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Abstract We discuss parametrizations of filter coefficients of scaling functions and
compactly supported orthonormal wavelets with several vanishing moments. We intro-
duce the first discrete moments of the filter coefficients as parameters. The discrete
moments can be expressed in terms of the continuous moments of the related scaling
function. To solve the resulting polynomial equations we use symbolic computation
and in particular Gröbner bases. The cases of four to ten filter coefficients are discussed
and explicit parametrizations are given.

Keywords Orthonormal wavelets · Parametrization · Filter coefficients · Moments ·
Gröbner bases

1 Introduction

Over the last two decades wavelets have become a fundamental tool in many areas
of applied mathematics and engineering ranging from signal and image processing
to numerical analysis, see for example Daubechies [13], Mallat [26], and Strang and
Nguyen [35]. A function ψ ∈ L2(R) is an orthonormal wavelet if the family

ψ jk(x) = 2 j/2ψ(2 j x − k), for j, k ∈ Z,
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584 G. Regensburger

is an orthonormal basis of the Hilbert space L2(R). The first known example is the
Haar wavelet [16]

ψ(x) =

⎧
⎪⎨

⎪⎩

1, for 0 ≤ x < 1
2 ,

−1, for 1
2 ≤ x < 1,

0, otherwise.

Daubechies [12] introduced a general method to construct compactly supported
wavelets. It is based on scaling functions which satisfy a dilation equation

φ(x) =
N∑

k=0

hkφ(2x − k) (1)

given by a linear combination of real filter coefficients hk and dilated and translated
versions of the scaling function. We outline her construction in Sect. 2. The corres-
ponding scaling function for the Haar wavelet is the box function

φ(x) =
{

1, for 0 ≤ x < 1,

0, otherwise

with the filter coefficients h0 = h1 = 1. In general, there is no closed analytic form
for the scaling function, and for computations with wavelets only the filter coefficients
are used.

Conditions on the scaling function imply, using the dilation equation (1), constraints
on the filter coefficients. Orthonormality gives quadratic equations and vanishing
moments of the associated wavelet and normalization linear constraints. For the exis-
tence of a wavelet at least one vanishing moment is necessary. Daubechies wavelets
[12] have the maximal number of vanishing moments for a fixed number of filter
coefficients and so there are only finitely many solutions. See Sect. 2 for details.

Parametrizing all possible filter coefficients that correspond to compactly supported
orthonormal wavelets has been studied by several authors [20,25,29,31,34,37–39].
For a discussion and illustrations of scaling functions with six filter coefficients depen-
ding on two parameters see also [3] and [18]. Applications of parametrized wavelets
to compression are for example discussed in [17] and [30]. In all parametrizations
the filter coefficients are expressed in terms of trigonometric functions and there is
no natural interpretation of the angular parameters for the resulting scaling function.
Furthermore, one has to solve transcendental constraints for the parameters to find
wavelets with more than one vanishing moment.

In the proposed parametrization we introduce the first discrete moments of the
filter coefficients as parameters. The discrete moments can be expressed in terms of
the continuous moments of the scaling function, see Sect. 3. Moreover, we do not
want to parametrize all possible filter coefficients but only such with a high number of
vanishing moments. More precisely, we omit one vanishing moment condition from
the construction of Daubechies wavelets. We also use the fact that the even discrete
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Parametrizing compactly supported orthonormal wavelets by discrete moments 585

moments are determined by the odd up to the number of vanishing moments, see
Sect. 3. We discussed a first parametrization using the same approach in [30]. In this
paper, we present new simplified parametrizations, discuss all computational aspects
and different cases in detail, and give a parametrization for ten filter coefficients and
at least four vanishing moments.

We solve the resulting parametrized polynomial equations for the filter coefficients
using symbolic computation and for the more involved equations in particular Gröbner
bases. Gröbner bases were introduced by Buchberger in [4], see also [5]. For further
details on Gröbner bases we refer to [1,6,11]. Applications of Gröbner bases to the
design of wavelets and filter coefficients are for example discussed in [8,9,15,23,24,
27,28,32]. The idea of using the first discrete moment as a parameter to simplify the
Gröbner basis computations was also used in Selesnick and Burrus [32] and Lebrun
and Selesnick [23].

In Sects. 4–7 we describe in detail the cases of four to ten filter coefficients. We give
explicit parametrizations and discuss several special parameter values, for example, for
the Daubechies wavelets. The corresponding Maple worksheet with all computations,
several MATLAB functions and a GUI to compute with and illustrate parametrized
wavelets are available on request from the author.

2 Equations for the filter coefficients

We outline the construction of orthonormal wavelets based on scaling functions and
recall the polynomial equations for the filter coefficients, see for example Daubechies
[13] or Strang and Nguyen [35].

Orthonormality of the integer translates {φ(x − l)}l∈Z in L2(R), that is,

∫

φ(x)φ(x − l)dx = δ0,l

implies, using the dilation equation (1), the quadratic equations

∑

k∈Z

hkhk−2l = 2δ0,l , for l ∈ Z, (2)

where we set hk = 0 for k < 0 and k > N . We can assume that h0hN �= 0. Then with
Eq. (2) we see that N must be odd and the number of filter coefficients even. We have
one nonhomogeneous equation

N∑

k=0

h2
k = 2 (3)

and the homogeneous equations

N∑

k=0

hkhk−2l = 0, for l = 1, . . . , (N − 1)/2. (4)
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586 G. Regensburger

If the filter coefficients satisfy the necessary conditions for orthogonality (2) and
the normalization

N∑

k=0

hk = 2, (5)

there exists a unique solution of the dilation equation (1) in L2(R)with support [0, N ]
and for which

∫
φ = 1, see Lawton [21]. For almost all such scaling functions the

integer translates {φ(x − l)}l∈Z are orthogonal, and then

ψ(x) =
N∑

k=0

(−1)khN−kφ(2x − k) (6)

is an orthonormal wavelet. Necessary and sufficient conditions for orthonormality
were given by Cohen [10] and Lawton [22], see also Daubechies [13, Chap. 6.3.]. The
only example with four filter coefficients that satisfies the Eqs. (2) and (5) and where
the integer translates of the corresponding scaling are not orthogonal is h0 = h3 = 1
and h1 = h2 = 0 with the scaling function

φ(x) =
{

1/3, for 0 ≤ x < 3,

0, otherwise.
(7)

Vanishing moments of the associated wavelet are related to several properties of
the scaling function and wavelet. For example, to the smoothness, the polynomial
reproduction and the approximation order of the scaling function, and the decay of
the wavelet coefficients for smooth functions, see Strang and Nguyen [35] and the
survey by Unser and Blu [36] for details. The condition that the first p moments of
the wavelet ψ vanish, that is,

∫

xlψ(x) dx = 0, for l = 0, . . . , p − 1

is using Eq. (6) equivalent to the sum rules

N∑

k=0

(−1)kklhk = 0, for l = 0, . . . , p − 1. (8)

We say that ψ has p vanishing moments. Since the vector space of all polynomials
with degree less then p is invariant under translation and dilation, we can equivalently
require vanishing moments of ψ(x + n − 1) with N = 2n − 1. This corresponds to
Daubechies choice [12,13] where the wavelet has support [1 − n, n]. For the compu-
tations we use the resulting linear equations

2n−1∑

k=0

(−1)n−khk(n − k)l = 0, for l = 0, . . . , p − 1
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since they have smaller coefficients. Note that the normalization of the filter coefficients
(5) and the first sum rule

N∑

k=0

(−1)khk = 0 (9)

are equivalent to
N∑

k=0
k even

hk =
N∑

k=0
k odd

hk = 1. (10)

The following proposition is a consequence of the first Newton identities, which
give a relation between power sums and elementary symmetric functions, see Bourbaki
[2, A.IV. 70] and Knuth [19, p. 497].

Proposition 1 Let x0, . . . , xn be variables of a polynomial ring over a commutative
ring. Then

(
n∑

k=0

x2
k

)

=
(

n∑

k=0

xk

)2

− 2

⎛

⎜
⎜
⎝

∑

0≤i< j≤n
j−i even

xi x j

⎞

⎟
⎟
⎠ − 2

⎛

⎜
⎝

n∑

k=0
k even

xk

⎞

⎟
⎠

⎛

⎜
⎝

n∑

k=0
k odd

xk

⎞

⎟
⎠ . (11)

Proof The Newton identities tell us in particular that

(
n∑

k=0

x2
k

)

=
(

n∑

k=0

xk

)2

− 2

⎛

⎝
∑

0≤i< j≤n

xi x j

⎞

⎠ .

The last sum in this equation is

⎛

⎝
∑

0≤i< j≤n

xi x j

⎞

⎠ =

⎛

⎜
⎜
⎝

∑

0≤i< j≤n
j−i even

xi x j

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

∑

0≤i< j≤n
j−i odd

xi x j

⎞

⎟
⎟
⎠

and the proposition follows by observing that

⎛

⎜
⎜
⎝

∑

0≤i< j≤n
j−i odd

xi x j

⎞

⎟
⎟
⎠ =

⎛

⎜
⎝

n∑

k=0
k even

xk

⎞

⎟
⎠

⎛

⎜
⎝

n∑

k=0
k odd

xk

⎞

⎟
⎠ .

��
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588 G. Regensburger

If the filter coefficients satisfy the homogeneous equations (4) from the orthonor-
mality conditions then

∑

0≤i< j≤n
j−i even

hi h j = 0.

Therefore we see with the identity (11) that the normalization and the first sum rule,
see Eqs. (5), (9) and (10) together with (4) imply the nonhomogeneous equation (3). So
we can replace the quadratic equation (3) by the linear equation (9), which simplifies
the computations.

3 Discrete and continuous moments

In this section, we discuss relations between the discrete moments

mn =
N∑

k=0

hkkn

of the filter coefficients and the continuous moments of the scaling function

Mn =
∫

xnφ(x) dx .

We first recall a well-known recursive relation between discrete and continuous
moments, see for example Strang and Nguyen [35, p. 396].

Let φ be a scaling function satisfying M0 = ∫
φ = 1. Then m0 = 2 and

Mn = 1

2n+1 − 2

n∑

i=1

(
n

i

)

mi Mn−i ,

mn =
(

2n+1 − 2
)

Mn −
n−1∑

i=1

(
n

i

)

mi Mn−i , for n > 0.

Using the recursion we obtain for the first moments

M1 = 1/2 m1

M2 = 1/6 m2
1 + 1/6 m2

M3 = 1/28 m3
1 + 1/7 m1m2 + 1/14 m3
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Parametrizing compactly supported orthonormal wavelets by discrete moments 589

and

m1 = 2 M1

m2 = −4 M2
1 + 6 M2

m3 = 12 M3
1 − 24 M1 M2 + 14 M3.

Explicit formulas expressing the discrete moments in terms of the continuous and vice
versa are given in [30].

For the parametrization of the filter coefficients we use the fact that the even
moments are determined by the odd moments up to the number of vanishing moments,
see [30]. In more detail, if the first two moments of the associated wavelet vanish, then

m2 = m2
1/2, (12)

and if the first four moments vanish, we additionally have

m4 = −1/2 m4
1 + 2 m2

1m2 + 2 m1m3 − 7/2 m2
2 = −3/8 m4

1 + 2 m1m3. (13)

4 Four filter coefficients

In the case of four filter coefficients, we have the following system equations (norma-
lization, first sum rule, parameter m = m1, and orthogonality):

h0 + h1 + h2 + h3 = 2

h0 − h1 + h2 − h3 = 0

h1 + 2 h2 + 3 h3 = m

h0h2 + h1h3 = 0.

We solve the three linear equations for h0, substitute the solution into the quadratic
equation, and obtain

−2 h0
2 + (5 − m)h0 − 1/4 m2 + 2 m − 15/4 = 0. (14)

We first consider the solution

h0 = 5/4 − 1/4 m − 1/4
√

−m2 + 6 m − 5.

Since
−m2 + 6 m − 5 = −(m − 1)(m − 5), (15)

we can choose m ∈ [1, 5] to get real filter coefficients. We set m = a + 3 to obtain
parameter values symmetrically around zero. This correspond to a Tschirnhaus trans-
formation for the polynomial (15) and simplifies the expression for the filter coeffi-
cients. Substituting the solution for h0 into the solution for the linear equations we
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590 G. Regensburger

get:
h0 = 1/2 − 1/4 a − 1/4w
h1 = 1/2 − 1/4 a + 1/4w
h2 = 1/2 + 1/4 a + 1/4w
h3 = 1/2 + 1/4 a − 1/4w

(16)

with w = √
4 − a2 and a = m − 3 ∈ [−2, 2].

Notice that for a = −a we obtain the flipped filter coefficients.

4.1 Special parameter values

For a = 0 we get the filter coefficients (0, 1, 1, 0), which correspond to a translated
Haar scaling function and wavelet. The parameter values a = −2, 2 give also Haar
scaling functions with the filter coefficients (1, 1, 0, 0) and (0, 0, 1, 1).

The Daubechies wavelet has two vanishing moments, so we have one more sum
rule

2 h0 − h1 + h3 = 0.

Substituting the parametrized filter coefficients into this equations and solving for
a, we get the two solutions a = −√

3,
√

3 with the first discrete moments m =
3 − √

3, 3 + √
3. The first solution gives the famous Daubechies filters [12]

1/4 (1 + √
3, 3 + √

3, 3 − √
3, 1 − √

3) (17)

and the second the flipped version.
For a = −8/5 we get the rational filters (3/5, 6/5, 2/5,−1/5). These rational filter

coefficients give the smoothest scaling function with respect to the Hölder continuity,
see Daubechies [13, p. 242].

4.2 Second root

If we choose the second root

h0 = 5/4 − 1/4 m + 1/4
√

−m2 + 6 m − 5

for the quadratic equation (14) and apply again the Tschirnhaus transformation m =
a + 3, we obtain the parametrized filter coefficients:
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Parametrizing compactly supported orthonormal wavelets by discrete moments 591

h0 = 1/2 − 1/4 a + 1/4w

h1 = 1/2 − 1/4 a − 1/4w

h2 = 1/2 + 1/4 a − 1/4w

h3 = 1/2 + 1/4 a + 1/4w

with w = √
4 − a2 and a = m − 3 ∈ [−2, 2].

Comparing this solution with the parametrized filter coefficients (16), we see thatw
is replaced by −w and so the two first and the two last filter coefficients are swapped.
Notice that again for a = −a we obtain the flipped filters.

For a = 0 we now get the filter coefficients (1, 0, 0, 1), which give the scaling
function (7) where the integer translates of the scaling function are not orthogonal.
The parameter values a = −2, 2 also give Haar scaling functions with the filter
coefficients (1, 1, 0, 0) and (0, 0, 1, 1). This parametrization does not contain filter
coefficients with a second vanishing moment. The corresponding scaling functions
are, compared to the parametrization (16), irregular.

5 Six filter coefficients

For six filter coefficients we have two vanishing moments, and we can use the relation
m2 = m2

1/2, see Eq. (12). This gives an additional linear constraint, and we have the
following linear equations with m = m1:

h0 + h1 + h2 + h3 + h5 + h4 = 2

−h0 + h1 − h2 + h3 − h4 + h5 = 0

−3 h0 + 2 h1 − h2 + h4 − 2 h5 = 0

h1 + 2 h2 + 3 h3 + 4 h4 + 5 h5 = m

h1 + 4 h2 + 9 h3 + 16 h4 + 25 h5 = m2/2

and the quadratic equations

h0h2 + h1h3 + h2h4 + h3h5 = 0

h0h4 + h1h5 = 0.

We solve the linear equations for h0, substitute the solution into the quadratic
equations and obtain:

− 8 h0
2 + (1/2 m2 − 7 m + 21)h0 − 1

64
m4 + 3

8
m3 − 13

4
m2 + 12 m − 253

16
= 0

2 h0
2+

(

−1/8 m2 + 7

4
m − 21

4

)

h0+ 1

256
m4 − 3

32
m3+ 13

16
m2 − 3 m + 253

64
= 0.

(18)
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592 G. Regensburger

Since the first equation is minus four times the second equation, we have, as in the
case of four filter coefficients, only one quadratic equation to solve. We first consider
the solution

h0 = 21

16
− 7

16
m + 1

32
m2 − 1

32

√
−m4 + 20 m3 − 136 m2 + 360 m − 260.

The Tschirnhaus transformation m = a + 5 for the polynomial

−m4 + 20 m3 − 136 m2 + 360 m − 260

yields

−a4 + 14 a2 + 15 = −
(

a2 − 15
) (

a2 + 1
)
.

So we get real filter coefficients for a ∈ [−√
15,

√
15] or the first discrete moment

m ∈ [5 − √
15, 5 + √

15]. Substituting the solution for h0 into the solution for the
linear equations, we get the following parametrized filter coefficients with at least two
vanishing moments:

h0 = −3/32 − 1/8 a + 1/32 a2 − 1/32w
h1 = 5/32 − 1/8 a + 1/32 a2 + 1/32w
h2 = 15/16 − 1/16 a2 + 1/16w
h3 = 15/16 − 1/16 a2 − 1/16w
h4 = 5/32 + 1/8 a + 1/32 a2 − 1/32w
h5 = −3/32 + 1/8 a + 1/32 a2 + 1/32w

(19)

with w = √−a4 + 14 a2 + 15 and a = m − 5 ∈ [−√
15,

√
15].

5.1 Special parameter values

The Daubechies wavelet has one more vanishing moment, that is, it satisfies the sum
rule

−9 h0 + 4 h1 − h2 − h4 + 4 h5 = 0.

Substituting the parametrized filter coefficients into this equations and solving for a,

we get one real solution a = −
√

5 + 2
√

10, which gives the filter coefficients

1/16 (1 + √
10 + w, 5 + √

10 + 3w, 10 − 2
√

10 + 2w,

10 − 2
√

10 − 2w, 5+√
10 − 3w, 1+√

10−w) (20)

with w =
√

5 + 2
√

10.
The Daubechies filters with four nonzero filter coefficients (17) satisfy two sum

rules and are therefore contained in this parametrization. Their first discrete moment
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Parametrizing compactly supported orthonormal wavelets by discrete moments 593

is m = 3 − √
3. So here the corresponding parameter is a = −2 − √

3. We get a
translated version for a = −√

3.
For a = −√

15 we obtain

1/8 (3 + √
15, 5 + √

15, 0, 0, 5 − √
15, 3 − √

15).

The parameter a = −1 gives the first coiflet

1/16 (1 − √
7, 5 + √

7, 14 + 2
√

7, 14 − 2
√

7, 1 − √
7,−3 + √

7),

see Daubechies [14] and [13, Chap. 8.2.]. For a = 0 we get

1/32 (−3 − √
15, 5 + √

15, 30 + 2
√

15, 30 − 2
√

15, 5 − √
15,−3 + √

15).

The corresponding scaling functions and wavelets for a > 0 become increasingly
irregular.

5.2 Second root

If we choose the second solution for the quadratic equation (18) and apply the
Tschirnhaus transformation m = a + 5, we obtain:

h0 = −3/32 − 1/8 a + 1/32 a2 + 1/32w
h1 = 5/32 − 1/8 a + 1/32 a2 − 1/32w
h2 = 15/16 − 1/16 a2 − 1/16w
h3 = 15/16 − 1/16 a2 + 1/16w
h4 = 5/32 + 1/8 a + 1/32 a2 + 1/32w
h5 = −3/32 + 1/8 a + 1/32 a2 − 1/32w

with w = √−a4 + 14 a2 + 15 and a = m − 5 ∈ [−√
15,

√
15].

Notice that substituting a = −a gives the flipped filter coefficients from the para-
metrization (19).

6 Eight filter coefficients

For eight filter coefficients we have three vanishing moments, and we can use as in
the previous section the relation m2 = 1/2 m2

1, see Eq. (12). We have the following
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six linear equations with m = m1:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
3 −2 1 0 −1 2 −3 4

−9 4 −1 0 −1 4 −9 16
7 6 5 4 3 2 1 0

49 36 25 16 9 4 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h7
h6
h5
h4
h3
h2
h1
h0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
0
0
0
m

1/2 m2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(21)

and the quadratic equations

h0h2 + h1h3 + h3h5 + h2h4 + h4h6 + h5h7 = 0

h0h4 + h1h5 + h3h7 + h2h6 = 0

h0h6 + h1h7 = 0.

We solve the linear equations for h0 and h1 and substitute the solutions into the qua-
dratic equations. Then we compute a Gröbner basis with respect to the lexicographic
order with h1 >lex h0 treating m as a parameter, that is, we compute a Gröbner basis
in Q(m)[h1, h0].

The Gröbner basis has two elements. The first element is a quadratic polynomial
in h0 and the second linear in h1 and h0. We consider the following solution for the
quadratic equation from the Gröbner basis

h0 = − 1

512

m5 − 42 m4 + 684 m3 − 5416 m2 + 20840 m − 31088 + w

m2 − 14 m + 50

with w =
√
−(m8−56 m7+1336 m6−17696 m5+141792 m4−699328 m3+2049600 m2−3186176 m+1891904)(m−8)2.

We set m = a + 7, which corresponds to a Tschirnhaus transformation for the first
factor of the polynomial under the square root in w, and obtain

h0 = − 1

512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a − 15 + w

a2 + 1

with
w =

√
−(a8 − 36 a6 + 182 a4 − 1540 a2 + 945)(a − 1)2. (22)

To get real filter coefficients, we can choose a in

[−√
β,−√

α] or [√α,√β], (23)
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Parametrizing compactly supported orthonormal wavelets by discrete moments 595

where α denotes the smaller and β the larger real root of

x4 − 36 x3 + 182 x2 − 1540 x + 945,

with numerical approximations

√
α = 0.8113601077 . . . and

√
β = 5.636256558 . . .

We substitute the solution for h0 into the linear equation from the Gröbner basis, solve
for h1 and obtain with w as in (22)

h1 = − 1

512

a6 − 10 a5 + 39 a4 − 28 a3 − 25 a2 + 86 a − 63 − (1 + a)w

a3 − a2 + a − 1
.

The denominator

a3 − a2 + a − 1 = (a − 1)(a2 + 1)

is zero for a = 1. We first assume a < 1. Then we can also simplify the root (22) and
obtain with the solution for the linear equations (21) the following parametrized filter
coefficients with at least three vanishing moments:

h0 = − 1

512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a − 15 + (1 − a)w

a2 + 1

h1 = − 1

512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a + 63 + (1 + a)w

a2 + 1

h2 = 1

512

3 a5 − 5 a4 − 102 a3 + 186 a2 − 261 a + 35 + 3(1 − a)w

a2 + 1

h3 = 1

512

3 a5 − 11 a4 − 70 a3 + 358 a2 − 229 a + 525 + 3(1 + a)w

a2 + 1

h4 = − 1

512

3 a5 + 11 a4 − 70 a3 − 358 a2 − 229 a − 525 + 3(1 − a)w

a2 + 1

h5 = − 1

512

3 a5 + 5 a4 − 102 a3 − 186 a2 − 261 a − 35 + 3(1 + a)w

a2 + 1

h6 = 1

512

a5 + 9 a4 + 30 a3 − 2 a2 − 23 a − 63 + (1 − a)w

a2 + 1

h7 = 1

512

a5 + 7 a4 − 2 a3 − 30 a2 − 55 a + 15 + (1 + a)w

a2 + 1

(24)

with

w =
√

−a8 + 36 a6 − 182 a4 + 1540 a2 − 945,

a = m − 7 < 1 and a in the intervals (23).
If we choose the second root for the quadratic equation from the Gröbner basis and

perform the same computations as before with the assumption a < 1, we obtain the
filter coefficients (24) with w replaced by −w.

123



596 G. Regensburger

6.1 Different order on the variables

We now compute a Gröbner basis with respect to the lexicographic order with h0 >lex
h1. The Gröbner basis has again two elements. The first element is a quadratic poly-
nomial in h1 and the second linear in h0 and h1.

We consider the following solution for the quadratic equation from the Gröbner
basis

h1 = − 1

512

m5 − 44 m4 + 772 m3 − 6704 m2 + 28712 m − 48384 − w

m2 − 14 m + 50

with w =
√
−(m8−56 m7+1336 m6−17696 m5+141792 m4−699328 m3+2049600 m2−3186176 m+1891904)(m−6)2.

We set again a = m + 7 and obtain

h1 = − 1

512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a + 63 − w

a2 + 1

with
w =

√
−(a8 − 36 a6 + 182 a4 − 1540 a2 + 945)(a + 1)2. (25)

We get real filter coefficients for a in the same intervals (23) as in the previous section.
We substitute the solution for h1 into the linear equation from the second Gröbner
basis, solve for h0 and obtain with w as in (25)

h0 = − 1

512

a6 − 6 a5 − 9 a4 + 28 a3 − 25 a2 − 70 a − 15 + (a − 1)w

a3 + a2 + a + 1
.

The denominator

a3 + a2 + a + 1 = (a + 1)(a2 + 1)

is zero for a = −1. We assume a > −1. Then we can also simplify the root (25) and
obtain with the solution for the linear equations (21) the filter coefficients from Eq. (24)
with w replaced by −w. From the previous section we know that this parametrization
is also valid for a < 1 and hence for a in the intervals (23). Notice that substituting
a = −a in this parametrization gives the flipped filter coefficients from Eq. (24).

If we choose the second root for the quadratic equation from the Gröbner basis and
perform the same computations as before with the assumption a > −1, we obtain
the filter coefficients (24). Therefore the parametrization (24) is also valid for a in the
intervals (23).
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6.2 Special parameter values

The Daubechies wavelet satisfies one more sum rule

64 h0 − 27 h1 + 8 h2 − h3 + h5 − 8 h6 + 27 h7 = 0.

Substituting the parametrized filter coefficients (24) into this equations and solving
for a, we get two real solution a = −√

β,−√
α, where α denotes the smaller and β

the larger real root of

x4 − 28 x3 + 126 x2 − 1260 x + 1225

or numerically

a = −4.989213573 . . . ,−1.029063869 . . .

The first parameter gives the Daubechies wavelet with extremal phase [13, p. 195] and
the second the “least asymmetric” [13, p. 198]. Notice that the symbolic expression
for the parameter a with the parametrization (24) give us a closed form representation
of the filter coefficients of the Daubechies wavelet. Compare this with the results
obtained by Chyzak et al. [9], where also Gröbner bases are used, and the different
approach by Shann and Yen [33].

The Daubechies wavelet with six nonzero filter coefficients (20) has the first dis-
crete moment m = 5 −

√
5 + 2

√
10, so the corresponding parameter value for the

parametrization (24) is a = −2 −
√

5 + 2
√

10.

7 Ten filter coefficients

For ten filter coefficients we require four vanishing moments. We can therefore use
the two relations m2 = 1/2 m2

1 and m4 = −3/8 m4
1 + 2 m1m3, see Eqs. (12) and (13).

This gives two additional linear constraints and we have the following linear equations
with the two parameters a = m1 and c = m3:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1

−4 3 −2 1 0 −1 2 −3 4 −5
16 −9 4 −1 0 −1 4 −9 16 −25

−64 27 −8 1 0 −1 8 −27 64 −125
9 8 7 6 5 4 3 2 1 0
81 64 49 36 25 16 9 4 1 0

729 512 343 216 125 64 27 8 1 0
6561 4096 2401 1296 625 256 81 16 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h9
h8
h7
h6
h5
h4
h3
h2
h1
h0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
0
0
0
0
a

1/2 a2

c
− 3

8 a4 + 2 ac

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26)
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Table 1 Number of real
solutions for f from (27)

Parameter a # Real solutions for c

(1.6417, 7.6167] Two

(7.6167, 9) Four

9 Two, singular point

(9, 10.3832] Four

(10.3832, 16.3583) Two

and the quadratic equations

h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 + h6h8 + h7h9 = 0

h0h4 + h1h5 + h2h6 + h3h7 + h4h8 + h5h9 = 0

h0h6 + h1h7 + h2h8 + h3h9 = 0

h0h8 + h1h9 = 0.

We solve the linear equations for h0 and substitute the solutions into the quadratic
equations. We compute a Gröbner basis with respect to the lexicographic order with
h0 >lex c treating a as a parameter, that is, a Gröbner basis in Q(a)[h0, c]. The Gröbner
basis consists of two elements. The first is the polynomial

f = 81 a12−2916 a11+40716 a10−864 a9c−155520 a9+31104 a8c − 2354328 a8

− 496512 a7c + 2880 a6c2 + 31658688 a7 + 3768768 a6c − 93312 a5c2

− 102669504 a6 − 4056192 a5c + 1540224 a4c2 − 3072 a3c3 − 590398848 a5

− 176214528a4c−15303168a3c2+55296a2c3+6210049216a4+1512364544a3c

+ 97677312 a2c2−489472 ac3+1024 c4 − 22429995264 a3 − 5357366784 a2c

− 358511616 ac2 + 1419264 c3 + 41210318592 a2 + 8252955648 ac

+ 548785152 c2−39607335936 a−4229148672 c+16394918400 (27)

in the two parameters a, c and has dega( f ) = 12 and degc( f ) = 4. All possible
parameters must lie on the real algebraic curve defined by the polynomial f . This curve
has genus eleven and two finite singular points with multiplicity two and coordinates

a = 9, c = 729/4 ± 3/8
√

210. (28)

We compute the discriminant f with respect to c. Approximating its zeros, we see
that we have real solutions for c if the first discrete moment

a ∈ [1.641693500 . . . , 16.35830649 . . .].

The number of real solutions for c is given in Table 1.
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The second element in the Gröbner basis is linear in h0. We solve this polynomial for
h0 and obtain with the solution for the linear equations (26) the following parametrized
filter coefficients with at least four vanishing moments:

h0= 1
36864

9 a6−180 a5+948 a4−48 a3c+9840 a3+960 a2c−116824 a2−9568 ac+32 c2+384480 a+31680 c−482976
a−9

h1=− 1
36864

9 a6−144 a5+624 a4−48 a3c+1536 a3+768 a2c+12824 a2−5728 ac+32 c2−237312 a+12672 c+665280
a−9

h2=− 1
9216

9 a6−180 a5+948 a4−48 a3c+8976 a3+960 a2c−99064 a2−9472 ac+32 c2+257760 a+30816 c−151200
a−9

h3= 1
9216

9 a6−144 a5+624 a4−48 a3c+2544 a3+768 a2c−9976 a2−5824 ac+32 c2−53280 a+13536 c+120960
a−9

h4= 1
6144

9 a6−180 a5+948 a4−48 a3c+8304 a3+960 a2c−88408 a2−9376 ac+32 c2+216288 a+29952 c−151200
a−9

h5=− 1
6144

9 a6−144 a5+624 a4−48 a3c+3360 a3+768 a2c−24904 a2−5920 ac+32 c2+27072 a+14400 c+12096
a−9

h6=− 1
9216

9 a6−180 a5+948 a4−48 a3c+7824 a3+960 a2c−82552 a2−9280 ac+32 c2+202464 a+29088 c−151200
a−9

h7= 1
9216

9 a6−144 a5+624 a4−48 a3c+3984 a3+768 a2c−34264 a2−6016 ac+32 c2+65952 a+15264 c−34560
a−9

h8= 1
36864

9 a6−180 a5+948 a4−48 a3c+7536 a3+960 a2c−79192 a2−9184 ac+32 c2+195552 a+28224 c−151200
a−9

h9=− 1
36864

9 a6−144 a5+624 a4−48 a3c+4416 a3+768 a2c−40360 a2−6112 ac+32 c2+88704 a+16128 c−60480
a−9

(29)

with a �= 9, c ∈ R such that f (a, c) = 0 with f from (27).

7.1 Special parameter values

For the Daubechies wavelet we have an additional sum rule which we add to the linear
equations (26). We solve the linear equations, substitute the solution into the quadratic
equations and obtain four polynomials in the two parameters a and c. We compute a
Gröbner basis with respect to the lexicographic order with c >lex a. It consists of two
polynomials. The first is a univariate polynomial of degree 16 in a. Solving for a, we
obtain four real solutions a = 9 ± √

α, 9 ± √
β, where α denotes the smaller and β

the larger positive real root of

x8 − 72x7 + 1692x6−20472x5 − 3258 x4 + 1386504 x3 − 8218980 x2 − 1640520 x + 16769025

or numerically

a = 2.387816036 . . . , 7.767314070 . . . , 10.23268592 . . . , 15.61218396 . . .

The second polynomial in the Gröbner basis has degree 15 in a but depends only
linearly on c. So we can express the corresponding values for the parameter c in terms
of the first discrete moment a and obtain the numerical approximations

c = 1.701845088 . . . , 109.6494477 . . . , 275.3639993 . . . , 953.0313413 . . .

The first choice for a and the corresponding c gives the Daubechies wavelet with
extremal phase [13, p. 195] and the second the “least asymmetric” [13, p. 198]. The
two other choices give the flipped versions. We have again a closed form of the filter
coefficients of the Daubechies wavelet with the symbolic expression for the parameters
a and c and the parametrization (29), compare with [9] and [33].
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To compute the filter coefficients for a = 9, we solve the linear equations (26)
with the parameter values (28) for h0 and substitute the solution into the quadratic
equations. Then we solve the four univariate polynomials and obtain two solutions
for h0 which give two different filter coefficients. The second choice for c from (28)
gives the flipped filter coefficients.
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