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1 Introduction

Wavelets and their generalizations are used in many areas of mathematics ranging
from harmonic analysis over numerical analysis to signal and image processing, see
for example Daubechies [11], Mallat [29], and Strang and Nguyen [42]. A function
ψ ∈ L2(R) is anorthonormal waveletif the family

ψjk(x) = 2j/2ψ(2jx − k) for j, k ∈ Z

of translated an dilated versions ofψ is an orthonormal basis of the Hilbert space
L2(R). Alfred Haar gave in his dissertation from 1909, published in [17], the first
example of an orthonormal wavelet

ψ(x) =











1, for 0 ≤ x < 1
2 ,

−1, for 1
2 ≤ x < 1,

0, otherwise,

which is now known as theHaar wavelet. Daubechies introduced in her seminal paper
[10] a general method to construct compactly supported wavelets. Herconstruction is
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based onscaling functions, satisfying adilation equation

φ(x) =

N
∑

k=0

hkφ(2x − k) (1.1)

given by a linear combination of realfilter coefficientshk and dilated and translated
versions of the scaling function; see the next section for an outline.

Imposing conditions on the scaling function gives, via the dilation equation (1.1),
constraints on the filter coefficients. Orthonormality implies quadratic equations and
vanishing moments of the associated wavelet and normalization linear constraints.
Daubechies wavelets [10] have the maximal number of vanishing moments for a fixed
number of filter coefficients, and so there are only finitely many solutions.Parametriz-
ing all possible filter coefficients that correspond to compactly supportedorthonormal
wavelets has been studied by several authors [21, 28, 33, 38, 41, 46, 47, 49]. All
parametrizations express the filter coefficients in terms of trigonometric functions, and
there is no natural interpretation of the angular parameters for the resulting scaling
function. Furthermore, one has to solve transcendental constraints for the parameters
to find wavelets with more than one vanishing moment.

We gave parametrizations of filter coefficients such that the corresponding wavelets
have several vanishing moments and that use the first discrete momentsas parameters
first in [36] and then simplified in [35]. See section 3 for the parametrizations of
four to eight filter coefficients with one parameter and at least one, two, and three
vanishing moments, respectively. To compute these parametrizations weused symbolic
computation and for the more involved equations in particular Gröbner bases, which
were introduced by Buchberger in [3], see also [4]. Other applicationsof Gröbner
bases to the design of wavelets and filter coefficients are for example discussed in
[6, 7, 16, 25, 26, 31, 32, 39].

As a first application of parametrized wavelets, we discussed in [36] howthey can
by used for compression by computing an optimal parameter for a given signal, see
also [18]. In this paper, we describe several other applications. In section 4, we discuss
the regularity of the scaling functions and wavelets corresponding to our parametriza-
tions. We construct wavelets that have a higher Hölder exponent than the Daubechies
wavelets. Filter design is another possible application of our parametrizations. We deal
with the construction of least asymmetric orthonormal wavelets in section 5.Finally,
we address the existence of rational filter orthogonal filter coefficients insection 6. For
example, we show that there are no orthogonal filters with six nonzero filter coeffi-
cients and at least two sum rules. A Maple worksheet with all computations,several
MATLAB functions to produce the figures and a GUI to compute with and illustrate
parametrized wavelets are available on request from the author.

2 Wavelets and moments

We outline the construction of orthonormal wavelets based on scaling functions and
recall the polynomial equations for the filter coefficients, see for example Daubechies
[11] or Strang and Nguyen [42].
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Orthonormality of the integer translates{φ(x − l)}l∈Z in L2(R), that is,
∫

φ(x)φ(x − l)dx = δ0,l

implies, using the dilation equation (1.1), the quadratic equations
∑

k∈Z

hkhk−2l = 2δ0,l for l ∈ Z (2.1)

where we sethk = 0 for k < 0 andk > N . We can assume thath0hN 6= 0. Then with
equation (2.1) we see thatN must be odd and the number of filter coefficients even.

If the filter coefficients satisfy the necessary conditions for orthogonality(2.1) and
the normalization

N
∑

k=0

hk = 2, (2.2)

there exists a unique solution of the dilation equation (1.1) inL2(R) with support[0, N ]
and for which

∫

φ = 1, see Lawton [23]. For almost all such scaling functions the
integer translates{φ(x − l)}l∈Z are orthogonal, and then

ψ(x) =

N
∑

k=0

(−1)khN−kφ(2x − k) (2.3)

is an orthonormal wavelet.
Necessary and sufficient conditions for orthonormality were given byCohen [8] and

Lawton [24], see also Daubechies [11, section 6.3]. The only examplewith four filter
coefficients that satisfies the equations (2.1) and (2.2) and where the integer translates
of the corresponding scaling are not orthogonal ish0 = h3 = 1 andh1 = h2 = 0 with
the scaling function

φ(x) =

{

1/3, for 0 ≤ x < 3,

0, otherwise.
(2.4)

The corresponding scaling function for the Haar wavelet is the box function

φ(x) =

{

1, for 0 ≤ x < 1,

0, otherwise,

with the filter coefficientsh0 = h1 = 1. In general, there is no closed analytic form
for the scaling function, and for computations with scaling functions and wavelets only
the filter coefficients are used.

Vanishing moments of the associated wavelet are related to several properties of the
scaling function and wavelet. For example, to regularity, the polynomial reproduction
and the approximation order of the scaling function, and the decay of the wavelet coef-
ficients for smooth functions, see Strang and Nguyen [42] and the survey [43] by Unser
and Blu for details. The condition that the firstp moments of the waveletψ vanish

∫

xlψ(x) dx = 0 for l = 0, . . . , p − 1
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is using equation (2.3) equivalent to thesum rules

N
∑

k=0

(−1)kklhk = 0 for l = 0, . . . , p − 1. (2.5)

One then says thatψ hasp vanishing momentsor the filter coefficients satisfyp sum
rules.

Since we usediscrete moments

mn =

N
∑

k=0

hkkn

of the filter coefficients as a parameters, we recall a well-known recursive relation
between discrete andcontinuous moments

Mn =

∫

xnφ(x) dx

of the scaling function. Letφ be a scaling function satisfyingM0 =
∫

φ = 1. Then
m0 = 2 and

Mn =
1

2n+1 − 2

n
∑

i=1

(

n

i

)

miMn−i,

mn =
(

2n+1 − 2
)

Mn −
n−1
∑

i=1

(

n

i

)

miMn−i for n > 0,

see for example Strang and Nguyen [42, p. 396]. Using the recursionwe obtain for the
first moments

M1 = 1/2m1,

M2 = 1/6m2
1 + 1/6m2,

M3 = 1/28m3
1 + 1/7m1m2 + 1/14m3

and
m1 = 2M1,

m2 = −4M2
1 + 6M2,

m3 = 12M3
1 − 24M1M2 + 14M3.

Explicit formulas expressing the discrete moments in terms of the continuous and vice
versa are given in [36].

3 Parametrizations

We discuss the parametrizations from [35] of four, six, and eight filter coefficients
corresponding respectively to orthonormal wavelets with at least one,two, and three
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vanishing moments. All families depend on the first discrete moment

m = m1 =

N
∑

k=0

hkk

of the filter coefficients.

3.1 Four filter coefficients

We have the following parametrization of filter coefficients with at least one vanishing
moments:

h0 = 1/2 − 1/4 a − 1/4w,

h1 = 1/2 − 1/4 a + 1/4w,

h2 = 1/2 + 1/4 a + 1/4w,

h3 = 1/2 + 1/4 a − 1/4w

(3.1)

with w =
√

4 − a2 anda = m − 3 ∈ [−2, 2].
Note that fora = −a we obtain the flipped filter coefficients. Fora = 0 we get

the filter coefficients(0, 1, 1, 0), which correspond to a translated Haar scaling function
and wavelet. The parameter valuesa = −2, 2 give also Haar scaling functions with the
filter coefficients(1, 1, 0, 0) and(0, 0, 1, 1). TheDaubechies wavelethas two vanishing
moments, so we have one more sum rule

2h0 − h1 + h3 = 0.

Substituting the parametrized filter coefficients into this equations and solving fora, we
get the two solutionsa = −

√
3,
√

3 with the first discrete momentsm = 3−
√

3, 3+
√

3.
The first solution gives the famous Daubechies filters [10]

1/4 (1 +
√

3, 3 +
√

3, 3 −
√

3, 1 −
√

3) (3.2)

and the second the flipped version. See Figure 3.1 for plots of scaling functions for
various parameter values.

We have a second parametrization of filter coefficients with at least one vanishing
moment:

h0 = 1/2 − 1/4 a + 1/4w,

h1 = 1/2 − 1/4 a − 1/4w,

h2 = 1/2 + 1/4 a − 1/4w,

h3 = 1/2 + 1/4 a + 1/4w

(3.3)

with w =
√

4 − a2 anda = m − 3 ∈ [−2, 2].
Comparing this solution with the parametrized filter coefficients (3.1), we see thatw

is replaced by−w and so the two first and the two last filter coefficients are swapped.
Note that again fora = −a we obtain the flipped filters.
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For a = 0 we now get the filter coefficients(1, 0, 0, 1), which give the scaling func-
tion (2.4) where the integer translates of the scaling function are not orthogonal. The
parameter valuesa = −2, 2 also give Haar scaling functions with the filter coefficients
(1, 1, 0, 0) and(0, 0, 1, 1). This parametrization does not contain filter coefficients with
a second vanishing moment. The corresponding scaling functions are,compared to the
parametrization (3.1), irregular, see section 4 for details.

3.2 Six filter coefficients

We have the following parametrization of filter coefficients with with at least twovan-
ishing moments:

h0 = −3/32 − 1/8 a + 1/32 a2 − 1/32w,

h1 = 5/32 − 1/8 a + 1/32 a2 + 1/32w,

h2 = 15/16 − 1/16 a2 + 1/16w

h3 = 15/16 − 1/16 a2 − 1/16w,

h4 = 5/32 + 1/8 a + 1/32 a2 − 1/32w,

h5 = −3/32 + 1/8 a + 1/32 a2 + 1/32w

(3.4)

with w =
√
−a4 + 14 a2 + 15 anda = m − 5 ∈ [−

√
15,

√
15].

The Daubechies wavelet has one more vanishing moment, that is, it satisfies the sum
rule

−9h0 + 4h1 − h2 − h4 + 4h5 = 0.

Substituting the parametrized filter coefficients into this equations and solving for a,
we get one real solutiona = −

√

5 + 2
√

10, which gives the filter coefficients

1/16 (1 +
√

10 + w, 5 +
√

10 + 3w, 10 − 2
√

10 + 2w,

10 − 2
√

10 − 2w, 5 +
√

10 − 3w, 1 +
√

10 − w)
(3.5)

with w =
√

5 + 2
√

10. The Daubechies filters with four nonzero filter coefficients
(3.2) satisfy two sum rules and are therefore contained in this parametrization. Their
first discrete moment ism = 3 −

√
3. So here the corresponding parameter isa =

−2 −
√

3. We get a translated version fora = −
√

3. Fora = −
√

15 we obtain

1/8 (3 +
√

15, 5 +
√

15, 0, 0, 5 −
√

15, 3 −
√

15).

The parametera = −1 gives the first coiflet

1/16 (1 −
√

7, 5 +
√

7, 14 + 2
√

7, 14 − 2
√

7, 1 −
√

7,−3 +
√

7),

see Daubechies [12] and [11, section 8.2]. Fora = 0 we get

1/32 (−3 −
√

15, 5 +
√

15, 30 + 2
√

15, 30 − 2
√

15, 5 −
√

15,−3 +
√

15).

See Figure 3.2 for plots of scaling functions for various parameter values. The corre-
sponding scaling functions and wavelets fora > 0 become increasingly irregular, see
section 4 for details.
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3.3 Eight filter coefficients

We have the following parametrization of filter coefficients with at least threevanishing
moments:

h0 = − 1

512

a5 − 7 a4 − 2 a3 + 30 a2 − 55 a − 15 + (1 − a)w

a2 + 1
,

h1 = − 1

512

a5 − 9 a4 + 30 a3 + 2 a2 − 23 a + 63 + (1 + a)w

a2 + 1
,

h2 =
1

512

3 a5 − 5 a4 − 102 a3 + 186 a2 − 261 a + 35 + 3(1 − a)w

a2 + 1
,

h3 =
1

512

3 a5 − 11 a4 − 70 a3 + 358 a2 − 229 a + 525 + 3(1 + a)w

a2 + 1
,

h4 = − 1

512

3 a5 + 11 a4 − 70 a3 − 358 a2 − 229 a − 525 + 3(1 − a)w

a2 + 1
,

h5 = − 1

512

3 a5 + 5 a4 − 102 a3 − 186 a2 − 261 a − 35 + 3(1 + a)w

a2 + 1
,

h6 =
1

512

a5 + 9 a4 + 30 a3 − 2 a2 − 23 a − 63 + (1 − a)w

a2 + 1
,

h7 =
1

512

a5 + 7 a4 − 2 a3 − 30 a2 − 55 a + 15 + (1 + a)w

a2 + 1

(3.6)

with
w =

√

−a8 + 36 a6 − 182 a4 + 1540 a2 − 945,

a = m − 7 anda in the intervals

[−
√

β,−
√

α] or [
√

α,
√

β],

whereα denotes the smaller andβ the larger real root of

x4 − 36x3 + 182x2 − 1540x + 945,

with numerical approximations

√
α = 0.8113601077 . . . and

√

β = 5.636256558 . . . .

The Daubechies wavelet satisfies one more sum rule

64h0 − 27h1 + 8h2 − h3 + h5 − 8h6 + 27h7 = 0.

Substituting the parametrized filter coefficients (3.6) into this equations and solving for
a, we get two real solutiona = −

√
β,−√

α, whereα denotes the smaller andβ the
larger real root of

x4 − 28x3 + 126x2 − 1260x + 1225
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or numerically
a = −4.989213573 . . . ,−1.029063869 . . . .

The first parameter gives the Daubechies wavelet with extremal phase[11, p. 195]
and the second the “least asymmetric” [11, p. 198]. The Daubechies wavelet with six
nonzero filter coefficients (3.5) has the first discrete moment

m = 5 −
√

5 + 2
√

10,

so the corresponding parameter value for the parametrization (3.6) is

a = −2 −
√

5 + 2
√

10 = −5.365197664 . . . .

See Figure 3.3 for plots of scaling functions for various parameter values.
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4 Regularity of scaling functions and wavelets

In this section, we discuss the regularity or smoothness of the scaling functions and
wavelets corresponding to the parametrized filter coefficients from the previous section.
The regularity of a function can be measured in different ways, we consider here the
Hölder and Sobolev exponent.

We first recall the definitions. Forα = n + β, wheren ∈ N and0 ≤ β < 1, the
setCα = Cα(R) is defined as the set of all functionsf that aren times continuously
differentiable and such that thenth derivativef (n) is uniformlyHölder continuouswith
exponentβ, that is,

|f (n)(x + h) − f (n)(x)| ≤ C|h|β for all x, h ∈ R

whereC is a constant. Fors ≥ 0 the Sobolev spaceHs = Hs(R) consists of all
functionsf ∈ L2(R) such that(1 + |ξ|2)s/2f̂(ξ) ∈ L2(R), wheref̂ denotes the Fourier
transform off .

To measure the regularity or smoothness of a scaling functionφ, one is interested
respectively in the (optimal)Sobolev

smax = sup{s : φ ∈ Hs}

andHölder exponent
αmax = sup{α : φ ∈ Cα}.

For a scaling function the Ḧolder exponent satisfies [44]

αmax ∈ [smax − 1/2, smax]. (4.1)

The regularity of scaling functions is also related to vanishing moments of thecor-
responding wavelet. Villemoes [44] proved that ifφ ∈ Hn with n ∈ N, the filter
coefficients satisfyn+1 sum rules or equivalently the corresponding wavelet hasn+1
vanishing moments. So in particular ifφ ∈ Cn, then the filter coefficients satisfyn + 1
sum rules, see also [11, pp. 153–156].

Eirola [14] and Villemoes [44] independently showed how the optimal Sobolev ex-
ponent can be computed from the spectral radius of a matrix dependingon the filter
coefficients, see also Strang and Nguyen [42] for further details. To find the optimal
Hölder exponent is much more involved, see for example [9, 11, 13, 37], but Rioul
[37] gave an algorithm to compute good lower bounds for the Hölder exponent. The
algorithm produces monotonically increasing lower bounds with an increasing number
of iterations, but the storage and computational costs approximately double for each
additional iteration.

In Figures 4.1, 4.2 and 4.3 you can see plots of the Sobolev exponentof the corre-
sponding scaling functions and wavelets depending on one parameter. For four filter
coefficients the Sobolev exponents range from0.5 to 1 (parametrization (3.1)) and from
0 to 0.5 (parametrization (3.3)). The maximum1 is attained for the Daubechies wavelet
since all other filter coefficients satisfy only one sum rule and hence their Sobolev expo-
nent is necessarily less than one. We obtain numerically the maximal Sobolev exponent
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Figure 4.1: Sobolev exponent for scaling functions with four filter coefficients from
equation (3.1) (left) and (3.3) (right).
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Figure 4.2: Sobolev exponent for scaling functions with six filter coefficients from
equation (3.4).
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Figure 4.3: Sobolev exponent for scaling functions with eight filter coefficients from
equation (3.6).

for respectively six and eight filter coefficients

smax = 1.4150, 1.7756,

at the parameter values for the Daubechies wavelets and the minimum is

smax = 0.0399, 0.1393

with parameter values
a = 3.077681946, 5.131603420.

For more than six filter coefficients it is possible to construct wavelets with a higher
Sobolev exponents than the Daubechies wavelets by omitting more than one sum rule,
see [27, 30, 45].

In Figures 4.4, 4.5 and 4.6 you can see plots of lower bounds for the Hölder exponent
of the corresponding scaling functions and wavelets depending on one parameter, with
the bounds from equation (4.1). We used24 iteration in the algorithm from [37].

Note that for most, and for eight filter coefficients for all, parameters thecomputed
lower bound is higher than the lower boundsmax − 1/2. The negative lower bound
in Figure 4.5 indicates that the corresponding scaling function is not continuous. We
obtain numerically the maximal lower bound for the Hölder exponent for respectively
four, six and eight filter coefficients

α24 = 0.5776, 1.1386, 1.6344

with parameters

a = −1.66260325442517,−3.28211108661493,−4.93905744197576

and filter coefficients
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coefficients from equation (3.1).
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Figure 4.5: Lower bound for Ḧolder exponent for scaling functions with six filter
coefficients from equation (3.4).
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Figure 4.6: Lower bound for Ḧolder exponent for scaling functions with eight filter
coefficients from equation (3.6).

0.31887001724554, 0.59678079636075,
0.18112998275446,-0.09678079636075

0.21634225649014, 0.56180454136425, 0.35257937284659,
-0.08834519690163,-0.06892162933673, 0.02654065553738

0.15488273436983, 0.49644876596501, 0.45767418856225,
-0.00833281609981,-0.13761439998701, 0.01970151455156,
0.02505747705493,-0.00781746441676.

Daubechies and Lagarias [13] obtained the optimal Hölder exponents for the Dau-
bechies wavelets with a different method (four, six, and eight filter coefficients)

αmax = 0.5500, 1.0878, 1.6179,

where the last one is for the Daubechies wavelet with extremal phase. Sowe obtained
in all cases wavelets that have a higher Hölder exponent than the Daubechies wavelets.

Daubechies addressed in [12] and [11, p. 242] the question of findingwavelets with
more regularity. For four filter coefficients she obtained the rational filtercoefficients
(3/5, 6/5, 2/5,−1/5), which corresponds toa = −8/5 in (3.1), see also section 6.
With the methods from [13] she found that the Hölder exponent of the corresponding
scaling function is at least0.5864.

Lang and Heller [22] discussed the general optimization problem of maximizing
the Hölder exponent for a fixed number of filter coefficients. They found smoother
wavelets than the Daubechies wavelets for more than eight filter coefficients, but the
numerical method failed to find the more regular wavelets that we obtained using the
explicit parametrizations of the filter coefficients. This might be due to the fact that
Lang and Heller used a general purpose optimization routine while we coulddirectly
apply the golden section search for finding the maximum of a univariate function.
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5 Least asymmetric filters

It is well known [11, p. 252] that if a compactly supported orthonormalwavelet is
symmetric or antisymmetric around some axis, then it is the Haar wavelet. Symmetry
of the scaling function is in turn equivalent to symmetry of the filter coefficients, see
Belogay and Wang [2] and also Daubechies [12]. Here we say that the filter coefficients
aresymmetricaroundn0 ∈ Z/2 if

hn = h2n0−n,

where we sethk = 0 for k < 0 andk > N . Symmetric filters are often calledlinear
phase filterssince the filter coefficients are symmetric aroundn0 ∈ Z/2 if and only if
the phase of thefrequency response

h(ξ) =
∑

n

hneinξ

is a linear function ofξ, that is, if

h(ξ) = ein0ξ|h(ξ)|.

So we know that complete symmetry and orthogonality is not possible, and one can
only try to find the least asymmetric filter coefficients out of a fixed family. For ex-
ample, Daubechies discussed in [11] and [12] how to choose the least asymmetric out
of the finitely many wavelets with a maximal number of vanishing moments. Another
possibility is to omit some vanishing moments and use the additional degrees of free-
dom to find filters with partial symmetry. Several authors [1, 25, 40] discussed the
use of Gr̈obner bases to find orthogonal filter coefficients with partial symmetry where
several pairs of filters are equal. Zhao and Swamy [48] designed least asymmetric
orthogonal wavelets with several vanishing moments via numerical optimization.

An immediate application of our parametrized filter coefficients is to find symboli-
cally the least asymmetric filter coefficients using some criteria to measure symmetry.
In the following, we discuss some examples, where we minimize the sum of squares
error as in [48].

We want to find six filter coefficients satisfying two sum rules such that they are
almost symmetric around2, so that

h0 ≈ h4, h1 ≈ h3, h6 ≈ 0.

Using Maple, we find the minimum of the sum of squares error is attained ata = α,
whereα denotes the largest negative real root of

25 x10
−30 x9

−702 x8+652 x7+5866 x6
−3256 x5

−13140 x4
−1036 x3+5797 x2

−2730 x−5190

or numerically
a = −1.102986298 . . . .

The filter coefficients are:



Filter coefficients and wavelets parametrized by moments 207

-0.090589559870111, 0.504872307867382, 1.206925694336121,
0.516001958861136,-0.116336134466010,-0.020874266728517.

See Figure 5.1 for the corresponding scaling function, which has a Sobolev exponent
smax = 1.0180 and a lower bound for the Ḧolder exponentα24 = 0.5370.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2
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0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 5.1: Least asymmetric (around2) scaling function with six filter coefficients
and two sum rules.

Now we consider eight filter coefficients. First we want to find filter coefficients that
are almost symmetric around3, so that

h0 ≈ h6, h1 ≈ h5, h2 ≈ h4, h7 ≈ 0.

The minimum of the sum of squares error is attained ata = α, whereα denotes the
largest negative real root of

11025 x24
−21000 x23

−901900 x22+1407480 x21+25484946 x20
−23935800 x19

−280989500 x18

−149785464 x17+837190927 x16+6460372400 x15+4612440168 x14
−53422512976 x13

−69302308420 x12+344858640016 x11
−84085760856 x10

−294800719088 x9+2435452393919 x8

−1913025285928 x7
−18887356576348 x6+10024351195096 x5+51733811048402 x4

−17259269191640 x3
−57876449779820 x2+8466676099560 x+21625605062145

or numerically
a = −0.8395579286 . . . .

The filter coefficients are:

-0.073484394510424,-0.071424517120364, 0.556147092523951,
1.154912201440016, 0.568048480655853,-0.135661369346454,

-0.050711178669381, 0.052173685026802.
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Figure 5.2: Least asymmetric (around3 left and2.5 right) scaling function with eight
filter coefficients and three sum rules.

See Figure 5.2 (left) for the corresponding scaling function, which hasa Sobolev ex-
ponentsmax = 1.6569 and a lower bound for the Ḧolder exponentα24 = 1.3080.

Finally, we want to design filters that are almost symmetric around2.5, so that

h0 ≈ h5, h1 ≈ h4, h2 ≈ h3, h6 ≈ 0, h7 ≈ 0.

This is related to the example considered in [1, 25], where the authors constructed using
Gröbner bases eight orthogonal filters with two sum rules such thath0 = h5, h1 = h4

andh2 = h3. The minimum of the sum of squares error is attained ata = α, whereα
denotes the second largest negative real root of

2025 x24
−9000 x23

−168020 x22+823000 x21+4733434 x20
−27869720 x19

−46538164 x18

+437384872 x17
−40684609 x16

−3591330192 x15+3105046936 x14+20835868016 x13

−35438686580 x12
−64147246896 x11+233849168056 x10

−48135550128 x9
−894126414729 x8

+1033511750456 x7+2682874758716 x6
−4634966862792 x5

−4762513155302 x4

+10857513198280 x3+182957235580 x2
−6268723929720 x+2258107786305

or numerically
a = −1.927469761 . . . .

The filter coefficients are:

-0.114678365799638, 0.127976021526492, 0.977783792709255,
0.990754350911186, 0.120334952341046,-0.133569326041206,
0.016559620749336, 0.014838953603528.

See Figure 5.2 (right) for the corresponding scaling function, which has a Sobolev
exponentsmax = 1.5026 and a lower bound for the Ḧolder exponentα24 = 1.0633.
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6 Rational filter coefficients

In this section, we address the existence of rational orthogonal filter coefficients. We
know from section 2 that filter coefficients are determined by quadratic equations for
orthonormality (2.1) and linear equations for normalization (2.2) and vanishing mo-
ments (2.5). Note that all these equations have integer coefficients, andwe want to
find a rational solution. This leads to “Hilbert’s 10th Problem overQ”, which asks
if there exists an algorithm for deciding the existence of rational points for asystem
of polynomial equations with integer coefficients. The answer is not known, and de-
spite centuries of effort, even for curves it is an open problem althoughmany results
and computational methods are known, see for example Poonen [34] for an introduc-
tion and further references. Using our parametrizations, we can reduce the question of
rational filter coefficients to finding rational points on curves and give some answers.

The case of four filter coefficients is not difficult. Daubechies [10] already gave a
rational parametrization of all orthogonal filter coefficients

h0 =
t (t − 1)

t2 + 1
, h1 =

1 − t

t2 + 1
, h2 =

t + 1

t2 + 1
, h3 =

t (t + 1)

t2 + 1

with t ∈ R. Note that fort = −t we obtain the flipped filter coefficients. The interval
−1 ≤ t ≤ 1 corresponds to the filter coefficients from (3.1) andt ≤ −1, 1 ≤ t to (3.3),
except for(1, 0, 0, 1), which are approached fort → ∞ andt → −∞.

The Daubechies wavelet corresponds tot = −1/
√

3. Computing the continued
fraction expansion of−1/

√
3, we obtain the periodic expansion

− 1√
3

= [−1; 2, 2, 1 ] = −1 +
1

2 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·
with the first convergents

−1, −1/2, −3/5, −4/7, −11

19
, −15

26
, −41

71
, −56

97
, −153

265
, −209

362
.

For further details on continued fractions see for example Khinchin [19]or Knuth [20].
Takingt = −209/362, we get a good rational approximation

1/174725 (119339, 206702, 55386,−31977)

for the Daubechies filters. Surprisingly, we obtain the filter coefficients corresponding
to the most regular scaling function found by Daubechies for the secondconvergent
t = −1/2, see section 4.

In parametrization (3.4) for six filter coefficients there appears only thesquare root

w =
√

−a4 + 14 a2 + 15.
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So the question of the existence of rational filters reduces to finding a rational point
(a, b) ∈ Q2 on the (hyperelliptic) algebraic curve defined by the equation

y2 = −x4 + 14x2 + 15 = −(x2 + 1)(x2 − 15). (6.1)

Proposition 6.1 There are no rational points on the curve defined by equation(6.1).

Proof. Substitutingx = X/Z andy = Y/Z2 in (6.1) and multiplying byZ4, we obtain

Y 2 = −(X2 + Z2)(X2 − 15Z2),

and we equivalently would have to find integersa, b, c with a andc coprime satisfying
this equation. Suppose that we had integersa, b, c satisfying

b2 = −(a2 + c2)(a2 − 15 c2). (6.2)

Then
b2 ≡ (a2 + c2)2 (mod 2)

and hence
b ≡ (a + c) (mod 2).

This implies that either

a ≡ 1, c ≡ 0 (mod 2) or a ≡ 0, c ≡ 1 (mod 2)

or, sincea andc are coprime,

a ≡ c ≡ 1 (mod 2).

In the first case, we get
(a2 + c2)2 ≡ 1 (mod 4).

But then by equation (6.2)

b2 ≡ −1 ≡ 3 (mod 4),

which is not possible since the only quadratic residues modulo4, that is, the integersd
for which

x2 ≡ d (mod 4)

has a solution, are
d ≡ 0, 1 (mod 4).

In the second case, we get

(a2 + c2)2 ≡ 4 (mod 16).

But then by equation (6.2)

b2 ≡ −4 ≡ 12 (mod 16),

which is not possible since the only quadratic residues modulo16 are

d ≡ 0, 1, 4, 9 (mod 16),

and the proposition is proved.



Filter coefficients and wavelets parametrized by moments 211

Corollary 6.2 There are no rational orthogonal filters with six nonzero filter coeffi-
cients and at least two sum rules.

In parametrization (3.6) for eight filter coefficients, we have the square root

w =
√

−a8 + 36 a6 − 182 a4 + 1540 a2 − 945.

So we would have to find a rational point on the algebraic curve defined bythe equation

y2 = −x8 + 36x6 − 182x4 + 1540x2 − 945.

This is a nonsingular curve with genus3. Hence by Falting’s theorem [15] it has only
finitely many rational points, and so there are at most finitely many rationalorthogonal
filters with eight nonzero filter coefficients and at least three sum rules. So far we could
neither find rational points on this curve nor prove that there do not existany.

Acknowledgements.I would like to thank Josef Schicho for his comments and help
with the proof of Proposition 6.1 and the reviewers for useful remarks.
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