U ∈ R
d×d, Ũ ∈ R

d̃×d̃, and

Gc(x) = UFc(Ũ
Tx).

2.1 Previous results on injectivity

In the context of multiple equilibria in mass-action systems [7] and geometric
modeling [8], where d = d̃, it was shown that the map Fc is injective for all
c > 0 if and only if Fc is a local diffeomorphism for all c > 0.

Theorem 2 (Theorem 7 and Corollary 8 in [8]). Let Fc be as in (1) with d = d̃.
Then the following statements are equivalent:

1. Fc is injective for all c > 0.

2. det(∂Fc

∂x
) 6= 0 for all x and all c > 0.

3. det(WI) det(W̃I) ≥ 0 for all subsets I ⊆ [n] of cardinality d (or ‘≤ 0’ for
all I) and det(WI) det(W̃I) 6= 0 for some I.

In [18], we gave an alternative proof of this result and extended it to the case
d 6= d̃, by using the sign vectors of the subspaces S and S̃.

Theorem 3 (Theorem 3.6 in [18]). Let Fc be as in (1) and S, S̃ be as in (2).
Then the following statements are equivalent:

1. Fc is injective for all c > 0.

2. Fc is an immersion for all c > 0.
(∂Fc

∂x
is injective for all x and all c > 0.)

3. sign(S) ∩ sign(S̃⊥) = {0}.

Theorems 2 and 3 characterize the injectivity of Fc with d = d̃ for all c > 0
equivalently in terms of maximal minors and sign vectors.

Corollary 4. Let S, S̃ be subspaces of Rn of dimension n−d (with d ≤ n). For
every W, W̃ ∈ R

d×n (with full rank d) such that S = kerW and S̃ = ker W̃ , the
following statements are equivalent.

1. sign(S) ∩ sign(S̃⊥) = {0}.
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2. det(WI) det(W̃I) ≥ 0 for all subsets I ⊆ [n] of cardinality d (or ‘≤ 0’ for
all I) and det(WI) det(W̃I) 6= 0 for some I.

In the language of oriented matroids, Corollary 4 relates chirotopes (maximal
minors of W and W̃ ) to vectors (sign vectors of S = kerW and S̃ = ker W̃ ), see
also Appendix B. Thereby, the sign vector condition is symmetric with respect
to S and S̃.

Corollary 5 (Corollary 3.8 in [18]). Let S, S̃ be subspaces of Rn of equal di-
mension. Then

sign(S) ∩ sign(S̃⊥) = {0} if and only if sign(S̃) ∩ sign(S⊥) = {0}.

See also [5] for a direct proof of Corollaries 4 and 5.

3 Bijectivity

A necessary condition for the bijectivity of the map Fc is d = d̃. In the rest of
the paper, we consider Fc as in (1) with d = d̃ and the related subspaces S, S̃
as in (2).

A first sufficient condition for the bijectivity of the map Fc for all c > 0 (in
terms of sign vectors of S and S̃) was given in [18], thereby extending Theorem 1
(Birch’s Theorem).

Theorem 6 (Proposition 3.9 in [18]). If sign(S) = sign(S̃) and (+, . . . ,+)T ∈
sign(S⊥), then the map Fc is a real analytic isomorphism for all c > 0.

As it will turn out, sign(S) = sign(S̃) is sufficient for bijectivity, and the tech-
nical condition (+, . . . ,+)T ∈ sign(S⊥) in [18] is not needed, cf. Corollary 15.
We note that Theorems 2, 3, and 6 allowed a first multivariate generalization
of Descartes’ rule of signs for at most/exactly one positive solution, see [17].

In order to characterize the bijectivity of the map Fc for all c > 0, we start with
the following observation.

Proposition 7. The following statements are equivalent.

1. Fc is bijective for all c > 0.

2. Fc is a diffeomorphism for all c > 0.

3. Fc is a real analytic isomorphism for all c > 0.

Proof. Let Fc be bijective for all c > 0. In particular, it is injective, and
det(∂Fc

∂x
) 6= 0 for all x and c > 0, by Theorems 2 or 3. Hence, Fc is a local

diffeomorphism for all c > 0. Further, Fc is real analytic and hence a local real
analytic isomorphism for all c > 0.

Most importantly, we will use Hadamard’s global inversion theorem [13].

Theorem 8. A C1-map F : Rd → R
d is a diffeomorphism if and only if the

Jacobian det(∂F
∂x

) 6= 0 for all x ∈ R
d and |F (x)| → ∞ whenever |x| → ∞.

6



Obviously, we need a slightly more general version of this result that follows
from the general invertibility theorem in [3], see also [12].

Theorem 9. Let U ⊆ R
d be open and convex. A C1-map F : Rd → U is a

diffeomorphism if and only if the Jacobian det(∂F
∂x

) 6= 0 for all x ∈ R
d and F is

proper.

Recall that a map F is proper, if F−1(K) is compact for each compact subset
K of U . This is obviously necessary for the inverse F−1 to be continuous.

Lemma 10. Let U ⊆ R
d be open. A continuous map F : Rd → U is proper if

and only if, for sequences xn in R
d with |xn| = 1 and xn → x and tn in R>0

with tn → ∞, F (xntn) → y implies y ∈ ∂U .

Proof. Suppose F is proper and F (xntn) → y, but y ∈ U . Take a closed ball
K ⊆ U around y. Then F−1(K) contains the unbounded sequence xntn and
hence is not compact, a contradiction.

Conversely, let K be a compact subset of U . We need to show that every
sequence Xn in F−1(K) has an accumulation point. Since F−1(K) is closed,
we only need to show that Xn has a bounded subsequence. Suppose not, then
|Xn| → ∞. Since F (Xn) ∈ K, there is a subsequence (call it Xn again) such
that F (Xn) → y ∈ K. Now there is another subsequence (call it Xn again) such
that xn = Xn/|Xn| → x, that is, the sequence xn on the unit sphere converges.
With tn = |Xn|, we have F (xntn) → y ∈ K ⊂ U , a contradiction.

In particular, if F is proper, then, for all nonzero x ∈ R
d, F (xt) → y as t → ∞

implies y ∈ ∂U . That is, if the function values converge along a ray, then the
limit lies on the boundary of the range.

By Lemma 11 below, the map Fc under consideration is proper, if it is ‘proper
along rays’. Before we prove this result, we discuss the behaviour of Fc along a
ray. For x ∈ R

d and λ ∈ R, we introduce

Ix,λ = {i | w̃i · x = λ}

and write
Fc(xt) =

∑

λ

∑

i∈Ix,λ

ci e
λt wi.

Now, for nonzero x ∈ R
d, either |Fc(xt)| → ∞ as t → ∞ or Fc(xt) → y ∈ C. In

the first case, there is λ > 0 such that

Fc(xt) e
−λt →

∑

i∈Ix,λ

ciw
i 6= 0

as t → ∞. In the second case,
∑

i∈Ix,λ
ciw

i = 0 for all λ > 0 and

Fc(xt) →
∑

i∈Ix,0

ciw
i ∈ C.

If Ix,0 = ∅, then Fc(xt) → 0.

7



Lemma 11. The map Fc is proper, if

Fc(xt) → y as t → ∞ implies y ∈ ∂C (∗)

for all nonzero x ∈ R
d.

Proof. We assume that the ray condition (∗) holds for all nonzero x ∈ R
d.

Let x ∈ R
d with |x| = 1. In order to apply Lemma 10, we consider sequences

xn in R
d with |xn| = 1 and xn → x and tn in R>0 with tn → ∞.

To begin with, we show that |Fc(xt)| → ∞ as t → ∞ implies |Fc(xntn)| → ∞ as
n → ∞. Suppose |Fc(xt)| → ∞, that is, there is λ > 0 such that Fc(xt) e

−λt →
∑

i∈Ix,λ
ciw

i 6= 0 as t → ∞. For x′ close to x, we have the partition

Ix,λ = Ix′,µ1
∪ · · · ∪ Ix′,µp

with µj close to λ and hence µj > λ
2
. Most importantly, there exists a largest

µj such that
∑

i∈Ix′,µj

ciw
i 6= 0. Otherwise,

∑

i∈Ix,λ

ciw
i =

∑

i∈Ix′,µ1

ciw
i + . . .+

∑

i∈Ix′,µp

ciw
i = 0.

Additionally, there may exist an even larger µ with
∑

i∈Ix′,µ
ciw

i 6= 0. In any

case, there is λ′ > λ
2
such that

Fc(x
′t) e−λ′t →

∑

i∈Ix′,λ′

ciw
i 6= 0

as t → ∞ and hence |Fc(x
′t)| e−

λ
2
t > γ with γ > 0 independent of x′; that is,

|Fc(x
′t)| > γ e

λ
2
t as t → ∞. Hence |Fc(xntn)| > γ e

λ
2
tn as n → ∞; that is,

|Fc(xntn)| → ∞, as claimed.

In case C = R
d (∂C = ∅), the ray condition (∗) implies |Fc(xt)| → ∞ as t → ∞

and hence |Fc(xntn)| → ∞ as n → ∞. By Lemma 10, Fc is proper.

In case C 6= R
d, assume Fc(xntn) → y′ as n → ∞. Then, Fc(xt) → y as

t → ∞, by the argument above. In particular,
∑

i∈Ix,λ
ciw

i = 0 for all λ > 0

and y =
∑

i∈Ix,0
ciw

i. The vectors wi with i ∈ Ix,λ and λ > 0 lie in the lineality
space of C, and hence

cone(wi | i ∈ Ix,λ with λ > 0) ⊆ ∂C.

By the ray condition (∗), y ∈ ∂C, and hence

cone(wi | i ∈ Ix,0) ⊆ ∂C.

Finally, we write

Fc(xntn) =

n
∑

i=1

ci e
w̃i·xn tn wi =

∑

λ

∑

i∈Ix,λ

ci e
w̃i·xn tn wi.

8



For xn close to x, we have w̃i · xn close to λ for i ∈ Ix,λ, in particular,
∑

i∈Ix,λ
ci e

w̃i·xn tn wi → 0 for λ < 0. The limit Fc(xntn) → y′ as n → ∞
implies

∑

λ≥0

∑

i∈Ix,λ

ci e
w̃i·xn tn wi → y′,

and hence y′ ∈ ∂C. By Lemma 10, Fc is proper.

Let Fc(xt) → y as t → ∞ along the ray given by x and Fc(xntn) → y′ as n → ∞
for a sequence xntn (with xn → x and tn → ∞), approaching the ray. In the
proof of Lemma 11, we have shown that, if y = 0, then y′ ∈ L, where L is the
lineality space of C. In general, if y ∈ Cx = cone(wi | i ∈ Ix,0), then y′ ∈ Cx+L.
Note that there are only finitely many index sets Ix,0 and hence finitely many
limit points y =

∑

i∈Ix,0
ciw

i (for fixed c > 0), whereas every y′ ∈ ∂C arises as

a limit point (if Fc is surjective).

Using Theorem 9 (Hadamard’s global inversion theorem) together with Theo-
rems 2 or 3 and Lemma 11, we summarize our findings.

Corollary 12. The map Fc is bijective for all c > 0 if and only if Fc is injective
for all c > 0 and the ray condition (∗) holds for all nonzero x ∈ R

d and all c > 0.

By Theorems 2 or 3, the injectivity of Fc (for all c > 0) can be characterized
in terms of sign vectors of the subspaces S and S̃. By Lemma 16 below, the
ray condition (∗) (for all nonzero x ∈ R

d and all c > 0) can be characterized
in terms of sign vectors of S and S̃ together with a nondegeneracy condition
depending on sign vectors of S and on the subspace S̃ itself.

Hence, as our main result, we characterize the bijectivity of Fc (for all c > 0) in
terms of the subspaces S and S̃.

Theorem 13. The map Fc is a diffeomorphism for all c > 0 if and only if

(i) sign(S) ∩ sign(S̃⊥) = {0},

(ii) for every nonzero τ̃ ∈ sign(S̃⊥)⊕, there is a nonzero τ ∈ sign(S⊥)⊕ such
that τ ≤ τ̃ , and

(iii) the pair (S, S̃) is nondegenerate.

To complete the statement, we have to define nondegeneracy.

Definition 14. Let S, S̃ be subspaces of Rn. A vector z ∈ S̃⊥ with a positive
component is called nondegenerate if

• there is (a nonzero) τ ∈ {0,+}n with τ+ = {i | zi = λ} for some λ > 0
such that τ /∈ sign(S)⊕ or

• for τ̃ = sign(z) ∈ sign(S̃⊥), there is a nonzero τ ∈ sign(S⊥)⊕ such that
τ̃0 ⊆ τ0.

The pair (S, S̃) is called nondegenerate if every z ∈ S̃⊥ with a positive compo-
nent is nondegenerate.
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First, we note that Theorem 13 immediately implies Theorems 1 and 6 (Birch’s
Theorem and its first extension).

Corollary 15. The map Fc is a diffeomorphism for all c > 0 if sign(S) =
sign(S̃).

Proof. Note that sign(S⊥) = sign(S)⊥, cf. [26, Prop. 6.8]. Hence, sign(S) =
sign(S̃) implies conditions (i) and (ii) in Theorem 13. Now, for z ∈ S̃⊥ with a
positive component zi = λ > 0, consider τ ∈ {0,+}n with τ+ = {i | zi = λ}
and τ̃ = sign(z) ∈ sign(S̃⊥). Obviously, τ · τ̃ 6= 0, that is, τ 6∈ sign(S̃) = sign(S),
and z is nondegenerate, as required by condition (iii).

Second, we note that condition (i) in Theorem 13 can also be characterized in
terms of maximal minors of the matrices W and W̃ , cf. Corollary 4. Moreover,
condition (ii) can be reformulated using faces of the cones C = coneW and
C̃ = cone W̃ :

(ii) for every proper face f̃ of C̃ with Ĩ = {i | w̃i ∈ f̃}, there is a proper face
f of C with I = {i | wi ∈ f} such that Ĩ ⊆ I.

Indeed, a face f of C with I = {i | wi ∈ f} corresponds to a supporting
hyperplane with normal vector x such that wi · x = 0 for i ∈ I and wi · x > 0
otherwise (for wi lying on the positive side of the hyperplane). Hence f is
characterized by the nonnegative sign vector τ = sign(WTx) ∈ sign(S⊥)⊕ with
τ0 = I. Analogously, a face f̃ of C̃ with Ĩ = {i | w̃i ∈ f̃} is characterized by a
nonnegative sign vector τ̃ ∈ sign(S̃⊥)⊕ with τ̃0 = Ĩ. Clearly, Ĩ ⊆ I is equivalent
to τ ≤ τ̃ . (For more details on sign vectors and face lattices, see Appendix B.)

Third, before we prove Lemma 16 below, we discuss how the ray condition (∗)
implies conditions (ii) and (iii).

Let x ∈ R
d be nonzero, and assume that the ray condition (∗) holds for all

c > 0. Then, for all c > 0, either there is λ > 0 such that

Fc(xt) e
−λt →

∑

i∈Ix,λ

ciw
i 6= 0

as t → ∞ or
Fc(xt) →

∑

i∈Ix,0

ciw
i ∈ ∂C.

Note that the sets Ix,λ are disjoint, and the sums
∑

i∈Ix,λ
ciw

i involve different
coefficients ci for different λ. Hence,

(a) there is λ > 0 such that
∑

i∈Ix,λ
ciw

i 6= 0 for all c > 0 or

(b)
∑

i∈Ix,0
ciw

i ∈ ∂C for all c > 0.

To see this, assume ¬(a), that is, there exists c > 0 such that
∑

i∈Ix,λ
ciw

i = 0

for all λ > 0. Then,
∑

i∈Ix,0
ciw

i ∈ ∂C for all c > 0, that is, (b).

Now, let λ′ = maxi w̃
i · x.

10



If λ′ ≤ 0, then f̃ = cone(w̃i | i ∈ Ix,0) defines a proper face of C̃ with index

set Ĩ = Ix,0. Indeed, w̃i · x = 0 for i ∈ Ix,0 and w̃i · x < 0 otherwise. Condition
(b) implies that (the interior of) the cone(wi | i ∈ Ix,0) lies in a proper face

f = cone(wi | i ∈ I) of C with index set I. That is, Ĩ = Ix,0 ⊆ I, as required
by condition (ii).

If λ′ > 0, let z = W̃Tx ∈ S̃⊥, having a positive component. Condition (a)
implies that there is Ix,λ = {i | zi = λ} with λ > 0 such that

∑

i∈Ix,λ
ciw

i 6= 0

for all c > 0. Equivalently, there is τ ∈ {0,+}n with τ+ = Ix,λ such that
τ /∈ sign(kerW ) = sign(S). That is, z is nondegenerate, as required by condition
(iii). Moreover, let τ̃ = sign(z) ∈ sign(S̃⊥) and hence τ̃0 = Ix,0. Condition (b)
implies that there is a proper face of C, characterized by a nonzero sign vector
τ ∈ sign(S⊥)⊕, such that τ̃0 = Ix,0 ⊆ τ0. Again, z is nondegenerate, as required
by condition (iii).

Lemma 16. The ray condition (∗) holds for all nonzero x ∈ R
d and for all

c > 0 if and only if conditions (ii) and (iii) in Theorem 13 hold.

Proof. To show necessity and sufficiency of (ii) and (iii), we vary over all nonzero
x ∈ R

d.

Let x ∈ R
d be nonzero and λ′ = maxi w̃

i · x.

− If λ′ ≤ 0, then τ̃ = sign(−W̃Tx) ∈ sign(S̃⊥)⊕ defines a proper face of C̃
and Fc(xt) →

∑

i∈τ̃0 ciw
i as t → ∞. Necessity and sufficiency of (ii): The

ray condition (∗) for all c > 0 is equivalent to
∑

i∈τ̃0 ciw
i ∈ ∂C for all

c > 0. That is, there is a proper face of C characterized by a nonzero
τ ∈ sign(S⊥)⊕ such that τ̃0 ⊆ τ0. Equivalently, τ ≤ τ̃ , that is, (ii) for τ̃ .

By varying over all nonzero x ∈ R
d (with λ′ ≤ 0), all nonzero τ̃ ∈

sign(S̃⊥)⊕ are covered.

− If λ′ > 0, then z = W̃Tx ∈ S̃⊥ has a positive component. Necessity and
sufficiency of (iii): The ray condition (∗) for all c > 0 is equivalent to

• either there is λ > 0 such that Fc(xt) e
−λt →

∑

i∈Ix,λ
ciw

i 6= 0 as
t → ∞

• or Fc(xt) →
∑

i∈Ix,0
ciw

i ∈ ∂C,

for all c > 0. That is,

• there is λ > 0 such that
∑

i∈Ix,λ
ciw

i 6= 0 for all c > 0 or

•
∑

i∈Ix,0
ciw

i ∈ ∂C for all c > 0,

thereby using that the sets Ix,λ are disjoint and the sums
∑

i∈Ix,λ
ciw

i

involve different coefficients ci for different λ. Equivalently,

• there is Ix,λ = {i | zi = λ} with λ > 0 such that c /∈ kerW = S
for all c ≥ 0 with supp(c) = Ix,λ, that is, there is τ ∈ {0,+}n with
τ+ = Ix,λ such that τ /∈ sign(S), or

• for τ̃ = sign(z) ∈ sign(S̃⊥) and hence τ̃0 = Ix,0, there is a proper face
of C, characterized by a nonzero τ ∈ sign(S⊥)⊕ such that τ̃0 ⊆ τ0,
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that is, (iii) for z.

By varying over all nonzero x ∈ R
d (with λ′ > 0), all z ∈ S̃⊥ with a

positive component are covered.

3.1 Special cases: C = R
d or C is pointed

We discuss the conditions for bijectivity in Theorem 13 for two extreme cases,
regarding the geometry of the cones C = coneW and C̃ = cone W̃ .

If C = R
d (that is, sign(S⊥)⊕ = {0}), then condition (ii) is equivalent to

C̃ = R
d. Hence, if C = R

d and Fc is bijective for all c > 0, then C̃ = R
d.

However, the converse does not hold.

Example 17. Let Fc be given by the matrices

W̃ =

(

1 0 −1
0 1 −1

)

and W =

(

1 0 −1
0 1 0

)

.

Then C̃ = R
2 and Fc is bijective for all c > 0. However, C 6= R

2.

If (+, . . . ,+)T ∈ sign(S⊥) (that is, C is pointed and no column of W is zero),
then condition (iii) holds (since sign(S)⊕ = {0}), and conditions (i) and (ii) im-
ply (+, . . . ,+)T ∈ sign(S̃⊥) (by Proposition 19 below). Hence, if (+, . . . ,+)T ∈
sign(S⊥) and Fc is bijective for all c > 0, then (+, . . . ,+)T ∈ sign(S̃⊥). How-
ever, the converse does not hold.

Example 18. Let Fc be given by the matrices

W̃ =

(

1 1 0
0 1 1

)

and W =

(

1 0 −1
0 1 0

)

.

Then (+,+,+)T ∈ sign(S̃⊥) and Fc is bijective for all c > 0. However, (+,+,+)T 6∈
sign(S⊥).

If (+, . . . ,+)T ∈ sign(S⊥), then conditions (i) and (ii) imply the surjectivity of
Fc for all c > 0 and hence a converse of (ii).

Proposition 19. Let (+, . . . ,+)T ∈ sign(S⊥), and let Fc be surjective. Then,
for every τ ∈ sign(S⊥)⊕, there is τ̃ ∈ sign(S̃⊥)⊕ with τ̃ ≥ τ . In particular,
(+, . . . ,+)T ∈ sign(S̃⊥).

Proof. By surjectivity, the image of Fc contains points arbitrarily close to any
point y on a proper face f of C, characterized by the sign vector τ ∈ sign(S⊥)⊕.
Hence, there are sequences xn in R

d with |xn| = 1 and xn → x and tn > 0 with
tn → ∞ such that F (xntn) → y. Explicitly,

Fc(xntn) =

n
∑

i=1

ci e
w̃i·xn tn wi =

∑

λ

∑

i∈Ix,λ

ci e
w̃i·xn tn wi.

12



Since (+, . . . ,+)T ∈ sign(S⊥), the vectors wi are positively independent, and
λ = w̃i · x > 0 implies w̃i · xn > 0 (for xn close to x) and hence Ix,λ = ∅ for

λ > 0. Moreover,
∑

i∈Ix,λ
ci e

w̃i·xn tn wi → 0 for λ < 0, and hence

∑

i∈Ix,0

ci e
w̃i·xn tn wi → y.

Let τ̃ = sign(−W̃Tx) ∈ sign(S̃⊥)⊕, that is, τ̃0 = Ix,0 and τ̃+ =
⋃

λ<0 Ix,λ,

characterizing a proper face f̃ of C̃. Then, τ̃0 ⊆ τ0, that is, τ̃ ≥ τ .

In particular, let τ = (+, . . . ,+)T ∈ sign(S⊥). Then there is τ̃ ∈ sign(S̃⊥)⊕
with τ̃ ≥ τ and hence τ̃ = (+, . . . ,+)T.

The main conclusion of the previous result can be reformulated: for every face
f of C with I = {i | wi ∈ f}, there is a face f̃ of C̃ with Ĩ = {i | w̃i ∈ f̃} such
that I ⊆ Ĩ.

Finally, the surjectivity of Fc for all c > 0 together with condition (ii) itself
implies a converse of (ii) regarding sign vectors with minimal support.

Corollary 20. Let (+, . . . ,+)T ∈ sign(S⊥), let Fc be surjective, and assume
condition (ii) in Theorem 13. Then, for every τ ∈ sign(S⊥)⊕ with minimal
support, there is τ̃ ∈ sign(S̃⊥)⊕ with minimal support and τ̃ ≥ τ .

Proof. By surjectivity, the image of Fc contains points arbitrarily close to any
point y on a maximal proper face f of C, characterized by the sign vector τ ∈
sign(S⊥)⊕ with minimal support. Note that |τ0| ≥ d−1, and consider a point y
that is a positive linear combination of d− 1 (but not less) linearly independent
vectors wi. By Proposition 19, there is τ̃ ∈ sign(S̃⊥)⊕ with τ̃ ≥ τ . Now, either
τ̃ itself has minimal support or there is ρ̃ ∈ sign(S̃⊥)⊕ with minimal support
and τ̃ ≥ ρ̃. Then, either ρ̃ ≥ τ or ρ̃ 6≥ τ (that is, ρ̃0 ∩ τ+ 6= ∅). However, the
latter leads to a contradiction. By (ii), there is a nonzero ρ ∈ sign(S⊥)⊕ with
ρ̃ ≥ ρ, characterizing a proper face g of C. On the one hand, τ̃0 ⊆ ρ̃0 ⊆ ρ0, and
g contains d − 1 linearly independent vectors wi of f (and hence the maximal
proper face f itself). On the other hand, g contains additional vectors wi (with
i ∈ ρ̃0 ∩ τ+) not in f , and hence g is not a proper face.

Again, the main conclusion of the previous result can be reformulated: for every
maximal proper face f of C with I = {i | wi ∈ f}, there is a maximal proper
face f̃ of C̃ with Ĩ = {i | w̃i ∈ f̃} such that I ⊆ Ĩ.

3.2 Sign-vector conditions

In general, the bijectivity of Fc for all c > 0 cannot be characterized in terms of
sign vectors of S and S̃.

Example 21. Let Fc be given by the matrices

W̃ =





1 1 0 0 −1 w̃
1 −1 0 0 0 0
0 0 1 −1 0 0



 and W =





0 0 1 1 −1 0
1 −1 0 0 0 −1
0 0 1 −1 0 0



 ,

13



involving the parameter w̃ > 0. Obviously, C̃ = C = R
3. For w̃ = 1 or

w̃ ∈ [2,∞), the map Fc is injective for all c > 0, but not bijective, whereas
for w̃ ∈ (0, 1) or w̃ ∈ (1, 2), the map Fc is bijective for all c > 0. Clearly,
the sign vectors sign(S̃) = sign(ker W̃ ) do not depend on w̃ and hence cannot
characterize bijectivity.

As opposed to conditions (i) and (ii) in Theorem 13, the nondegeneracy condi-
tion (iii) cannot be characterized in terms of sign vectors of S and S̃, in general.
Still,

• condition (iii) holds trivially if (+, . . . ,+)T ∈ sign(S⊥) (and hence C is
pointed), see Section 3.1,

• there is a (weakest) condition (iii’) in terms of sign vectors of S and S̃
sufficient for nondegeneracy, see Proposition 22, and

• there is a sufficient condition for nondegeneracy using faces of the New-
ton polytope P̃ , see Proposition 23. (Thereby, faces of P̃ correspond to
nonnegative sign vectors of an affine subspace related to S̃.)

Proposition 22. Let S, S̃ be subspaces of Rn. The pair (S, S̃) is nondegenerate,
if

(iii’) for all τ̃ ∈ sign(S̃⊥) with τ̃+ 6= ∅,

– either there is no τ ∈ sign(S)⊕ with τ+ = τ̃+

– or there is no π ∈ sign(S) with (τ̃+ ∪ τ̃−) ⊆ π+.

Proof. Let (S, S̃) be degenerate. In particular, let z ∈ S̃⊥ with a positive
component be degenerate, and let τ̃ = sign(z) ∈ sign(S̃⊥), where τ̃+ 6= ∅.

For every λ > 0 and the corresponding index set J = {i | zi = λ}, the sign
vector τ ∈ {0,+}n with τ+ = J satisfies τ ∈ sign(S)⊕. Clearly, the index sets
J cover τ̃+ and, by composition, there is τ ∈ sign(S)⊕ with τ+ = τ̃+.

Further, there is no nonzero τ ∈ sign(S⊥)⊕ such that τ̃0 ⊆ τ0. That is, there
is no nonzero τ ∈ sign(S⊥) with τi = 0 for i ∈ τ̃0 and τi ≤ + otherwise.
By Corollary 45 in Appendix C, there is π ∈ sign(S) with πi = + for i ∈
(τ̃+ ∪ τ̃−).

Finally, we formulate a sufficient condition for nondegeneracy using faces of the
Newton polytope P̃ = conv W̃ . A face f̃ of P̃ with J = {i | w̃i ∈ f̃} corresponds
to a supporting affine hyperplane with normal vector x ∈ R

d and λ′ ∈ R such
that w̃i · x = λ′ for i ∈ J and w̃i · x < λ′ otherwise; that is, J = Ix,λ′ . It further

corresponds to z = W̃Tx ∈ S̃⊥, where J = {i | zi = λ′}. If λ′ > 0, we call the
face f̃ of P̃ positive, and z ∈ S̃⊥ has a positive component.

Proposition 23. Let S, S̃ be subspaces of R
n, W̃ be a matrix with full rank

such that ker W̃ = S̃, and P̃ = conv W̃ be the Newton polytope. The pair (S, S̃)
is nondegenerate, if, for every positive face f̃ of P̃ with J = {i | w̃i ∈ f̃} and
sign vector τ ∈ {0,+}n with τ+ = J , it holds that τ 6∈ sign(S)⊕.
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Proof. Let z ∈ S̃⊥ have a positive component, λ′ = maxi zi > 0, and J = {i |
zi = λ′}. Then z corresponds to a positive face f̃ of P̃ with J = {i | w̃i ∈ f̃}.
If, for the sign vector τ ∈ {0,+}n with τ+ = J , it holds that τ 6∈ sign(S)⊕, then
z is nondegenerate, by definition.

4 Robustness of bijectivity

We study the robustness of the bijectivity of Fc for all c > 0 with respect to small
perturbations of the exponents W̃ or/and the coefficients W , corresponding to
small perturbations of the subspaces S̃ and S (in the Grassmannian).

4.1 Perturbations of the exponents

First, we consider small perturbations of the subspace S̃, corresponding to the
exponents W̃ in Fc. As it turns out, the closure of sign(S̃) plays an important
role.

Definition 24. Let Σ ⊆ {−, 0,+}n. We define its closure

Σ = {τ ′ ∈ {−, 0,+}n | τ ′ ≤ τ for some τ ∈ Σ}.

Clearly, Σ1 ⊆ Σ2 implies Σ1 ⊆ Σ2.

Lemma 25. Let S be a subspace of Rn and Sε be a small perturbation. Then
sign(S) ⊆ sign(Sε).

Proof. Let τ ∈ sign(S) and a corresponding x ∈ S with τ = sign(x). Then
there is xε ∈ Sε close to x. For a small enough perturbation Sε, nonzero
components remain nonzero (but zero components can become nonzero), that
is, sign(x) ≤ sign(xε). Hence, τ ∈ sign(Sε).

We start by studying injectivity.

Lemma 26. Let S, S̃ be subspaces of Rn. If sign(S) ∩ sign(S̃⊥
ε ) = {0} for all

small perturbations S̃ε, then sign(S) ⊆ sign(S̃).

Proof. Suppose sign(S) ⊆ sign(S̃) does not hold. Then there is a nonzero sign

vector τ ∈ sign(S) with τ 6∈ sign(S̃). We will find a small perturbation S̃ε such
that τ ∈ sign(S̃⊥

ε ) and hence sign(S) ∩ sign(S̃⊥
ε ) = {0} is violated.

In terms of sign vectors, there is no τ̃ ∈ sign(S̃) such that τ̃ ≥ τ ; in terms of
vectors, there is no x̃ ∈ S̃ such that x̃i > 0 for i ∈ τ+ and x̃i < 0 for i ∈ τ−.
By Corollary 46 in Appendix C, there is a nonzero x ∈ S̃⊥ such that xi ≥ 0
for i ∈ τ+, xi ≤ 0 for i ∈ τ−, and xi = 0 otherwise. If sign(x) = τ , then
τ ∈ sign(S̃⊥), as desired. Otherwise, we find a perturbation xε = x + εe with
ε > 0 small and e ∈ R

n such that sign(xε) = τ . In particular, we choose ei = 1
if xi = 0 and i ∈ τ+, ei = −1 if xi = 0 and i ∈ τ−, and ei = 0 otherwise.
Then, we rescale xε such that |xε| = |x|. Finally, we find an orthogonal matrix
U ∈ R

n×n (close to the identity) such that Ux = xε. Then xε = Ux ⊥ US̃ = S̃ε,
that is, xε ∈ S̃⊥

ε and τ ∈ sign(S̃⊥
ε ), as desired.
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Lemma 27. Let S, S̃ be subspaces of Rn. If sign(S) ⊆ sign(S̃), then sign(S) ∩
sign(S̃⊥) = {0}.

Proof. Assume there exists a nonzero τ ∈ sign(S) ∩ sign(S̃⊥). If sign(S) ⊆

sign(S̃), then there exists ρ ∈ sign(S̃) with τ ≤ ρ. In particular, τ · ρ 6= 0,
thereby contradicting τ ∈ sign(S̃⊥) and ρ ∈ sign(S̃).

Proposition 28. Let S, S̃ be subspaces of Rn. Then sign(S) ∩ sign(S̃⊥
ε ) = {0}

for all small perturbations S̃ε if and only if sign(S) ⊆ sign(S̃).

Proof. (⇒): By Lemma 26.

(⇐): Assume sign(S) ⊆ sign(S̃). By Lemma 25, sign(S̃) ⊆ sign(S̃ε) for all small

perturbations S̃ε which implies sign(S̃) ⊆ sign(S̃ε). Hence, sign(S) ⊆ sign(S̃ε).
By Lemma 27, sign(S) ∩ sign(S̃⊥

ε ) = {0}.

Corollary 29. Let S, S̃ be subspaces of Rn. Then

sign(S) ⊆ sign(S̃) if and only if sign(S⊥) ⊆ sign(S̃⊥).

Proof. By Corollary 5, sign(S) ∩ sign(S̃⊥
ε ) = {0} is equivalent to sign(S⊥) ∩

sign(S̃ε) = {0}. By Proposition 28 twice, the former statement (for all small

perturbations S̃ε) is equivalent to sign(S) ⊆ sign(S̃) and the latter to sign(S⊥) ⊆

sign(S̃⊥).

In terms of the map Fc (and the associated subspaces S and S̃), Proposition 28
states that

Fc is injective for all c > 0
and all small perturbations S̃ε

⇔ sign(S) ⊆ sign(S̃).

In Proposition 30 and Theorem 32 below, we will show that

sign(S) ⊆ sign(S̃) ⇒ Fc is bijective for all c > 0

and
Fc is bijective for all c > 0
and all small perturbations S̃ε

⇔ sign(S) ⊆ sign(S̃).

First, we prove that the closure condition

sign(S) ⊆ sign(S̃) (cc)

implies the bijectivity of Fc for all c > 0, that is, conditions (i), (ii), and (iii) in
Theorem 13. For an alternative proof, see [9].

Proposition 30. If sign(S) ⊆ sign(S̃), then the map Fc is a diffeomorphism
for all c > 0.
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Proof. (cc) ⇒ (i): By Lemma 27.

(cc) ⇒ (ii):

Assume ¬(ii), that is, the existence of a nonzero τ̃ ∈ sign(S̃⊥)⊕ with τ 6≤ τ̃ for
all nonzero τ ∈ sign(S⊥)⊕.

By Corollary 45 in Appendix C, the nonexistence of a nonzero τ ∈ sign(S⊥)
with fi ≤ + for i ∈ τ̃+ and fi = 0 otherwise implies the existence of τ ∈ sign(S)
with τi = + for i ∈ τ̃+, that is, τ̃ ≤ τ .

Now, if sign(S) ⊆ sign(S̃), then there exists ρ ∈ sign(S̃) with τ ≤ ρ. In
particular, τ̃ · ρ 6= 0, thereby contradicting τ̃ ∈ sign(S̃⊥) and ρ ∈ sign(S̃).

(cc) ⇒ (iii’) in Proposition 22:

Assume ¬(iii’) and hence, by Proposition 22 (based on Corollary 45 in Ap-
pendix C), the existence of τ̃ ∈ sign(S̃⊥) and τ ∈ sign(S)⊕ with τ̃+ = τ+ 6= ∅
and further the existence of π ∈ sign(S) with (τ̃+ ∪ τ̃−) ⊆ π+. The sign vectors
of a subspace are closed under composition, and hence τ ′ = τ ◦ (−π) ∈ sign(S),
where τ ′i = + for i ∈ τ̃+ and τ ′i = − for i ∈ τ̃−, that is, τ̃ ≤ τ ′.

Now, if sign(S) ⊆ sign(S̃), then there exists ρ ∈ sign(S̃) with τ ′ ≤ ρ. In
particular, τ̃ · ρ 6= 0, thereby contradicting τ̃ ∈ sign(S̃⊥) and ρ ∈ sign(S̃).

However, the closure condition (cc) is not necessary for bijectivity. Recall that
there is a (weakest) sign-vector condition sufficient for bijectivity, involving con-
ditions (i), (ii), and (iii’), cf. Proposition 22.

Example 31. Let Fc be given by the matrices

W̃ =
(

1 0 −1
)

and W =
(

1 1 −1
)

.

Obviously, C̃ = C = R. Now, for τ = (+,+,−)T ∈ sign(imWT) = sign(S⊥),
there is no τ̃ ∈ sign(im W̃T) = sign(S̃⊥) with τ ≤ τ̃ . Hence, sign(S⊥) 6⊆

sign(S̃⊥), and the closure condition (cc) does not hold. Still, there is no nonzero
τ ∈ sign(kerW )⊕ = sign(S)⊕, and hence condition (iii’) holds. Further, condi-
tions (i) and (ii) hold, and Fc is bijective for all c > 0.

In fact, the closure condition (cc) is equivalent to bijectivity for all small per-
turbations S̃ε.

Theorem 32. The map Fc is a diffeomorphism for all c > 0 and all small

perturbations S̃ε if and only if sign(S) ⊆ sign(S̃).

Proof. By Lemma 25, sign(S) ⊆ sign(S̃) implies sign(S) ⊆ sign(S̃ε) for all small
perturbations S̃ε. By Proposition 30, the latter implies the bijectivity of Fc for
all c > 0 and all small perturbations S̃ε.

Bijectivity implies injectivity, that is, sign(S) ∩ sign(S̃⊥
ε ) = {0} for all small

perturbations S̃ε. By Lemma 26, the latter implies sign(S) ⊆ sign(S̃).

4.2 Perturbations of the coefficients

Next, we consider small perturbations of the subspace S (corresponding to
the coefficients W in Fc). We start by studying injectivity. By Corollary 5,
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the perturbed injectivity conditon sign(Sε) ∩ sign(S̃⊥) = {0} is equivalent to
sign(S̃)∩sign(S⊥

ε ) = {0}. By exchanging the roles of S and S̃ in Proposition 28,
we immediately obtain the desired result.

Corollary 33. Let S, S̃ be subspaces of Rn. Then sign(Sε) ∩ sign(S̃⊥) = {0}
for all small perturbations Sε if and only if sign(S̃) ⊆ sign(S).

The closure condition
sign(S̃) ⊆ sign(S) (cc’)

is equivalent to sign(S̃⊥) ⊆ sign(S⊥), by Corollary 29. As opposed to (cc), it
does not imply bijectivity, in fact, it implies conditions (i) and (iii) in Theo-
rem 13, but not condition (ii).

Proposition 34. If sign(S̃) ⊆ sign(S), then conditions (i) and (iii) in Theo-
rem 13 hold.

Proof. (cc’) ⇒ (i): By Corollary 33.

(cc’) ⇒ (iii’):

Assume ¬(iii’) and hence, by Proposition 22, the existence of τ̃ ∈ sign(S̃⊥)
and τ ∈ sign(S)⊕ with τ̃+ = τ+ 6= ∅, in particular, τ ≤ τ̃ . Now assume (cc’)
and hence the existence of ρ ∈ sign(S⊥) with τ̃ ≤ ρ. Then τ · ρ 6= 0, thereby
contradicting τ ∈ sign(S) and ρ ∈ sign(S⊥).

Example 35. Let Fc be given by the matrices

W̃ =

(

1 0 −1
0 1 0

)

and W =

(

1 1 0
0 1 1

)

.

Obviously, C̃ = {(x, y) ∈ R
2 | y ≥ 0} and C = R

2
≥0. Now, S̃ = ker W̃ =

im(1, 0, 1)T, S = kerW = im(1,−1, 1)T, and hence sign(S̃) ⊆ sign(S). How-
ever, sign(S̃⊥)⊕ = {(0, 0, 0)T, (0,+, 0)T}, sign(S⊥)⊕ = {(0, 0, 0)T, (0,+,+)T,
(+,+, 0)T}, and hence condition (ii) does not hold.

It remains to study how perturbations of the subspace S affect condition (ii).

Lemma 36. If condition (ii) in Theorem 13 holds for all small perturbations
Sε, then either C = C̃ = R

d or (+, . . . ,+)T ∈ sign(S⊥).

Proof. If neither C = R
d nor (+, . . . ,+)T ∈ sign(S⊥), then C has a nontrivial

lineality space. On the one hand, there is a small perturbation Sε1 such that
Cε1 = R

d and hence C̃ = R
d, by (ii); on the other hand, there is a small

perturbation Sε2 such that (+, . . . ,+)T ∈ sign(S⊥
ε2
) and hence (+, . . . ,+)T ∈

sign(S̃⊥), by Proposition 19; a contradiction.

If C = R
d, then Cε = R

d for all small perturbations Sε and hence C̃ = R
d,

by (ii).

That is, condition (ii) is robust only in two extreme cases regarding the geometry
of the cone C. We consider the case (+, . . . ,+)T ∈ sign(S⊥) separately.
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Lemma 37. Let (+, . . . ,+)T ∈ sign(S⊥). If the map Fc is surjective and
condition (ii) in Theorem 13 holds for all small perturbations Sε, then

(ii’) every τ ∈ sign(S⊥)⊕ has minimal support if and only if |τ0| = d− 1, and
sign(S⊥)⊕ = sign(S̃⊥)⊕.

Proof. By Proposition 19, (+, . . . ,+)T ∈ sign(S̃⊥) (and hence C̃ is pointed). Let
τ ∈ sign(S⊥)⊕ have minimal support, but |τ0| > d − 1. By Corollary 20, there
is τ̃ ∈ sign(S̃⊥)⊕ with minimal support and τ̃ ≥ τ , that is, τ̃0 ⊆ τ0. Clearly, τ
and τ̃ characterize maximal proper faces f of C and f̃ of C̃, respectively.

Suppose that either |τ̃0| > d − 1 or cone(wj | j ∈ τ̃0) is a proper subcone of f .
Then there is i ∈ τ̃0 (and hence i ∈ τ0) such that cone(wj | j ∈ τ0\{i}) = f ,
that is, the vector wi is not needed to generate the face f . Now consider a
small perturbation wi

ε such that wi
ε ∈ C◦ and Cε = C. Then i /∈ τ0ε for all

τε ∈ sign(S⊥
ε )⊕, and there is no τε ∈ sign(S⊥

ε )⊕ with τε ≤ τ̃ , contradicting (ii).

Conversely, suppose that |τ̃0| = d − 1 and cone(wj | j ∈ τ̃0) = f . Then there
is i ∈ τ0 (but i 6∈ τ̃0) such that cone(wj | j ∈ τ0 \{i}) = f . Now consider a
perturbation wi

ε such that wi
ε 6∈ C and Cε ⊃ C. Then the hyperplane containing

f (generated by the vectors wj with j ∈ τ̃0) is not a supporting hyperplane of
Cε, and there is no τε ∈ sign(S⊥

ε )⊕ with τε ≤ τ̃ , contradicting (ii).

As a consequence, every τ ∈ sign(S⊥)⊕ has minimal support if and only if |τ0| =
d − 1. By Corollary 20, the same holds for the corresponding τ̃ ∈ sign(S̃⊥)⊕
with minimal support, in particular, τ̃ = τ . In fact, every τ̃ ∈ sign(S̃⊥)⊕ has
minimal support if and only if |τ̃0| = d − 1: By (ii), there is a corresponding
τ ∈ sign(S⊥)⊕, necessarily with minimal support and |τ0| = d−1, in particular,
τ = τ̃ . That is, elements of sign(S⊥)⊕ and sign(S̃⊥)⊕ with minimal support
are in one-to-one correspondence. By [21], every nonnegative sign vector of a
subspace is the composition of nonnegative sign vectors with minimal support.
Hence, sign(S⊥)⊕ = sign(S̃⊥)⊕.

The main conclusion of the previous result can be reformulated: every maximal
proper face f of C with I = {i | wi ∈ f} has d−1 generators, that is |I| = d−1.
Moreover, faces (and their generators) of C and C̃ correspond to each other.

Finally, the closure condition (cc’) together with sign-vector conditions regard-
ing the geometry of the cones C and C̃ is equivalent to bijectivity for all small
perturbations Sε.

Theorem 38. The map Fc is a diffeomorphism for all c > 0 and all small
perturbations Sε if and only if sign(S̃) ⊆ sign(S) and

either C = C̃ = R
d

or (+, . . . ,+)T ∈ sign(S⊥) ∩ sign(S̃⊥) (and hence C and C̃ are pointed)
and condition (ii’) in Lemma 37 holds.

Proof. By Theorem 13, the bijectivity of Fc for all c > 0 is equivalent to condi-
tions (i), (ii), and (iii).

By Corollary 33, condition (i), that is, sign(Sε) ∩ sign(S̃⊥) = {0}, for all small
perturbations Sε, is equivalent to sign(S̃) ⊆ sign(S).
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By Lemma 36, condition (ii) for all small perturbations Sε implies either C =
C̃ = R

d or (+, . . . ,+)T ∈ sign(S⊥). In the latter case, Lemma 37 further implies
condition (ii’), in particular, (+, . . . ,+)T ∈ sign(S̃⊥).

Conversely, C̃ = R
d (and hence sign(S̃⊥)⊕ = {0}) trivially implies condition

(ii) for all small perturbations Sε. By Lemma 25, sign(S̃) ⊆ sign(S) implies
sign(S̃) ⊆ sign(Sε) for all small perturbations Sε, and by Proposition 34 (for
S̃ and Sε), this implies condition (iii) for all small perturbations Sε. Finally,
(+, . . . ,+)T ∈ sign(S⊥) and condition (ii’) imply condition (ii) for all small
perturbations Sε: If every τ ∈ sign(S⊥)⊕ has minimal support if and only if
|τ0| = d − 1, then sign(S⊥

ε )⊕ = sign(S⊥)⊕ for all small perturbations Sε. If
further sign(S⊥)⊕ = sign(S̃⊥)⊕, then sign(S⊥

ε )⊕ = sign(S̃⊥)⊕.

4.3 General perturbations and maximal minors

Corollary 4 relates chirotopes (maximal minors of W and W̃ ) to vectors (sign
vectors of S = kerW and S̃ = ker W̃ ). By varying over all small perturbations
S̃ε, we obtain the following result.

Proposition 39. Let S, S̃ be subspaces of Rn of dimension n− d (with d ≤ n).
For every W, W̃ ∈ R

d×n (with full rank d) such that S = kerW and S̃ = ker W̃ ,
the following statements are equivalent.

1. sign(S) ⊆ sign(S̃).

2. det(WI) 6= 0 implies det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of
cardinality d (or ‘< 0’ for all I).

Proof. By Proposition 28, statement 1 is equivalent to sign(S)∩sign(S̃⊥
ε ) = {0}

for all small perturbations S̃ε. By Corollary 4, this is equivalent to

det(WI) det(W̃ε,I) ≥ 0 for all I ⊆ [n] of cardinality d (or ‘≤ 0’ for all I)

and det(WI) det(W̃ε,I) 6= 0 for some I,

for all small perturbations W̃ε of W̃ .

This is equivalent to statement 2, thereby using that det(W̃I) = 0 implies
det(W̃ε1,I) < 0 and det(W̃ε2,I) > 0 for some small perturbations W̃ε1 and W̃ε2 .

Now we can extend Theorem 32. In particular, we can characterize the bijec-
tivity of Fc for all c > 0 and all small perturbations S̃ε not only in terms of sign
vectors, but also in terms of maximal minors.

Corollary 40. The following statements are equivalent:

1. Fc is a diffeomorphism for all c > 0 and all small perturbations S̃ε.

2. sign(S) ⊆ sign(S̃).

3. det(WI) 6= 0 implies det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of
cardinality d (or ‘< 0’ for all I).
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Proof. (1 ⇔ 2): By Theorem 32. (2 ⇔ 3): By Proposition 39.

The next result relates chirotopes to cocircuits (sign vectors of S⊥ = imWT and
S̃⊥ = im W̃T with minimal support).

Lemma 41. Let S, S̃ be subspaces of Rn of dimension n− d (with d ≤ n). For
every W, W̃ ∈ R

d×n (with full rank d) such that S = kerW and S̃ = ker W̃ , the
following statements are equivalent.

1. sign(S) = sign(S̃), and a nonzero τ ∈ sign(S⊥) has minimal support if
and only if |τ0| = d− 1.

2. det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of cardinality d (or ‘< 0’ for
all I).

Proof. By using the standard chirotope/cocircuit translation for subspaces of Rn,
see [10, Theorem 8.1.6].

Now, we can consider small perturbations of both subspaces, S and S̃.

Theorem 42. The following statements are equivalent:

1. Fc is a diffeomorphism for all c > 0 and all small perturbations Sε and S̃ε̃.

2. sign(S) = sign(S̃), and a nonzero τ ∈ sign(S⊥) has minimal support if
and only if |τ0| = d− 1.

3. det(WI) det(W̃I) > 0 for all subsets I ⊆ [n] of cardinality d (or ‘< 0’ for
all I).

Proof. (1 ⇒ 3): Statement 1 implies the injectivity of Fc for all c > 0, that is,
sign(Sε) ∩ sign(S̃⊥

ε̃ ) = {0}, for all small perturbations Sε, S̃ε̃. By Corollary 4,
this is equivalent to

det(Wε,I) det(W̃ε̃,I) ≥ 0 for all I ⊆ [n] of cardinality d (or ‘≤ 0’ for all I)

and det(Wε,I) det(W̃ε̃,I) 6= 0 for some I,

for all small perturbations Wε of W and W̃ε̃ of W̃ .

This is equivalent to statement 3.

(3 ⇒ 1): Statement 3 implies

det(Wε,I) det(W̃ε̃,I) > 0 for all I ⊆ [n] of cardinality d (or ‘< 0’ for all I),

for all small perturbations Wε, W̃ε̃.

By Lemma 41, this implies sign(Sε) = sign(S̃ε̃) and hence sign(Sε) ⊆ sign(S̃ε̃),
for all small perturbations Wε, W̃ε̃. By Proposition 30, this implies statement 1.

(2 ⇔ 3): By Lemma 41.
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Appendices

A Motivation from Chemical Reaction Networks

Let S and S̃ be subspaces of Rn, representing the stoichiometric and kinetic-
order subspaces of a generalized chemical reaction network [18, 19]. For a (pos-
itive) complex-balancing equilibrium c ∈ R

n
>0, the set of all complex-balancing

equilibria is given by

c ◦ eS̃
⊥

⊆ R
n
>0.

Further, for a (positive) species concentration c′ ∈ R
n
>0, the corresponding sto-

ichiometric compatibility class is given by

(c′ + S) ∩ R
n
≥0.

We want to characterize when there exists a unique complex-balancing equi-
librium in every stoichiometric class, in particular, when there exists a unique
intersection

c ◦ eS̃
⊥

∩ (c′ + S)

for all c, c′ > 0.

Let u ∈ S and v ∈ S̃⊥ such that

c ◦ ev = c′ + u.

Now, write S = kerW and S̃ = ker W̃ , where W, W̃ ∈ R
d×n have full rank

d ≤ n, and write v = W̃Tx ∈ im W̃T = (ker W̃ )⊥ = S̃⊥ with x ∈ R
d. Then the

previous equation is equivalent to

W (c ◦ eW̃
Tx) = Wc′.

As a consequence, a unique intersection c ◦ eS̃
⊥

∩ (c′ + S) for all c, c′ > 0 is
equivalent to the bijectivity of the map

Fc : R
d → C◦ ⊆ R

d,

x 7→ W (c ◦ eW̃
Tx) =

n
∑

i=1

ci e
w̃i·xwi

for all c > 0. Thereby C = coneW and w̃i is the i-th column of W̃ . The
bijectivity of the map (for all c > 0) is equivalent to a unique intersection (for
all c, c′ > 0) and hence does not depend directly on W and W̃ , but only on
kerW = S and ker W̃ = S̃.
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B Sign vectors and face lattices

In the context of oriented matroids, we discuss the relation between sign vectors
of linear subspaces and face lattices of polyhedral cones. For further details, we
refer to [2, Chapter 7], [26, Chapters 2 and 6], and the encyclopedic study [4].

Let W = (w1, . . . , wn) ∈ R
d×n with d ≤ n have full rank. Then W is called a

vector configuration (of n vectors in R
d), and imWT ⊆ R

n is a corresponding
linear subspace. Now let v = WTx ∈ imWT with x ∈ R

d. Then vi = wi·x, and
the sign vector τ = sign(v) ∈ sign(imWT) ⊆ {−, 0,+}n describes the positions
of the vectors w1, . . . , wn relative to the hyperplane with normal vector x.

Elements of sign(imWT) are called covectors, and elements of sign(imWT) with
minimal support are called cocircuits. Analogously, elements of sign(kerW ) are
called vectors, and elements of sign(kerW ) with minimal support are called
circuits.

The chirotope of the vector configuration W is the map

χW : {1, . . . , n}d → {−, 0,+} ,

(i1, . . . , id) 7→ sign(det(wi1 , . . . , wid))

which records for each d-tuple of vectors if it forms a positively (or negatively)
oriented basis of Rd or it is not a basis.

The oriented matroid ofW is a combinatorial structure that can be given by any
of the above data (co/vectors, co/circuits, or chirotopes) and defined/characterized
in terms of any of the corresponding axiom systems.

The face lattice of C = coneW ⊆ R
d, the polyhedral cone generated by the

vectors w1, . . . , wn, can be obtained from the sign vectors of the linear subspace
imWT. In fact, it is the set sign(imWT)⊕ = sign(imWT) ∩ {0,+}n with the
partial order induced by the relation + > 0. A face f of C corresponds to a
supporting hyperplane with normal vector x such that wi·x = 0 for wi ∈ f and
wi · x > 0 for wi 6∈ f (lying on the positive side of the hyperplane). Hence f is
characterized by the sign vector τ = sign(WTx) ∈ sign(imWT)⊕.

The lineality space of a cone C is given by the set C ∩ (−C). It is the minimal
face of C, in the sense that it is contained in all faces. The lineality space
of C = coneW can be obtained from sign(kerW )⊕, that is, from the positive
dependencies among the vectors w1, . . . , wn.

A cone C is called pointed if its lineality space is {0}, that is, if it has vertex 0.
Note that, if (+, . . . ,+)T ∈ sign(imWT)⊕ (that is, sign(kerW )⊕ = {0}), then
C = coneW is pointed.

C A general theorem of the alternative

Definition 43. Let x ∈ R
n, and let I1, . . . , In be intervals of R. We define the

interval

I(x) ≡ x1I1 + . . .+ xnIn

= {x1y1 + . . .+ xnyn ∈ R | y1 ∈ I1, . . . , yn ∈ In}

and write I(x) > 0 if y > 0 for all y ∈ I(x).
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Theorem 44 (Theorem 22.6 in [22]). Let S be a subspace of R
n, and let

I1, . . . , In be intervals of R. Then one and only one of the following alternatives
holds:

(a) There exists a vector x = (x1, . . . , xn)
T ∈ S such that

x1 ∈ I1, . . . , xn ∈ In.

(b) There exists a vector x∗ = (x∗
1, . . . , x

∗
n)

T ∈ S⊥ such that

x∗
1I1 + . . .+ x∗

nIn > 0.

Corollary 45. Let S be a subspace of Rn, and let J ⊆ {1, . . . , n} be nonempty.
Then either (a) there exists a vector x ∈ S with xi > 0 for i ∈ J or (b) there
exists a nonzero vector x∗ ∈ S⊥ with x∗

i ≥ 0 for i ∈ J and x∗
i = 0 otherwise.

Proof. By Theorem 44 with Ii = (0,+∞) for i ∈ J and Ii = (−∞,+∞) other-
wise.

Corollary 46. Let S be a subspace of Rn, and let J+, J− ⊆ {1, . . . , n} with
J+ ∩J− = ∅ and J+ ∪J− 6= ∅. Then either (a) there exists a vector x ∈ S with
xi > 0 for i ∈ J+ and xi < 0 for i ∈ J− or (b) there exists a nonzero vector
x∗ ∈ S⊥ with x∗

i ≥ 0 for i ∈ J+, x∗
i ≤ 0 for i ∈ J−, and x∗

i = 0 otherwise.

Proof. By Theorem 44 with Ii = (0,+∞) for i ∈ J+, Ii = (−∞, 0) for i ∈ J−,
and Ii = (−∞,+∞) otherwise.
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