
Algorithmic Operator Algebras via
Normal Forms for Tensors

Jamal Hossein Poor∗, Clemens G. Raab∗, and Georg Regensburger∗
Johann Radon Institute for Computational and Applied Mathematics (RICAM)

Austrian Academy of Sciences
4040 Linz, Austria

{jamal.hossein.poor,clemens.raab,georg.regensburger}@ricam.oeaw.ac.at

ABSTRACT
We propose a general algorithmic approach to noncommu-
tative operator algebras generated by linear operators. Ore
algebras are a well-established tool covering many cases aris-
ing in applications. However, integro-differential operators,
for example, do not fit this structure. Instead of using (pa-
rametrized) Gröbner bases in noncommutative polynomial
algebras as has been used so far in the literature, we use
Bergman’s basis-free analog in tensor algebras. This allows
for a finite reduction system with unique normal forms. To
have a smaller reduction system, we develop a generalization
of Bergman’s setting, which also makes the algorithmic ver-
ification of the confluence criterion more efficient. We pro-
vide an implementation in Mathematica and we illustrate
both versions of the tensor setting using integro-differential
operators as an example.

Keywords
operator algebra; tensor algebra; integro-differential opera-
tors; noncommutative Gröbner basis; reduction systems

1. INTRODUCTION
Skew polynomials are used in the literature for an alge-

braic and algorithmic treatment of many common operators
like differential and difference operators; see e.g. [6] or the
recent overview [8]. Normal forms for skew polynomials are
given by the standard polynomial basis. However, normal
forms for univariate integral operators are of the form f

∫
g.

We show that tensor algebras and their quotients are useful
for algebraic modeling of and algorithmic computations with
linear operators. Tensor algebras naturally capture the mul-
tilinearity of composition of linear operators. In addition,
they allow basis-free treatment of multiplication operators.
Moreover, for integro-differential operators, they also cover
general rings of constants which do not have to be fields.

∗Supported by the Austrian Science Fund (FWF): P27229.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’16, July 19 - 22, 2016, Waterloo, ON, Canada
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4380-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2930889.2930900

For computing in quotients of tensor algebras, we use
Bergman’s analog [3] of Gröbner bases, which we recall in
Section 2. Obstructions for general algorithms, like decid-
ing existence of finite Gröbner bases, are inherited from the
noncommutative polynomial algebra case. In this paper, we
focus on verification of confluence based on Bergman’s cri-
terion, for which we need to compute in the tensor algebra.
However, for a confluent reduction system, determining nor-
mal forms reduces to a combinatorial problem on words.

In Section 3, we apply Bergman’s original result to integro-
differential operators in a direct way. Motivated by short-
comings of that, we develop a two-level tensor setting in Sec-
tion 4. Its flexibility in modeling operator algebras allows
for a smaller reduction system and makes the computation
more efficient, see Section 5. In each section, we comment
about the computational aspects and our implementation.
The Mathematica package TenReS [10] together with the ex-
amples of this paper is available at:

http://gregensburger.com/software/TenReS.zip
Using differential operators, we illustrate advantages of

the tensor setting over construction in noncommutative poly-
nomial algebras. Assuming no knowledge about their nor-
mal forms, we cannot use skew polynomials here. Through-
out the paper, K denotes a commutative ring with unity.

Example 1. Recall that differential operators with poly-
nomial coefficients (Weyl algebra) over a field F ⊇ Q can be
defined as the quotient algebra F 〈X,D〉/(DX −XD− 1) of
F 〈X,D〉. For any differential K-algebra (R, ∂) over K, we
introduce for each f ∈ R an indeterminate dfe and consider
the noncommutative polynomial algebra K〈(dfe)f∈R, ∂〉. If
we have a K-basis of R, then we just take basis elements as
generators and use basis expansion in each step. However,
this would not affect the main points of the following dis-
cussion. We factor out the two-sided ideal generated by the
parametrized identities

dfedge = dfge and ∂dfe = dfe∂ + d∂fe

for f, g ∈ R, corresponding to the composition of multi-
plication operators and the Leibniz rule. Computing the
parametrized S-polynomial between these two identities, we
obtain after some reduction steps

S(∂dfe, dfedge) = (dfe∂ + d∂fe)dge − ∂dfge
→ dfge∂ + df∂ge+ d(∂f)ge − dfge∂ − d∂(fg)e

for f, g ∈ R. For reducing this parametrized S-polynomial to
zero, we would need the identity d∂(fg)e = d(∂f)ge+ df∂ge
for f, g ∈ R, corresponding to addition and the Leibniz rule

397

http://dx.doi.org/10.1145/2930889.2930900
http://gregensburger.com/software/TenReS.zip

in the algebra R. However, such identities cannot directly be
used for Gröbner bases in the noncommutative polynomial
algebra without expansion w.r.t. a basis of R.

As mentioned above, for a basis-free treatment of the K-
linear structure of R, we can use the tensor algebra on the
module R ⊕ K∂ for differential operators. To deal with
parametrized rules, one uses reduction rules defined by K-
module homomorphisms. Corresponding to the two parame-
trized identities above, we need two homomorphisms defined
by f ⊗ g 7→ fg and ∂ ⊗ f 7→ f ⊗ ∂ + ∂f . The S-polynomials
formed from these two homomorphisms reduce to zero for
all f, g ∈ R due to the Leibniz rule in R:

S(∂ ⊗ f, f ⊗ g) = (f ⊗ ∂ + ∂f)⊗ g − ∂ ⊗ (fg)

→ fg ⊗ ∂ + f∂g + (∂f)g − fg ⊗ ∂ − ∂(fg) = 0.

2. GRÖBNER BASES FOR TENSORS
In this section, we introduce the setting and notions for

Gröbner bases in tensor algebras following Bergman and us-
ing standard notation for reduction systems from [1]. We
first outline the construction of the K-tensor algebra K〈M〉
on a K-module M , which is a generalization of the noncom-
mutative polynomial algebra on a set.

We denote the n-fold tensor product of M with itself over
K by M⊗n = M ⊗ . . . ⊗ M (n factors). In particular,
M⊗1 = M and we interpret M⊗0 as the free K-module Kε,
where ε denotes the empty tensor. Elements of the form
m1 ⊗ . . . ⊗ mn ∈ M⊗n with m1, . . . ,mn ∈ M , are called
pure tensors and they generate M⊗n as a K-module. A K-
module homomorphism from M⊗n, n ≥ 1, to a K-module
is uniquely determined by specifying it on the generators
m1⊗. . .⊗mn, in such a way that the value is a K-multilinear
function of m1, . . . ,mn. As a K-module, K〈M〉 is defined
as the direct sum K〈M〉 =

⊕∞
n=0 M

⊗n with multiplication

M⊗r ×M⊗s →M⊗(r+s) given by

(m1⊗. . .⊗mr, m̃1⊗. . .⊗m̃s) 7→ m1⊗. . .⊗mr⊗m̃1⊗. . .⊗m̃s,

which can be extended to K〈M〉 by bilinearity. With this
multiplication K〈M〉 is a K-algebra with ε being its one el-
ement. Note that for a free K-module M with basis X, the
K-tensor algebra K〈M〉 is isomorphic to the noncommuta-
tive polynomial algebra K〈X〉. It has the set of all products
x1 ⊗ . . .⊗ xn for x1, . . . , xn ∈ X as a K-module basis.

Now we are ready to introduce the setting for Gröbner
bases in tensor algebras following Bergman. Let (Mx)x∈X be
a family of K-modules indexed by a set X. The modules Mx

play the role of the indeterminates in the noncommutative
polynomial algebra, where one would take the free module
Mx = Kx generated by the indeterminate x.

We denote the free monoid on X by 〈X〉 and its one el-
ement by ε. The free monoid 〈X〉 can also be regarded as
the word monoid over the alphabet X with ε as the empty
word. For every word W = x1 . . . xn ∈ 〈X〉, we denote the
tensor product of the corresponding modules by

MW = Mx1 ⊗ · · · ⊗Mxn .

In particular, we have Mε = Kε for the empty word/tensor
ε. The pure tensors m1⊗. . .⊗mn ∈MW with mi ∈Mxi play
the role of the monomials in the noncommutative polynomial
algebra. We consider the direct sum

M =
⊕
x∈X

Mx (1)

and the K-tensor algebra on M :

K〈M〉 =

∞⊕
n=0

M⊗n =
⊕

W∈〈X〉

MW . (2)

Every tensor t ∈ K〈M〉 can be written as a linear combi-
nation of pure tensors. However, in contrast to linear com-
binations of monomials in the noncommutative polynomial
algebra, this representation is not unique. Still, using mod-
ule homomorphisms, one can define reductions analogous to
polynomial reduction for commutative Gröbner bases.

Definition 2.1. Let M be given by (1). A reduction rule
for K〈M〉 is given by a pair (W,h) of a word W ∈ 〈X〉
and a K-module homomorphism h : MW → K〈M〉. For a
reduction rule r = (W,h) and words A,B ∈ 〈X〉, we define
a reduction as the K-module homomorphism

hA,r,B : K〈M〉 → K〈M〉

acting as idA ⊗ h ⊗ idB on MAWB and the identity on all
other MV with V ∈ 〈X〉 and V 6= AWB.

For a tensor a ⊗ w ⊗ b ∈ MAWB with a ∈ MA, w ∈ MW ,
and b ∈MB , the reduction hA,r,B is given by

a⊗ w ⊗ b 7→ a⊗ h(w)⊗ b.

So, as for polynomial reduction, we“replace”the“monomial”
w by the “tail” h(w) given by the homomorphism h.

Let t ∈ K〈M〉. A reduction hA,r,B acts trivially on t, i.e.
hA,r,B(t) = t, if the summand of t in MAWB is zero, see
Eq. (2). A reduction rule r = (W,h) reduces t to s ∈ K〈M〉
if a reduction hA,r,B for some A,B ∈ 〈X〉 acts nontrivially
on t and hA,r,B(t) = s and we write t→r s.

A reduction system over X for K〈M〉 is a set Σ of reduc-
tion rules. Every reduction system Σ induces a reduction
relation →Σ on tensors by defining t →Σ s for t, s ∈ K〈M〉
if t →r s for some reduction rule r ∈ Σ. Fixing a reduc-
tion system Σ, we say that t ∈ K〈M〉 can be reduced to
s ∈ K〈M〉 by Σ if t = s or there exists a finite sequence of
reduction rules r1, . . . , rn in Σ such that

t→r1 t1 → . . .→rn−1 tn−1 →rn s

and we write t
∗→Σ s. In other words,

∗→Σ denotes the re-
flexive transitive closure of the reduction relation →Σ.

The set of irreducible words 〈X〉irr ⊆ 〈X〉 consists of those
words having no subwords from the set {W | (W,h) ∈ Σ}.
We define the submodule of irreducible tensors as

K〈M〉irr =
⊕

W∈〈X〉irr

MW . (3)

We also need to consider partial orders on 〈X〉. A monoid
partial ordering on 〈X〉 is a partial order ≤ on 〈X〉 such that

ε ≤ A and B < B̃ ⇒ ABC < AB̃C for all A,B, B̃, C ∈ 〈X〉.
It is called Noetherian if there are no infinite descending
chains. It is compatible with a reduction system Σ if for all
reduction rules (W,h) ∈ Σ, we have

h(MW) ⊆
⊕
V <W

MV .

If a compatible monoid partial ordering is Noetherian, then
there do not exist infinite sequences of reductions in Σ. In
other words, the reduction relation →Σ is terminating or

398

Noetherian. So, in that case, every t ∈ K〈M〉 can be reduced
in finitely many steps to an irreducible tensor

t
∗→Σ s ∈ K〈M〉irr

and such an s is called a normal form of t. In general, a
tensor can have different normal forms. If t ∈ K〈M〉 has a
unique normal form, we denote it by t ↓Σ. Note that such
a unique normal form is unique as an element in K〈M〉irr,
but as tensor, it has several representations.

For ensuring unique normal forms for reduction systems
on tensor algebras, we state below Bergman’s analog of Buch-
berger’s criterion for Gröbner bases [5]. In the context of
Gröbner-Shirshov bases for various algebraic structures this
is also referred to as the Composition-Diamond Lemma; see
e.g. the recent survey [4] and in connection with integro-
differential algebras also [7].

We study the cases when two different rules of a reduction
system Σ act nontrivially on tensors in MW for W ∈ 〈X〉.

Definition 2.2. An overlap ambiguity is given by reduc-
tion rules (W,h), (W̃ , h̃) ∈ Σ and nonempty words A,B,C ∈
〈X〉 such that

W = AB and W̃ = BC.

It is called resolvable if for all a ∈ MA, b ∈ MB, and c ∈
MC , the S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∗→Σ 0.

An inclusion ambiguity is given by distinct reduction rules
(W,h), (W̃ , h̃) ∈ Σ and words A,B,C ∈ 〈X〉 with W = B

and W̃ = ABC. It is called resolvable if for all a ∈ MA,
b ∈ MB, and c ∈ MC , the S-polynomial can be reduced to

zero: a⊗ h(b)⊗ c− h̃(a⊗ b⊗ c) ∗→Σ 0.

With slight abuse of notation, we refer to S-polynomials
of an overlap or inclusion ambiguity, respectively, by

S(AB,BC) or S(B,ABC).

A reduction system Σ induces the two-sided ideal

IΣ := (t− h(t) | (W,h) ∈ Σ and t ∈MW) ⊆ K〈M〉. (4)

For studying operator algebras, we want to compute in the
factor algebra K〈M〉/IΣ. If all ambiguities are resolvable,
we can do this constructively using reductions in K〈M〉 and
the normal forms with respect to→Σ. This is the confluence
criterion (condition 1. below) that we will check algorithmi-
cally, for a brief discussion see the following subsection.

Theorem 2.3. ([3]) Let (Mx)x∈X be a family of K-modu-
les indexed by a set X, and let M =

⊕
x∈XMx. Let Σ be a

reduction system on K〈M〉 and ≤ be a Noetherian monoid
partial ordering on 〈X〉 that is compatible with Σ. Then the
following are equivalent:

1. All ambiguities of Σ are resolvable.

2. Every t ∈ K〈M〉 has a unique normal form t↓Σ.

3. K〈M〉/IΣ and K〈M〉irr are isomorphic as K-modules.

If these conditions hold, then we can define a multiplication
on K〈M〉irr by s · t := (s ⊗ t) ↓Σ so that K〈M〉/IΣ and
K〈M〉irr are isomorphic as K-algebras.

Example 2. We revisit Example 1 to study it formally
in the tensor algebra setting. Let (R, ∂) be a differential K-
algebra. We consider the K-module MF = R of “functions”
from the differential algebra R (indexed by the letter F), the
free K-module MD = K∂ generated by ∂ (indexed by the
letter D), and the direct sum M = MF ⊕MD. Then words
over the alphabet X = {F,D} index the direct summands
of the K-tensor algebra K〈M〉.

We interpret elements f ∈ R as multiplication operators,
∂ as the derivation on R, and the tensor product ⊗ as the
composition of linear operators. Hence we consider the re-
duction system Σ = {rFF , rDF } with the two reduction rules

rFF = (FF, f⊗g 7→ fg) and rDF = (DF, ∂⊗f 7→ f⊗∂+∂f)

corresponding to the composition of multiplication opera-
tors and the Leibniz rule. Note that the K-module homo-
morphisms corresponding to rFF and rDF map MFF →MF

and MDF →MFD ⊕MF , respectively.
So any monoid partial ordering ≤ on 〈X〉 with DF > FD

is compatible with Σ, e.g. the degree-lexicographic ordering
with D > F . There are two overlap ambiguities. The S-
polynomials of the first reduce to zero in two reduction steps:

S(FF , FF) = (fg)⊗ h− f ⊗ (gh)

→rFF fgh− f ⊗ (gh)→rFF fgh− fgh = 0.

We already have seen in Example 1 that the S-polynomials
S(DF,FF) reduce to zero. Hence by Theorem 2.3 every
t ∈ K〈M〉 has a unique normal form t↓Σ inK〈M〉irr given by

Kε⊕MF ⊕MD ⊕ (MF ⊗MD)⊕M⊗2
D ⊕ (MF ⊗M⊗2

D)⊕ . . .

since 〈X〉irr = {ε, F,D, FD,D2, FD2, . . .}. In other words,
t↓Σ can be written as a K-linear combination of pure tensors
of the form ε, f, ∂, f ⊗ ∂, ∂ ⊗ ∂, f ⊗ ∂ ⊗ ∂, . . .
2.1 Computational Aspects

Considering the algorithmic aspects of Theorem 2.3, we
assume that we have a finite reduction system Σ over a finite
alphabet X. Moreover, a compatible Noetherian monoid
partial order has to be assumed on 〈X〉.

Generating the finite set of ambiguities is just a simple
combinatorial task in the word monoid 〈X〉. Determining
〈X〉irr is a purely combinatorial problem on words as well,
albeit less simple. Since modules MW are generated by pure
tensors, it suffices to work with S-polynomials defined by
pure tensors constructed from general elements of the basic
modules Mx. The result of a reduction step, i.e. the applica-
tion of a homomorphism from the reduction system, needs
to be simplified in the tensor algebra. This involves applica-
tion of properties of the tensor product and of identities in
the modules, like the Leibniz rule in the example above. In
practice, the reduction to zero often can be detected heuris-
tically without having a canonical simplifier in the modules.

The package TenReS provides routines to generate all am-
biguities and corresponding S-polynomials of a reduction
system given by the user. It also includes routines for com-
puting in the tensor algebra. Computations in the modules
(1) and homomorphisms of reduction rules have to be im-
plemented by the user in each concrete case.

3. INTEGRO-DIFFERENTIAL OPERATORS
Integro-differential operators were introduced in [14, 16]

to study boundary problems using noncommutative polyno-
mial algebras and a basis of the coefficient algebra; see also

399

the survey [17]. For polynomial coefficients, also general-
ized Weyl algebras [2] and skew polynomials [13] have been
used to study them. In this section, we apply Bergman’s
tensor setting presented above to the construction of nor-
mal forms for integro-differential operators (IDO) over an
arbitrary integro-differential algebra. First, we recall the
definition of an integro-differential algebra [17, 9].

Definition 3.1. Let (R, ∂) be a differential algebra over
K such that 1 ∈ R and ∂R = R. Moreover, let

∫
: R → R

be an K-linear operation on R such that

∂
∫
f = f (5)

for all f ∈ R. We call (R, ∂,
∫

) an integro-differential
algebra over K if the evaluation E: R → K defined by
E := id−

∫
∂ is multiplicative, i.e. for all f, g ∈ R we have

Efg = (Ef)Eg. (6)

For the rest of this paper, we fix an arbitrary integro-differen-
tial algebra (R, ∂,

∫
) over its ring of constants K with eval-

uation E = id −
∫
∂. Recall from [9] that in any integro-

differential algebra, we have the direct sum decomposition

R = K ⊕
∫
R

into constant and non-constant“functions”. We consider the
corresponding K-modules

MK = K and MF̃ =
∫
R (7)

(indexed by the symbols K and F̃). Note that the elements
of MK and MF̃ are not interpreted as functions but as mul-
tiplication operators induced by those functions. We also
consider the set

Φ := {ϕ : R→ K | ϕ is K-linear and multiplicative} (8)

of all characters on R, which we refer to as multiplicative
“functionals”. Note that E ∈ Φ by definition. Again, we
have a direct sum decomposition KΦ = KE ⊕ KΦ̃ where
Φ̃ := Φ \ {E}. For the K-linear operators ∂,

∫
, E, and

ϕ ∈ Φ̃ we consider the free modules

MD = K∂, MI = K
∫
, ME = KE, MC̃ = KΦ̃ (9)

generated by them (indexed by the symbols D, I, E, and

C̃). Now, let

M = MK ⊕MF̃ ⊕MD ⊕MI ⊕ME ⊕MC̃ (10)

and X = {K, F̃ ,D, I, E, C̃}. In order to compute with these
operators we need to collect the identities they satisfy in
form of a reduction system. To this end, we first list basic
identities (like the Leibniz rule) and some of their conse-
quences (like integration by parts) that hold in R. For all
f, g ∈ R and ϕ,ψ ∈ Φ:

ϕfg = (ϕf)ϕg ∂
∫
g = g

ψϕg = (ψ1)ϕg
∫
∂g = g − Eg

E
∫
g = 0

∫
fϕg = (

∫
f)ϕg

∂fg = f∂g + (∂f)g
∫
f∂g = fg −

∫
(∂f)g − (Ef)Eg

∂ϕg = 0
∫
f
∫
g = (

∫
f)

∫
g −

∫
(
∫
f)g

All these identities correspond to identities for operators
acting on g ∈ R. Together with the properties of multiplica-
tion operators we list them in Table 1 in the form of words
W ∈ 〈X〉 and reduction homomorphisms h : MW → K〈M〉
defined in terms of all f, g ∈MF̃ and ϕ,ψ ∈ Φ.

K 1 7→ ε

F̃ F̃ f ⊗ g 7→ fg

EF̃ , C̃F̃ ϕ⊗ f 7→ (ϕf)ϕ

EE,EC̃, C̃E, C̃C̃ ψ ⊗ ϕ 7→ (ψ1)ϕ
EI E⊗

∫
7→ 0

DF̃ ∂ ⊗ f 7→ f ⊗ ∂ + ∂f

DE,DC̃ ∂ ⊗ ϕ 7→ 0
DI ∂ ⊗

∫
7→ ε

IE, IC̃
∫
⊗ ϕ 7→

∫
1⊗ ϕ

ID
∫
⊗ ∂ 7→ ε− E

II
∫
⊗

∫
7→

∫
1⊗

∫
−

∫
⊗

∫
1

IF̃E, IF̃ C̃
∫
⊗ f ⊗ ϕ 7→

∫
f ⊗ ϕ

IF̃D
∫
⊗ f ⊗ ∂ 7→ f −

∫
⊗ ∂f − (Ef)E

IF̃ I
∫
⊗ f ⊗

∫
7→

∫
f ⊗

∫
−

∫
⊗

∫
f

Table 1: Reduction rules for IDO

Definition 3.2. Let (R, ∂,
∫

) be an integro-differential al-
gebra over its ring of constants K. We call

R〈∂,
∫
,Φ〉 := K〈M〉/J

the algebra of integro-differential operators, where J is the
ideal induced by the reduction system obtained from Table 1.

In order to compute in R〈∂,
∫
,Φ〉 we want to analyze the

reduction system defined by Table 1 according to Bergman’s
theorem above and determine normal forms of tensors.

Theorem 3.3. Let (R, ∂,
∫

) be an integro-differential K-
algebra and let Φ be the set of multiplicative functionals as
in Eq. (8). Let M be as in Eqs. (7), (9), and (10) and let
the reduction system Σ be defined by Table 1.

Then every t ∈ K〈M〉 has a unique normal form t ↓Σ,
which is given by a K-linear combination of pure tensors

f ⊗ ϕ⊗ ∂⊗j or f ⊗ ϕ⊗
∫
⊗ g

where j ∈ N0, each of f, g ∈ MF̃ and ϕ ∈ Φ may be absent,
and ϕ⊗

∫
does not specialize to E⊗

∫
. Moreover,

R〈∂,
∫
,Φ〉 ∼= K〈M〉irr

as K-algebras, where the multiplication on K〈M〉irr is de-
fined by s · t := (s⊗ t)↓Σ.

Proof. We use the alphabet X = {K, F̃ ,D, I, E, C̃}.
For defining a Noetherian monoid partial order ≤ on 〈X〉
that is compatible with Σ, it is sufficient to require the
Noetherian monoid partial order to satisfy

F̃ F̃ > K, DF̃ > F̃D > K, IF̃D > E, ID > E, I > F̃ .

For instance, we could use a degree-lexicographic order with
I > D > C̃ > E > F̃ > K or other degree-lexicographic
orders with D > F̃ and I > F̃ . Then by our software
package we verify that all ambiguities of Σ are resolvable,
see Section 3.1. Hence by Theorem 2.3 every element of
K〈M〉 has a unique normal form and R〈∂,

∫
,Φ〉 ∼= K〈M〉irr

as K-algebras.
It remains to determine the explicit form of elements in

K〈M〉irr. In order to do so, we determine the set of irre-
ducible words 〈X〉irr in 〈X〉. Irreducible words containing

only the letters K and F̃ have to avoid the subwords K and
F̃ F̃ , hence only the words ε and F̃ are left. The irreducible
words containing only E and C̃ are exactly ε, E, and C̃,

400

since they have to avoid the subwords EE,EC̃, C̃E, C̃C̃. Al-
together, we see that the irreducible words containing only
the letters K, F̃ , E, C̃ are given by the set

{ε, F̃ , E, C̃, F̃E, F̃ C̃},

since they have to avoid the subwords EF̃ and C̃F̃ . Allowing
also the letter D, we have to avoid the subwords DF̃ , DE,
and DC̃. Therefore, we can only append Dj with j ∈ N0 to
the words in the set above in order to obtain all irreducible
words not containing I. Finally, we also allow the letter I.
Since subwords EI and DI have to be avoided, the first I
in an irreducible word can only be preceded by ε, F̃ , C̃, or
F̃ C̃. We also have to avoid the subwords IE, IC̃, ID, II, so
any letter immediately following I has to be F̃ . In addition,
we have to avoid the subwords IF̃E, IF̃ C̃, IF̃D, IF̃ I, so I
cannot be followed by a subword of length greater than one.
Altogether, the irreducible words from 〈X〉irr are of the form

F̃ V Dj or F̃ C̃IF̃

where j ∈ N0 and each of F̃ , C̃, and V ∈ {E, C̃} may be
absent. The normal forms follow from (3).

3.1 Computational aspects
We briefly discuss how our implementation of the verifica-

tion of the confluence criterion for tensor algebras behaves
on the reduction system Σ given by Table 1.

Using the package TenReS, we determine that there are
79 ambiguities. The corresponding S-polynomials are gen-
erated automatically from general elements of basic mod-
ules. Applying the tensor reduction rules from Σ together
with identities in R, all S-polynomials are reduced to zero
automatically. Here we just comment about the reduction
process and refer to the example file for details.

There are 3 ambiguities for which the corresponding S-
polynomials are zero anyway, for instance

S(DE,EI) = 0⊗
∫
− ∂ ⊗ 0 = 0.

The S-polynomials of 69 remaining ambiguities are reduced
to zero by just applying automatically the implementation
of rules from Σ and identities in R, e.g. for general f ∈MF̃ :

S(ID,DF̃) = (ε− E)⊗ f −
∫
⊗ (f ⊗ ∂ + ∂f)

→r
EF̃

f − (Ef)E−
∫
⊗ f ⊗ ∂ −

∫
⊗ ∂f →r

IF̃D
0.

For the remaining 7 ambiguities the program has to do more
in order to reduce the S-polynomials completely to zero.
This is because after some reduction steps expressions in R
occur, which do not belong to any of the two submodules
MK and MF̃ in general, and no reduction applies that acts
on that term. To remedy this, these expressions then have
to be split further according to R = MK ⊕ MF̃ in order
to proceed with the reduction process. We give one such
instance, which first can be reduced as follows.

S(IF̃D,DI) = (f −
∫
⊗ ∂f − (Ef)E)⊗

∫
−

∫
⊗ f ⊗ ε

→rEI f ⊗
∫
−

∫
⊗ (∂f)⊗

∫
−

∫
⊗ f

Then there is no reduction that directly applies to any of
these terms, since ∂f ∈ R is neither in MK nor in MF̃

for general f ∈ MF̃ =
∫
R. So we write f =

∫
c +

∫
g for

appropriate c ∈MK and g ∈MF̃ . This replacement is done
automatically in our implementation. Then the reduction
process continues as usual.

0 1 2 3–4 5–8 > 8
0

20

40

steps

3

19

30

13
11

3

44

22

7

2 2 2

a
m
b
ig
u
it
ie
s

reductions →Σ

identities in R

Figure 1: Histogram of computational steps used by
our implementation for resolving each ambiguitiy

We collect more detailed statistics about the whole reduc-
tion process in Figure 1. For 3 ambiguities we do not need
to apply reductions and for a total of 44 ambiguities no iden-
tities in R are applied in order to reduce the corresponding
S-polynomial to 0. The maximal number of reductions used
for one ambiguity is 12 and the maximal number of identities
in R is 10, which both happens for S(IF̃D,DF̃). Per am-
biguity on average 2.84 reductions and 1.00 identities have
been used in the computation.

Inspecting the computation more closely one sees also
that many S-polynomial reductions actually are done more
than once, due to the splitting (10). For instance the S-

polynomials S(IF̃ I, IE) and S(IF̃ I, IC̃) are reduced com-
pletely in the same way. Since that happens a lot for this
particular reduction system we want to refine the setting in
order to reduce the redundancy.

4. TWO-LEVEL TENSOR SETTING
In the example of the previous section the reduction sys-

tem contained several reduction rules, where the homomor-
phism is defined by the same formula and the homomor-
phisms differ only by the choice of their domain. This leads
to some redundancy in the investigation of ambiguities and
S-polynomials. Sticking to the above definition of reduction
systems for tensor algebras, this situation cannot be avoided.

To increase flexibility in formulating reduction systems for
K〈M〉, we generalize the setting by considering two decom-
positions of the K-module M at the same time, where one
decomposition is a refinement of the other:

M =
⊕
x∈X

Mx =
⊕
y∈Y

My. (11)

Definition 4.1. Let (Mx)x∈X and (My)y∈Y be two fam-
ilies of K-modules indexed by sets X and Y , respectively.
We call (Mx)x∈X a refinement of (My)y∈Y if there exists a
partition (Xy)y∈Y of X such that

• Xy = {y} for all y ∈ X ∩ Y and

• My =
⊕

x∈Xy
Mx for all y ∈ Y .

Following this definition, whenever a letter occurs in both
alphabets X and Y the corresponding module is the same in
both decompositions. If Xy is not a singleton, the module
My is actually refined. We consider the combined alphabet

Z := X ∪ Y.

For wordsW = w1 . . . wn ∈ 〈Z〉, we define the corresponding
submodule of K〈M〉 as before by MW := Mw1 ⊗ . . .⊗Mwn .

401

We define the set of specializations of W by replacing all its
letters from Y \X by corresponding letters from X:

S(W) := {V ∈ 〈X〉 | |V | = n ∧ ∀i : (vi = wi ∨ vi ∈ Xwi)}.

Remark 1. Note that for V ∈ 〈X〉 and W ∈ 〈Z〉 the
modules MV and MW either intersect only in 0 or MV is
contained in MW . Note further that S(W) consists of all
V ∈ 〈X〉 such that MV is a submodule of MW . Moreover,

MW =
⊕

V ∈S(W)

MV .

Remark 2. Reduction rules (over Z) are defined by re-
placing X with Z in Definition 2.1. A reduction system Σ
over Z is simply a set of such reduction rules. We define the
ideal IΣ by (4), and we define the irreducible words 〈X〉irr
w.r.t. Σ as the set of words from 〈X〉 containing no subwords
from the set

⋃
{S(W) | (W,h) ∈ Σ}. Based on 〈X〉irr, we

define K〈M〉irr as in (3).

Modeling an operator algebra as K〈M〉/IΣ, this two-level
setting provides much more flexibility in describing the ideal
by a reduction system Σ. Previously, with just one decom-
position (1), K〈M〉 was a direct sum of the modules MW ,
which are the possible domains for the homomorphisms of
reduction rules (over X). Now, with two decompositions
(11), the sum of all MW is not direct anymore, allowing co-
existence of reduction rules (over Z) that could not be used
together in a reduction system before without splitting them
into several rules.

In some of the following proofs for a reduction system Σ
over Z, we need the induced reduction system ΣX over X:

ΣX :=
⋃

(W,h)∈Σ

{(V, h|MV) | V ∈ S(W)}. (12)

From (12), it is obvious that the following lemma holds.

Lemma 4.2. Let Σ be a reduction system over Z induc-
ing ΣX over X. Then the reduction relations and the irre-
ducible words are the same for Σ and for ΣX .

Definition 4.3. We call a partial order ≤ on 〈Z〉 consis-
tent with (Mx)x∈X being a refinement of (My)y∈Y if for all

words V,W ∈ 〈Z〉 with V < W we also have Ṽ < W̃ for all

specializations Ṽ ∈ S(V) and W̃ ∈ S(W).

Note that the above definition implies W̃ ≮ W for all
W̃ ∈ S(W), which can be seen by choosing V = W̃ .

A monoid partial order ≤ on 〈Z〉 is compatible with a
reduction system Σ over Z if for all (W,h) ∈ Σ we have

h(MW) ⊆
∑
V ∈〈Z〉
V <W

MV .

If in addition ≤ is also consistent with (Mx)x∈X being a
refinement of (My)y∈Y then we have∑

V ∈〈Z〉
V <W

MV =
⊕
V ∈〈Z〉
V <W

MV =
⊕

V ∈〈X〉,W̃∈S(W)

V <W̃

MV .

Lemma 4.4. Let Σ be a reduction system over Z and let
≤ be a monoid partial order on 〈Z〉 consistent with (Mx)x∈X
being a refinement of (My)y∈Y and compatible with Σ. Then
the restricted order ≤ on 〈X〉 is compatible with ΣX .

We also generalize the notion of ambiguities to take spe-
cialization into account, see Definition 4.5. To this end, note
first that for W, W̃ ∈ 〈Z〉 having a common specialization,

i.e. S(W) ∩ S(W̃) 6= ∅, there exists V ∈ 〈Z〉 such that

S(V) = S(W) ∩ S(W̃).

While the word V is not necessarily unique, the correspond-
ing module MV is unique and will be denoted by

Mmin(W,W̃) := MV .

Remark 3. The module Mmin(W,W̃) is the biggest mod-

ule MV , V ∈ 〈Z〉, contained in MW and MW̃ . In fact, we
even have Mmin(W,W̃) = MW ∩MW̃ .

Example 3. Consider disjoint sets X = {x1, x2, x3} and
Y = {y1, y2} with My1 = Mx1 and My2 = Mx2 ⊕ Mx3 .
Then Z = {x1, x2, x3, y1, y2} and (Mx)x∈X is a refinement
of (My)y∈Y since we have the partition {{x1}, {x2, x3}} of

X. The words W = x1y2y2 and W̃ = y1y2x2 in 〈Z〉 satisfy

S(W) ∩ S(W̃) = {x1x2x2, x1x3x2} 6= ∅. Both choices V =

y1y2x2 and V = x1y2x2 satisfy S(V) = S(W) ∩ S(W̃) and
MV = Mx1⊗My2⊗Mx2 . So Mmin(W,W̃) = Mx1⊗My2⊗Mx2 .

Definition 4.5. Let (W,h), (W̃ , h̃) ∈ Σ be two reduction
rules and let A,B1, B2, C ∈ 〈Z〉 be nonempty words with

W = AB1, W̃ = B2C, B1 6= B2,

and S(B1) ∩ S(B2) 6= ∅,

then we call this an overlap ambiguity with specialization.
Note that B1 6= B2 ensures that this is not an overlap am-
biguity (without specialization). An overlap ambiguity with
specialization is called resolvable if for all a ∈ MA, b ∈
Mmin(B1,B2), and c ∈ MC the S-polynomial can be reduced
to zero:

h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∗→Σ 0.

Similarly, an inclusion ambiguity with specialization is
given by two reduction rules (W,h), (W̃ , h̃) ∈ Σ and words

A,B1, B2, C ∈ 〈Z〉 with W = B1, W̃ = AB2C, B1 6=
B2, and S(B1) ∩ S(B2) 6= ∅. An inclusion ambiguity with
specialization is called resolvable if for all a ∈ MA, b ∈
Mmin(B1,B2), and c ∈ MC the S-polynomial can be reduced

to zero: a⊗ h(b)⊗ c− h̃(a⊗ b⊗ c) ∗→Σ 0.

Again, we use S(AB1, B2C) or S(B1, AB2C), respectively,
to refer to S-polynomials of an overlap or inclusion ambiguity
with specialization.

Remark 4. Note that in total there now can be 4 types
of ambiguities: in addition to the two types of ambiguities
(without specialization) of Definition 2.2 there are also cor-
responding versions with specialization as defined above.

With these definitions we can prove the following general-
ization of Bergman’s result. In order to prove properties of
the reduction system Σ, we apply Bergman’s result (Theo-
rem 2.3) to the induced reduction system ΣX over X.

Theorem 4.6. Let (Mx)x∈X and (My)y∈Y be two fam-
ilies of K-modules indexed by sets X and Y , respectively,
such that (Mx)x∈X is a refinement of (My)y∈Y and let M =⊕

x∈XMx. Let Σ be a reduction system over Z := X ∪ Y
on K〈M〉 and ≤ be a Noetherian monoid partial order on
〈Z〉 consistent with (Mx)x∈X being a refinement of (My)y∈Y
and compatible with Σ. Then the following are equivalent:

402

1. All ambiguities of Σ are resolvable.

2. Every t ∈ K〈M〉 has a unique normal form t↓Σ.

3. K〈M〉/IΣ and K〈M〉irr are isomorphic as K-modules.

If these conditions hold, then we can define a multiplication
on K〈M〉irr by s · t := (s ⊗ t) ↓Σ so that K〈M〉/IΣ and
K〈M〉irr are isomorphic as K-algebras.

Proof. Lemma 4.2 shows that we can replace the reduc-
tion system Σ by its refinement ΣX without changing the re-
duction relation. Consequently, also the reduction ideals and
normal forms agree, i.e. IΣ = IΣX and t↓Σ = s⇔ t↓ΣX = s
for all s, t ∈ K〈M〉. The lemma also implies that 〈X〉irr and
hence K〈M〉irr stay the same. Furthermore, we note that
every S-polynomial of ΣX is also an S-polynomial of Σ and,
conversely, every S-polynomial of Σ is a linear combination
of S-polynomials of ΣX . Hence all ambiguities of Σ are re-
solvable if and only if all ambiguities of ΣX are resolvable,
since →Σ and →ΣX are the same. Finally, Lemma 4.4 im-
plies that ΣX and the restriction of ≤ to 〈X〉 satisfy the
assumptions of Theorem 2.3, which concludes the proof.

4.1 Computational Aspects
Many properties that we discussed for Bergman’s tensor

setting also hold for the generalization we introduced above.
For instance, determining ambiguities and irreducible words
is done just on the level of words.

The main computational benefit of Theorem 4.6 compared
to Theorem 2.3 lies in the fact that for the confluence crite-
rion we only need to check ambiguities of Σ over the com-
bined alphabet Z and no computations with the induced
reduction system ΣX are needed. Computing with the in-
duced reduction system over X instead, generally would lead
to a higher number of ambiguities, since one reduction rule
in Σ can give rise to many reduction rules in ΣX . Only for
determination of irreducible words we restrict to 〈X〉.

The package TenReS also provides routines for generating
all overlap and inclusion ambiguities with specialization to-
gether with their corresponding S-polynomials. It can also
generate all irreducible words up to given length.

5. AN IMPROVED REDUCTION SYSTEM
In this section, we apply the two-level version of Bergman’s

tensor setting to our example, the tensor algebra of integro-
differential operators. First, we define two alphabets

X = {K, F̃ ,D, I, E, C̃} and Y = {F,D, I, C},

with the K-modules defined in Eqs. (7) and (9) as well as

MF = MK ⊕MF̃ and MC = ME ⊕MC̃ . (13)

Then the decomposition (10) is a refinement of

M = MF ⊕MD ⊕MI ⊕MC . (14)

The reduction system Σ over the combined alphabet is given
by Table 2, defined in terms of all f, g ∈ R and ϕ,ψ ∈ Φ.

Following (12), the induced reduction system ΣX is ob-
tained, according to (13), by splitting rules whose words

contain F or C into “smaller” rules using XF = {K, F̃} and

XC = {E, C̃}. For example, the reduction rule (CF, h) ∈ Σ
is split into the rules (W,h|MW) ∈ ΣX where W ∈ S(CF) =

{EK,EF̃ , C̃K, C̃F̃}.

FF f ⊗ g 7→ fg
CF ϕ⊗ f 7→ (ϕf)ϕ
CC ψ ⊗ ϕ 7→ (ψ1)ϕ
DF ∂ ⊗ f 7→ f ⊗ ∂ + ∂f
DC ∂ ⊗ ϕ 7→ 0
DI ∂ ⊗

∫
7→ ε

IC
∫
⊗ ϕ 7→

∫
1⊗ ϕ

ID
∫
⊗ ∂ 7→ ε− E

II
∫
⊗

∫
7→

∫
1⊗

∫
−

∫
⊗

∫
1

IFC
∫
⊗ f ⊗ ϕ 7→

∫
f ⊗ ϕ

IFD
∫
⊗ f ⊗ ∂ 7→ f −

∫
⊗ ∂f − (Ef)E

IFI
∫
⊗ f ⊗

∫
7→

∫
f ⊗

∫
−

∫
⊗

∫
f

K 1 7→ ε
EI E⊗

∫
7→ 0

Table 2: Reduction rules for IDO on two levels

Theorem 5.1. Let (R, ∂,
∫

) be an integro-differential K-
algebra and let Φ be the set of multiplicative functionals as
in Eq. (8). Let M be as in Eqs. (13) and (14) and let the
reduction system Σ be defined by Table 2.

Then every t ∈ K〈M〉 has a unique normal form of the
same type as in Theorem 3.3 and, as K-algebras,

K〈M〉/IΣ ∼= K〈M〉irr.
Proof. We use the alphabet Z = X ∪ Y where X =

{K, F̃ ,D, I, E, C̃} and Y = {F,D, I, C}. For defining a
Noetherian monoid partial order ≤ on 〈Z〉 that is compatible
with Σ, it is sufficient to require the order to satisfy

DF > FD, IFD > E, ID > E, I > F̃ .

For instance, we could use a degree-lexicographic order with
I > D > C > F on 〈Y 〉 or other degree-lexicographic orders
with D > F and I > F . We extend it to a partial monoid
order on 〈Z〉 based on Definition 4.3 in order to make it
consistent with (Mx)x∈X being a refinement of (My)y∈Y .
Then by our software package we verify that all ambigui-
ties of Σ are resolvable, see Section 5.1. Hence by Theo-
rem 4.6 every element of K〈M〉 has a unique normal form
and K〈M〉/IΣ ∼= K〈M〉irr as K-algebras.

It remains to determine the explicit form of elements in
K〈M〉irr. To do so, we determine the set of irreducible words

〈X〉irr in 〈X〉. Note that Σ̃ ⊂ ΣX , where Σ̃ is given by
Table 1. Hence the irreducible words w.r.t. Σ are among the
irreducible words w.r.t. Σ̃. In the proof of Theorem 3.3 we
already determined the latter to be of the form F̃ V Dj or
F̃ C̃IF̃ , where j ∈ N0 and each of F̃ , C̃, and V ∈ {E, C̃}
may be absent. All of them are also irreducible w.r.t. Σ since
they do not contain subwords from {W | (W,h) ∈ ΣX \ Σ̃}.
The normal forms follow from (3).

In order to show R〈∂,
∫
,Φ〉 = K〈M〉/IΣ, we prove the

following lemma.

Lemma 5.2. Let the reduction system Σ̃ over X be given
by Table 1 and let the reduction system Σ over Z be given
by Table 2. Then IΣ̃ and IΣ are the same.

Proof. In view of Lemma 4.2, we show IΣ̃ = IΣX , where
the induced reduction system ΣX is described immediately
before Theorem 5.1. Comparing Σ̃ and ΣX , we see that
Σ̃ ⊂ ΣX , hence IΣ̃ ⊆ IΣX . Conversely, we can verify, e.g.

by the package TenReS, for all 10 elements (W,h) ∈ ΣX \ Σ̃
that t− h(t) ∈ IΣ̃ for all t ∈MW implying IΣX ⊆ IΣ̃.

403

0 1 2 3–4 5–8 > 8
0

20

40

steps

4

14 13
10 11

0

28

14

8

2
0 0

a
m
b
ig
u
it
ie
s

reductions →Σ

identities in R

Figure 2: Histogram of computational steps used by
our implementation for resolving each ambiguitiy

5.1 Computational aspects
In the following, we discuss computational details of the

two-level tensor setting for integro-differential operators. Ap-
plying TenReS to the reduction system Σ given by Table 2,
in total 52 ambiguities and corresponding S-polynomials are
generated. In contrast to the computations for Table 1, we
do not need to introduce any further splitting of expressions
in R during reduction of the S-polynomials. For instance,

S(IFD,DI) = (f −
∫
⊗ ∂f − (Ef)E)⊗

∫
−

∫
⊗ f ⊗ ε

→rEI f ⊗
∫
−

∫
⊗ ∂f ⊗

∫
−

∫
⊗ f →rIFI . . .

∗→rK 0.

There are 41 ambiguities without specialization, they only
involve the first 12 reduction rules (over Y). The remaining
11 ambiguities consist of 4 overlap ambiguities with special-
ization and 7 inclusion ambiguities with specialization. They
all involve the last two reduction rules (over X) in Table 2
and their S-polynomials are reduced to zero. For example,

S(IFC,EI) = (
∫
f ⊗ E)⊗

∫
−

∫
⊗ f ⊗ 0→rEI

∫
f ⊗ 0 = 0,

S(K,DF) = ∂ ⊗ ε⊗ ε− 1⊗ ∂ →rK ∂ − ∂ = 0.

In Figure 2 we present more detailed statistics on the
whole reduction process. For 4 ambiguities, we do not need
to apply any reduction, and 28 do not need identities in R.
The maximal number of required reduction rules and iden-
tities from R are 8 and 4, respectively, which for instance
is the case for the S-polynomial S(IFI, IFD). Per ambigu-
ity on average 2.73 reductions and 0.73 identities have been
used in the computation. So not only the number of am-
biguities is less than before, but also the average effort per
ambiguity has reduced.

We emphasize again that the confluence criterion of The-
orem 4.6 directly works with the reduction system Σ, no
computations with the induced reduction system ΣX over
X are needed. The 31 reduction rules of ΣX would give rise
to 149 overlap ambiguities and 11 inclusion ambiguities.

6. OUTLOOK
We showed that the new two-level tensor setting allows for

a simpler study and a more general construction of integro-
differential operators than via noncommutative polynomial
algebras. So we are confident that this approach is also
suitable for studying other operator algebras. Due to space
limitations, we did not include our results for generalizations
of integro-differential operators which contain more opera-
tors like linear substitutions, addressing the univariate case
of [15], or arbitrary linear functionals. These operator al-
gebras have applications to boundary problems and delay
equations [12]. Beyond verification of confluence, we are

studying an analog of Buchberger’s algorithm [5] and Knuth-
Bendix completion [11] for tensors, see [10] for an example.

7. REFERENCES
[1] F. Baader and T. Nipkow. Term rewriting and all

that. Cambridge University Press, Cambridge, 1998.

[2] V. V. Bavula. The algebra of integro-differential
operators on an affine line and its modules. J. Pure
Appl. Algebra, 217:495–529, 2013.

[3] G. M. Bergman. The diamond lemma for ring theory.
Adv. in Math., 29:178–218, 1978.

[4] L. A. Bokut and Y. Chen. Gröbner-Shirshov bases and
their calculation. Bull. Math. Sci., 4:325–395, 2014.

[5] B. Buchberger. An algorithm for finding the bases
elements of the residue class ring modulo a zero
dimensional polynomial ideal (German). PhD thesis,
University of Innsbruck, 1965.

[6] F. Chyzak and B. Salvy. Non-commutative elimination
in Ore algebras proves multivariate identities. J.
Symbolic Comput., 26:187–227, 1998.

[7] X. Gao, L. Guo, and M. Rosenkranz. Free
integro-differential algebras and Gröbner-Shirshov
bases. J. Algebra, 442:354–396, 2015.

[8] J. Gómez-Torrecillas. Basic module theory over
non-commutative rings with computational aspects of
operator algebras. In AADIOS 2012, volume 8372 of
LNCS, pages 23–82. Springer, Heidelberg, 2014. With
an appendix by V. Levandovskyy.

[9] L. Guo, G. Regensburger, and M. Rosenkranz. On
integro-differential algebras. J. Pure Appl. Algebra,
218:456–473, 2014.

[10] J. Hossein Poor, C. G. Raab, and G. Regensburger.
Normal forms for operators via Gröbner bases in
tensor algebras. In Proceedings of ICMS 2016, volume
9725 of LNCS. Springer, 2016. To appear.

[11] D. E. Knuth and P. B. Bendix. Simple word problems
in universal algebras. In Computational Problems in
Abstract Algebra, pages 263–297. Pergamon, Oxford,
1970.

[12] A. Quadrat. A constructive algebraic analysis
approach to Artstein’s reduction of linear time-delay
systems. IFAC-PapersOnLine, 48(12):209–214, 2015.

[13] G. Regensburger, M. Rosenkranz, and J. Middeke. A
skew polynomial approach to integro-differential
operators. In Proceedings of ISSAC ’09, pages
287–294, New York, NY, USA, 2009. ACM.

[14] M. Rosenkranz. A new symbolic method for solving
linear two-point boundary value problems on the level
of operators. J. Symbolic Comput., 39:171–199, 2005.

[15] M. Rosenkranz, X. Gao, and L. Guo. An algebraic
study of multivariable integration and linear
substitution. 2015. arXiv:1503.01694 [math.RA].

[16] M. Rosenkranz and G. Regensburger. Solving and
factoring boundary problems for linear ordinary
differential equations in differential algebras. J.
Symbolic Comput., 43:515–544, 2008.

[17] M. Rosenkranz, G. Regensburger, L. Tec, and
B. Buchberger. Symbolic analysis for boundary
problems: From rewriting to parametrized Gröbner
bases. In Numerical and Symbolic Scientific
Computing, pages 273–331. Springer Vienna, 2012.

404

http://arxiv.org/abs/1503.01694

	Introduction
	Gröbner bases for tensors
	Computational Aspects

	Integro-differential operators
	Computational aspects

	Two-level tensor setting
	Computational Aspects

	An improved reduction system
	Computational aspects

	Outlook
	References

