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We consider generalized inverses of linear operators on arbitrary vector spaces
and study the question when their product in reverse order is again a generalized
inverse. This problem is equivalent to the question when the product of two
projectors is again a projector, and we discuss necessary and sufficient conditions
in terms of their kernels and images alone. We give a new representation of
the product of generalized inverses that does not require explicit knowledge of
the factors. Our approach is based on implicit representations of subspaces via
their orthogonals in the dual space. For Fredholm operators, the corresponding
computations reduce to finite-dimensional problems. We illustrate our results with
examples for matrices and linear ordinary boundary problems.
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1. Introduction
Analogues of the reverse order law (AB)−1 = B−1 A−1 for bijective operators have been
studied intensively for various kinds of generalized inverses. Most articles and books are
concerned with the matrix case; see for example [1–11]. For infinite-dimensional vector
spaces, usually additional topological structures like Banach or Hilbert spaces are assumed;
see for example [12–15]. In our approach, we systematically exploit duality results that
hold in arbitrary vector spaces and a corresponding duality principle for statements about
generalized inverses and projectors; see Appendix A.

The validity of the reverse order law can be reduced to the question whether the product
of two projectors is a projector (Section 2). This problem is studied in [16–18] for finite-
dimensional vector spaces. We discuss necessary and sufficient conditions that carry over
to arbitrary vector spaces and can be expressed in terms of the kernels and images of the
respective operators alone (Section 4).Applying the duality principle leads to new conditions
and a characterization of the commutativity of two projectors that generalizes a result from
[19].

In Section 5, we translate the results for projectors to generalized inverses and obtain
necessary and sufficient conditions for the reverse order law in arbitrary vector spaces.
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1568 A. Korporal and G. Regensburger

Based on these conditions, we give a short proof for the characterization in Theorem 5.3
of two operators such that the reverse holds for all inner inverses (also called g-inverses
or {1}-inverses). Moreover, we show that there always exist algebraic generalized inverses
(also called {1, 2}-inverses) of two operators A and B such that their product in reverse
order is an algebraic generalized inverse of AB.

Assuming the reverse order law to hold, Theorem 6.2 gives a representation of the
product of two outer inverses ({2}-inverses) that can be computed using only kernel and
image of the outer inverses of the factors. In this representation, we rely on a description of
the kernel of a composition using inner inverses (Section 3) and implicit representations of
subspaces via their orthogonals in the dual space. Moreover, we avoid the computation
of generalized inverses by using the associated transpose map. Examples for matrices
illustrating the results are given in Section 7.

An important application for our results is given by linear boundary problems
(Section 9). Their solution operators (Green’s operators) are generalized inverses, and it
is natural to express infinite dimensional solution spaces implicitly via the (homogeneous)
boundary conditions they satisfy. Green’s operators for ordinary boundary problems are
Fredholm operators, for which we can check the conditions for the reverse order law
algorithmically and compute the implicit representation of the product (Section 8). Hence
we can test if the product of two (generalized) Green’s operators is again a Green’s operator,
and we can determine which boundary problem it solves.

2. Generalized inverses
In this section, we first recall basic properties of generalized inverses. For further details
and proofs, we refer to [15,20] and the references therein. Throughout this article, U , V and
W always denote vector spaces over the same field F , and we use the notation V1 ≤ V for
a subspace V1 of V .

Definition 2.1 Let T : V → W be linear. We call a linear map G : W → V an inner
inverse of T if T GT = T and an outer inverse of T if GT G = G. If G is an inner and an
outer inverse of T , we call G an algebraic generalized inverse of T .

This terminology of generalized inverses is adopted from [20]; other sources refer to
inner inverses as generalized inverses or g-inverses, whereas algebraic generalized inverses
are also called reflexive generalized inverses. Also the notations {1}-inverse (resp. {2}- and
{1, 2}-inverse) are used, which refer to the corresponding Moore–Penrose equations the
generalized inverse satisfies.

Proposition 2.2 Let T : V → W and G : W → V be linear. The following statements
are equivalent:

(i) G is an outer inverse of T .
(ii) GT is a projector and ImGT = ImG.

(iii) GT is a projector and V = ImG ⊕ KerGT .
(iv) GT is a projector and W = ImT + KerG.
(v) T G is a projector and KerT G = KerG.

(vi) T G is a projector and W = KerG ⊕ ImT G.
(vii) T G is a projector and ImG ∩ KerT = {0}.
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Linear and Multilinear Algebra 1569

Corresponding to (vii) and (vi), for subspaces B ≤ V and E ≤ W with

B ∩ KerT = {0} and W = E ⊕ T (B),

we can construct an outer inverse G of T with ImG = B and KerG = E as follows; cf.
[15, Cor. 8.2]. We consider the projector Q with

ImQ = T (B), KerQ = E . (1)

The restriction T |B : B → T (B) is bijective since B ∩ KerT = {0}, and we can define
G = (T |B)−1 Q. One easily verifies that G is an outer inverse of T with ImG = B and
KerG = E . Since by Proposition 2.2(iii) we have V = B⊕T −1(E), we define the projector
P in analogy to Q by

ImP = T −1(E), KerP = B. (2)

Then, by definition and by Proposition 2.2, we have

GT G = G, T G = Q and GT = 1 − P,

and G is determined uniquely by these equations. Hence an outer inverse depends only
on the choice of the defining spaces B and E . We use the notations G = O(T, B, E) and
G = O(T, P, Q) for P and Q as in (2) and (1).

Obviously, G is an outer inverse of T if and only if T is an inner inverse of G. Therefore,
we get a result analogous to Proposition 2.2 for inner inverses by interchanging the role of
T and G. The construction of inner inverses is not completely analogous to outer inverses,
see [20, Prop. 1.3]. For subspaces B ≤ V and E ≤ W such that

V = KerT ⊕ B and W = ImT ⊕ E, (3)

an inner inverse G of T is given on ImT by (T |B)−1 and can be chosen arbitrarily on E .
For such an inner inverse with B = ImGT and E = KerT G, we write G ∈ I(T, B, E).

For constructing algebraic generalized inverses, we start with direct sums as in (3), but
require KerG = E and ImG = B. We use the notation G = G(T, B, E).

The following result for inner inverses is well known in the matrix case [8,17,21] and
its elementary proof remains valid for arbitrary vector spaces.

Proposition 2.3 Let T1 : V → W and T2 : U → V be linear with outer (resp. inner)
inverses G1 and G2. Let P = G1T1 and Q = T2G2. Then G2G1 is an outer (resp. inner)
inverse of T1T2 if and only if Q P (resp. P Q) is a projector.

Proof Let G2G1 be an outer inverse of T1T2, that is, G2G1 = G2G1T1T2G2G1.
Multiplying with T2 from the left and with T1 from the right yields

T2G2G1T1 = T2G2G1T1T2G2G1T1,

thus Q P = T2G2G1T1 is a projector. For the other direction, we multiply the previ-
ous equation with G2 from the left and G1 from the right and use that G1T1G1 = G1
and G2T2G2 = G2. The proof for inner inverses follows by interchanging the roles of
Ti and Gi . !
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1570 A. Korporal and G. Regensburger

3. Kernel of compositions
We now describe the inverse image of a subspace under the composition of two linear maps
using inner inverses. For projectors, kernel and image of the composition can be expressed
in terms of kernel and image of the corresponding factors alone. Note that a projector is an
inner inverse of itself.

Proposition 3.1 Let T1 : V → W and T2 : U → V be linear and G2 an inner inverse
of T2. For a subspace W1 ≤ W , we have

(T1T2)
−1(W1) = G2(T

−1
1 (W1) ∩ ImT2) ⊕ KerT2

for the inverse image of the composition. In particular,

KerT1T2 = G2(KerT1 ∩ ImT2) ⊕ KerT2.

Proof Since T2G2 is a projector onto ImT2 by Proposition 2.2(ii) (interchanging the role
of T and G), we have

T1T2(G2(T
−1

1 (W1) ∩ ImT2) + KerT2) = T1 Q2(T
−1

1 (W1) ∩ ImT2) + 0

= T1(T −1
1 (W1) ∩ ImT2) ≤ W1 ∩ ImT1T2 ≤ W1.

Conversely, let u ∈ (T1T2)
−1(W1). Then T2u = v with v ∈ T −1

1 (W1). Since also v ∈ ImT2,
we have

T2(u − G2v) = T2u − Q2v = T2u − v = v − v = 0,

that is, u − G2v ∈ KerT2. Writing u = G2v +u − G2v yields u ∈ G2(T
−1

1 (W1)∩ ImT2)+
KerT2. The sum is direct since by Proposition 2.2(vi) (interchanging the role of T and G),
we have U = KerT2 ⊕ ImG2T2. !

Corollary 3.2 Let T : V → W be linear and let P : V → V and Q : W → W be
projectors. Then

KerT Q = (KerT ∩ ImQ) ⊕ KerQ and ImPT = (ImT + KerP) ∩ ImP.

Proof Applying Proposition 3.1 yields

KerT Q = Q(KerT ∩ ImQ) ⊕ KerQ = (KerT ∩ ImQ) ⊕ KerQ.

The statement for the image follows from the duality principle A.4. !

This result generalizes [17, Lemma 2.2], where the kernel and image of a product P Q
of two projectors are computed as above, when P Q is again a projector.

4. Products of projectors
In view of Proposition 2.3, we study necessary and sufficient conditions for the product
of two projectors to be a projector. Throughout this section let P, Q : V → V denote
projectors.

The first of the following necessary and sufficient conditions for the product of P and Q
to be a projector is mentioned as an exercise without proof in [22, p. 339]. In [16, Lemma 3]
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Linear and Multilinear Algebra 1571

the same result is formulated for matrices but the proof is valid for arbitrary vector spaces.
The second necessary and sufficient condition for the matrix case is given in [17, Lemma
2.2]. The simpler proof from [18] carries over to arbitrary vector spaces.

Lemma 4.1 The composition P Q is a projector if and only if

ImP Q ≤ ImQ ⊕ (KerP ∩ KerQ)

if and only if
ImQ ≤ ImP ⊕ (KerP ∩ ImQ) ⊕ (KerP ∩ KerQ).

We obtain the following characterization of the idempotency of P Q in terms of the
kernels and images of P and Q alone.

Theorem 4.2 The following statements are equivalent:

(i) The composition P Q is a projector.
(ii) ImP ∩ (ImQ + KerP) ≤ ImQ ⊕ (KerP ∩ KerQ)

(iii) ImQ ≤ ImP ⊕ (KerP ∩ ImQ) ⊕ (KerP ∩ KerQ)

(iv) KerQ ⊕ (KerP ∩ ImQ) ≥ KerP ∩ (ImQ + ImP)

(v) KerP ≥ KerQ ∩ (ImQ + KerP) ∩ (ImQ + ImP)

Proof The equivalence of (i), (ii) and (iii) follows from the previous lemma and Corollary
3.2. By the duality principle A.4, the last two conditions are equivalent to (ii) and (iii),
respectively. !

For algebraic generalized inverses, it is also interesting to have sufficient conditions for
P Q as well as Q P to be projectors; for example, if P and Q commute. This can again be
characterized in terms of the images and kernels of P and Q alone. If P Q = Q P , one sees
with Corollary 3.2 that

ImP Q = ImP ∩ ImQ and KerP Q = KerP + KerQ. (4)

In general, these conditions are necessary but not sufficient for commutativity of P and Q,
see [16, Ex. 1].

Using Corollary 3.2, modularity (A1) and (A2), one obtains the following character-
ization of projectors with image or kernel as in (4); for further details see [23]. For the
commutativity of projectors see also [22, p. 339].

Proposition 4.3 The composition P Q is a projector with

(i) ImP Q = ImP ∩ ImQ if and only if

ImQ = (ImP ∩ ImQ) ⊕ (KerP ∩ ImQ).

(ii) KerP Q = KerP + KerQ if and only if

KerP = (KerP ∩ KerQ) ⊕ (KerP ∩ ImQ).
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1572 A. Korporal and G. Regensburger

Corollary 4.4 We have P Q = Q P if and only if

ImQ = (ImP ∩ ImQ) ⊕ (KerP ∩ ImQ)

and
KerQ = (ImP ∩ KerQ) ⊕ (KerP ∩ KerQ).

In [16, Thm. 4] and [19, Thm. 3.2] different necessary and sufficient conditions for the
commutativity of two projectors are given, but both require the computation of P Q as well
as of Q P .

5. Reverse order law for generalized inverses
Proposition 2.3 and Theorem 4.2 together give necessary and sufficient conditions for the
reverse order law for outer inverses to hold, in terms of the defining spaces Bi and Ei alone.

Theorem 5.1 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1, B1, E1) and G2 = O(T2, B2, E2). The following conditions are equivalent:

(i) G2G1 is an outer inverse of T1T2.
(ii) T2(B2) ∩ (B1 + E2) ≤ B1 ⊕ (E2 ∩ T −1

1 (E1))

(iii) B1 ≤ T2(B2) ⊕ (E2 ∩ B1) ⊕ (E2 ∩ T −1
1 (E1))

(iv) T −1
1 (E1) ⊕ (E2 ∩ B1) ≥ E2 ∩ (B1 + T2(B2))

(v) E2 ≥ T −1
1 (E1) ∩ (B1 + E2) ∩ (B1 + T2(B2))

Proof Recall that ImGi = Bi and KerGi = Ei , and Q = T2G2 and P = G1T1 are
projectors with

ImP = B1, KerP = T −1
1 (E1), ImQ = T2(B2) and KerQ = E2.

By Proposition 2.3, G2G1 is an outer inverse if and only if Q P is a projector. Applying
Theorem 4.2 proves the claim. !

In the following theorem, we give the analogous conditions for inner inverses, where
P = G1T1 and Q = T2G2 are the projectors corresponding to the direct sums in (3). Note
that the conditions for inner inverses only depend on the choice of B1 and E2, but not on
B2 and E1.

The characterization of (iii) and the orthogonal of (v) in the following theorem generalize
[17, Thm. 2.3] to arbitrary vector spaces.

Theorem 5.2 Let T1 : V → W and T2 : U → V be linear with inner inverses G1 ∈
I(T1, B1, E1) and G2 ∈ I(T2, B2, E2). The following conditions are equivalent:

(i) G2G1 is an inner inverse of T1T2.
(ii) B1 ∩ (ImT2 + KerT1) ≤ ImT2 ⊕ (KerT1 ∩ E2)

(iii) ImT2 ≤ B1 ⊕ (KerT1 ∩ ImT2) ⊕ (KerT1 ∩ E2)

(iv) E2 ⊕ (KerT1 ∩ ImT2) ≥ KerT1 ∩ (ImT2 + B1)

(v) KerT1 ≥ E2 ∩ (ImT2 + KerT1) ∩ (ImT2 + B1)
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Linear and Multilinear Algebra 1573

The question when the reverse order law holds for all inner inverses of T1 and T2 was
answered for matrices in [11, Thm. 2.3], and an alternative proof was given in [24]. Using
the previous characterizations, we give a short proof that generalizes the result to arbitrary
vector spaces.

Theorem 5.3 Let T1 : V → W and T2 : U → V be linear. Then G2G1 is an inner
inverse of T1T2 for all inner inverses G1 of T1 and G2 of T2 if and only if T1T2 = 0 or
KerT1 ≤ ImT2.

Proof If KerT1 ≤ ImT2 then KerT1 ∩ImT2 = KerT1 and (iii) in Theorem 5.2 the previous
theorem is satisfied since KerT1 + B1 = V . The case T1T2 = 0 is trivial.

For the reverse implication, assume that ImT2 is not contained in KerT1 and KerT1 is
not contained in ImT2. Choose V1, V2 ≤ V such that we have two direct sums KerT1 =
(ImT2 ∩ KerT1) ⊕ V1 and ImT2 = (ImT2 ∩ KerT1) ⊕ V2. Then we have

ImT2 + KerT1 = (ImT2 ∩ KerT1) ⊕ V1 ⊕ V2. (5)

By assumption, we can choose non-zero v1 ∈ V1 and v2 ∈ V2. Let v = v1 + v2. Then
v ∈ ImT2 + KerT1 and v ̸∈ KerT1, v ̸∈ ImT2. Hence we can choose B1 and E2 such that
v ∈ B1 and v ∈ E2 and V = KerT1 ⊕ B1 = ImT2 ⊕ E2. Then

v ∈ E2 ∩ (ImT2 + KerT1) ∩ (ImT2 + B1)

but v ∈ KerT1. Hence 5.2 in the previous theorem is not satisfied for inner inverses with
ImG1 = B1 and KerG2 = E2. !

Werner [17, Thm. 3.1] proves that for matrices, it is always possible to construct inner
inverses such that the reverse order law holds. Using the necessary and sufficient condition
for outer inverses above, we extend this result to algebraic generalized inverses in arbitrary
vector spaces. The special case of Moore–Penrose inverses is treated in [8, Thm. 3.2], and
explicit solutions are constructed in [25,26].

Theorem 5.4 Let T1 : V → W and T2 : U → V be linear. There always exist algebraic
generalized inverses G1 of T1 and G2 of T2 such that G2G1 is an algebraic generalized
inverse of T1T2.

Proof Choose V1, V2 ≤ V as in the previous proof such that (5) holds. Moreover, choose
V3 ≤ V such that

V = (ImT2 + KerT1) ⊕ V3 = (ImT2 ∩ KerT1) ⊕ V1 ⊕ V2 ⊕ V3.

Then B1 = V2 ⊕ V3 is a direct complement of KerT1 and E2 = V1 ⊕ V3 is a direct
complement of ImT2. Hence, there exist respectively an algebraic generalized inverse G1
of T1 with ImG1 = B1 and G2 of T2 with KerG2 = E2. We verify that such G1 and G2
satisfy Theorem 5.1(iii), where T −1

1 (E1) = KerT1 and T2(B2) = ImT2 since G1 and G2
are algebraic generalized inverses:

ImT2 ⊕ (E2 ∩ B1) ≥ ImT2 ⊕ V3 = (ImT2 ∩ KerT1) ⊕ V2 ⊕ V3 ≥ B1.
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1574 A. Korporal and G. Regensburger

Similarly, we verify Theorem 5.2(iii)

B1 ⊕ (KerT1 ∩ ImT2) = V2 ⊕ V3 ⊕ (KerT1 ∩ ImT2) ≥ V2 ⊕ (KerT1 ∩ ImT2) = ImT2.

Hence G2G1 is an algebraic generalized inverse of T1T2 for all G1 = G(T1, B1, E1) and
G2 = G(T2, B2, E2), independent of the choice of E1 and B2. !

6. Representing the product of outer inverses
In this section, we assume that for two linear maps T1 : V → W and T2 : U → V with
outer inverses G1 and G2, respectively, the reverse order law holds. Our goal is to find a
description of the product G2G1 that does not require the explicit knowledge of G1 and
G2. Using the representation via projectors, one immediately verifies that

O(T2, P2, Q2) O(T1, P1, Q1) = O(T1T2, P2 − G2 P1T2, T1 Q2G1)

but this expression involves both outer inverses G1 and G2. For the representation via
defining spaces, we compute the kernel and the image of the product.

Lemma 6.1 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1, B1, E1) and G2 = O(T2, B2, E2). Then

KerG2G1 = E1 ⊕ T1(B1 ∩ E2) and ImG2G1 = G2((B1 + E2) ∩ ImT2).

Proof Recall that by definition KerGi = Ei and ImGi = Bi . The first identity follows
directly from Proposition 3.1. For the second identity, we first note that for a linear map
G and subspaces V1, V2, we have G(V1 ∩ V2) = G(V1) ∩ G(V2) if KerG ≤ V1. Hence
G2((B1 + E2) ∩ ImT2) equals

G2((ImG1 + KerG2) ∩ ImT2) = G2(ImG1) ∩ G2(ImT2) = ImG2G1,

since G2(ImT2) = ImG2 by Proposition 2.2(ii). !

Note that the expression for the image of the composition requires the explicit knowledge
of G2. In particular, the reverse order law takes the form

O(T2, B2, E2) O(T1, B1, E1) = O(T1T2, G2((B1 + E2) ∩ ImT2), E1 + T1(B1 ∩ E2)).

Werner [17, Thm. 2.4] gives a result in a similar spirit for inner inverses of matrices.
Using an implicit description of ImGi , it is possible to state the reverse order law in a

form that depends on the kernels and images of the respective outer inverses alone. This
approach is motivated by our application to linear boundary problems (Section 9), where it
is natural to define solution spaces via the boundary conditions they satisfy.

In more detail, the Galois connection from Appendix A allows to represent a subspace
B implicitly via the orthogonally closed subspace B = B⊥ of the dual space. We will
therefore use the notation G = O(T,B, E) for the outer inverse with ImG = B⊥ and
KerG = E as well as the analogue for inner inverses.
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Linear and Multilinear Algebra 1575

Theorem 6.2 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1,B1, E1) and G2 = O(T2,B2, E2). If G2G1 is an outer inverse of T1T2, then

O(T2,B2, E2) O(T1,B1, E1) = O(T1T2,B2 ⊕ T ∗
2 (B1 ∩ E⊥

2 ), E1 ⊕ T1(B
⊥
1 ∩ E2)), (6)

where T ∗
2 denotes the transpose of T2.

Proof From Lemma 6.1, we already know that KerG2G1 = E1 ⊕ T1(B⊥
1 ∩ E2). From

Proposition A.2 and 3.1, we get

(ImG2G1)
⊥ = KerG∗

1G∗
2 = T ∗

2 (KerG∗
1 ∩ ImG∗

2) ⊕ KerG∗
2

= T ∗
2 ((ImG1)

⊥ ∩ (KerG2)
⊥) ⊕ (ImG2)

⊥ = T ∗
2 (B1 ∩ E⊥

2 ) ⊕ B2,

and thus (6) holds. !

A computational advantage of this representation is that one can determine G2G1
directly by computing only one outer inverse instead of computing both G1 and G2; see the
next section for an example.

7. Examples for matrices
In this section, we illustrate our results for finite-dimensional vector spaces. In particular,
we show how to compute directly the composition of two generalized inverses using the
reverse order law in the form (6).

Consider the following linear maps T1 : Q4 → Q3 and T2 : Q3 → Q4 given by

T1 =

⎛

⎝
1 −1 −1 1
0 2 2 −2
3 1 1 −1

⎞

⎠ and T2 =

⎛

⎜⎜⎝

1 −2 −1
1 1 2

−1 5 4
−1 5 4

⎞

⎟⎟⎠ .

We first use Theorems 5.1 and 5.2 to check whether for algebraic generalized inverses
G1 = G(T1, B1, E1) and G2 = G(T2, B2, E2), the composition G2G1 is an algebraic
generalized inverse of T1T2.

For testing the conditions, we only need to fix B1 = ImG1 and E2 = KerG2, such that
B1 ⊕ KerT1 = Q4 = E2 ⊕ ImT2. We have

KerT1 = span((0, 1, 0, 1)T , (0, 0, 1, 1)T ), ImT2 = span((1, 0,−2,−2)T , (0, 1, 1, 1)T ),

so we may choose for example

B1 = span((1, 0, 0, 0)T , (0, 1, 0, 0)T ), E2 = span((1, 0, 0, 0)T , (0, 0, 1, 0)T ).

For algebraic generalized inverses, we obtain as a necessary and sufficient condition for
being an outer inverse

B1 ≤ ImT2 ⊕ (E2 ∩ B1) ⊕ (E2 ∩ KerT1)

from Theorem 5.1(iii).
Since E2 ∩ KerT1 = {0} and E2 ∩ B1 = span((1, 0, 0, 0)T ), the right hand side yields

that span((1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 1)T ) ≥ B1. Thus for all algebraic generalized
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1576 A. Korporal and G. Regensburger

inverses G1 and G2 with ImG1 = B1 and KerG2 = E2, the product G2G1 is an outer
inverse of T1T2.

The corresponding condition for inner inverses by Theorem 5.2(iii) is

ImT2 ≤ B1 ⊕ (KerT1 ∩ ImT2) ⊕ (KerT1 ∩ E2).

Since KerT1 ∩ ImT2 = {0}, the right hand side yields B1, which does not contain ImT2.
Hence for the above choices of G1 and G2, the product G2G1 is never an inner inverse of
T1T2.

Since G2G1 is an outer inverse, Theorem 6.2 allows to determine G2G1 directly without
knowing the factors. Identifying the dual space with row vectors, the orthogonals of B1 and
E2 are given by

B⊥
1 = B1 = span((0, 0, 1, 0), (0, 0, 0, 1)), E⊥

2 = span((0, 1, 0, 0), (0, 0, 0, 1)),

so we have B⊥
1 ∩E2 = span((1, 0, 0, 0)T ) and B1∩E⊥

2 = span((0, 0, 0, 1)). For explicitly
computing G2G1, we also have to choose B2 = ImG2 and E1 = KerG1. Since we have

ImT1 = span((1, 0, 3)T ), (0, 1, 2)T ), KerT2 = span((1, 1,−1)T ),

we may choose the complements E1 = KerG1 and B2 = ImG2 as

E1 = span((0, 0, 1)T ) and B2 = span((1, 0, 0)T , (0, 1, 0)T ).

Using (6), we can determine the kernel

E = KerG2G1 = E1 ⊕ T1(B
⊥
1 ∩ E2) = span((1, 0, 0)T , (0, 0, 1)T ).

The image of G2G1 is by (6) given via the orthogonal

(ImG2G1)
⊥ = B2 ⊕ T ∗

2 (B1 ∩ E⊥
2 ) = span((0, 0, 1), (−1, 5, 4)),

which means that B = ImG2G1 = span((5, 1, 0)T ). Therefore, we can directly determine
G as the unique outer inverse

G = O(T1T2, B, E) =

⎛

⎝
0 5

12 0
0 1

12 0
0 0 0

⎞

⎠ .

One easily checks that G is an outer inverse of T .

8. Fredholm operators
We now turn to algorithmic aspects of the previous results. As already emphasized, for
arbitrary vector spaces we can express conditions for the reverse order law in terms of the
defining spaces alone. Nevertheless, in general it will not be possible to compute sums and
intersections of infinite-dimensional subspaces. For algorithmically checking the conditions
of Theorem 5.1 or 5.2 and for computing the reverse order law in the form (6), we consider
finite (co)dimensional spaces and Fredholm operators.

Recall that a linear map T between vector spaces is called Fredholm operator if
dim KerT < ∞ and codim ImT < ∞. Moreover, for finite codimensional subspaces
V1 ≤ V , we have codim V1 = dim V ⊥

1 . In this case, V1 can be implicitly represented by

D
ow

nl
oa

de
d 

by
 [J

oh
an

ne
s K

ep
le

r U
ni

ve
rs

ity
 L

in
z]

 a
t 2

3:
58

 0
6 

O
ct

ob
er

 2
01

4 



Linear and Multilinear Algebra 1577

the finite-dimensional subspace V ⊥
1 ≤ V ∗. For an application to linear ordinary boundary

problems, see the next section.
We assume that for finite-dimensional subspaces, we can compute sums and intersections

and check inclusions, both in vector spaces and in their duals. With the following lemma,
the intersection of a finite-dimensional subspace with a finite codimensional subspace is
reduced to computing kernels of matrices.

Definition 8.1 Let u = (u1, . . . , um)T ∈ V m and β = (β1, . . . , βn)T ∈ (V ∗)n . We call

β(u) =

⎛

⎜⎝
β1(u1) . . . β1(um)

...
. . .

...

βn(u1) . . . βn(um)

⎞

⎟⎠ ∈ Fn×m

the evaluation matrix of β and u.

Lemma 8.2 Let U ≤ V and B ≤ V ∗ be generated respectively by u = (u1, . . . , um)

and β = (β1, . . . ,βn). Let k1, . . . , kr ∈ Fm be a basis of Kerβ(u), and κ1, . . . , κs ∈ Fn

a basis of Ker(β(u))T . Then

(i) U ∩ B⊥ is generated by
∑m

i=1 k1
i ui , . . . ,

∑m
i=1 kr

i ui and
(ii) U⊥ ∩ B is generated by

∑n
i=1 κ1

i βi , . . . ,
∑n

i=1 κs
i βi .

Proof A linear combination v = ∑m
ℓ=1 cℓuℓ is in B⊥ if and only if βi (v) = 0 for

1 ≤ i ≤ n, that is,
∑m

ℓ=1 cℓβi (uℓ) = 0 for 1 ≤ i ≤ n. Hence β(u) · (c1, . . . , cm)T = 0.
Analogously, one sees that the coefficients of linear combination in U⊥∩B are in the kernel
of (β(u))T . !

We reformulate the conditions of Theorem 5.1 such that for Fredholm operators they only
involve operations on finite-dimensional subspaces and intersections like in the previous
lemma. Similarly, one can rewrite the conditions of Theorem 5.2.

Corollary 8.3 Let T1 : V → W and T2 : U → V be linear with outer inverses G1 =
O(T1,B1, E1) and G2 = O(T2,B2, E2). Let C2 = T2(B⊥

2 )⊥ and K1 = T −1
1 (E1). The

following conditions are equivalent:

(i) G2G1 is an outer inverse of T1T2.
(ii) C2 + (B1 ∩ E⊥

2 ) ≥ B1 ∩ (E2 ∩ K1)
⊥

(iii) B1 ≥ C2 ∩ (E2 ∩ B⊥
1 )⊥ ∩ (E2 ∩ K1)

⊥

(iv) K1 ⊕ (E2 ∩ B⊥
1 ) ≥ E2 ∩ (B1 ∩ C2)

⊥

(v) E2 ≥ K1 ∩ (B1 ∩ E⊥
2 )⊥ ∩ (B1 ∩ C2)

⊥

Proof Taking the orthogonal of both sides of 5.1 (ii) and (iii), respectively, and applying
Proposition A.1 we get (ii) and (iii). For (iv) and (v), we can apply Proposition A.1 directly
to the corresponding conditions of Theorem 5.1. !

We note that using Lemma 8.2, it also possible to determine constructively the implicit
representation (6) of a product of generalized inverses; see the next section.
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1578 A. Korporal and G. Regensburger

9. Examples for linear ordinary boundary problems
As an example involving infinite dimensional spaces and Fredholm operators, we consider
solution (Green’s) operators for linear ordinary boundary problems. Algebraically, linear
boundary problems can be represented as a pair (T,B), where T : V → W is a surjective
linear map and B ≤ V ∗ is an orthogonally closed subspace of (homogeneous) boundary
conditions. We say that v ∈ V is a solution of (T,B) for a given w ∈ W if T v = w and
v ∈ B⊥.

For a regular boundary problem (having a unique solution for every right-hand side),
the Green’s operator is defined as the unique right inverse G of T with ImG = B⊥;
see [28] for further details. The product G2G1 of the Green’s operators of two boundary
problems (T1,B1) and (T2,B2) is then the Green’s operator of the regular boundary
problem (T1T2,B2 ⊕ T ∗

2 (B1)), see also Theorem 6.2.
For boundary problems having at most one solution, that is B⊥ ∩ KerT = {0}, the

linear algebraic setting has been extended in [23] by defining generalized Green’s operators
as outer inverses. More specifically, one first has to project an arbitrary right-hand side
w ∈ W onto T (B⊥), the image of the ‘functions’ satisfying the boundary conditions, along
a complement E of T (B⊥). The corresponding generalized Green’s operator is defined as
the outer inverse G = O(T,B, E), and we refer to E ≤ W as an exceptional space for the
boundary problem (T,B).

The question when the product of two outer inverses is again an outer inverse, is the
basis for factoring boundary problems into lower order problems; see [28,29] for the case
of regular boundary problems. This, in turn, provides a method to factor certain integral
operators.

As an example, let us consider the boundary problem

u′′ = f
u′(0) = u′(1) = u(1) = 0.

(7)

In the above setting, this means we consider the pair (T1,B1) with T1 = D2 and B1 =
span(E0 D, E1 D, E1), where D denotes the usual derivation on smooth functions and Ec
the evaluation at c ∈ R. The boundary problem is only solvable for forcing functions f
satisfying the compatibility condition ∫1

0 f (ξ) dξ = 0; more abstractly, we have T1(B⊥
1 ) =

C ⊥
1 with C1 = span(∫1

0), where ∫1
0 denotes the functional f /→ ∫1

0 f (ξ) dξ . For computing
a generalized Green’s operator of (T1,B1, E1), we have to project f onto C ⊥

1 along a fixed
complement E1. In [30], we computed the generalized Green’s operator

G1( f ) = x
x
∫
0

f (ξ) dξ −
x
∫
0
ξ f (ξ) dξ − 1

2
(x2 + 1)

1
∫
0

f (ξ) dξ +
1
∫
0
ξ f (ξ) dξ

of (7) for E1 = R being the constant functions. It is easy to see that in this case we have
T −1

1 (E1) = span(1, x, x2).
As a second boundary problem, we consider

u′′ − u = f
u′(0) = u′(1) = u(1) = 0,

or (T2,B2) with T2 = D2 −1 and B2 = span(E0 D, E1 D, E1). For the corresponding
generalized Green’s operator G2 with exceptional space E2 = span(x), we will now check
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Linear and Multilinear Algebra 1579

if the products G1G2 and G2G1 are again generalized Green’s operators of T1T2 = T2T1 =
D4 − D2, using condition (ii) of Corollary 8.3.

We use the algorithm from [30], implemented in the package IntDiffOp for the
computer algebra system Maple, to compute the compatibility conditions. The algorithm
is based on the identity

T (B⊥)⊥ = G∗(B ∩ (KerT )⊥),

for any right inverse G of T , which follows from Propositions A.2 and 3.1. Moreover, a
right inverse of the differential operator can be computed by the variation of constants and
the intersection B∩(KerT )⊥ using Lemma 8.2. Thus, we obtain C2 = span(∫1

0(exp(−x)+
exp(x))), where ∫1

0(exp(−x)+exp(x)) denotes the functional f /→ ∫1
0(exp(−ξ)+exp(ξ))

f (ξ) dξ .
The space T −1

2 (E2) = span(x, exp(x), exp(−x)) can be computed using Proposi-
tion 3.1 and a right inverse of the differential operator; this is also implemented in the
IntDiffOp package. Hence, we have E1 ∩ T −1

2 (E2) = {0} and therefore B2 ∩ (E1 ∩
T −1

2 (E2))
⊥ = B2. Computing B2 ∩ E⊥

1 with Lemma 8.2 yields B2 ∩ E⊥
1 = span

(E0 D, E1 D); thus G1G2 is not an outer inverse of the product T2T1 = D4 − D2 by Corollary
8.3(ii).

On the other hand, we have E2 ∩ T −1
1 (E1) = span(x) = E2, hence we know by Corol-

lary 8.3(ii) that G2G1 is an outer inverse of T1T2 = D4 − D2. Furthermore, by Theorem
6.2 we can determine which boundary problem it solves without computing G1 and G2.
With Lemma 8.2, we obtain B⊥

1 ∩ E2 = {0} and B1 ∩ E⊥
2 = span(E0 D − E1, E1 D − E1).

Since applying the transpose T ∗
2 to E0 D − E1 and E1 D − E1 corresponds to multiplying

T2 = D2 −1 from the right, G2G1 is the generalized Green’s operator of

(D4 − D2, span(E0 D, E1 D, E1, E0 D3 − E1 D2, E1 D3 − E1 D2), R)

by (6); or, in traditional notation, it solves the boundary problem

u′′′′ − u′′ = f
u′(0) = u′(1) = u(1) = u′′′(0) − u′′(1) = u′′′(1) − u′′(1) = 0,

with exceptional space R.
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Appendix A. Duality
In the appendix, we summarize duality results for arbitrary vector spaces and their duals that gen-
eralize the standard duality for finite-dimensional vector spaces but do not require any topological
assumptions; see [30, Sections 9.2 and 9.3] and [28] for further details. The notation should also
remind of the analogous and well-known results for Hilbert spaces.

Let V and W be vector spaces over a field F and ⟨, ⟩ : V × W → F be a bilinear map. For
V1 ≤ V , we define the orthogonal

V ⊥
1 = {w ∈ W | ⟨v,w⟩ = 0 for all v ∈ V1} ≤ W.

The orthogonal W⊥
1 for W1 ≤ W is defined analogously. A subspace U is called orthogonally closed

if U = U⊥⊥. It follows directly from the definition that for all subsets X1, X2 ⊆ V , we have
X1 ⊆ X2 ⇒ X⊥

1 ⊇ X⊥
2 and X1 ⊆ X⊥⊥

1 ; and the same holds for subsets of W . Let P(V ) denote
the projective geometry of V , that is, the partially ordered set (poset) of all subspaces ordered by
inclusion. Then we have an order-reversing Galois connection between P(V ) and P(W ) defined by
U /→ U⊥.

We now consider the canonical bilinear form V × V ∗ → F of a vector space V and its dual V ∗
defined by ⟨v,β⟩ /→ β(v). Then every subspace V1 ≤ V is orthogonally closed with respect to the
canonical bilinear form, and every finite-dimensional subspace B ≤ V ∗ is orthogonally closed. The
Galois connection gives an order-reversing bijection between P(V ) and the poset of all orthogonally
closed subspaces of V ∗. So we can describe any subspace V1 ≤ V implicitly by the corresponding
orthogonally closed subspace V ⊥

1 . We denote the poset of all orthogonally closed subspaces of V ∗
with P(V ∗).

The projective geometry P(V ) is a modular lattice, where join and meet are defined as the sum
and intersection of subspaces. Modularity means that for all V1, V2, V3 ∈ P(V ) with V1 ≤ V3 we
have

V1 + (V2 ∩ V3) = (V1 + V2) ∩ V3. (A1)

Moreover, for spaces V1 ≤ V3 and V2 ≤ V4, we have

V = V1 + V2 = V3 ⊕ V4 ⇒ V1 = V3 and V2 = V4, (A2)

since V3 ∩ V4 = {0} implies V3 = (V1 ⊕ V2) ∩ V3 = V1 and V4 = (V1 ⊕ V2) ∩ V4 = V2.
One can also show that P(V ∗) is a modular lattice, where the meet is the intersection and the join

is the orthogonal closure of the sum of subspaces. Using this fact, one can prove in particular that the
sum of two orthogonally closed subspaces is orthogonally closed. The following theorem summarizes
Section 9.3 of [30].

Proposition A.1 The map V1 /→ V ⊥
1 gives an order-reversing lattice isomorphism with inverse

B1 /→ B⊥
1 between the complemented modular lattices P(V ) and P(V ∗). In particular, the inter-

section of orthogonally closed subspaces in V ∗ is orthogonally closed and

(V1 + V2)⊥ = V ⊥
1 ∩ V ⊥

2 and (B1 ∩ B2)⊥ = B⊥
1 + B⊥

2 .

The sum of two orthogonally closed subspaces in V ∗ is orthogonally closed and

(V1 ∩ V2)⊥ = V ⊥
1 + V ⊥

2 and (B1 + B2)⊥ = B⊥
1 ∩ B⊥

2 .

Furthermore, orthogonality preserves direct sums, such that

V = V1 ⊕ V2 ⇒ V ∗ = V ⊥
1 ⊕ V ⊥

2 and V ∗ = B1 ⊕ B2 ⇒ V = B⊥
1 ⊕ B⊥

2 .

For a linear map A : V → W between vector spaces, the transpose A∗ : W∗ → V ∗ is defined by
γ /→ γ ◦ A. The transposition map A /→ A∗ from L(V, W ) to L(W∗, V ∗) is linear, and it is injective
since for all w ̸= 0 there exists a linear map h ∈ W∗ with h(w) ̸= 0. Moreover, the transpose of a
composition is given by (A1 A2)∗ = A∗

2 A∗
1.
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1582 A. Korporal and G. Regensburger

The image of an orthogonally closed space under the transpose map is orthogonally closed, and
we have following identities, see, for example, [28, Prop. A.6].

Proposition A.2 Let V and W be vector spaces and A : V → W be linear. Then

A(V1)⊥ = (A∗)−1(V ⊥
1 ), A(B⊥

1 ) = (A∗)−1(B1)⊥,

A∗(C1)⊥ = A−1(C ⊥
1 ), A∗(W⊥

1 ) = A−1(W1)⊥,

for subspaces V1 ≤ V , W1 ≤ W , C1 ≤ W∗ and orthogonally closed subspaces B1 ≤ V ∗. In
particular,

(ImA)⊥ = Ker A∗, ImA = (Ker A∗)⊥, (ImA∗)⊥ = Ker A, ImA∗ = (Ker A)⊥,

for the image and kernel of A and A∗.

The property of being a projector, outer/inner/algebraic generalized inverse carries over to the
transpose.

Proposition A.3 A linear map P : V → V is a projector if and only if its transpose P∗ is a
projector. A linear map G : W → V is an outer/inner/algebraic generalized inverse of T : V → W
if and only if G∗ is an outer/inner/algebraic generalized inverse of T ∗.

Proof This follows from the defining equations for these properties. For example, if G is an outer
inverse of T , we have G∗T ∗G∗ = (GT G)∗ = G∗, and the reverse implication follows from the
injectivity of the transposition map. !

With the results of this section, we obtain the following duality principle for generalized inverses.

Remark A.4 Given a valid statement for linear maps on arbitrary vector spaces V over a common
field involving inclusions, {0} and V , sums and intersections, direct sums, kernels and images,
projectors, and outer/inner/algebraic generalized inverses, we obtain a valid dual statement by

• reversing the order of the linear maps and the corresponding domains and codomains,
• reversing inclusions and interchanging V and {0},
• interchanging sums and intersections,
• interchanging kernels and images.

For example, one easily checks that in Proposition 2.2, the statements (v)–(vii) are the duals of
(ii)–(iv) in this sense.
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