
���

����������	
��
�����
�������������������������

Generalization over Environments in
Reinforcement Learning

Andreas Matt1 and Georg Regensburger2 ?

1 Institute of Mathematics, University of Innsbruck,
Technikerstr. 25/7, A-6020 Innsbruck, Austria

andreas.matt@uibk.ac.at
2 Institute of Computer Science, University of Innsbruck,

Technikerstr. 25/7, A-6020 Innsbruck, Austria
georg.regensburger@uibk.ac.at

http://mathematik.uibk.ac.at/˜rl

Abstract. In this paper we discuss the problem of reinforcement learn-
ing in one environment and applying the policy obtained to other envi-
ronments. We first state a method to evaluate the utility of a policy. We
then propose a general model to apply one policy to di erent environ-
ments and compare them. To illustrate the theory we present examples
for an obstacle avoidance behavior in various block world environments.

1 Idea

Until now reinforcement learning has been applied to abstract behavior within
one environment. Several methods to find optimal or near optimal policies are
known, [2], [4], [6]. The fact that a policy learned in one environment can be suc-
cessfully applied to other environments has been observed, but not investigated
in detail.
In our research we focus on a general point of view of behavior that appears

independently from a single environment. As an example imagine that a robot
should learn to avoid obstacles. What we have in mind is a behavior suitable for
any kind of environment.
In [5] we give a method to optimize single-agent behavior for several envi-

ronments and reinforcement functions by learning in several environments si-
multaneously. Now we address the problem of learning in one and applying the
policy obtained to other environments. We discuss the influence of the environ-
ment on the ability to generalize over other environments. How do good learning
environments look like?

2 Preliminaries

We propose the following notation for reinforcement learning models, which al-
lows us to treat several environments and reinforcement functions. The main
? partially supported by the Austrian Science Fund (FWF), Project Y- 23 INF.

���

����������	
��
�����
�������������������������

di erence to the standard definition of a Markov decision process, [3], is that we
separate the reinforcement function from the environment.
An environment is given by

— A finite set S of states.
— A family A = (A(s))s S of finite sets of actions.
The set A(s) is interpreted as the set of all allowed actions in state s.

— A family of probabilities P =P (| a, s) on S with (a, s), where s S and
a A(s).
We interpret P (s0 | a, s) as the transition probability that performing action
a in state s leads to the successor state s0.

Let E = (S,A,P) be an environment. A policy for E is given by

— A family of probabilities = (| s) on A(s) for s S.
We interpret (a | s) as the probability that action a is chosen in state s.
A reinforcement learning system (RLS) is given by an environment E =

(S,A,P) and

— A family R =R(s0, a, s) with (s0, a, s), where s0, s S and a A(s).
The value R(s0, a, s) represents the expected mean reward if performing a in
state s leads to the successor state s0. The family R is called a reinforcement
function.

The goal of reinforcement learning is to find policies that maximize the sum
of the expected rewards. Let (E,R) be a RLS and 0 1 be a discount rate.
Let be a policy for E. The value function of a state s is defined by

V (s) =
a

(a | s) R(a, s) +
s0
V (s0)P (s0 | a, s) ,

where

R(a, s) =
s0 S

R(s0, a, s)P (s0 | a, s)

is the expected reward of action a in state s. The value function describes the
expected sum of rewards following a certain policy starting in state s. The action—
value of a in s for is defined by

Q (a, s) = R(a, s) +
s0
V (s0)P (s0 | a, s).

The action value is the expected sum of rewards reward if action a is chosen
in state s and afterwards the policy is followed. A policy is optimal if
V (s) V (s) for all s S. There exists at least one optimal policy and all
optimal policies share the same value function, which we denote by V .

���

����������	
��
�����
�������������������������

Directions

Actions

Sensors

Fig. 1. States and actions used in the simulator. The set of actions A(s) = {forward,
left, right} and the sensor values in this example are s = (4, 2, 5, 0)

3 The Blockworld Simulator Robo

In order to illustrate the theory developed in this paper we decided to use the
simple blockworld simulator Robo3 to learn an obstacle avoidance behavior. The
simulated robot acts in a 0x 0 blockworld and has four sensors, forward, left,
right, and back, with a range of 5 blocks each. The sensor values are encoded in
a vector s = (s1, ..., s4). The values vary between 0 and 5, where 5 means that
there is a block right in front and 0 means that there is no block in the next
5 fields. There are three actions in each state, move forward, left and right one
block (see Fig.).
The robot gets rewarded if it is far from obstacles or moves away from obsta-

cles, it gets punished if it bumps into an obstacle or it moves towards obstacles.
Let s = (s1, . . . , s4) and s0 = (s01, . . . , s

0
4) be the sensor values for the state and

the successor state. The reinforcement function is defined as follows:

R(s0, a, s) =
+1 if s0i 3 for i = 1 . . . 4 or s0i si 1
1 if it bumps into the wall or s0i si 0.0
0 else

()

The optimal value function is calculated using value iteration, [], [6], with
discount rate = 0.95 and accuracy 10 6.

4 Utility of a Policy

Let (E,R) be a RLS and be a discount rate. Let be a policy for E. We define
the utility of , denoted by V (), by

V () =
1

|S|
s S

V (s),

3 The blockworld simulator Robo is available at http://mathematik.uibk.ac.at/~rl.

���

����������	
��
�����
�������������������������

Fig. 2. A sample blockworld

i.e. the average utility of all states.
Let be an optimal policy. Then V () V () for all policies . A policy

is optimal if and only if its utility is maximal. The discounted utility allows us
to describe a policy with one number and thus to easily compare all policies.

Example 1. We calculate the utilities of the random policy and the optimal
policy in a sample blockworld (see Fig. 2) with the reinforcement function ().
The discounted utility of the random policy rand, i.e. all actions are chosen
with the same probability, V (rand) = 4.712 and the discounted utility of the
optimal policy V () = 18.511.

5 The State Action Space

To apply a policy to di erent environments we need some new notions, which
are motivated by the following example.
Consider a robot with its sensors to perceive the world. All possible sensor

values together represent all possible states for the robot. In each of these states
the robot can perform some actions. We call all possible states and actions the
state action space.
A state action space = (S,A) is given by

— A finite set S of states.
— A family A = (A(s))s S of finite sets of actions.

Since the actions are given by the state action space it is clear what is meant
by a policy for . Now we imagine the robot in a physical environment, where
we can observe all possible states for this environment, a subset SE S of
all possible states in general, and the transition probabilities PE. We call an
environment E = (SE,AE,PE) a realization of a state action space if

SE S and AE(s) = A(s) for all s S.

We call a RLS (E,R) a realization of if the environment E is a realization of
.

���

����������	
��
�����
�������������������������

Fig. 3. Sample blockworlds for the realizations B1, B2 and B3

Let = (S,A) be a state action space and E = (SE,AE,PE) be a realiza-
tion of . In order to apply the policy for E to another realization of we
(randomly) extend the policy to a policy e for in the following way:

e =
e(/s) = (/s) for s SE
e(a/s) = 1

|A(s)| for s S \ SE and a A(s).

This means that in unknown states the actions are chosen randomly. Once ex-
tended, the policy e can be applied to all realizations of . We simply write
for e.

Example 2. In the blockworld simulator the state action space is given by all
possible sensor values S = {(s1, . . . , s4) with 0 si 5} and in each state the
actions forward, left, right. We consider three di erent blockworlds (see Fig. 3).
By observing the possible states and transition probabilities in each blockworld
we obtain realizations B1, B2 and B3 with the reinforcement function ().
We extend an optimal policy 1 for B1 and apply it to the realizations B2 and
B3. Evaluating the utilities of 1, the optimal and random policies, i resp.
rand
i , for each realization Bi, we obtain:

Results 1 i
rand
i

B1 18.448 18.448 6.060
B2 15.190 18.877 4.873
B3 3.081 18.951 3.678

(2)

Note that 1 performs relatively well in B2 and bad in B3.

Example 3. Let the state action space and B2 be as in Example 2. We consider
the empty blockworld and obtain realization B0. Comparing the utilities of their
extended optimal policies i we obtain:

Results 2 0
rand
i

B2 18.877 9.360 4.873
B0 19.264 19.264 4.473

Observe that the optimal policy for B2 remains optimal in B0, but not viceversa.
One could say that B2 generalizes perfectly over B0.

���

����������	
��
�����
�������������������������

6 Optimal Actions

Let = (S,A) be a state action space and (E,R) be a realization of . There can
be several optimal policies for this realization. While they are equally optimal
in (E,R) they can perform better or worse in other realizations of . Since we
do not know which of the optimal policies performs best in other realizations we
propose a random choice between all optimal actions.
Let (E,R) be a RLS and a discount rate. Let s S. Let V be the optimal

value function and Q be the optimal action values. We define the set of optimal
actions in s by

A (s) = {a A(s) with Q (a , s) = V (s) = max
a A(s)

Q (a, s)}.

We define the random optimal policy rand by

rand =
(a/s) = 1

|A (s)| for s SE and a A (s)

(/s) = 0 else
.

Example 4. We repeat the Example 2 with the random optimal policy rand
1

for B1 and obtain:

Results rand
1 i

rand
i

B1 18.448 18.448 6.060
B2 15.166 18.877 4.873
B3 3.202 18.951 3.678

(3)

Comparing (2) and (3) we find that rand
1 performs better in B3 and slightly

worse in B2.

7 Utility of a Policy for a Family of Realizations

Let = (S,A) be a state action space. Let E =(Ei,Ri)i=1...n be a finite family
of realizations of . Note that the reinforcement functions can be di erent for
each realization. Let be a policy for . We can calculate for each (Ei,Ri) the
utility of , which we denote by Vi().
We define the utility of for E by

VE() =
1

n
i=1...n

Vi(),

the average utility of in all realizations. This utility is used to measure the per-
formance of policies for a family of realizations. We say that a policy performs
better in E than policy 0 if VE() > VE(0).

���

����������	
��
�����
�������������������������

8 Generalizing over Environments

Recall our main idea to learn a policy in one environment and apply it to other
environments. We say that an environment generalizes over other environments
if its optimal or near optimal policies perfom well in all of them.
In the framework defined above we can formulate this more precisely us-

ing the random optimal policies: Let = (S,A) be a state action space and
E =(Ei,Ri)i=1...n be a finite family of realizations of . We say that (Ei,Ri)
generalizes better over E than (Ej ,Rj) if VE(rand

i) > VE(
rand
j).

This general approach includes generalization over reinforcement functions.
In our context generalization is established without using methods such as neural
networks.

9 Experiments

We observed in the above examples that the environment influences the utility
of its optimal policies for other realizations. Our question now is, how to choose
an environment that generalizes over other environments. For that we conduct
three experiments.
In all experiments we use the blockworld simulator as described in Sect. 3.

We choose a family E of realizations of the state action space in Example 2.
We calculate the random optimal policies (Sect. 6) for all realizations of E and
compare their utilities for E (Sect. 7).

9.1 How Many Blocks?

In the first experiment we discuss how many blocks we should distribute in an
empty blockworld. We generate environments with one to ten blocks distributed
randomly. We generate ten environments for each number of blocks and obtain
a family E of 100 realizations. The utility of the random optimal policies of the
n-block environments for all realizations of E are then averaged for n = 1 . . . 10.
The results of two experiments are shown in Fig. 4.
We observe that the average utility first increases with the number of blocks

and then decreases if there are more than three blocks. This confirms the intuitive
idea that a “good” environment to generalize should be neither too simple nor
too complex, more on the simple side though.

9.2 One-Block Environments

In the next experiment we consider all 64 possible one-block environments. The
question is now, on which position we put the block in order to have a good
environment to generalize over all one-block environments. Before you read on,
you can think by yourself where to put the block.
The left checkerboard in Fig. 5 represents the utilities. The brighter the color

of the block the higher is the utility of the random optimal policy for all one-
block environments of the environment with a block on this position. The utilities

���

����������	
��
�����
�������������������������

1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

Number of blocks

Av
er

ag
e

ut
ilit

y

Experiment 1
Experiment 2

Fig. 4. Averaged utility of the random optimal policies of the n-block environments
for all realizations

vary between 13.584 and 14.873. Note the symmetry of the environments and
the eight best ones.

The right checkerboard in Fig. 5 shows the number of di erent states in each
one-block environment. Again the brighter the color of the block the higher is
the number. The number of states lies between 65 and 104. The best one-block
environment has 100 di erent states.

Fig. 5. The left checkerboard shows the utility for all 64 one-block environments. The
right checkerboard the number of di erent states

��	

����������	
��
�����
�������������������������

9.3 Two-Block Environments

We extend the above experiment to all two-block environments. There are 2016
di erent environments to compare. Using symmetries we end up with 632 which
still results in a fair amount of calculations. The best and worst environment are
shown in Fig. 6.
The utility of the random optimal policy of the best environment is 11.195,

the utility of the worst environment 3.404. The number of states ranges from 51
to 143. The best environment has 126 di erent states, the worst 60. We observe
that “good” environments to generalize have a high number of di erent states.

Fig. 6. The left blockworld is the best, the right one the worst environment generalizing
over all two-block environments

10 Discussion

In this paper we give a method to apply policies to di erent environments and
compare them. The results in Sect. 9 emphasize the influence of the realization,
i.e. the environment with its states and transition probabilities and the rein-
forcement function, on the ability to generalize over other realizations. Example
3 even shows that an environment may include all the necessary information to
learn an optimal policy for other environments.
In order to obtain one policy suitable for many realizations it is important

to choose an appropriate environment to learn in. Our future work consists in
finding a priori criteria, such as the number of states, complexity of transitions,
rewards, etc., to predict the ability of an environment to generalize.
In Sect. 6 we extend the policy randomly for unknown states. Applying neural

networks, [7], to choose similar actions for similar unknown states could improve
the method.

References

. Bellman, R. E.: Dynamic Programming. Princeton University Press. Princeton
(957)

��

����������	
��
�����
�������������������������

2. Bertsekas, D. P., Tsitsiklis, J. N.: Neuro-dynamic programming. Athena Scientific.
Belmont, MA (996)

3. Howard, R. A.: Dynamic Programming and Markov Processes. MIT Press. Cam-
bridge, MA (960)

4. Kaelbling, L. P., Littman, M. L., Moore, A. W.: Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4 (996) 237—285

5. Matt, A., Regensburger, G.: Policy Improvement for Several Environments. Proceed-
ings of the 5th European Workshop on Reinforcement Learning (EWRL-5) (200)
30—32

6. Sutton, R. S., Barto, A. G.: Reinforcement Learning: An Introduction. MIT Press.
Cambridge, MA (998)

7. Touzet, C.: Neural Reinforcement Learning for Behavior Synthesis. Robotics and
Autonomous Systems 22(997) 25 —28

