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3.1
Introduction

Constraint-based methods (CBMs) are extensively used to study cellular
metabolism. These methods mainly rely on the stoichiometry of the biochemical
reactions that form a metabolic network — data that can be fairly reliably
obtained from annotated genome sequences and metabolic pathway databases.
On the basis of this information, genome-scale metabolic networks can be
reconstructed [1]. Mathematically, the topology of this network is captured by
the (total) stoichiometric matrix that systematically collects the (signed) stoichio-
metric coefficients of all metabolites in the participating reactions. It is common
practice to partition the set of metabolites into external and internal metabolites
by defining a systems boundary. This systems boundary may correspond to a
physical boundary, like the cell envelope, or to a virtual boundary. Reactions
that connect external metabolites with internal ones are known as exchange
reactions and account for the communication of a network with its environment.
Of particular interest is the internal stoichiometric matrix § € R”> that consists
of the (signed) stoichiometric coefficients of the m internal metabolites in the r
participating reactions (including exchange reactions).

At steady state, owing to mass conservation and thermodynamic feasibility, the
metabolic flux vector v € R” fulfills the equations/inequalities

Sv=0, (3.1a)
v; >0 forie€l,,,. (3.1b)

The latter inequalities guarantee that all reactions i in the set of irreversible
reactions I, carry a (steady-state) flux v; in the thermodynamically feasible
forward direction. Typically, as » > m, the equations and inequalities (3.1a) and
(3.1b) define a set of solutions, rather than a single solution. Characterizing the
set of feasible solutions and finding biologically relevant solutions is at the heart
of all CBMs.

Elementary flux mode analysis (EFMA) has emerged as a powerful tool in the
family of CBMs [2, 3]. The particular power of an EFMA is based on the ability to
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3 Toward Genome-Scale Metabolic Pathway Analysis

unbiasedly decompose a metabolic network into irreducible functional building
blocks, called elementary flux modes (EFMs). Three conditions uniquely define
the set of EFMs in a metabolic network. An EFM e € R” (i) operates at steady state,
Se = 0, (ii) uses all irreversible reactions in the appropriate direction, ¢; > O fori €
L., and (iii) involves a minimal set of active reactions [4]. The first two features
are obvious requirements from the equations and inequalities (3.1a) and (3.1b) and
apply to all feasible flux distributions, while the characteristic property of an EFM
is its support minimality. Recall that the support of a vector is the set of nonzero
components. Support minimality of an EFM means that there is no feasible flux
distribution having a smaller support, that is, less active reactions. Similar to basis
vectors of linear subspaces, EFMs can be seen as generating vectors of a metabolic
network as every feasible flux distribution can be represented as a non-negative
linear combination V)

n
v= 2 Ae; with 4, € Rand 4, >0, (3.2)
i=1

where # denotes the number of EFMs in the network. This property allows for
numerous applications in basic science and biotechnology. In fact, EFMA has been
identified as a useful tool for metabolic engineering [6].

Suppose we are interested in turning a host organism into a growth-coupled cell
factory for the production of some (bio)chemical commodity. Is this even possible
for a given host and product of interest? The answer is provided by EFMA [7]:
growth-coupled (and even partially growth-coupled) production is feasible if and
only if there exists at least one growth-coupled EFM. ? For an illustration see
Figure 3.1, where we plotted the product yield as function of the biomass yield
for each EFM in a growth and nongrowth coupled (toy) network. Escherichia coli
for instance, is in principle capable of producing all central carbon metabolites in
a growth-coupled manner even if additional maintenance requirements are taken
into account [7]. Thus EFMA provides extremely powerful means of analysis.

Yet, the enumeration of EFMs is computationally hard, which significantly
limits the applicability of EFMA. In fact, a complete EFMA is currently limited
to medium-scale (metabolic) models. The computational challenge for larger
networks is associated with two main problems: (i) the number of EFMs explodes
with the size of the metabolic network [9]. This makes a full EFMA of large
systems virtually impossible, as even a core metabolic model of E. coli may
already have several hundred million EFMs [10]. (ii) Even if a full EFMA in
large networks was possible, then gazillions of EFMs would need to be stored,
processed and further analyzed to gain biological knowledge, which would by
far exceed current computational capabilities. For instance, on the basis of a
massively parallelized approach, the largest, full EFMA reported to date found

1) Strictly speaking, a biochemically meaningful (thermodynamically feasible) decomposition is a
non-negative linear combination of EFMs without cancellations [5].

2) For simplicity, we only discuss the so-called homogeneous case, which is applicable to all systems of
the form (3.1). If additionally inhomogeneous constraints, such as minimal maintenance require-
ments or maximal flux capacities, are considered, the mathematical analysis based on the concept
of “elementary flux vectors” yields similar, but more complex decompositions [5, 7, 8].
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Figure 3.1 Growth- and non-growth-coupled toy metabolic networks (panels a and b, respectively) along with their associated
phenotypic yield spaces (panels ¢ and d, respectively). Both networks consist of nine irreversible reactions (diamonds, R1-R9),
four internal metabolites (full rectangles), four external metabolites (checkered rectangles: BM, biomass; P, product of interest;
Q by-product; S, substrate; note that the metabolite Q is the product of two reactions—R5 and R9) and five EFMs. In the phe-
notypic yield space EFMs are represented by full circles. Note that the point (1/0) in the phenotypic yield space of network B
represents two EFMs with identical yields. The feasible yield space is bounded by the two axes and the dashed line. Growth-

coupled production of P is achievable only in network A, but not in network B.
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2 billion EFMs in a metabolic model of Phaeodactylum tricornutum with 318
reactions [11]. These data take up 1.2 TB of storage. Just reading all EFMs one
by one takes up to an hour on our standard high-performance workstations.
These numbers indicate that it is essential to find ways that identify and select
“relevant” EFMs.

In the following, we briefly review currently available methods and then move
on to present a novel method for the calculation of “short” EFMs.

One way to overcome the computational problems associated with an EFMA
of large-scale networks is to compute only small subsets of EFMs. Subsets may
be selected randomly [12, 13] or based on support information [14] or subject
to additional constraints [15, 16]. Characterizing a subset of EFMs is also suffi-
cient to address the feasibility problem of growth-coupled production outlined
above (see Figure 3.1) as one has to find only one growth-coupled EFM. This is
conveniently achieved by two methods developed by David and Bockmayr [17]
and Pey and Planes [18], respectively. The latter method has the advantages that
additional minimal yield requirements can be considered as well and that the
method even remains feasible in genome-scale models. However, even if the anal-
ysis is restricted to a particular subset of EFMs (e.g., the subset of growth-coupled
EFMs), their computation remains challenging. In fact, it has been shown that
a single EFM can be computed in polynomial time, yet computing the complete
subset is NP-complete [19].

One very fast EFM enumeration method uses the binary nullspace implemen-
tation [20, 21] of the double description (DD) method [22]. This method has
proven particularly useful for the complete enumeration of EFMs in metabolic
networks [22].

In the following, we will detail the DD method and then outline a new algo-
rithm for the calculation of “short” EFMs that will make the DD method fit for the
analysis of genome-scale metabolic models.

3.2
DD Method

We consider a metabolic network at steady state given by the equations and
inequalities (3.1a) and (3.1b). After splitting every reversible reaction into two
irreversible reactions (with opposite directions), we can assume that all reactions
are irreversible. The equations and inequalities (3.1a) and (3.1b) define the
so-called flux cone

F={veR |Sv=0andv>0}. (3.3)

All thermodynamically feasible steady-state solutions, in particular all EFMs, are
elements of this cone. Since we assume that all reactions are irreversible, the flux
cone F is pointed and the EFMs coincide with its extreme rays (the “edges” of the
flux cone) [23]. The DD method is widely used to enumerate these extreme rays.
The DD method relies on the fact that, due to the Minkowski—Weyl theorem, a
polyhedral cone C can be described implicitly by inequalities (by the intersection
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of half spaces),

C=CA)={veR |Av>0}, (3.4)
or explicitly by generators,

C=cone(R)={reR"|v=R4 1> 0}, (3.5)

for some matrices A and R. A pair (A, R) of corresponding matrices is called a
DD pair. If the cone C is pointed and the columns of R are its extreme rays, then
(A, R) is called a minimal DD pair.

The DD method iteratively processes the inequalities given by the rows of A.
Let A, be the submatrix of A that contains the first k rows of A and suppose that
(Ag, Ry) is the corresponding minimal DD pair. The DD method considers the next
row of A and constructs a new minimal DD pair (A, ;, R, ).

In the following, we describe one iteration step of the DD method in more detail.
(For simplicity, we omit the iteration index.) Given the minimal DD pair (A, R)
and an additional inequality represented by a vector @ € R” (i.e., the next unpro-

cessed row of the full matrix), we consider the matrix A’ = <:t> defining the cone

C(A") = C(A) n C(a’). We determine the corresponding matrix R’ as follows: The
additional inequality divides the set of column indices J of R into three sets

Jt={j€Jla'r;>0}, (3.6a)
J*={je]|a'r,=0}, (3.6b)
J-=1{j€Jla'r;<0}. (3.6¢)

The first two sets contain the columns of R that lie in the intersection
C(A)Nn C(a'), and the third set contains the columns of R that lie outside.
We keep the extreme rays that fulfill the additional inequality and form positive
linear combinations of (so-called adjacent) rays such that the new rays lie on the
cutting hyperplane {v € R” | a’v = 0}. Hence, we obtain a matrix R’ € R™/,
where

J =T U, (3.7a)
JY = {((*, ;) e xJ | ¥, F adjacent}, (3.7b)
r; =r;forje JtuJo, (3.7¢)
rzjﬂj‘) = (a‘rﬁ )T = (a’frj,)rj+ for (j*,j7) € J*9, (3.7d)

that is, for adjacent rays #* ,# . Then, (A’,R’) is a minimal DD pair that satisfies
also the additional inequality.

A cone C(A) as in (3.4) is defined by inequalities Av > 0. A representation of
the flux cone F as in (3.3) by inequalities is given by F = C(A) with

A=|-s]|, (3.8)

where I, € R™ denotes the identity matrix.
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Of course, first we need to find an initial minimal DD pair. Following the null
space approach [23, 24], we compute a basis of the kernel of the stoichiometric
matrix S. More specifically, we compute a column-reduced echelon form of the
basis and (after a permutation of rows) obtain

R, = <II§> , (3.9)

where p is the dimension of the kernel of S. By construction, the columns of R,
satisfy the inequalities coming from the stoichiometric matrix S and the first p
non-negativity constraints. The remaining r — p non-negativity constraints are
processed consecutively. Explicitly, we consider

s
A= =S |, k=o0,....r—p (3.10)

Clearly, the first p + k rows of the corresponding matrices R, are non-negative.
This fact is the basis for the binary null space approach [23, 24] for which efficient
implementations are available [20, 21]. Still, the DD suffers from the combinatorial
explosion of intermediate extreme rays resulting from the combination of adja-
centrays ¥/* ,#" . Thus, a full EFMA is only applicable to medium-scale metabolic
networks.

We conclude with the following key observation: at each iteration step
k=1,---,r —p, we either keep an extreme ray or compute a positive linear
combination of two adjacent rays. In any case, the number of positive entries
within the first p + k components of the resulting rays either remains the same or
increases. In particular, the parents of an extreme ray, that is, the intermediate
rays that are combined, never have a larger support than their offspring. (Recall
that the support of a vector is the set of nonzero components.) This observation
can be exploited computationally, as explained below.

3.3
Calculating Short EFMs in Genome-Scale Metabolic Networks

Suppose we are interested in calculating all EFMs with a maximal cardinality c,,,
of their support. In this case, we can omit an intermediate extreme ray from the
analysis as soon as the number of positive entries in the first p + k components
exceeds the maximal cardinality. By omitting intermediate extreme rays, the
combinatorial explosion of extreme rays is curbed and the method becomes
applicable to larger networks, without compromising the efficiency and speed of
the method.

We implemented the maximum cardinality feature as an extension to the open
source program Efmtool [25]. The software is freely available at the author’s web-
page [26]. The principal workflow of the algorithm is illustrated in Figure 3.2. This
extended version was used throughout the remainder of the study and compared
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Figure 3.2 Computing the shortest EFMs with the DD method. The box with blue back-
ground color highlights the main extension of the maximum cardinality feature over com-
mon implementations of the DD method.
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to a standard approach of calculating the k-shortest EFMs using a mixed-integer
linear program (MILP) [16].

The MILP-based approach was realized by a hybrid code. Performance
uncritical parts of the program (e.g., setting up the linear program, input/output
handling) were implemented in Perl. C-libraries of the IBM ILOG CPLEX
Optimization Studio were used for the computationally expensive task of solving
the linear program. CPLEX is a commercial optimization software package for
which free academic licenses are available.

We calculated all EFMs up to a cardinality of ¢, in six metabolic models of
various sizes ranging from small-scale to genome-scale. The key properties of
these models are listed in Table 3.1. All networks were compressed [23] before
the EFMA. We used a computer with two Intel Xeon CPUs (each with six cores,
2.67 GHz) running Ubuntu 14.04. Both programs were allowed to use up to eight
parallel threads during the execution.

Figure 3.3 illustrates the runtimes (primary y-axis) for both methods, and the
number of enumerated EFMs (secondary y-axis) as function of the EFMs’ length
for the metabolic networks listed in Table 3.1. Note that both y-axes were scaled
logarithmically and that the depicted runtimes did not include pre- or postpro-
cessing steps such as network compression and decompression, which took up to
an hour in genome-scale metabolic networks.

Naturally, we found that both, runtimes and the number of EFMs increased with
increasing cardinality. Moreover, execution times for both approaches strongly
corresponded with the number of EFMs. However, for a fixed number of com-
puted EFMs the execution time varied widely across the models. For instance,
in the liver cancer model it took almost 15h to compute all 307 444 EFMs up to
a cardinality of 7, while it took less than 2 h to compute all 990797 EFMs up to a
cardinality of 100 in the P. tricornutum model. This indicates not only that the rela-
tion between runtime, EFM cardinality, and number of EFM is nontrivial but also
that the number of EFMs had a larger effect on the runtime than the cardinalities
of the EFMs.

Table 3.1 Main topological properties of the six metabolic models used in this study.

Model Internal External Total Irreversible EFMs
metabolites metabolites reactions reactions

E. coli core 1 69 17 82 35 5011

E. coli core 11 53 15 71 20 429276
E. coli core 111 72 21 95 59 226269 020
P. tricornutum 327 11 318 103 1934729551
Blattibacteriacae cuenoti Bge 306 43 350 45 Unknown
Liver cancer 1754 195 2423 454 Unknown

Note however, that the number of metabolites and the number of reactions has no known
functional correlation to the number of EFMs. In fact, previous attempts to find such a correlation
failed [27] and the question remains open.
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Figure 3.3 Comparison of execution times.
Runtime comparison between maximum car-
dinality EFMA and the MILP based approach
in various models (see Table 3.1). (a) E. coli

core | [28], (b) E. coli core ll, (c) E. coli core
W, (d) P. tricornutum [11], (e) Blattibacteriacae
cuenoti Bge [29], and (f) liver cancer [30].

Figure 3.3 shows that for low cardinalities and, therefore, for very low run-
times, maximum cardinality EFMA and the MILP approach exhibit a similar
performance. However, Figure 3.3 also clearly demonstrates that for larger car-
dinalities, maximum cardinality EFMA is much faster than the MILP approach.
Importantly, the performance gain grows with increasing EFM cardinalities.

Number of EFMs

Number of EFMs

Number of EFMs
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Moreover, in the models (b) to (f) the runtime time requirements for the MILP
approach became quickly prohibitively large, while maximum cardinality EFMA
successfully continued to output EFMs.

3.4
Conclusions

Here we introduced a maximum cardinality EFMA that efficiently enumerates
short EFMs in (large) metabolic networks. Maximum cardinality EFMA is based
on the DD method and exploits the fact that new (intermediate) EFMs are always
constructed by combining two appropriately selected shorter EFMs. Thus the car-
dinality of any new (intermediate) EFM is always larger than the cardinality of both
of its parent EFMs. An EFM exceeding the user-specified cardinality threshold can
therefore safely be removed from further analysis.

Maximum cardinality EFM A was implemented as a minimal invasive extension
to Efmtool and fully utilizes the computational advantages of the binary null space
implementation of the DD method. Both factors, the maximum cardinality EFMA
strategy and the binary implementation, result in a major speedup that outper-
forms other, MILP-based approaches by orders of magnitude.

Maximum cardinality EFMA requires a specific, user-defined maximum cardi-
nality threshold, ¢, as input. However, the number of EFMs that will be calcu-
lated for the specified threshold is not known a priori. In contrast to MILP-based
approaches, maximum cardinality EFMA is therefore not able to terminate after it
has found a predefined number of EFMs. In practice, this drawback had little effect
on the usability of our program. Beginning with low values of ¢, we repeat-
edly executed maximum cardinality EFMA while increasing c,,, until the desired
number of EFMs were calculated. Even if we cumulated all execution times, still
maximum cardinality EFMA outperformed the MILP approach in calculating the
10000 shortest EFMs in all tested models. Conversely, for a given runtime, many
more EFMs can be computed by maximum cardinality EFMA than the MILP
approach, which in turn results in larger networks that can be analyzed and stud-
ied more thoroughly with maximum cardinality EFMA.

In principle, maximum cardinality EFMA is able to fully enumerate all EFMs of
a network, as for ¢, — r the ordinary DD method is retrieved. The DD method
suffers from a combinatorial explosion in the number of (intermediate) EFMs.
The same problem applies to maximum cardinality EFMA. Thus c,,,, has to be
sufficiently small in order to remain computationally feasible. Nevertheless, our
analysis revealed that in all investigated models maximum cardinality EFMA was
able to calculate the 70 000 shortest EFMs within about 1 h on standard worksta-
tion computers. Comparable runtimes are not achievable with currently available
alternative methods.

Note that the maximum cardinality feature of the DD method as observed
above is a very general feature that can be exploited for the integration of -omics
data. Suppose an (intermediate) EFM contains two active reactions that together
are infeasible. For instance, in E. coli the glyoxylate shunt is downregulated under
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high-glucose conditions [31]. In this case, the glucose uptake and the glyoxylate
shunt are not simultaneously active. Any EFM that contains both reactions
is therefore infeasible. On the basis of our observation, these EFMs can be
discarded without impact on the further analysis. In fact, recent methodological
developments exploited this fact and identified thermodynamically feasible [32,
33] or transcriptionally regulated [34, 35] EFMs. However, the underlying princi-
ple has never been clearly formulated. Thus by extensively including -omics data
based on the principle introduced here, an EFMA of a genome-scale metabolic
model seems feasible.
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