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ABSTRACT
The algebraic and algorithmic study of integro-differential
algebras and operators has only started in the past decade.
Integro-differential operators allow us in particular to study
initial value and boundary problems for linear ODEs from
an algebraic point of view. Differential operators already
provide a rich algebraic structure with a wealth of results
and algorithmic methods. Adding integral operators and
evaluations, many new phenomena appear, including zero
devisors and non-finitely generated ideals.

In this tutorial, we give an introduction to symbolic meth-
ods for integro-differential operators and boundary prob-
lems developed over the last years. In particular, we discuss
normal forms, basic algebraic properties, and the computa-
tion of polynomial solutions for ordinary integro-differential
equations with polynomial coefficients. We will also out-
line methods for manipulating and solving linear boundary
problems and illustrate them with an implementation.
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1. OVERVIEW
Boundary (value) problems and integro-differential equa-

tions are ubiquitous in science, engineering, and applied
mathematics; see, e.g., [2, 11, 34]. While algebraic struc-
tures and computer algebra for differential equations per se
are very well developed, the investigation of their integro-
differential counterparts has started only recently. For study-
ing linear differential equations, the basic algebraic structure
is the noncommutative ring of differential operators over a
differential algebra. More generally, skew polynomials are
used for an algebraic and algorithmic treatment of many
common operator algebras; see, e.g., [22, 9, 35, 8] and the
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survey [14] describing also implementations in computer al-
gebra systems. However, if we add an integral operator, the
resulting algebra cannot be modeled that way.

The basic algebraic identities between the derivation and
the integral operator are the fundamental theorem of calcu-
lus and integration by parts. Based on these identities, a
new operator approach for symbolic computation with lin-
ear ordinary boundary problems was introduced in [26, 27]
and generalized to a differential algebra setting in [31, 30].
For further references and an implementation in Theorema,
see [32]. We refer to [29, 19, 17, 20, 13, 33, 28, 12, 18] for
recent developments including partial differential equations,
generalized Green’s operators and functions, free integro-
differential algebras, singular coefficients, and a finite tensor
reduction system for integro-differential operators.

The notion of integro-differential algebras combines a dif-
ferential algebra with an integral operator and the corre-
sponding multiplicative evaluation. The associated integro-
differential operators over an ordinary integro-differential al-
gebra allow to express and compute with boundary problems
(differential equation plus boundary conditions) and their
solution (Green’s) operators in a single algebraic structure.
For the related notion of differential Rota-Baxter algebras,
we refer to [16] and to [17] for a detailed comparison. A
Rota-Baxter algebra is an algebra with one linear operator
that generalizes the algebra of continuous functions with the
integral operator; see [15] and the references therein.

The simplest integro-differential algebra is given by the
univariate polynomials over a field of characteristic zero with
the usual derivation and integration. However, integro-dif-
ferential operators with polynomial coefficients reflect many
aspects and properties of the general constructions, and we
focus in the tutorial on this case. We will discuss a parame-
trized noncommutative Gröbner basis of the defining rela-
tions, the corresponding normal forms, and basic algebraic
properties in comparison with the Weyl algebra [10]. In
particular, the algebra of integro-differential operators con-
tains zero-divisors and is non-Noetherian. Polynomial coeffi-
cients also allow for some special constructions, for example,
as a factor algebra of a skew polynomial ring [25]. Using
generalized Weyl algebras [4], numerous important results
on integro-differential operators with polynomial coefficients
are shown in [5, 6].

Computing polynomial solutions of ordinary differential
equations is well-studied in symbolic computation; see, e.g.,
[1, 3, 7]. Building on these methods, we describe an ap-
proach [23] for computing polynomial solutions for a class of
algorithmic Fredholm operators that includes also integro-
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differential operators. Using the Maple package IntDiffOp

[21], we also illustrate how to compute Green’s operators and
to factor boundary problems [24] into lower order problems
along a factorization of the differential operator.
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