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Abstract

Based on recent theoretical results on optimal flux distributions in kinetic metabolic networks, we explore
the congruences and differences between solutions of kinetic optimization problems and results obtained
by constraint-based methods. We demonstrate that, for a certain resource allocation problem, kinetic
optimization and standard flux balance analysis (FBA) give rise to qualitatively different results. Furthermore,
we introduce a variant of FBA, called satFBA, whose predictions are in qualitative agreement with kinetic

optimization.

Introduction

The construction and analysis of genome-scale metabolic
networks are undoubtedly true success stories of systems
biology. Based on the increasing number of fully sequenced
genomes, large-scale metabolic reconstructions have enabled
us to establish a computational link between a given genome
and properties of the resulting metabolic phenotype [1,2].
As a prerequisite for the application to large-scale networks,
flux balance analysis (FBA) and related constraint-based
methods do not require extensive kinetic information on
individual enzymatic reactions. Rather, these methods build
upon constraints for the feasible biochemical flux space,
induced by the principles of mass and charge conservation
in biochemical reactions.

Considering only stoichiometric constraints however,
the fluxes in cellular metabolism are still highly under-
determined. The predictive power of constraint-based
methods derives from the assumption that the activities of
biochemical reactions are organized according to certain evol-
utionary plausible optimality principles. In the terminology
of FBA, an objective function is maximized or minimized.
It is the assumption of optimality in metabolic network
operation that enables specific, albeit not necessarily unique,
flux predictions for given constraints [3-5].

Although highly successful, the limits of FBA and related
methods are increasingly recognized [5-7]. The existence
of seemingly sub-optimal flux solutions, specifically low-
yield flux phenotypes, is well known, for example, aerobic
fermentation by microorganisms and many cancer cells.
An increasing number of constraint-based methods have
been proposed to explain such observed transitions to low-
yield pathways. The respective extensions of standard FBA
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typically incorporate additional cellular capacity constraints,
for example, induced by limited cytosolic space (molecular
crowding), limited membrane space, finite availability of
micro- and macro-nutrients or limited energy expenditure
for amino-acid synthesis [8-12].

Although additional constraints can often be justified
based on biophysical principles, the success of such
extensions in reproducing overflow metabolism and low-
yield pathways gives rise to a computational conundrum: To
what extent can constraint-based methods truly substitute
for kinetic optimization? To what extent are they sufficient
to identify the underlying causes of observed metabolic
transitions? In order to answer these questions, we must
go beyond constraint-based methods and consider the non-
linear optimization problem arising from a kinetic metabolic
network, taking into account the system of differential
equations that governs its dynamics.

Currently, kinetic optimization problems for large-scale
metabolic networks are not practicable. In addition to being
computationally hard, the solution requires detailed and
quantitative knowledge of the underlying rate equations
and their parameters, information that is not yet available.
Nonetheless, recent theoretical findings about the optimal
state of kinetic metabolic networks allow, for the first
time, to approach these questions from a fundamental
perspective. Two independent publications [13,14] showed
that any metabolic network that maximizes the rate of
a particular reaction given a limited enzymatic resource
operates in an elementary flux mode (EFM). However,
the specific EFM that exhibits optimal rate depends on
kinetic parameters, such as external metabolite concentra-
tions, in particular, its identity is not determined by its
yield.

In this contribution, we explore the differences and
congruences between kinetic and purely stoichiometric
models of metabolic networks, in particular, between kinetic
optimization and FBA.
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The enzyme allocation problem
A kinetic metabolic network with » metabolites and 7
reactions gives rise to the dynamical system

dx
i N (x;c, p),

where N € R”*" denotes the stoichiometric matrixand v € R
the vector of reaction rates as a function of metabolite
concentrations x € R”, enzyme concentrations ¢ € R” and
parameters p. (Clearly, the concentrations fulfill the natural
>0andc > 0.)

More specifically, the rate v; of reaction 7 is a product

nonnegativity constraints x

of the corresponding enzyme concentration ¢; and the
kinetic function «;(x, p) which may depend nonlinearly on
metabolite concentrations and parameters,

vi=cki(x,p), i =1,..., 7

Using the component-wise vector-product o, we write
v=cok(x,p).

In addition to stoichiometric constraints, we consider a
cellular capacity constraint, in particular, a limited enzymatic
resource,

iwiciSW

i=1

In the sum over all enzymatic reactions, the weights w;
are the amounts of the resource needed per unit enzyme
concentration and W is the available amount. The weights
might relate to cytosolic space, membrane space, nutrient or
energy expenditure.

Under this enzyme constraint, we maximize the steady-
state rate v;« of a particular reaction i* by varying metabolite
and enzyme concentrations, i.e., we solve an enzyme
allocation problem using kinetic optimization. For reasons
of comparison, we approximate the kinetic model (with the
enzyme constraint) by a purely stoichiometric model (with a
corresponding flux constraint) and directly vary fluxes, i.e.,
we solve the problem by FBA. We define the two problems
in Table 1.

The approximation of the kinetic by a purely stoi-
chiometric model is described in detail in the sub-section
‘3.2 Approximation: purely stoichiometric model with flux
constraint’ of the Supplementary Material. In particular,
reversible reactions are split into forward and backward
directions (and hence v > 0), weights are scaled (@; =
w; /kea;) and fluxes have upper bounds (v < V).

The properties of the two approaches are compared
in Table 1. Kinetic optimization is non-linear, it contains
the biophysical enzyme constraint and thermodynamic
feasibility is guaranteed by the kinetics. In contrast, FBA
is linear, the corresponding flux constraint is weaker than
the original enzyme constraint and thermodynamic feasibility
can be incorporated as an optional constraint.

Most importantly, the results obtained for the two
approaches are qualitatively different. As shown previously,
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Figure 1| A minimal metabolic network: two exchange reactions
(1, 3), two intracellular conversions (2, 4) and the formation of a
precursor molecule (5)

Reproduced from [13]: Maller, S., Regensburger, G. and Steuer, R. (2014)
Enzyme allocation problems in kinetic metabolic networks: Optimal
solutions are EFMs. ). Theor. Biol. 347, 182-190.
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optimal solutions of kinetic optimization are EFMs [13,14],
whereas optimal solutions of FBA are combinations of EFMs,
in general.

Kinetic optimization and FBA

We illustrate the comparison of kinetic optimization and FBA
by an example. We consider a minimal metabolic network
including fermentation, aerobic respiration and synthesis of
a biomass precursor from glucose (Figure 1).

The network contains three internal metabolites (glucose,
oxygen, ATP) and five reactions (glucose import, ferment-
ation, oxygen import, aerobic respiration, biosynthesis) for
which we assume Michaelis—Menten kinetics. In particular,
the rates of the import reactions depend on the external
glucose and oxygen concentrations. The network and the
kinetics are described in detail in the sub-sections ‘2.1
Metabolic network’ and 2.3 Kinetics” of the Supplementary
Material.

We note that the network can operate in two EFMs with
non-zero rate of biosynthesis (normalized to 1),

=(2,1,0,0,1)7 and € =(6/5,0,1/5,1/5,1)7

EFM e'! corresponds to ‘pure fermentation’ since reactions
3 and 4 have zero flux, whereas EFM e? corresponds to ‘pure
respiration’ since reaction 2 has zero flux. Further, e! has low
yield, since two glucose are needed to produce one precursor,
whereas e? has high yield, since only 6/5 glucose are needed.

Kinetic optimization

As discussed in the introduction and formalized in the
previous section, we consider a cellular capacity constraint,
in particular, a limited enzymatic resource. Under this
constraint, we maximize the steady-state rate of biosynthesis
by varying metabolite and enzyme concentrations. In other
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Table 1 | The enzyme allocation problem for kinetic and purely stoichiometric metabolic networks: definitions, properties and results

Enzyme allocation problem

Kinetic optimization FBA
max v« Max vy«
subject to subject to
Nv =0, Nv =020,
diwici < W, > wiv < W,
vV,
where and

v = Ccoxk(x,p),
x>0¢c>20.

(thermodynamic feasibility).

Non-linear in metabolite concentrations x,
linear in enzyme concentrations ¢

Biophysical enzyme constraint

Thermodynamic feasibility guaranteed by kinetics

Linear in fluxes v

Flux constraint

Optional thermodynamic feasibility constraint

Theorem: for arbitrary kinetics, optimal solutions are EFMs.

In general, optimal solutions are combinations of EFMs.

words, we solve an enzyme allocation problem using kinetic
optimization.

In fact, we are interested in the maximal rate of biosynthesis
vs for different external metabolite concentrations [Glc. ] and
[O2,ex]- In particular, since optimal solutions are necessarily
EFMs [13,14], we are interested in which EFM is optimal and
where a transition between EFMs occurs. Hence, we solve the
resulting non-linear optimization problems for EFM e! (pure
fermentation) and EFM e? (pure respiration) individually and
display the maximal rates in Figure 2.

Indeed, for high external glucose and low external oxygen
concentrations, pure fermentation is optimal (i.e., achieves
maximal rate under the enzyme constraint), whereas for low
glucose and high oxygen pure respiration is optimal.

In Figure 3 (top), we show the optimal rates of biosynthesis
and glucose import as functions of the external glucose
concentration (at fixed external oxygen concentration).
Clearly, there is a transition from pure respiration to pure
fermentation which is continuous in the rate of biosynthesis,
but discontinuous in the rate of glucose import. In fact, the
transition is discontinuous in all other rates and all enzyme
and metabolite concentrations (for details, see sub-section
2.4 Enzyme allocation’ of the Supplementary Material).

For comparison with FBA, we need to express results
obtained by kinetic optimization in terms of fluxes, without
using external metabolite concentrations. In Figure 3
(bottom), we show the optimal fluxes of biosynthesis
compared with glucose import. In this representation, EFMs
are the extreme rays of the projected flux cone and optimal
solutions lie on these rays, but not in the interior of the
cone.

Approximations by FBA

In a kinetic model, we can vary external metabolite
concentrations involved in the kinetics of exchange reactions
and solve the resulting non-linear optimization problems. In
the corresponding stoichiometric model, we can approximate
the variation of these parameters by the variation of:

1. upper bounds for exchange fluxes (standard FBA) or
2. saturation values for exchange reactions (satFBA).

In the example of the minimal metabolic network, instead
of varying the external metabolite concentrations [Glc] and
[O2,ex], we can either vary the upper bounds V; and V5 for the
corresponding exchange fluxes or the saturation values ¢; =
Kk1/kes and @3 = k3/ke s for the corresponding exchange
reactions.

The approximations of kinetic optimization by standard
FBA and satFBA are described in detail in the sub-section ‘3.3
Exchange reactions’ of the Supplementary Material. In both
approximations, we consider a linear optimization problem
involving the flux constraint ), w; v; < W arising from the
enzyme constraint.

In standard FBA, the constraints v; < V; for exchange
fluxes lead to optimal solutions that are combinations
of EFMs, in general. As a consequence, standard FBA
does not predict switches between EFMs, but continuous
transitions.

In satFBA, exchange reactions contribute terms (@;/¢;)v;
to the flux constraint arising from the enzyme constraint.
In other words, the saturation values ¢; = k; /ke; modulate
the weights W, for exchange fluxes, cf. [7] for an informal
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Figure 2| Maximal rate of biosynthesis vs as a function of external metabolite concentrations [Glcex] and [02,ex] for EFM e (pure

fermentation, blue) and EFM e? (pure respiration, green)

0.1
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Figure 3| Optimal rates of biosynthesis vs and glucose import vy as functions of external glucose concentration [Glcex] (at fixed external
oxygen concentration [0;,ex] = 10) for EFM e (pure fermentation, blue) and EFM e? (pure respiration, green) [top]. Optimal
fluxes vs compared with vy as a result of kinetic optimization [bottom].
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argument. Clearly, low saturation values lead to high weights.
Due to the absence of constraints for individual exchange
fluxes, optimal solutions of the resulting optimization
problems are EFMs, as in the case of kinetic optimization.
As a consequence, satFBA predicts switches between
EFMs.

©2015 Authors; published by Portland Press Limited

In Table 2, we compare optimal solutions obtained
by kinetic optimization, standard FBA and satFBA for
the example of the minimal metabolic network. Whereas
kinetic optimization predicts a switch between aerobic
respiration and fermentation, its approximation by standard
FBA predicts a continuous transition. The result of satFBA
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Table 2 | The enzyme allocation problem for the minimal network. Optimal solutions obtained by kinetic optimization and two variants

of FBA
Enzyme allocation problem
Kinetic optimization FBA
standard FBA
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agrees with the result of kinetic optimization, at least
qualitatively.

Conclusions

We have reviewed the modelling of resource allocation in
metabolic networks given a cellular capacity constraint.
This scenario can be caused by limited cytosolic space,
limited membrane space, finite availability of micro- and
macro-nutrients or limited energy expenditure for amino-
acid synthesis. In each of these instances, the resulting
enzyme constraint involves a weighted sum of enzyme
concentrations, where the weights are the resources needed
per enzyme.

Strictly speaking, enzyme constraints can only be
formulated in kinetic models of metabolic networks, where
metabolite and enzyme concentrations determine fluxes.
Such enzyme constraints however have motivated the
formulation of corresponding flux constraints in large-scale,
purely stoichiometric models, most notably to explain the
occurrence of low-yield pathways [7,11,12,15]. In fact, every

kinetic model with an enzyme constraint can be approximated
by a purely stoichiometric model with a corresponding
flux constraint. Analogously, kinetic optimization can be
approximated by FBA. However, the results of the two
approaches are qualitatively different. Optimal solutions
of kinetic optimization are EFMs [13,14], whereas optimal
solutions of FBA are combinations of EFMs, in general.

We have illustrated the comparison of kinetic optimization
and FBA by an example. We considered a minimal metabolic
network including fermentation and aerobic respiration
and maximized the rate of biosynthesis of a precursor
from glucose. Whereas kinetic optimization predicts an
abrupt switch between aerobic respiration (high-yield) and
fermentation (low-yield), its approximation by standard
FBA predicts a continuous transition. To address this
discrepancy, we have introduced a new variant of FBA, called
satFBA, which does not use upper bounds for individual
fluxes, but instead considers saturation values for exchange
reactions to mimic the effect of varying external metabolite
concentrations. The result of satFBA qualitatively agrees with
the result of kinetic optimization.

©2015 Authors; published by Portland Press Limited
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We note that experimentally both continuous and
discontinuous transitions are observed. Whereas metabolic
switches indicate an exclusive choice between alternative
metabolic states, such as in catabolite repression, different
metabolic strategies can also operate simultaneously, such
as fermentation and residual respiration in cancer cells [16].
The theoretical results in the studies by Miller et al. [13]
and Wortel et al. [14] suggest that such a co-occurrence of
metabolic strategies is either caused by additional constraints
or an instance of sub-optimal adaptation.

We claim that kinetic models of metabolic networks
will lead to a better understanding of resource allocation.
Using enzyme kinetics and assuming that metabolic activity
is organized according to optimality principles, we can
identify the relevant constraints and objective functions.
However, at the moment, kinetic optimization for large-scale
metabolic networks is not practicable and approximations
by FBA are being used. Whereas constraint-based methods
can never substitute for non-linear optimization from a
quantitative perspective, the predictions of satFBA and
kinetic optimization are in qualitative agreement.
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