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main results were developed together. At the end of the thesis an explicit
description of the contributions of each author is given.
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Introduction

Reinforcement learning addresses problems of sequential decision making and
stochastic control and is strongly connected to dynamic programming and
Markov decision processes. In the last two decades it has gained importance
in the fields of machine learning and artificial intelligence where the term
reinforcement learning was established. Researchers from a variety of scien-
tific fields that reach from cognitive sciences, neurology and psychology to
computer science, physics and mathematics, have developed algorithms and
techniques with impressive applications as well as mathematical foundations.

Reinforcement learning is based on the simple idea of learning by trial and
error while interacting with an environment. At each step the agent performs
an action and receives a reward depending on the starting state, the action
and the environment. The agent learns to choose actions that maximize the
sum of all rewards in the long run. The resulting choice of an action for each
state is called a policy. Finding optimal policies is the primary objective of
reinforcement learning.

For a history of dynamic programming see the bibliographical remarks in
Puterman [Put94], in particular the section on discounted Markov decision
processes [Put94, pp. 263]. Refer to Sutton [SB98, pp. 16] for a historical
overview of reinforcement learning and its first achievements.

Our Approach

Until now reinforcement learning has been applied to learn the optimal be-
havior for a single environment. The main idea of our approach is to extend
reinforcement learning to learn a good policy for several environments si-
multaneously. We link the theory of Markov decision processes (MDP) with
notions and algorithms from reinforcement learning to model this idea and
to develop solution methods. We do not only focus on rigorous models and
mathematical analysis, but also on applications ranging from exact compu-
tations to real world problems.

Combining theory and applications turned out to be very fruitful. Ideas

ix



INTRODUCTION x

from experiments and programming influenced the theoretical development
and vice versa.

The development of software forms a major part of our work. The pro-
grams and the source code can be found on the attached CD-ROM. All
experiments can be reproduced following the descriptions given. This allows
the reader to experience reinforcement learning in an interactive way.

Overview

The thesis is split into two parts which are similarly structured into theoret-
ical sections, computational examples, simulation results and robot experi-
ments.

In the first part we discuss reinforcement learning for one environment.
The main results and algorithms for finite discounted MDPs are presented
and extended. Stochastic policies often play an inferior role in the presenta-
tion of reinforcement learning since for one environment there always exists
a deterministic optimal policy. For several environments good policies are
not deterministic in general, and therefore we formulate the theory and algo-
rithms in the first part for stochastic policies too. Furthermore, we use the
notion of action-values in our presentation, which is common in the reinforce-
ment learning literature but not in the literature on MDPs. We introduce
a new geometric interpretation of policy improvement that is fundamental
for the theory for several environments. Finally, model-free methods are
presented and further bibliographical remarks given.

We describe the MDP package for the computer algebra system Maple
and give computational examples. We introduce our grid world simulator
SimRobo, describe implementation details and show results of a variety of ex-
periments. The program RealRobo for the mobile robot Khepera is presented
and several experiments are conducted.

In the second part we address reinforcement learning for several environ-
ments. First we introduce the notion of a state action space which allows us
to apply one policy to several environments. Environments are called real-
izations in this context. Then we extend policy improvement for this model
and introduce the notion of balanced policies. We discuss a geometric inter-
pretation of improving policies for a possible infinite family of realizations
using convex geometry. We give constructive methods to compute improving
policies for finite families of realizations by means of polytopes and linear
programming. This leads to policy iteration for several realizations. For the
model-free case we finally introduce approximate policy iteration for several
realizations.
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We give an introduction to the publication [MR03b] where we discuss
the idea of learning in one environment and applying the policy obtained to
other environments.

The theoretical sections are followed by computational examples for two
realizations with the MDP package. Then we describe the implementation and
the functions of the simulator SimRobo for several realizations and discuss
a series of experiments. Finally, we discuss an experiment where the robot
Khepera learns two behavior simultaneously. We conclude with a discussion
of the theory presented, possible applications to other fields and future work.

The appendix includes several listings with comments for the programs
SimRobo and RealRobo, a description with examples of all functions in the
MDP package and an overview of the contents of the attached CD-ROM.

Moreover details of the contributions of each author are presented. Three
papers were published while working on this dissertation.

A summary of the main contributions of this thesis:

• Mathematical treatment of MDPs and reinforcement learning for stochas-
tic policies.

• Characterization of equivalent policies and geometrical interpretation
of improving policies and policy improvement using the theory of poly-
topes.

• State action spaces and realizations to apply one policy to several en-
vironments.

• Policy improvement and the notion of balanced policies for a family of
realizations.

• Geometrical interpretation and computation of improving policies for
a family of realizations.

• Policy iteration and approximate policy iteration for finite families of
realizations.

• MDP package for exact and symbolic computations with MDPs and two
realizations.

• Grid world simulator SimRobo for MDPs and several realizations.

• Program RealRobo for the mobile robot Khepera.
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One Environment
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Chapter 1

Reinforcement Learning

1.1 Markov Decision Processes

The term Markov decision process to identify problems of optimal control in
dynamic systems was introduced by Bellman [Bel54, Bel57, Bel03]. In the
following definitions we rely on the common language used in reinforcement
learning. The main difference to the standard definition of Markov decision
processes is the separation of the environment and the rewards.

An environment is given by

• A finite set S.
The set S is interpreted as the set of all possible states. An element
s ∈ S is called a state.

• A family A = (A(s))s∈S of finite sets.
The set A(s) is interpreted as the set of available actions in state s. An
element a ∈ A(s) is called an action.

• A family P = (P (− | a, s))s∈S,a∈A(s) of probabilities P (− | a, s) on S.
We interpret P (s′ | a, s) as the transition probability that performing
action a in state s leads to the successor state s′.

Let E = (S,A,P) be an environment. A policy for E is given by

• A family π = (π(− | s))s∈S of probabilities π(− | s) on A(s).
We interpret π(a | s) as the probability that action a is chosen in state
s.

A policy is called deterministic if π(− | s) is deterministic for all s ∈ S,
that is, if for each state s a unique action a ∈ A(s) is chosen with probability

2



CHAPTER 1. REINFORCEMENT LEARNING 3

one. We call a probability π(− | s) on A(s) a policy in state s. We identify
an action a ∈ A(s) with the deterministic policy π(− | s) in s, defined by

π(ã | s) =

{
π(ã | s) = 1, if ã = a,

π(ã | s) = 0, otherwise,

and write
π(− | s) = a.

The set of all policies for an environment is denoted by Π.
Let π be a policy for E. Let s and s′ ∈ S be two states. We define the

transition probability from state s to successor state s′ for policy π by

P π(s′ | s) =
∑

a∈A(s)

P (s′ | a, s)π(a | s).

Then P π(− | s) is a probability on S, since

∑

s′∈S

P π(s′ | s) =
∑

s′∈S

∑

a∈A(s)

P (s′ | a, s)π(a | s)

=
∑

a∈A(s)

π(a | s)
∑

s′∈S

P (s′ | a, s) = 1.

A finite Markov Decision Process (MDP) is given by an environment
E = (S,A,P) and

• A family R = (R(s′, a, s))s′,s∈S,a∈A(s) with R(s′, a, s) ∈ R.
The value R(s′, a, s) represents the reward if performing action a in
state s leads to the successor state s′.

Let (E,R) be an MDP. Let s ∈ S and a ∈ A(s). We define the expected
reward of action a in state s by

R(a, s) =
∑

s′∈S

R(s′, a, s)P (s′ | a, s).

Let π be a policy for E. Let s ∈ S. The expected reward for policy π in state
s is defined by

Rπ(s) =
∑

a∈A(s)

R(a, s)π(a | s).
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1.2 Value Functions and Action-Values

Suppose that, starting in a particular state, actions are taken following a
fixed policy. Then the expected sum of rewards is called the value function.
It is defined for all starting states and maps states to numerical values to
classify policies as good or bad in the long run.

We first start building sequences of state-action pairs and define a prob-
ability distribution on them. Then we discuss the discounted value function
and action-values.

1.2.1 Histories

Let E be an environment. Let

AS = {(a, s) | s ∈ S, a ∈ A(s)}
denote the set of allowed state-action pairs. Let T ∈ N0. The set of histories
up to time T is defined by

HT = S × (AS)T .

Then H0 = S and H1 = S ×AS. Let T ∈ N and

hT = (sT , aT−1, sT−1, . . . , a0, s0) ∈ HT .

The vector hT represents the trajectory starting from initial state s0, per-
forming a series of actions until finally getting to state sT . We write

hT = (sT , aT−1, hT−1) with hT−1 = (sT−1, . . . , a0, s0) ∈ HT−1. (1.1)

We define a probability on the set of histories given an initial distribution on
all states and a fixed policy. Let µ be a probability on S. Let π be a policy
for E. We set Pπ,µ

0 = µ. Inductively we define a probability Pπ,µ
T on HT by

Pπ,µ
T (hT ) = P (sT | aT−1, sT−1)π(aT−1 | sT−1)Pπ,µ

T−1(hT−1)

with hT as in (1.1). The probability depends on the initial distribution µ
and we write Pπ

T = Pπ,µ
T .

By definition

Pπ
T (sT | aT−1, hT−1) = Pπ

T (sT | aT−1, sT−1) = P (sT | aT−1, sT−1)

using a simplified notation. This property is called the Markov property . It
says that the conditional probability depends only on the last state and the
chosen action and not on past states and actions respectively.
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The Kolmogorov extension theorem ensures the existence of a unique
probability Pπ

∞ on the set H∞ = (AS)N of infinite histories with marginal
probabilities Pπ

T , that is

Pπ
∞

{
h = (. . . , sT+1, aT , hT ) ∈ H∞

}
= Pπ

T (hT ), for T ∈ N and hT ∈ HT .

1.2.2 Returns and Value Functions

Let (E,R) be an MDP. Let T ∈ N and

hT = (sT , aT−1, sT−1, . . . , s1, a0, s0) ∈ HT

be a history up to time T . We define the return RT of hT by

RT (hT ) =
T−1∑
t=0

R(st+1, at, st).

Let γ ∈ R with 0 ≤ γ < 1. We call γ a discount rate. We define the
discounted return Rγ

T of hT by

Rγ
T (hT ) =

T−1∑
t=0

γtR(st+1, at, st).

The discount rate controls the importance of future rewards. It also allows
us to define the return for infinite histories h ∈ H∞ by

Rγ
∞(h) =

∞∑
t=0

γtR(st+1, at, st).

Let hT ∈ HT such that h = (..., hT ) for T ∈ N. Then

Rγ
∞(h) = lim

T→∞
Rγ

T (hT ). (1.2)

By definition R0(h0) = 0 and Rγ
0(h0) = 0 for h0 ∈ H0 = S.

Let π be a policy for E. Let µ be an initial distribution on S, T ∈ N and
let Pπ

T be the previously defined probability on the set of histories HT . The
expectation value Eπ of the return RT for Pπ

T is

V π
T (µ) = Eπ(RT ) =

∑

hT∈HT

RT (hT )Pπ
T (hT ).



CHAPTER 1. REINFORCEMENT LEARNING 6

Let s ∈ S. We denote by µs the initial distribution of the system to start
in state s at time 0, that is

µs(s
′) =

{
1, if s′ = s,

0, otherwise.

The function V π
T on S defined by

V π
T (s) = V π

T (µs) = Eπ(RT | s0 = s), for s ∈ S,

is called the undiscounted value function for policy π up to time T and
V π

T (s) the undiscounted value or utility of state s for the policy π up to time
T respectively. We have V π

0 (s) = 0 for s ∈ S.
Let γ be a discount rate. Analogously we consider the expectation value

Eπ of the discounted return

V π,γ
T (µ) = Eπ(Rγ

T ) =
∑

hT∈HT

Rγ
T (hT )Pπ

T (hT ).

We call
V

π,γ
T (s) = V π,γ

T (µs) = Eπ(Rγ
T | s0 = s) (1.3)

discounted value or utility of state s for the policy π up to time T and V π,γ
T

the discounted value function for policy π up to time T . Again we have
V π,γ

0 (s) = 0 for s ∈ S.

1.2.3 Bellman Equation

In this subsection we derive the basic recursion for the value function for a
policy. The idea is the following. Let T ∈ N and

hT = (sT , . . . , a1, s1, a0, s0) ∈ HT .

a history up to time T . Then its return can be split up as the immediate
reward for the first state-action-state triple plus the return of the remaining
trajectory

RT (hT ) = R(s1, a0, s0) +
T−1∑
t=1

R(st+1, at, st).

An elementary but lengthy computation gives the following theorem, see for
example Dynkin and Yushkevich [DY79, pp. 19] or Matt [Mat00].

Theorem 1. Let (E,R) be an MDP. Let π be a policy for E. Let s ∈ S and
T ∈ N. Then

V π
T (s) = Rπ(s) +

∑

s′
V π

T−1(s
′)P π(s′ | s). (1.4)
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The theorem describes a recursive relation for the undiscounted value
function for a policy up to time T given the expected reward for the policy
and value function up to time T − 1. Equation (1.4) is called the Bellman
equation for V π

T , Sutton and Barto [SB98, p. 70].
We use the following convention for vectors and matrices in RS and RS×S

to simplify the notation. Let

x = (x(s))s∈S ∈ RS

be a row vector and

B = (B(s′, s))s′,s∈S ∈ RS×S

a matrix. The multiplication of x and B is defined as usual by

(xB)(s) =
∑

s′
x(s′)B(s′, s), for s ∈ S.

Note that we use only row vectors and multiplications of row vectors and
matrices.

We consider V π
T = (V π

T (s))s∈S and Rπ
T = (Rπ

T (s))s∈S as row vectors in RS.
We define the transition matrix P π ∈ RS×S for policy π by

P π(s′, s) = P π(s′ | s), for s′, s ∈ S,

where P π(s′ | s) denotes the transition probability from state s to s′ of π.
Since P π(− | s) is a probability on S, the matrix P π is a stochastic matrix ,
that is, all entries are nonnegative and all columns sum up to one. This
differs from the standard definition, where all rows sum up to one, because we
consider row instead of column vectors. The previous theorem and induction
imply the following assertion.

Theorem 2. Let (E,R) be an MDP. Let π be a policy for E and T ∈ N.
Then

V π
T = Rπ + V π

T−1P
π = Rπ

T−1∑
t=0

(P π)t.

Let γ be a discount rate. The calculations are exactly the same for the
discounted value function except that

Rγ
T (hT ) = R(s1, a0, s0) + γ

T−1∑
t=1

γt−1R(st+1, at, st).

Theorem 1 then reads as follows.
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Theorem 3. Let (E,R) be an MDP and 0 ≤ γ < 1 a discount rate. Let π
be a policy for E. Let s ∈ S and T ∈ N. Then

V π,γ
T (s) = Rπ(s) + γ

∑

s′
V π,γ

T−1(s
′)P π(s′ | s).

Using the vector notation and induction we obtain the following theorem.

Theorem 4. Let (E,R) be an MDP and 0 ≤ γ < 1 a discount rate. Let π
be a policy for E and T ∈ N. Then

V π,γ
T = Rπ + γV π,γ

T−1P
π = Rπ

T−1∑
t=0

(γP π)t.

1.2.4 Discounted Value Function

In this section we discuss the discounted value function on infinite histories.
We use the maximum norm on RS, that is

‖x‖∞ = max
s∈S

|x(s)| , for x ∈ RS.

The associated matrix norm for the maximum norm is

‖B‖∞ = sup
{‖xB‖∞ : x ∈ RS, ‖x‖∞ = 1

}
, for B ∈ RS×S.

The definition implies that

‖xB‖∞ ≤ ‖x‖∞ ‖B‖∞
for x ∈ RS, B ∈ RS×S and

‖B‖∞ = max
s∈S

∑

s′
|B(s′, s)| .

Let I ∈ RS×S denote the identity matrix. Obviously, a stochastic matrix
P with nonnegative entries and whose columns add up to 1 has norm ‖P‖∞ =
1. Recall that the discount factor satisfies 0 ≤ γ < 1. Hence (I − γP π) is an
invertible matrix and its inverse is given by

(I − γP π)−1 =
∞∑

k=0

(γP π)k.

Therefore the limit limT→∞ V π,γ
T exists and we have

lim
T→∞

V π,γ
T = Rπ

∞∑
t=0

(γP π)t = Rπ (I − γP π)−1 . (1.5)
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This allows us to define the discounted value function for policy π by

V π,γ = lim
T→∞

V π,γ
T = Rπ (I − γP π)−1 . (1.6)

We call V π,γ(s) the discounted value or utility of state s for policy π.
For a fixed discount rate γ we write V π = V π,γ for the value function. We

call (E,R, γ) a (discounted) MDP . From now on we consider only discounted
MDPs and the discounted value function. The following theorem summarizes
Equations (1.5) and (1.6) for the discounted value function.

Theorem 5. Let (E,R,γ) be an MDP. Let π be a policy for E. Then

V π = Rπ + γV πP π (1.7)

= Rπ(I − γP π)−1 = Rπ

∞∑
t=0

(γP π)t. (1.8)

Equation (1.7) is called the Bellman equation for V π. Equation (1.8)
gives us a method to compute the value function by inverting the matrix
(I − γP π). Computing the value function for a given policy is often referred
to as policy evaluation, see for example Puterman [Put94, pp. 143] or Sutton
and Barto [SB98, p. 90]. Note that for policy evaluation only the transition
matrix P π and the expected rewards Rπ for policy π are needed.

We define the affine map T π : RS → RS for a policy π by

T π(V ) = Rπ + γV P π. (1.9)

Then T π is a contraction mapping with respect to the maximum norm, since

‖T π(V1)− T π(V2)‖∞ = γ ‖(V1 − V2)P
π‖∞

≤ γ ‖V1 − V2‖∞ ‖P π‖∞ = γ ‖V1 − V2‖∞ .

The value function V π is a fixed point of T π by Equation (1.7). The Banach
Fixed-Point Theorem for contractions implies that T π has a unique fixed
point and that

lim
n→∞

(T π)n(V0) = V π for any V0 ∈ RS.

The resulting iterative algorithm for solving a system of linear equations is
called Richardson’s method , see Bertsekas and Tsitsiklis [BT89, pp. 134] and
Deuflhard and Hohmann [DH91, pp. 241] for a discussion.

Algorithm 1 is a Gauss-Seidel variant of the algorithm, where updated
values are used as soon as they become available, see Bertsekas and Tsitsiklis
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Input: a policy π and ε > 0
Output: an approximation V of V π with ‖V − V π‖∞ ≤ ε

initialize V ∈ RS arbitrarily
repeat

∆ = 0
for all s ∈ S do

v ← V (s)
V (s) ← Rπ(s) + γ

∑
s′∈S V (s′)P π(s′, s)

∆ ← max(∆, |v − V (s)|)
until ∆ ≤ ε

Algorithm 1: Policy evaluation

[BT89, p. 135] and Sutton and Barto [SB98, p. 92]. For convergence results
and a discussion of performance see Bertsekas and Tsitsiklis [BT89, pp. 151].
An asynchronous variant of the algorithm is discussed in [BT89, pp. 434].

We further observe that the value function is linear with respect to re-
wards. Let E be an environment, π a policy for E and γ a discount rate.
Let R1 and R2 be two families of rewards for E and

R = α1R1 + α2R2, with α1, α2 ∈ R.

Let Rπ and V π denote the expected reward and the value function for policy
π and the MDP (E,R, γ) and analogously for R1 and R2. Then

Rπ = α1R
π
1 + α2R

π
2

and by Equation (1.8) we conclude

V π = α1V
π
1 + α2V

π
2 . (1.10)

1.2.5 Action-Values

Action-values are the expected sum of rewards, starting in a state, applying
an action and then following a given policy. They became an important part
of reinforcement learning with the introduction of Q-learning by Watkins
[Wat89]. The notion of action-values simplifies the formulation of theorems
and algorithms. It plays a fundamental role in our presentation of the theory.
Whereas in reinforcement learning action-values are standard, in the litera-
ture on Markov decision processes and Dynamic Programming action-values
are often not considered explicitly.

The Bellman equation (1.7) yields

V π = Rπ + γV πP π (1.11)
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or, for each s ∈ S,

V π(s) =
∑

a∈A(s)

(
R(a, s) + γ

∑

s′∈S

V π(s′)P (s′ | a, s)

)
π(a | s).

The equation suggests defining the action-value of action a ∈ A(s) in state
s for policy π

Qπ(a, s) = R(a, s) + γ
∑

s′∈S

V π(s′)P (s′ | a, s), (1.12)

as the average reward if action a is chosen in state s and afterwards the policy
π is followed. With this definition the Bellman equation obtains the form

V π(s) =
∑

a∈A(s)

Qπ(a, s)π(a | s). (1.13)

Let π̃(− | s) be any policy in s. Then

∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≤ max
a∈A(s)

Qπ(a, s)
∑

a∈A(s)

π̃(a | s) = max
a∈A(s)

Qπ(a, s).

(1.14)
Equation (1.13) implies that the utility is between the minimal and maximal
action-value, that is

min
a∈A(s)

Qπ(a, s) ≤ V π(s) ≤ max
a∈A(s)

Qπ(a, s). (1.15)

Like the value function the action-value function can be interpreted as
the fixed point of a contraction mapping. The Bellman equation for state s′

reads as follows
V π(s′) =

∑

a′∈A(s′)

Qπ(a′, s′)π(a′ | s′).

Substituting this equation in the definition of the action-value yields

Qπ(a, s) = R(a, s) + γ
∑

s′∈S

∑

a′∈A(s′)

Qπ(a′, s′)π(a′ | s′)P (s′ | a, s). (1.16)

We define the transition matrix P̃ π ∈ RAS×AS of policy π for state-action
pairs by

P̃ π((a′, s′) | (a, s)) = π(a′ | s′)P (s′ | a, s), for (a′, s′), (a, s) ∈ AS.
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The affine map T̃ π : RAS → RAS for a policy π defined by

T̃ π(Q) = Rπ + γQP̃ π. (1.17)

is a contraction mapping, since P̃ π is a stochastic matrix, and Qπ is the
unique fixed point, compare Section 1.2.4.

Again the action-values are linear with respect to rewards. We use the
same notation as for Equation (1.10). Then for a linear combination of
rewards,

R = α1R1 + α2R2, with α1, α2 ∈ R,

and fixed discount rate γ, we see that the action-values for (E,R, γ) satisfy

Qπ = α1Q
π
1 + α2Q

π
2 , (1.18)

using (1.12) and the linearity of the value function.

1.3 Comparing Policies

The value function reflects the performance of a policy. Thus we consider the
value function as a criterion to compare policies and to characterize optimal
policies. In our approach we emphasize the order on policies which turned
out to be useful for the development of the theory for several environments.
Additionally we gain new insights into the theory for one MDP.

1.3.1 Partially Ordered Sets

We recall the notation of partially ordered sets and some associated defini-
tions. Let X be a set. A binary relation ≤ on X is a partial order on X if
it is

• reflexive, x ≤ x, for all x ∈ X,

• transitive, if x ≤ y and y ≤ z then x ≤ z,

• antisymmetric, if x ≤ y and y ≤ x then x = y.

Let (X,≤) be a partially ordered set (poset). We use the notation x < y
to mean x ≤ y and x 6= y. We say that two elements x and y are comparable
if x ≤ y or y ≤ x; otherwise x and y are incomparable. A total order is a
partial order in which every pair of elements is comparable. By a greatest
element of X one means an element y ∈ X such that x ≤ y for all x ∈ X.
An element m ∈ X is called a maximal element of X such that if x ∈ X
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and m ≤ x, then x = m or equivalently if there is no element x ∈ X greater
than m. There may be many maximal elements in X, whereas if a greatest
element exists, then it is unique. If a partial order is total then the notions
of maximal and greatest element coincide.

We consider the componentwise order on RS, that is, for two vectors
x, y ∈ RS we define

x ≤ y if x(s) ≤ y(s), for s ∈ S.

The componentwise order is a partial order on RS. Note that x < y means
that x(s) ≤ y(s) for all s ∈ S and x(s) < y(s) for at least one s ∈ S.

1.3.2 Equivalent and Optimal Policies

Let (E,R, γ) be an MDP. Let π and π̃ be two policies for E and V π and V π̃

their value functions. We say that π and π̃ are equivalent if they have the
same value function, that is π ∼ π̃ if V π = V π̃. We denote the equivalence
class of policy π by [π] and define a partial order on the set of equivalence
classes by [π̃] ≤ [π] if V π̃ ≤ V π.

The above construction can be summarized as follows. Let Π denote the
set of all policies. The map

Π → RS, π 7→ V π

induces the injection

Π/∼ → RS, [π] 7→ V π, where π ∼ π̃ if V π = V π̃.

The componentwise order on RS induces a partial order on the set of equiv-
alence classes Π/∼.

Note that equivalent policies have the same action-values, that is, if π ∼ π̃
then

Qπ(a, s) = Qπ̃(a, s), for s ∈ S, a ∈ A(s).

The inverse implication does not hold, see example in Section 2.5.2.
A policy π is called optimal for (E,R, γ) if [π] is the greatest element

of the set of equivalence classes of all policies. This means V π̃ ≤ V π for all
policies π̃. The existence of an optimal policy is proved constructively in
Section 1.9.

Since the value function is linear with respect to rewards, the equivalence
classes are invariant if we multiply the family of rewards by a nonzero real
number. The order on equivalence classes and the notion of optimal policies
are invariant if the rewards are multiplied by a positive number.
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1.3.3 Utility of Policies

We call the average utility

V (π) =
1

|S|
∑
s∈S

V π(s)

the (discounted) utility of policy π. Using the utility of a policy we can
repeat the above construction of a partial order. We say that two policies π
and π̃ are equivalent on average if their utilities are equal, that is π ∼a π̃ if
V (π̃) = V (π). We define a partial order on the set of equivalence classes by
[π̃]a ≤a [π]a if V (π̃) ≤ V (π).

Again the map
Π → R, π 7→ V (π)

induces the injection

Π/∼a → R, [π]a 7→ V π, where π ∼a π̃ if V (π) = V (π̃).

The order on R induces a total order on the set of equivalence classes Π/∼a .
Obviously [π̃] ≤ [π] implies [π̃]a ≤a [π]a. If [π] is the greatest element with
respect to ≤ then [π]a is the greatest (maximal) element with respect to ≤a.
Conversely, it is easy to see that if [π]a is the greatest element with respect
to ≤a then it is maximal with respect to ≤ and hence optimal, once the
existence of an optimal policy is shown. So if we want to speak of optimal
policies it is sufficient to compare their utilities. For an optimal policy π the
two equivalence classes [π] and [π]a are equal.

1.4 Differences between Value Functions

In this section we introduce one-step differences between policies based on
action-values to compare value functions. The following lemma relates action-
values, value functions and transition matrices of two policies.

Lemma 6. Let (E,R, γ) be an MDP. Let π and π̃ be policies for E. Then

∑

a∈A(s)

Qπ(a, s)π̃(a | s) =
(
Rπ̃ + γV πP π̃

)
(s), for s ∈ S.
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Proof. Let s ∈ S. Then
∑

a∈A(s)

Qπ(a, s)π̃(a | s)

=
∑

a∈A(s)

(
R(a, s) + γ

∑

s′
V π(s′)P (s′ | a, s)

)
π̃(a | s)

= Rπ̃(s) + γ
∑

s′
V π(s′)P π̃(s′ | s) =

(
Rπ̃ + γV πP π̃

)
(s).

The sum ∑

a∈A(s)

Qπ(a, s)π̃(a | s)

is the expected discounted return where the first step is chosen according to
policy π̃ and policy π is followed afterwards.

Let π and π̃ be policies for E. We define the one-step difference between
policies π̃ and π in state s by

Dπ̃,π(s) =
∑

a∈A(s)

Qπ(a, s)π̃(a | s)− V π(s), for s ∈ S, (1.19)

and call the vector Dπ̃,π =
(
Dπ̃,π(s)

)
s∈S

in RS the one-step difference between
policies π̃ and π. The previous lemma gives

Dπ̃,π = Rπ̃ + γV πP π̃ − V π. (1.20)

Let π be a policy. The following theorem describes the difference between
the value function for an arbitrary policy π̃ and the value function for π.

Theorem 7. Let (E,R, γ) be an MDP. Let π and π̃ be policies for E and
Dπ̃,π the one-step difference between π̃ and π. Then

V π̃ − V π = Dπ̃,π(I − γP π̃)−1.

Proof. We have

(V π̃ − V π)(I − γP π̃) = V π̃ − V π − γV π̃P π̃ + γV πP π̃.

The Bellman equation (1.7) for π̃ gives

V π̃ − γV π̃P π̃ = Rπ̃.

Therefore
(V π̃ − V π)(I − γP π̃) = Rπ̃ + γV πP π̃ − V π.

and the theorem follows by Equation (1.20).
Reformulating this theorem to compare policies we obtain
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Corollary 8. Let (E,R, γ) be an MDP. Let π and π̃ be policies for E. Then

V π̃ ≥ V π if and only if Dπ̃,π(I − γP π̃)−1 ≥ 0.

We now consider criteria to compare value functions using the one-step
difference only.

Theorem 9. Let (E,R) be an MDP. Let π and π̃ be policies for E. Then

(i) Dπ̃,π = 0 if and only if [π̃] = [π], that is V π̃ = V π.

(ii) Dπ̃,π ≥ 0 implies [π̃] ≥ [π], that is V π̃ ≥ V π.

(iii) Dπ̃,π ≤ 0 implies [π̃] ≤ [π], that is V π̃ ≤ V π.

Proof. By theorem 7 we have

V π̃ − V π = Dπ̃,π(I − γP π̃)−1.

Since (I − γP π̃)−1 is an invertible matrix assertion (i) follows. Observe fur-
thermore that

(I − γP π̃)−1 =
∞∑

k=0

γk(P π̃)k

is a nonnegative matrix. Hence Dπ̃,π ≥ 0 implies V π̃ − V π ≥ 0. This proves
assertions (ii) and (iii).

Corollary 10. Let π and π̃ be policies for E. Then

(i) Dπ̃,π > 0 implies [π̃] > [π], that is V π̃ > V π.

(ii) Dπ̃,π < 0 implies [π̃] < [π], that is V π̃ < V π.

1.5 Policy Improvement

We express the theorems on the one-step difference introduced in the previous
section by means of action-values. Recall that the one-step difference between
two policies in state s is defined by

Dπ̃,π(s) =
∑

a∈A(s)

Qπ(a, s)π̃(a | s)− V π(s).

A nonnegative one-step difference between two policies π̃ and π, Dπ̃,π ≥ 0,
is equivalent to
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∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≥ V π(s), for s ∈ S.

Thus (ii) from Theorem 9 and (i) from Corollary 10 can be reformulated as
follows.

Corollary 11. Let (E,R) be an MDP. Let π and π̃ be policies for E. Then
∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≥ V π(s) for all s ∈ S

implies [π̃] ≥ [π], that is V π̃ ≥ V π. If additionally
∑

Qπ(a, s)π̃(a | s) > V π(s) for at least one s ∈ S

then [π̃] > [π], that is V π̃ > V π.

Sutton and Barto [SB98, pp. 95] call this result the policy improvement
theorem.

Corollary 12. Let (E,R) be an MDP. Let π and π̃ be policies for E. Then
[π̃] = [π], that is V π̃ = V π, if and only if

∑

a∈A(s)

Qπ(a, s)π̃(a | s) = V π(s) for all s ∈ S.

Note that to decide if two policies are equivalent we have to evaluate just
one of them.

1.6 Improving Policies

In the previous section we consider the one-step difference between two poli-
cies. Now we look at the one-step difference between one policy and all
possible policies.

Let (E,R, γ) be an MDP. Let π be a policy for E and s ∈ S. Let π̃(− | s)
denote a probability on A(s). We define the set of improving policies for
policy π in state s by

Cπ
≥(s) = {π̃(− | s) :

∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≥ V π(s)}.

Analogously we define the set of equivalent policies for policy π in state s by

Cπ
=(s) = {π̃(− | s) :

∑

a∈A(s)

Qπ(a, s)π̃(a | s) = V π(s)}.
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Observe that π(− | s) ∈ Cπ
=(s), since

∑

a∈A(s)

Qπ(a, s)π(a | s) = V π(s)

by the Bellman equation (1.7). We define the set of strictly improving policies
for policy π in state s by

Cπ
>(s) = {π̃(− | s) :

∑

a∈A(s)

Qπ(a, s)π̃(a | s) > V π(s)},

Note that
Cπ

>(s) = Cπ
≥(s) \ Cπ

=(s).

We define the set of strictly improving actions for policy π in state s by

Aπ
>(s) = {a ∈ A(s) : Qπ(a, s) > V π(s)}.

We identify actions with deterministic policies in a state and interpret Aπ
>(s) as

a subset of Cπ
>(s).

The following corollaries are reformulations of Theorem 9 and Corollary
10 with these definitions.

Corollary 13. Let (E,R) be an MDP. Let π and π̃ be policies for E. Then

π̃(− | s) ∈ Cπ
≥(s) for all s ∈ S

implies [π̃] ≥ [π], that is V π̃ ≥ V π. If additionally

π̃(− | s) ∈ Cπ
>(s) for at least one s ∈ S

then [π̃] > [π], that is V π̃ > V π.

Corollary 14. Let (E,R) be an MDP. Let π and π̃ be policies for E. Then
[π̃] = [π], that is V π̃ = V π, if and only if

π̃(− | s) ∈ Cπ
=(s) for all s ∈ S.

This reformulation using sets of improving, strictly improving and equiv-
alent policies motivates a geometric interpretation of policies, which is ex-
plained in Section 1.8.

Since the value function and action-values are equal for equivalent poli-
cies, the above sets are well defined for equivalence classes, that is, if π ∼ π̃
then

Cπ
≥(s) = C π̃

≥(s), for s ∈ S,
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and analogously for Cπ
>(s), Cπ

=(s) and Aπ
>(s).

Recall from the Sections 1.2.4 and 1.2.5 that the value function and
the action-values are linear with respect to rewards. Therefore the sets
of (strictly) improving policies and actions are invariant if we multiply the
family of rewards by a positive real number. The set of equivalent policies
remains unchanged if the rewards are multiplied by a nonzero number.

1.7 Optimality Criteria

We characterize optimal policies by means of one-step differences and the sets
of strictly improving policies and actions. Recall that a policy π is optimal
if [π] is the greatest element of the set of equivalence classes of all policies,
that is, if V π ≥ V π̃ for all policies π̃, see Section 1.3.2.

Theorem 15. Let (E,R) be an MDP. Let π be a policy for E. Then the
following conditions are equivalent:

(i) π is optimal.

(ii) Dπ̃,π ≤ 0 for all policies π̃.

(iii) Cπ
>(s) = ∅ for all s ∈ S.

(iv) Aπ
>(s) = ∅ for all s ∈ S.

(v) V π(s) = maxa∈A(s) Qπ(a, s) for all s ∈ S.

Proof. We first prove the equivalence of (ii), (iii), (iv) and (v) and then
(ii)⇒(i) and (i)⇒(iii).

(ii)⇒(iii) Let π be a policy such that Dπ̃,π ≤ 0 for all policies π̃. Then by
definition of the one-step difference (1.19) we have

∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≤ V π(s), for s ∈ S and all policies π̃.

Therefore Cπ
>(s) = ∅ for all s ∈ S.

(iii)⇒(iv) Obvious, since Aπ
>(s) ⊂ Cπ

>(s).

(iv)⇒(v) Suppose now that condition (v) does not hold. Then for some s ∈ S
we have

V π(s) < max
a∈A(s)

Qπ(a, s),

see Equation (1.15). Thus there exists an a ∈ A(s) with Qπ(a, s) >
V π(s) and hence a ∈ Aπ

>(s), a contradiction to (iv).
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(v)⇒(ii) Let π̃ be a policy. Then by Equation (1.14)

∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≤ max
a∈A(s)

Qπ(a, s) = V π(s), for s ∈ S.

Thus Dπ̃,π ≤ 0.

(ii)⇒(i) The condition Dπ̃,π ≤ 0 for all π̃ implies V π̃ ≤ V π for all π̃ according
to Theorem 9 and thus π is optimal.

(i)⇒(iii) Suppose that Cπ
>(s̃) 6= ∅ for an s̃ ∈ S. Let π̃(− | s̃) ∈ Cπ

>(s̃) and define
the policy π̃ by

π̃(a | s) =

{
π̃(− | s̃), if s = s̃,

π(− | s), if s ∈ S \ {s̃} .

Then [π̃] > [π] by Corollary 13 and π is not optimal, a contradiction
to (i).

The conditions (iv) and (v) of the theorem are used as termination rules
for the policy improvement algorithm, see Section 1.9.

1.8 Policies and Polytopes

In the following subsections we give a geometric interpretation of policies.

1.8.1 Polyhedra and Polytopes

We recall some basic notions and results on polyhedra and polytopes. Our
notation is based on Ziegler [Zie98]. Further references for this section are
Borgwardt [Bor01], Chvátal [Chv83], the lecture notes [Pau02] by Pauer, the
lecture notes [Sch03] and the classical book [Sch86] by Schrijver.

We denote column vectors in Rd by x,x0, . . . ,y, z and row vectors by
a, a0, . . . ,b, c. A subset K ⊂ Rd is convex if with any two points x,y ∈ K
it contains the line segment

[x,y] = {λx + (1− λ)y : 0 ≤ λ ≤ 1}

between them. The intersection of any number of convex sets is again a
convex set. So, the smallest convex set containing any subset X ⊂ Rd exists.
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This set is called the convex hull of X and is denoted by conv(X). It is given
by

conv(X) = {λ1x1 + · · ·+ λnxn : n ≥ 1,xi ∈ X,λi ≥ 0,
n∑

i=1

λi = 1}.

Let a = (a1, . . . , ad) be a row and x = (x1, . . . , xd)
T a column vector. We

write

ax =
d∑

i=1

aixi ∈ R

for the inner product of a and x. Let a be a nonzero vector and z ∈ R. Sets
of the form

{
x ∈ Rd: ax = z

}
are called (affine) hyperplanes and sets of the

form
{
x ∈ Rd: ax ≤ z

}
(affine) halfspaces . Hyperplanes and halfspaces are

obviously convex sets.
If A is a matrix and x, z are vectors, then when using notations like

Ax = z or Ax ≤ z,

we implicitly assume compatibility of sizes of A,x, z. Here Ax ≤ z stands
for the system of inequalities

a1x ≤ z1, . . . , amx ≤ zm,

where a1, . . . , am are the rows of A and z = (z1, . . . , zm)T . The system
A′x ≤ z′ is a subsystem of Ax ≤ z if A′x ≤ z′ arises from Ax ≤ z by delet-
ing some (or none) of the inequalities in Ax ≤ z. Analogously, we define
subsystems of linear equations.

A subset P ⊂ Rd is a polyhedron if it is the intersection of finitely many
halfspaces, that is

P = P (A, z) =
{
x ∈ Rd : Ax ≤ z

}

for a matrix A and vector z. A convex subset of Rd is bounded if it does not
contain a halfline

{
x + ty : t ≥ 0,x,y ∈ Rd,y 6= 0

}
.

A subset P ⊂ Rd is a polytope if it is the convex hull of finitely many vectors,
that is

P = conv(x1, . . . ,xn), with x1, . . . ,xn ∈ Rd.

The finite basis theorem for polytopes describes the geometrically clear rela-
tion between polyhedra and polytopes. It is usually attributed to Minkowski,
Steinitz and Weyl. For a proof we refer to Schrijver [Sch86, p. 89] or Ziegler
[Zie98, pp. 29].
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Theorem (finite basis theorem). A subset P ⊂ Rd is a polytope if and
only if it is a bounded polyhedron.

The (affine) dimension of a convex subset K ⊂ Rd, dim(K), is the di-
mension of its affine hull

aff(K) = {λ1x1 + · · ·+ λnxn : n ≥ 1,xi ∈ K,

n∑
i=1

λi = 1}.

Let P ⊂ Rd a polyhedron. A linear inequality ax ≤ z is called valid for P if
ax ≤ z holds for all x ∈ P . Any subset F ⊂ P of the form

F = P ∩ {
x ∈ Rd : ax = z

}

for a valid inequality ax ≤ z is called a face of P . The polyhedron P and
the empty set are faces of P for the valid inequalities 0x ≤ 0 and 0x ≤ −1
respectively. Faces of dimensions 0, 1, dim(P )− 2 and dim(P )− 1 are called
vertices , edges , ridges and facets .

We introduce the following notation to give a different characterization
of vertices which we use later on. Let P = P (A, z) be a polyhedron and
x ∈ P . Then Ax is the submatrix of A consisting of the rows ai of A for
which aix = zi. For a proof of the following theorem we refer to Chvátal
[Chv83, pp. 271] or Schrijver [Sch03, p. 20].

Theorem. Let P = P (A, z) be a polyhedron in Rd and x ∈ P . Then x is a
vertex of P if and only if rank(Ax) = d.

If x is a vertex then we can choose d linear independent rows from Ax.
So we obtain the following corollary.

Corollary 16. Let P = P (A, z) be a polyhedron in Rd and x ∈ P . Then
x is a vertex of P if and only if x is the unique solution of A′x = z′ for a
subsystem of Ax = z with an invertible A′ ∈ Rd×d.

Thus theoretically we can compute all vertices of a polyhedron as follows.
We choose all possible sets of d linear independent rows of A. For each set
of equations we compute the unique solution x′ of the resulting subsystem
A′x = z′ of Ax = z. Then we test if x′ satisfies all other inequalities, that is,
if x′ ∈ P .

So if A has m rows then P has at most
(

m
d

)
vertices. This is just a basic

upper bound for the number of vertices. The best possible bound is given
by McMullen’s Upper Bound Theorem [McM70], which implies in particular
that the number of vertices of a polytope in Rd with m facets is at most

f(m, d) =

(
m− ⌊

d+1
2

⌋

m− d

)
+

(
m− ⌊

d+2
2

⌋

m− d

)
. (1.21)
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Compare also Chvátal [Chv83, pp. 272]. Here bxc denotes the floor function
for x ∈ R, that is, the largest integer less than or equal to x.

For a discussion of efficient algorithms for computing all vertices of a
polyhedron, related questions and available software we refer to the FAQ in
Polyhedral Computation by Fukuda [Fuk00].

The set of vertices of a polytope P is denoted by vert(P ). We have the
following theorem, see Ziegler [Zie98, p. 52].

Theorem. Let P ⊂ Rd be a polytope. Then P is the convex hull of its
vertices, that is

P = conv(vert(P )).

The set of vertices of a polytope is the minimal set of points such that P
is its convex hull.

1.8.2 Policies and Simplices

We denote by ei the ith standard (basis) vector in Rd, that is, ei = (e1, ..., ed)
T

with ei = 1 and ej = 0 for j 6= i. The standard d-simplex is the convex hull
of the d + 1 standard vectors in Rd+1 and is denoted by

4d = conv {e1, . . . , ed+1} = {x ∈ Rd+1 : xi ≥ 0,
∑

xi = 1}.

It is a d-dimensional polytope with the d + 1 standard vectors as vertices.
Let (E,R, γ) be an MDP and s ∈ S. We consider the standard d-simplex

with d = |A(s)| − 1 in RA(s) and denote it by C(s). If we write δa for the
standard vectors in RA(s), that is

δa(ã) =

{
1, if ã = a,

0, otherwise,

then

C(s) = conv(δa : a ∈ A(s)) = {x ∈ RA(s) : x(a) ≥ 0,
∑

a∈A(s)

x(a) = 1}.

We identify a policy π(− | s) in state s with the point x ∈ C(s) by

x(a) = π(a | s), for a ∈ A(s).

The vertices δa of C(s) represent the deterministic policies in state s. For an
example with three actions A(s) = {a1, a2, a3} see Figure 1.1.
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a2

a1

a3

π(− | s)

Figure 1.1: A policy in state as a point on the standard simplex

We identify a policy π for E with an element in the product of simplices

π ∈
∏
s∈S

C(s)

and the set of policies Π with the polytope

Π =
∏
s∈S

C(s) ⊂
∏
s∈S

RA(s).

It is easy to see that the vertices of the set Π are the deterministic policies
and therefore

Π = conv(π ∈ Π : π deterministic).

1.8.3 Improving Vertices

Let (E,R, γ) be an MDP. Let π be a policy for E and s ∈ S. Recall that
the set of equivalent policies Cπ

=(s) for π in s is defined as the set of policies
π̃(− | s) in s satisfying

∑

a∈A(s)

Qπ(a, s)π̃(a | s) = V π(s).

Geometrically, we can interpret Cπ
=(s) as the polytope given by the intersec-

tion of the hyperplane

Hπ
=(s) = {x ∈ RA(s) :

∑

a∈A(s)

Qπ(a, s)x(a) = V π(s)}
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and the standard simplex C(s) in RA(s), that is

Cπ
=(s) = Hπ

=(s) ∩ C(s).

See Figure 1.2 for an example with three actions.

a2

a3

π(− | s)

Hπ
=(s)

a1

Figure 1.2: Intersection of a hyperplane and the standard simplex

The set of improving policies Cπ
≥(s) for π in s is defined by the set of

policies π̃(− | s) in state s satisfying

∑

a∈A(s)

Qπ(a, s)π̃(a | s) ≥ V π(s).

Thus Cπ
≥(s) is the intersection of the halfspace

Hπ
≥(s) = {x ∈ RA(s) :

∑

a∈A(s)

Qπ(a, s)x(a) ≥ V π(s)}

and the standard simplex C(s) in RA(s), that is

Cπ
≥(s) = Hπ

≥(s) ∩ C(s).

To compute the vertices of the polytopes Cπ
=(s) and Cπ

≥(s) we use the
following notation. Let A(s) = {a1, . . . , ad+1},

c = (Qπ(a1, s), . . . , Q
π(ad+1, s)) ∈ Rd+1 and z = V π(s) ∈ R.
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Let ei ∈ Rd+1 denote the ith standard basis vector and 1 = (1, . . . , 1) ∈ Rd+1.
Then the standard d + 1-simplex is defined by the system of (in)equalities

eT
i x ≥ 0, for i = 1, . . . , d + 1, (1.22)

1x = 1. (1.23)

The polytopes Cπ
=(s) and Cπ

≥(s) are defined by the additional (in)equality

cx = z, or cx ≥ z (1.24)

respectively.

Theorem 17. We have

vert(Cπ
=(s)) = {ek : ck = z} ∪

{
vij=

z − cj

ci − cj

ei +
ci − z

ci − cj

ej : ci > z, cj < z
}

(1.25)
and

vert(Cπ
≥(s)) = {ek : ck > z} ∪ vert(Cπ

=(s)). (1.26)

Proof. We use the characterization of vertices from Corollary 16 to com-
pute the vertices of Cπ

=(s) and Cπ
≥(s). So, we have to choose all subsets of

d + 1 linearly independent rows from the d + 3 Equations (1.22), (1.23) and
(1.24). Then we compute the unique solution x ∈ Rd+1 of the resulting sys-
tem of linear equations and test whether the solution satisfies the remaining
(in)equalities. The unique solution for all d+1 linear equations from (1.22) is
x = 0, which is not a point on the standard simplex. Choosing d linear equa-
tions from (1.22), omitting eT

k x = 0, and Equation (1.23) gives the solution
x = ek. If the solution satisfies the (in)equality from Equation (1.24) then
either ck = z or ck > z, which gives the equivalent and improving vertices

{ek : ck = z} and {ek : ck > z}
respectively. We can also choose d− 1 linear equations from (1.22), omitting
eT

i x = 0 and eT
j x = 0, and the two equations from (1.23), (1.24). Then x has

only two nonzero components xi and xj. Furthermore ci 6= cj, otherwise the
d + 1 equations would be linearly dependent. So we obtain the two linearly
independent equations

xi + xj = 1,

cixi + cjxj = z.

The unique solution

xi =
z − cj

ci − cj

and xj =
ci − z

ci − cj
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is positive, that is, it lies on the standard simplex and is not contained in
the previous case, if and only if cj < z and ci > z.

We call the vertices vert(Cπ
=(s)) equivalent vertices and vert(Cπ

≥(s)) im-
proving vertices for policy π in state s. In Figure 1.3 the equivalent vertices
are v12 and v32. The polytope Cπ

=(s) is the line segment between them.

v32

a2v12

π(− | s)

a3

a1

Figure 1.3: Equivalent policies

Using strictly improving actions Equation (1.26) reads as follows

vert(Cπ
≥(s)) = A>(s) ∪ vert(Cπ

=(s)). (1.27)

See Figure 1.4, where Aπ
>(s) = {a1, a3}, vert(Cπ

=(s)) = {v12,v32} and the
polytope Cπ

≥(s) is the shaded area, the side marked by the small arrows.

a1 a2

a3

v12

v32

π(− | s)

Figure 1.4: Improving policies

Using the value function and action-values function the equivalent vertices
from (1.25) read as follows

δa, with a ∈ A(s) and Qπ(a, s) = V π(s)

and
V π(s)−Qπ(ã, s)

Qπ(a, s)−Qπ(ã, s)
δa +

Qπ(a, s)− V π(s)

Qπ(a, s)−Qπ(ã, s)
δã,
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with a, ã ∈ A(s) and Qπ(a, s) > V π(s), Qπ(ã, s) < V π(s). The improving
vertices (1.26) are the equivalent vertices and

δa, with a ∈ A(s) and Qπ(a, s) > V π(s).

Observe that each vertex of Cπ
=(s) lies on an edge between two actions.

We obtain an equivalent policy by choosing an equivalent vertex for each
state s ∈ S by Corollary 14. This implies the following theorem.

Theorem 18. Let (E,R, γ) be an MDP. Let π be a policy for E. Then there
exists an equivalent policy π̃ with the property that for each state s ∈ S we
have

π̃(a | s) > 0 for at most two different actions.

The above theorem is useful in applications since for every stochastic
policy there exists an equivalent policy using two actions a and ã only in
each s with π(a | s) + π(ã | s) = 1. Such policies are determined by a triple
containing two actions and the probability of taking the first action, that is
π is given by (a, ã, p) with a, ã ∈ A(s) and 0 ≤ p ≤ 1 for each s ∈ S. The
second action is taken with probability 1− p.

1.8.4 Number of Improving Vertices

We give bounds for the number of equivalent and improving vertices, which
are useful in applications. For example the required memory to store the
equivalent and improving vertices can be estimated in terms of the number
of actions.

Let dxe denote the ceiling function for x ∈ R, that is, the least integer
greater than or equal to x. We denote the floor function by bxc. Graham,
Knuth and Pathashnik [GKP94, pp. 67] give an extensive discussion of the
floor and ceiling function, applications and related formulas. We use the
following identity [GKP94, p. 96]

⌈ n

m

⌉
=

⌊
n + m− 1

m

⌋
, for integers n,m > 0. (1.28)

From Equation (1.25) it follows that the number of equivalent vertices is

|vert(Cπ
=(s))| = |{k : ck = z}|+ |{i : ci > z}| · |{j : cj < z}| .

So it is maximal (for d ≥ 2) if we have
⌈

d + 1

2

⌉
indices i with ci > z
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and ⌊
d + 1

2

⌋
indices j with cj < z

or vice versa. Thus

|vert(Cπ
=(s))| ≤

⌈
d + 1

2

⌉ ⌊
d + 1

2

⌋
= a(d + 1),

with
a(n) =

⌈n

2

⌉ ⌊n

2

⌋
, for n = 0, 1, 2, . . . .

The first terms of the sequence a(n) for n = 0, . . . , 10 are

0, 0, 1, 2, 4, 6, 9, 12, 16, 20, 25. (1.29)

Entering these numbers in Sloane’s “On-Line Encyclopedia of Integer Se-
quences” [Slo04], see also Sloane [Slo03], we find that the sequence a(n)
(sequence A002620) is called “quarter-squares”, since

a(n) =

⌊
n2

4

⌋
.

Various applications and references are given. Furthermore, we find that the
sequence satisfies several recurrences, for example

a(n) = a(n− 1) +
⌊n

2

⌋
, for n > 0.

Hence with Equation (1.28) we conclude

a(n + 1) = a(n) +

⌊
n + 1

2

⌋
= a(n) +

⌈n

2

⌉
, for n ≥ 0.

Using Equation (1.26) we see that the number of improving vertices is

∣∣vert(Cπ
≥(s))

∣∣ = |{i : ci > z}|+ |vert(Cπ
=(s))| .

So it is maximal if we have
⌈

d + 1

2

⌉
indices i with ci > z

and ⌊
d + 1

2

⌋
indices j with cj < z.

http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=002620
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Thus ∣∣vert(Cπ
≥(s))

∣∣ ≤
⌈

d + 1

2

⌉⌊
d + 1

2

⌋
+

⌈
d + 1

2

⌉

and ∣∣vert(Cπ
≥(s))

∣∣ ≤ a(d + 2).

See Figure 1.4, where the are 4 = a(4) improving and 2 = a(3) equivalent
vertices, which is maximal.

Recall McMullen’s upper bound f(m, d) for the maximal number of ver-
tices of a polyhedron defined by m linear inequalities in Rd, see (1.21). Com-
puting the sequence

f(d + 3, d + 1) =

(
d + 3− ⌊

d+2
2

⌋

2

)
+

(
d + 2− ⌊

d+1
2

⌋

2

)

for d = 0, . . . , 8 gives
2, 4, 6, 9, 12, 16, 20, 25, 30.

Considering the cases d even and d odd one sees that f(d + 3, d + 1) =
a(d + 3) and we conclude that the polytope of improving policies can have
the maximal possible number of vertices.

1.9 Policy Iteration

The policy iteration algorithm computes an optimal policy for a given Markov
decision process. It is usually attributed to Howard [How65, p. 38] and
Bellman [Bel57], compare also Kallenberg in [FS02, p. 34] and Denardo
[Den03, p. 167].

The main idea of the algorithm is to combine policy evaluation with policy
improvement steps. We start with an arbitrary policy and compute its value
function and action-values. Then we try to improve the policy by choosing
a strictly improving action in as many states as possible, see Section 1.6.
Once improved we evaluate the new policy and again try to improve it. The
algorithm terminates if there are no strictly improving actions. Then the
policy is optimal due to (iv) of Theorem 15. A formal description of policy
iteration for a given Markov decision process is shown in Algorithm 2.

We choose an arbitrary strictly improving action a ∈ Aπ
>(s) to improve

the policy π. A usual choice is an action, that maximizes the action-value,
that is

a ∈ arg max
a

Qπ(a, s). (1.30)
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Output: an optimal policy π
choose a starting policy π
repeat

compute V π and Qπ

for all s ∈ S do
compute Aπ

>(s)
if Aπ

>(s) 6= ∅ then
choose a ∈ Aπ

>(s)
π(− | s) ← a

until Aπ
>(s) = ∅ for all s ∈ S

Algorithm 2: Policy iteration

The resulting policy is called a greedy policy for Qπ, see Sutton and Barto
[SB98, p. 96]. It selects an action that appears best according to the action-
values.

If we change a policy by an improvement step in a state the policy becomes
deterministic in this state and remains unchanged in all others, in particular a
deterministic policy remains deterministic. Since the number of deterministic
policies is finite, policy iteration terminates after finitely many steps.

Theorem 19. Let (E,R, γ) be an MDP. Then there exists an optimal de-
terministic policy π.

Proof. We run the policy iteration algorithm with a deterministic starting
policy. We obtain a deterministic optimal policy in finitely many iteration.

A geometric interpretation of one step of the policy iteration algorithm
for three states is shown in Figure 1.5. In state s1 the set of strictly improving

a3 a3

state s2 state s3state s1

a2

a3

a2

π(s1) π(s2)

π(s3)

a1 a1 a1a2

Figure 1.5: Policy iteration and strictly improving actions

actions is empty. In state s2 we have one strictly improving action a3. In



CHAPTER 1. REINFORCEMENT LEARNING 32

state s3 we can choose between the two strictly improving actions a1 and a3.
Note that the policy in this state is stochastic, which can occur when we run
the algorithm with a stochastic starting policy.

1.10 Optimal Value Function and Actions

In this section we give a criterion for optimal policies by means of optimal
actions and describe the set of all optimal policies geometrically.

Let (E,R, γ) be an MDP. Let π∗ be an optimal policy for E. Then [π∗]
is the greatest element of the set of equivalence classes of policies and all
optimal policies share the same value function by definition. We define the
optimal value function of the MDP (E,R, γ) by

V ∗(s) = V π∗(s), for s ∈ S.

Since V π ≤ V π∗ for all policies π, we see that

V ∗(s) = max
π∈Π

V π(s), for s ∈ S. (1.31)

The optimal action-value for action a ∈ A(s) in state s ∈ S is defined by

Q∗(a, s) = R(a, s) + γ
∑

s′∈S

V ∗(s′)P (s′ | a, s) = Qπ∗(a, s). (1.32)

Criterion (v) of Theorem 15 gives

V ∗(s) = max
a∈A(s)

Q∗(a, s), for s ∈ S. (1.33)

Combining the two last equations yields

V ∗(s) = max
a∈A(s)

(
R(a, s) + γ

∑

s′∈S

V ∗(s′)P (s′ | a, s)
)
, for s ∈ S. (1.34)

This equation is often referred to as Bellman optimality equation for the
optimal value function, for example in Sutton and Barto [SB98, p. 76] or
Puterman [Put94, p. 147]. Bellman calls it the “basic functional equation”
[Bel57].

We obtain an analogous equation for the optimal action-values

Q∗(a, s) = R(a, s) + γ
∑

s′∈S

max
a′∈A(s′)

Q∗(a′, s′)P (s′ | a, s). (1.35)

Corollary 14 implies the following characterization of optimal policies.
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Corollary 20. Let (E,R, γ) be an MDP. Then a policy π is optimal if and
only if ∑

a∈A(s)

Q∗(a, s)π(a | s) = V ∗(s) for all s ∈ S.

We define the set of optimal actions in state s by

A∗(s) = {a ∈ A(s) : Q∗(a, s) = V ∗(s)} = arg max
a∈A(s)

Q∗(a, s).

The next theorem gives a characterization of optimal policies by the sets of
optimal actions. It says that a policy is optimal if it chooses optimal actions
only.

Theorem 21. Let (E,R, γ) be an MDP. Let π be a policy for E. Then π is
optimal if and only if

π(a | s) > 0 implies a ∈ A∗(s) for all s ∈ S.

Proof. Suppose that there exists an s ∈ S and an action a ∈ A(s) such that
π(a | s) > 0 and a 6∈ A∗(s). Then

Q∗(a, s) < max
a∈A(s̃)

Q∗(a, s) = V ∗(s)

and
∑

a∈A(s)

Q∗(a, s)π(a | s) <
(

max
a∈A(s)

Q∗(a, s)
) ∑

a∈A(s)

π(a | s) = V ∗(s).

By the preceding corollary π is not optimal. Let now π be a policy such that
π(a | s) > 0 implies a ∈ A∗(s), for s ∈ S. Then

∑

a∈A(s)

Q∗(a, s)π(a | s) =
∑

a∈A∗(s)

V ∗(s)π(a | s) = V ∗(s), for s ∈ S

and π is optimal by the above corollary.

Corollary 22. Let (E,R, γ) be an MDP. Let π∗ be an optimal policy for E.
Then

[π∗] =
∏
s∈S

conv(δa : a ∈ A∗(s)) ⊂
∏
s∈S

C(s).

Given the optimal value function V ∗ we can compute the optimal action-
values Q∗ via Equation (1.32). If we construct a greedy policy π∗ for Q∗,
that is

π∗(− | s) = a ∈ arg max
a∈A(s)

Q∗(a, s) (1.36)

for each s ∈ S, then π∗ is an optimal deterministic policy by the previous
theorem.
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1.11 Value Iteration

We give a short description of value iteration, an algorithm that approximates
directly the optimal value function and optimal policies. For an extensive
discussion of several aspects of the algorithm, its variants and references we
refer to Puterman [Put94, pp. 158].

Recall the Bellman optimality equation (1.34) from the previous section

V ∗(s) = max
a∈A(s)

(
R(a, s) + γ

∑

s′∈S

V ∗(s′)P (s′ | a, s)
)
.

We define the map T : RS → RS for V ∈ RS and s ∈ S by

(TV )(s) = max
a∈A(s)

(
R(a, s) + γ

∑

s′∈S

V (s′)P (s′ | a, s)
)
. (1.37)

We show that T is a contraction mapping with respect to the maximum
norm. This implies that the optimal value function V ∗ is its unique fixed
point.

Lemma 23. Let f, g ∈ RB with B a finite set. Then
∣∣∣max

b
f(b)−max

b
g(b)

∣∣∣ ≤ max
b
|f(b)− g(b)| .

Proof. We may assume without loss of generality that maxb f(b) ≥ maxb g(b).
Let b1, b2 ∈ B such that f(b1) = maxb f(b) and g(b2) = maxb g(b) respectively.
Then

∣∣∣max
b

f(b)−max
b

g(b)
∣∣∣ = f(b1)− g(b2) ≤

f(b1)− g(b1) ≤ max
b
|f(b)− g(b)| .

Let V1, V2 ∈ RS and s ∈ S. With Equation (1.37), using the previous
lemma and the triangle inequality we see that

|T (V1)(s)− T (V2)(s)| ≤ γ max
a∈A(s)

∑

s′
|(V1(s

′)− V2(s
′))|P (s′ | a, s) ≤

γ ‖V1 − V2‖∞ max
a∈A(s)

∑

s′
P (s′ | a, s) = γ ‖V1 − V2‖∞ .

Hence
‖T (V1)− T (V2)‖∞ ≤ γ ‖V1 − V2‖∞
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and T is a contraction mapping with contraction factor γ. From the Banach
Fixed-Point Theorem for contraction mappings we know that the sequence
defined by choosing V0 ∈ RS arbitrarily and

Vn+1 = T (Vn) = T n(V0) for n = 1, 2, . . . (1.38)

converges to V ∗.
Given an approximation V ∈ RS of the optimal value function V ∗, we

approximate the optimal action-values by Q ∈ RAS with

Q(a, s) = R(a, s) + γ
∑

s′∈S

V (s′)P (s′ | a, s),

for (a, s) ∈ AS, compare Equation (1.32). Then a greedy policy π for the
approximation Q, that is

π(− | s) = a ∈ arg max
a∈A(s)

Q(a, s) (1.39)

for each s ∈ S, is an approximation of an optimal policy, compare Equation
(1.36). The iterative algorithm derived from (1.38) followed by computing a
greedy policy leads to value iteration, see Puterman [Put94, p. 161].

If the approximation V of the optimal value function is sufficiently good
then the policy π is close to optimal. See Puterman [Put94, p. 161] for a
precise statement in terms of ε-optimal policies. A policy π is called ε-optimal
for ε > 0 if

V π(s) ≥ V ∗(s)− ε, for s ∈ S.

A Gauss-Seidel variant of value iteration, where updated values of the
approximation are used as soon as they become available, is given in Algo-
rithm 3. See Bertsekas [Ber95, pp. 28], Sutton and Barto [SB98, p. 102] and
Puterman [Put94, p. 166]. For a discussion of asynchronous value iteration
in general we refer to Bertsekas and Tsitsiklis [BT96, pp. 26].

The optimal action-values can also be interpreted as the fixed point of a
contraction mapping. Recall the optimality equation (1.35) for the action-

values. We define the map T̃ : RAS → RAS for Q ∈ RAS and (a, s) ∈ AS

by

T̃ (Q)(a, s) = R(a, s) + γ
∑

s′∈S

max
a′∈A(s′)

Q(a′, s′)P (s′ | a, s). (1.40)

Then one sees as above that T̃ is a contraction mapping with respect to the
maximum norm and the optimal action-values Q∗ its unique fixed point.
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Input: ε > 0
Output: an ε-optimal policy π

initialize V ∈ RS arbitrarily
repeat

∆ = 0
for all s ∈ S do

v ← V (s)

V (s) ← maxa∈A(s)

(
R(a, s) + γ

∑
s′∈S V (s′)P (s′ | a, s)

)

∆ ← max(∆, |v − V (s)|)
until ∆ < ε(1− γ)/2γ
for all s ∈ S do

Q(a, s) ← R(a, s) + γ
∑

s′∈S V (s′)P (s′ | a, s) for all a ∈ A(s)
choose a ∈ arg maxa∈A(s) Q(a, s)
π(− | s) ← a

Algorithm 3: Value iteration

1.12 Model-free Methods

In this section we consider methods that approximate the value function and
action-values and find optimal or suboptimal policies in MDPs, whenever
there is no explicit model of the environment. Such methods are called
model-free methods, compare Bertsekas and Tsitsiklis [BT96, pp. 179] and
Kaelbling, Littman and Moore [KLM96, pp. 251].

Model-free methods are of major importance in the context of real world
applications, where in general the dynamics of the environment can only be
observed.

real world environment or simulation

state s

action a

(s′, a, s), r
successor state s′

reward r = R(s′, a, s)

Figure 1.6: Interaction between agent and environment
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Figure 1.6 summarizes the interaction between an agent and the (real
world) environment or simulation, which provide the observations compare
Sutton and Barto [SB98, p. 52]. We start in state s, apply an action a and
observe the successor state s′ and the reward r = R(s′, a, s). The resulting
triple (s′, a, s) and the reward r are then used to estimate the value function
or action-values.

In the following sections we consider basic forms of different model-free
algorithms. We first focus on methods to approximate the value-function
and action-values for a given policy. Then we discuss approximate policy
iteration and describe Q-learning to approximate the optimal action-values.

1.12.1 Temporal Differences

The term temporal difference learning was introduced by Sutton [Sut88],
where he describes methods to approximate the value function for a policy.
The main idea is to update the value function stepwise by using an observed
estimate of it.

Let (E,R, γ) be an MDP. Let π be a policy for E and V π the value
function for policy π. Recall the Bellman equation (1.7)

V π(s) = Rπ(s) + γ
∑

s′∈S

V π(s′)P π(s′ | s), for s ∈ S. (1.41)

Suppose that V ∈ RS is an approximation of the value function V π.
Let s ∈ S. We choose action a ∈ A(s) according to policy π. Let s′ ∈ S
denote the successor state observed after applying action a in state s and
r = R(s′, a, s) ∈ R the reward. Then r is an estimate of Rπ(s) and

r + γV (s′)

an estimate of the value function V π(s) in s derived from the current obser-
vation, compare Equation (1.41). The temporal difference is the difference
between the estimate observed and the old estimate, that is

r + γV (s′)− V (s).

Based on the temporal difference we define a new estimate Ṽ ∈ RS of the
value function as

Ṽ (s̃) =

{
V (s) + α(r + γV (s′)− V (s)), if s̃ = s,

V (s̃), otherwise,



CHAPTER 1. REINFORCEMENT LEARNING 38

where α is a positive step-size parameter which influences the importance of
the temporal difference and where Ṽ differs from V in state s only. In other
terms, we define the update rule

V (s) ← V (s) + α(r + γV (s′)− V (s)). (1.42)

The assignment operator ← means that we change V in state s only.
The algorithm derived from this update is a stochastic approximation

algorithm, Bertsekas and Tsitsiklis [BT96, p. 133], or more specifically a
Robbins-Monro stochastic approximation algorithm, Robbins and Monro
[RM51]. We state Algorithm 4 usually called TD(0), refer to the biblio-
graphical remarks Section 1.13.

Input: a policy π
Output: an approximation of V π

initialize V arbitrarily
repeat

choose s ∈ S
choose a ∈ A(s) according to π
apply action a, observe s′ and obtain r
V (s) ← V (s) + α(r + γV (s′)− V (s))

Algorithm 4: Temporal differences TD(0)

To state the stochastic convergence results for Algorithm 4 we introduce
the following probability spaces and random vectors .

Let P be a probability distribution on S. One update step of the algo-
rithm consists of choosing a state s with probability P (s), choosing an action
a ∈ A(s) according to π and obtaining the successor state s′. The probability
of obtaining the pair (s′, s) is

P (s′, s) = P π(s′ | s)P (s).

These experiments are repeated independently of each other.
Let T ∈ N0 and

ΩT = (S × S)T+1

denote the set of all sequences

ωT = (s′T , sT , s′T−1, sT−1, . . . , s
′
0, s0) ∈ ΩT .

Since the experiments are independent, the probability of a sequence ωT is

PT (ωT ) =
T∏

t=0

P π(s′t | st)P (st)
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Let
Ω∞ = (S × S)N

denote the set of all infinite sequences

ω = (. . . , s′T , sT , s′T−1, sT−1, . . . , s
′
0, s0) ∈ Ω∞.

Let P∞ be the unique probability on Ω∞ with marginal probabilities PT , that
is

P∞
{
ω = (. . . , s′T , sT , ωT−1) ∈ Ω∞

}
= PT−1(ωT−1),

for T ∈ N and ωT−1 ∈ ΩT−1.
Let V0 ∈ RS be arbitrary, also considered as a constant random vector

V0 : Ω → RS, ω 7→ V0.

Inductively we define random vectors

Vt+1 : Ω → Ωt → RS

for t = 0, 1, . . . by

Vt+1(ωt)(s) = Vt+1(s
′
t, st, ωt−1)(s) ={

Vt(ωt−1)(st) + αt(R
π(s) + γVt(ωt−1)(s

′
t)− Vt(ωt−1)(st)), if s = st,

Vt(ωt−1)(s), otherwise,

where αt denotes the step-size parameter at iteration t.
Then the random vectors Vt converge to V π with probability one pro-

vided that each state is chosen with a nonzero probability, that is P (s) > 0
for s ∈ S, and the step-size parameter decreases to zero under conditions
explained below. The proof is based on convergence results for stochastic
approximation methods for contraction mappings, compare Bertsekas and
Tsitsiklis [BT96, pp. 199]. Recall that V π is the fixed point of T π, see
Equation (1.9).

The rather difficult proof of convergence with probability one can for
example be found in Bertsekas and Tsitsiklis [BT96, pp. 208]. The weaker
result that the expectation E(Vt) of Vt converges to V π is easily shown, see
Sutton [Sut88].

The conditions for the decreasing step-size parameters αt are

∞∑
t=1

αt = ∞ and
∞∑

t=1

α2
t < ∞. (1.43)
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The first condition allows the change in the update to be big enough to over-
come any initial bias. The second condition ensures convergence. Compare
Bertsekas and Tsitsiklis [BT96, p. 135] and Sutton and Barto [SB98, p. 39].
A usual choice for the step-size parameter that satisfies (1.43) is

αt =
c

t
, where c is a positive constant. (1.44)

1.12.2 Approximate Policy Evaluation

In the model-free case we cannot compute the action-values directly from the
value-function, since the rewards and transition probabilities are unknown.
If we have an approximation of the action-values we can approximate the
value-function, see the following section. We call methods to approximate
the action-values for a given policy approximate policy evaluation.

Let (E,R, γ) be an MDP. Let π be a policy for E. Equation (1.16)

Qπ(a, s) = R(a, s) + γ
∑

s′∈S

∑

a′∈A(s′)

Qπ(a′, s′)π(a′ | s′)P (s′ | a, s)

motivates the following update rule analogous to the TD(0) algorithm from
the previous section.

Suppose that Q ∈ RAS is an approximation of the action-values of Qπ.
We start in state s ∈ S and apply action a ∈ A(s). Let s′ ∈ S denote the
successor state and r = R(s′, a, s) ∈ R the reward. Then r is an estimate of
R(a, s) and

r + γ
∑

a′∈A(s′)

Q(a′, s′)π(a′ | s′)

an estimate of the action-value Qπ(a, s). We update the approximation of
the action-value Q by the update rule

Q(a, s) ← Q(a, s) + α(r + γ
∑

a′∈A(s′)

Q(a′, s′)π(a′ | s′)−Q(a, s)), (1.45)

where α is a step-size parameter. The resulting algorithm is described in
Algorithm 5.

Approximate policy evaluation and TD(0) are closely related and con-
verge under the same conditions, since Qπ is the fixed point of the contraction
mapping T̃ π, see Equation (1.17).

We can define a probability space and random vectors Qt related to the
approximations Q generated by the algorithm similarly to the construction
of Vt in the previous section. Then the random vectors Qt converge to Qπ
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Input: a policy π
Output: an approximation of Qπ

initialize Q arbitrarily
repeat

choose s ∈ S
choose a ∈ A(s)
apply action a, observe s′ and obtain r
Q(a, s) ← Q(a, s) + α(r + γ

∑
a′∈A(s′) Q(a′, s′)π(a′ | s′)−Q(a, s))

Algorithm 5: Approximate policy evaluation

with probability one, provided that each state and each action is chosen
with nonzero probability and the step-size parameter decreases to zero under
conditions (1.43). Compare also Bertsekas and Tsitsiklis [BT96, p. 338].

1.12.3 Approximate Policy Iteration

Approximate policy iteration combines approximate policy evaluation with
policy improvement following the idea of policy iteration, compare Section
1.9.

Let (E,R, γ) be an MDP and π be a policy for E. Let Q ∈ RAS be an
approximation of the action-values Qπ. To approximate the value function
V π we use the Bellman Equation (1.13) with approximation Q. Then V ∈ RS

with
V (s) =

∑

a∈A(s)

Q(a, s)π(a | s), for s ∈ S, (1.46)

is an approximation of the value function V π.
We define improving policies, strictly improving actions and improving

vertices for policy π and approximation Q using the approximations instead
of the exact action-values and value function. For example, we define the
improving policies for policy π and approximation Q in state s by

Cπ,Q
≥ (s) = {π̃(− | s) :

∑

a∈A(s)

Q(a, s)π̃(a | s) ≥ V (s)}

and the strictly improving actions for policy π and approximation Q in state
s by

Aπ,Q
> (s) = {a ∈ A(s) : Q(a, s) > V (s)}.

Note that π(− | s) ∈ Cπ
≥(s) by Equation (1.46).

We start with an arbitrary policy and approximate the action-values with
Algorithm 5 and the value function as described above. Then we compute
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the set of strictly improving actions for the approximation and improve the
policy. The resulting algorithm is given in Algorithm 6.

Output: a (sub)optimal policy π
choose a starting policy π
repeat

compute approximation Q of Qπ

compute V
for all s ∈ S do

compute Aπ,Q
> (s)

if Aπ,Q
> (s) 6= ∅ then

choose a ∈ Aπ,Q
> (s)

π(− | s) ← a

Algorithm 6: Approximate policy iteration

In general approximate policy iteration does not converge to an optimal
policy. Empirically, the policy improves well in the first iteration steps and
then begins to oscillate around the optimal policy, compare Bertsekas and
Tsitsiklis [BT96, pp. 282] and see Section 3.5.4 for computational experi-
ments. The oscillation is constrained by error bounds discussed in Bertsekas
and Tsitsiklis [BT96, pp. 275] and Munos [Mun03]. Perkins and Precup
[PP02] give a convergent form of approximate policy iteration under special
conditions. In practical applications the starting policy is usually chosen as
good as possible, often through heuristic considerations.

1.12.4 Q-learning

Q-learning approximates the optimal action-values. It was introduced by
Watkins [Wat89], who together with Dayan discussed convergence [WD92].

Let (E,R, γ) be an MDP. Equation (1.35) for the optimal action-values

Q∗(a, s) = R(a, s) + γ
∑

s′∈S

max
a′∈A(s′)

Q∗(a′, s′)P (s′ | a, s)

motivates the following update rule.
Suppose that Q ∈ RAS is an approximation of the optimal action-values

of Q∗. We start in state s ∈ S and apply action a ∈ A(s). Let s′ ∈ S denote
the successor state and r = R(s′, a, s) ∈ R the reward. Then r is an estimate
of R(a, s) and

r + γ max
a′∈A(s′)

Q(a′, s′)
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an estimate of the optimal action-value Q∗(a, s). We update the approxima-
tion of the optimal action-value Q by the update rule

Q(a, s) ← Q(a, s) + α(r + γ max
a′∈A(s′)

Q(a′, s′)−Q(a, s)). (1.47)

The resulting algorithm is given in Algorithm 7.

Output: an approximation of Q∗

initialize Q arbitrarily
repeat

choose s ∈ S
choose a ∈ A(s)
apply action a, observe s′ and obtain r
Q(a, s) ← Q(a, s) + α(r + γ maxa′ Q(a′, s′)−Q(a, s)).

Algorithm 7: Q-learning

For an approximation Q of the optimal action-values Q∗ the greedy policy
π for Q, that is

π(− | s) = a ∈ arg max
a∈A(s)

Q(a, s)

for each s ∈ S, is an approximation of an optimal policy, compare Equation
(1.36).

We can define a probability space and random vectors Qt related to ap-
proximations Q generated by the algorithm similarly to construction in Sec-
tion 1.12.1. Then the random vectors Qt converge to Q∗ with probability one,
provided that each state and each action is chosen with nonzero probability
and the step-size parameter decreases to zero under conditions (1.43).

We refer to Tsitsiklis [Tsi94] and Bertsekas and Tsitsiklis [BT96, pp. 247]
for a proof based on the fact that Q∗ is the fixed point of the contraction
mapping T̃ , see Equation (1.40). Further convergence results can be found
in Jaakkola, Jordan and Singh [JJS94]. See also Sutton and Barto [SB98, p.
229] for a discussion of this algorithm in the context of planning.

1.13 Bibliographical Remarks

Ad Section 1.1: There is no standard terminology for policies, see Feinberg
and Shwartz ([FS02, p. 4]). Puterman [Put94, p. 21] distinguishes
between policies and decision rules. He uses the term Markovian ran-
domized decision rules for what we call policies in state s. Compare
also Filar and Vrieze [FV97, p. 51]. Hinderer [Hin70] discusses non-
stationary dynamic programming, where in particular history and time
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depending policies are considered.
In the reinforcement learning literature the terms reward function or
reinforcement function are often used to describe the family of rewards,
see Kaelbling, Littman and Moore [KLM96] and Santos [San99].

Ad Section 1.2.5: In the reinforcement learning literature action-values
are often called Q-values . This is due to the impact of Q-learning,
where action-values play a fundamental role, see also Sutton [Sut03]
for a discussion on this terminology.

Ad Section 1.3.1: Sutton and Barto [SB98, p. 75] define a preorder over
policies not taking into account the equivalence classes of policies.

Ad Section 1.3.2: The optimal value function is often directly defined by
Equation (1.31). Optimal policies are then defined via the optimal
value function, see Bertsekas and Tsitsiklis [BT96, p. 13], Feinberg
and Shwartz [FS02, p. 23], Sutton and Barto [SB98, p. 75] or White
[Whi93, p. 27]. This is equivalent to our definition.

Ad Section 1.4: For deterministic policies and without the notion of action-
values the result on the difference of policies can be found in Howard
[How65, p. 84]. Denardo [Den03, p. 167] and Kallenberg in [FS02,
p. 34] use what we call the local difference for policy iteration with
deterministic policies.

Ad Section 1.6: Kallenberg in [FS02, p. 34] defines and discusses improv-
ing actions. Sutton and Barto [SB98, p. 97] give a short description of
policy improvement for stochastic policies. They suggest to improve a
policy by a stochastic policy, where all submaximal actions are given
zero probability. We describe all possible stochastic improving policies.

Ad Section 1.8.2: In game theory it is common to identify mixed strate-
gies with points on a standard simplex, see for example von Neumann
and Morgenstern [vNM47, pp. 143] or Ekeland [Eke74, p. 24]. Com-
pare also Filar and Vrieze [FV97, pp. 343]. In contrast, in the theory
of reinforcement learning and MDPs the interpretation of policies as
points on standard simplices is not customary.

Ad Section 1.10: Denardo [Den03, p. 161] discusses the set of determinis-
tic optimal policies.

Ad Section 1.12.1: We discuss TD(0) that looks ahead one step to com-
pute the temporal difference. This method is a special case of temporal
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difference methods TD(λ), see Bertsekas and Tsitsiklis [BT96, pp. 193]
and Sutton and Barto [SB98, pp. 169]



Chapter 2

MDP Package

The MDP package for the computer algebra system Maple 9, http://www.

maplesoft.com, is a collection of procedures for Markov decision processes
(MDPs). Since Maple provides exact arithmetics all computations with the
package can be done exactly, provided that the transition probabilities and
rewards are rational numbers. Furthermore, symbolic computations can be
performed.

For numerical computations with MDPs, see the matlab, http://www.
mathworks.com, toolboxes:

• http://www.ai.mit.edu/∼murphyk/Software/MDP/mdp.html
by Kevin Murphy and

• http://www.inra.fr/bia/T/MDPtoolbox

by M.-J. Cros, Frédérick Garcia and Régis Sabbadin.

The package implements the computation of value functions and action-
values, (strictly) improving vertices and actions, and policy iteration. Func-
tions to generate random transition probabilities and rewards and to plot
improving polytopes are also provided. Help pages with examples are avail-
able. See Section 11.2 for a list of all functions with a short description and
examples. The package with the help files, its source code, information on
how to use it and an example worksheet can be found on the attached CD-
ROM, see Section 11.3. The functions for several realizations are described
in Section 7.

The following is a list of functions from the MDP package and the corre-
sponding equations, theorems and algorithms from the previous section:

• ValueFunction, Equation (1.8).

• ActionValues, Equation (1.12).
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• IsOptimal, Theorem 15 (v).

• StrictlyImprovingActions, EquivalentVertices,
ImprovingVertices, Theorem 17.

• PolicyImprovement, PolicyIteration, Algorithm 2.

2.1 Transition Probabilities, Policies and Re-

wards

The following examples give an introduction to the main functions of the
package and how to use them.

We make the functions from the MDP package available.

> restart;

> with(MDP):

We define transition probabilities with two states and two actions in each
state.

> a:=2: s:=2:

> P:=Array(1..s,1..a,1..s):

The first state

> P[1..s,1..a,1]:=<<3/4,1/4>|<1/3,2/3>>;

P1..2, 1..2, 1 :=




3

4

1

3
1

4

2

3




and the second state.

> P[1..s,1..a,2]:=<<1/6,5/6>|<1/2,1/2>>;

P1..2, 1..2, 2 :=




1

6

1

2
5

6

1

2




Are these valid transition probabilities?

> IsTransitionProbability(P);

true

Rewards
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> R:=Array(1..s,1..a,1..s):

for the first

> R[1..s,1..a,1]:=<<1,-1>|<1,0>>;

R1..2, 1..2, 1 :=

[
1 1

−1 0

]

and the second state.

> R[1..s,1..a,2]:=<<0,1>|<0,-1>>;

R1..2, 1..2, 2 :=

[
0 0
1 −1

]

Expected rewards for P and R.

> ER:=ExpectedReward(P,R);

ER :=




1

2

5

6
1

3

−1

2




A policy

> Pol:=<<0,1>|<1/2,1/2>>;

Pol :=




0
1

2

1
1

2




its expected rewards

> ERp:=ExpectedRewardPolicy(ER,Pol);

ERp :=

[
1

3
,

1

6

]

and transition matrix.

> Pp:=TransitionMatrix(P,Pol);

Pp :=




1

3

1

3
2

3

2

3




2.2 Value Function and Action-Values

A discount rate.

> ga:=1/2;
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ga :=
1

2

The value function for policy Pol and discount rate ga is computed with the
expected rewards ERp and the transition matrix Pp.

> Vp:=ValueFunction(ERp,Pp,ga);

Vp :=

[
5

9
,

7

18

]

To compute the action-values we need the transition probabilities P, the
expected rewards ER, the value function Vp and the discount rate ga.

> Qp:=ActionValues(P,ER,Vp,ga);

Qp :=




109

144

25

24
5

9

−19

72




The Bellman equation (1.13).
> [seq(LinearAlgebra:-Column(Pol,i).\
> LinearAlgebra:-Column(Qp,i),i=1..s)];

[
5

9
,

7

18
]

2.3 Policy Improvement and Iteration

We improve policy Pol.

> imPol:=PolicyImprovement(Qp,Vp,Pol,’improved’);

imPol :=

[
1 1
0 0

]

Do we have a better policy?

> improved;

1

We compute the difference between the value functions of the improved and
the original policy.

> Pimp:=TransitionMatrix(P,imPol):

> ERimp:=ExpectedRewardPolicy(ER,imPol):

> Vimp:=ValueFunction(ERimp,Pimp,ga);

Vimp :=

[
19

17
,

27

17

]
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> Vimp-Vp; [
86

153
,

367

306

]

Is the improved policy optimal?

> Qimp:=ActionValues(P,ER,Vimp,ga);

Qimp :=




19

17

27

17
107

102

3

17




> IsOptimal(Qimp,Vimp);

true

We generate a random MDP with two states and three actions in each state
for the policy iteration algorithm.

> s:=2: a:=3:

> P:=RandomTransitionProbability(s,a,10):

> R:=RandomReward(s,a,-1,1):

> ER:=ExpectedReward(P,R);

ER :=




−1 −1
2

5
1

3

10

−4

5




A random policy.

> Pol:=RandomStochasticMatrix(a,s,10);

Pol :=




1

5

4

5
1

10

1

5
7

10
0




Now we compute an optimal policy with starting policy Pol.

> optPol:=PolicyIteration(P,ER,Pol,ga,’steps’);

optPol :=




0 0
1 1
0 0



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How many improvement steps were used to obtain this optimal policy?

> steps;

2

2.4 Improving Policies

We compute the strictly improving actions for policy Pol in the first state.
The value function and action-values.

> ERp:=ExpectedRewardPolicy(ER,Pol):

> Pp:=TransitionMatrix(P,Pol):

> Vp:=ValueFunction(ERp,Pp,ga);

Vp :=

[−3

35
,
−29

35

]

> Qp:=ActionValues(P,ER,Vp,ga);

Qp :=




−73

70

−443

350
73

350

23

25
51

350

−321

350




Action-values in the first state.

> Qps:=LinearAlgebra:-Column(Qp,1);

Qps :=




−73

70
73

350
51

350




> StrictlyImprovingActions(Qps,Vp[1]);

[2, 3]

The equivalent and improving vertices.

> EquivalentVertices(Qps,Vp[1]);
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





103

438
335

438

0




,




81

416

0
335

416







> ImprovingVertices(Qps,Vp[1]);








0
1
0


 ,




0
0
1




 ,







103

438
335

438

0




,




81

416

0
335

416










We plot the polytope of improving policies for the two states. The red dot
represents the policy, the blue area the set of improving policies and the thick
black line the set of equivalent policies.

> for i from 1 to s do
> improvingpolicyplot3d(ImprovingVertices(\
> LinearAlgebra:-Column(Qp,i),Vp[i]),\
> LinearAlgebra:-Column(Pol,i));
> end do;

a1 a2

a3
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0.2

0.4

0.6

0.8

1
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0.4

0.6
0.8

1

Figure 2.1: Improving Policies for policy Pol in state 1

And after one step of policy improvement.

> imPol:=PolicyImprovement(Qp,Vp,Pol);

imPol :=




0 0
0 1
1 0



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Figure 2.2: Improving Policies for policy Pol in state 2
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Figure 2.3: Improving Policies for policy imPol in state 1

> Pimp:=TransitionMatrix(P,imPol):

> ERimp:=ExpectedRewardPolicy(ER,imPol):

> Vimp:=ValueFunction(ERimp,Pimp,ga):

> Qimp:=ActionValues(P,ER,Vimp,ga):
> for i from 1 to s do
> improvingpolicyplot3d(ImprovingVertices(\
> LinearAlgebra:-Column(Qimp,i),Vimp[i]),\
> LinearAlgebra:-Column(imPol,i));
> end do;
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Figure 2.4: Improving Policies for policy imPol in state 2

2.5 Symbolic Computations

We give two examples of how to use symbolic computations with the MDP
package.

2.5.1 Discount Rate

First we compute the value function of a policy with the discount rate as
a variable. We use the MDP from the first example with two states and
actions.

> a:=2: s:=2:

> P:=Array(1..s,1..a,1..s):

> P[1..s,1..a,1]:=<<3/4,1/4>|<1/3,2/3>>:

> P[1..s,1..a,2]:=<<1/6,5/6>|<1/2,1/2>>:

> R:=Array(1..s,1..a,1..s):

> R[1..s,1..a,1]:=<<1,-1>|<1,0>>:

> R[1..s,1..a,2]:=<<0,1>|<0,-1>>:

> ER:=ExpectedReward(P,R):

A policy.

> Pol:=<<0,1>|<1/2,1/2>>;

Pol :=




0
1

2

1
1

2




> ERp:=ExpectedRewardPolicy(ER,Pol):
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> Pp:=TransitionMatrix(P,Pol):

The discount rate as variable

> ga:=g;

ga := g

and we obtain the value function.

> Vp:=ValueFunction(ERp,Pp,ga);

Vp :=

[ −3 + 2 g

9 (−1 + g)
− g

9 (−1 + g)
, − g

9 (−1 + g)
+

−3 + g

18 (−1 + g)

]

2.5.2 Same Action-Values and different Value Func-
tions

Now we want to construct a simple MDP and two policies with the same
action-values and different value functions. Again we consider two states
and two action in each state.

> a:=2: s:=2:

> P:=Array(1..s,1..a,1..s):

We choose symmetric transition probabilities.

> P[1..s,1..a,1]:=<<1/2|1/2>,<1/2|1/2>>;

P1..2, 1..2, 1 :=




1

2

1

2
1

2

1

2




> P[1..s,1..a,2]:=<<1/2|1/2>,<1/2|1/2>>:

Rewards with variables r1, r2, r3, r4.

> R:=Array(1..s,1..a,1..s):

> R[1..s,1..a,1]:=<<r4|1>,<1|r1>>;

R1..2, 1..2, 1 :=

[
r4 1
1 r1

]

> R[1..s,1..a,2]:=<<1|r3>,<r2|1>>;

R1..2, 1..2, 2 :=

[
1 r3
r2 1

]

> ER:=ExpectedReward(P,R):

A first (deterministic) policy and its action-values.



CHAPTER 2. MDP PACKAGE 56

> POL1:=<<0,1>|<1,0>>;

POL1 :=

[
0 1
1 0

]

> Pp1:=TransitionMatrix(P,POL1);

Pp1 :=




1

2

1

2
1

2

1

2




> ERp1:=ExpectedRewardPolicy(ER,POL1):

> ga:=1/2:

> Vp1:=ValueFunction(ERp1,Pp1,ga):

> Qp1:=ActionValues(P,ER,Vp1,ga);

Qp1 :=




1 +
1

2
r4 +

r1

4
+

r2

4
1 +

1

2
r2 +

r1

4
+

r2

4

1 +
1

2
r1 +

r1

4
+

r2

4
1 +

1

2
r3 +

r1

4
+

r2

4




And a second policy

> POL2:=<<1,0>|<0,1>>;

POL2 :=

[
1 0
0 1

]

with the same transition matrix.

> Pp2:=TransitionMatrix(P,POL2);

Pp2 :=




1

2

1

2
1

2

1

2




> ERp2:=ExpectedRewardPolicy(ER,POL2):

> Vp2:=ValueFunction(ERp2,Pp2,1/2):

> Qp2:=ActionValues(P,ER,Vp2,ga);

Qp2 :=




1 +
1

2
r4 +

r4

4
+

r3

4
1 +

1

2
r2 +

r4

4
+

r3

4

1 +
1

2
r1 +

r4

4
+

r3

4
1 +

1

2
r3 +

r4

4
+

r3

4




We see that if

> r1+r2=r3+r4;
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r1 + r2 = r3 + r4

then the action-values of the two policies are equal. Furthermore, we want
the two value functions to be different. We set for example the value function
of the first policy in the first state

> Vp1[1]=0;

1 +
3 r1

4
+

r2

4
= 0

and the value function of the second policy in second the state.

> Vp2[2]=0;

1 +
r4

4
+

3 r3

4
= 0

Then we have three linear equations for four unknowns. We solve the system

> sol:=solve({r1+r2=r3+r4,Vp1[1]=0,Vp2[2]=0});
sol := {r4 = −4− 3 r3 , r1 = r3 , r2 = −4− 3 r3 , r3 = r3}

and choose r1=r3 such that the value function for the second policy in the
first state is not zero.

> Vp2[1];

1 +
3 r4

4
+

r3

4
> subs({r4=-4-3*r1,r3=r1},%);

−2− 2 r1

For example

> r1:=0; r3:=0;

r1 := 0

r3 := 0

and

> r4:=-4-3*r1; r2:= -4-3*r1;

r4 := −4

r2 := −4

We have found rewards and policies with the property that the action-values
are equal and the value functions different. We check our solution.

> R[1..2,1..2,1];
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[ −4 1
1 0

]

> R[1..2,1..2,2]; [
1 0

−4 1

]

> ER:=ExpectedReward(P,R):

> ERp1:=ExpectedRewardPolicy(ER,POL1);

ERp1 :=

[
1

2
,
−3

2

]

> ERp2:=ExpectedRewardPolicy(ER,POL2);

ERp2 :=

[−3

2
,

1

2

]

> Vp1:=ValueFunction(ERp1,Pp1,1/2);

Vp1 := [0, −2]

> Vp2:=ValueFunction(ERp2,Pp2,1/2);

Vp2 := [−2, 0]

> Qp1:=ActionValues(P,ER,Vp1,1/2);

Qp1 :=

[ −2 −2
0 0

]

> Qp2:=ActionValues(P,ER,Vp2,1/2);

Qp2 :=

[ −2 −2
0 0

]



Chapter 3

SimRobo

To illustrate the theory and test the algorithms described and proposed in
this thesis we developed a simple grid world simulator called SimRobo. It
implements the algorithms introduced in Section 1 for discounted MDPs:
policy evaluation, policy iteration, and value iteration, Algorithms 1, 2, 3,
and the model-free methods approximate policy evaluation and iteration and
Q-learning, Algorithms 5, 6, 7. The implementation of algorithms for several
environments is described in Section 8.

We have used SimRobo for publications, talks and public presentations,
where it turned out to be a useful didactic tool. We also wrote a general
tutorial on reinforcement learning in connection with the simulator. The
states, actions, environments and rewards in SimRobo can be easily adapted
for different tasks. The executable program and the source code can be
found on the attached CD-ROM, see Section 11.3. In the following we give
an introduction to SimRobo, its specifications, implementation details and
computational experiments.

3.1 The Robot and its World

3.1.1 Grid World

SimRobo is based on simple rectangular grid worlds. Each field of the grid
either is empty or holds an obstacle. Figure 3.1 shows three 10× 10 sample
grid worlds.

The grid worlds are stored in files, ending with the extension .env. They
can be edited and modified with any text editor. The first two parameters
stored in the file are the length and width of the grid world, then a matrix
follows, where the value of zero represents an empty field and one an obstacle.

59
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Figure 3.1: Three grid worlds

The file for the second grid world of Figure 3.1 is, for example:

10 10

1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 1 0 1

1 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1

3.1.2 Directions and Coordinates

The simulated robot is represented by a filled hexagonal cone. The cone
points in the direction where the robot is heading. In our case the robot
heads to one of four possible directions d, encoded as follows

• direction d = 1, upwards,

• direction d = 2, downwards,

• direction d = 3, left,

• direction d = 4, right.

The robot’s positions are represented by the robot’s coordinates and the
direction. Let (x, y) ∈ N2 be the coordinates where the robot is located, with
(0, 0) being the upper left obstacle and (1, 1) the upper left corner. Let d
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Figure 3.2: left: The robot and its sensors right: Same sensor values and
different positions

be the direction the robot is heading. Then a position is represented by the
triple (x, y, d). In Figure 3.2 the robot faces right being in coordinates (7, 5)
and thus the position is (7, 5, 4).

3.1.3 Sensors

The robot has a predefined number of sensors. We implement four sensors:
front, left, right and back. The sensors measure the distance to the obstacles
within a predefined range. We use a fixed number of five blocks maximum
range for each sensor. The sensor values vary between zero and five, where a
value of five means that there is a block right in front and a zero value means
that there is no block in sight. Thus we encode the sensors by

(s0, s1, s2, s3), with si = 0, . . . , 5,

where s0 is the front, s1 the left, s2 the right and s3 the back sensor. See
Figure 3.2 left, where the forward sensor is four, the left sensor is five, the
right sensor is two and the back sensor is zero, represented by (4, 5, 2, 0).

The same sensor values can result from different robot positions in the
environment. For an example in Figure 3.2, take the position (1, 1, 1) that
represents the robot being in the upper left corner looking upwards. This
position shares the same sensor values (5, 5, 0, 0) with the position (8, 8, 2) of
looking downwards in the lower right corner.

3.1.4 Actions

The robot has a predefined number of actions in each position. We consider
the same three actions a in all positions, encoded as follows:
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Figure 3.3: The robot and its actions

• action a = 0, move one block forward,

• action a = 1, turn left and move one block forward,

• action a = 2, turn right and move one block forward.

Note that the result of an action depends on the start position, that is
the coordinates and direction. Figure 3.3 shows the result of each action,
starting in a position looking upwards. In the case that there is an obstacle
blocking the field where the action is heading, the robot bumps into the wall
and does not move, but it may turn.

3.2 Rewards

We consider two basic behavior we want the robot to learn, obstacle avoid-
ance and wall following . The rewards depend on the sensor values s =
(s0, s1, s2, s3) of the starting position, the applied action a and the sensor
values s′ = (s′0, s

′
1, s

′
2, s

′
3) of the resulting position. Three different values are

used: reward +1, punishment −1, and neutral reinforcement 0. In general it
is sufficient to have two different rewards only, see [Mat00, p. 31] and Santos,
Matt and Touzet [SMT01].

3.2.1 Obstacle Avoidance

The robot should move around while avoiding obstacles. If the robot stays
far away from obstacles it gets rewarded, if it bumps into an obstacle it
gets a punishment. Additionally, if it moves away from obstacles it will be
rewarded, if it moves towards obstacles it will be punished and in any other
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case it gets a neutral reinforcement. The formal description of the rewards
Roa for obstacle avoidance is given by:

Roa (s′, a, s) =

{
+1, if s′i ≤ 3, for i = 0, . . . , 3,

−1, if si = 5 and a = i, for i = 0, 1, 2,

and in any other case

Roa (s′, a, s) =





+1, if
∑

i (s
′
i − si) ≤ −1,

−1, if
∑

i (s
′
i − si) > 0,

0, otherwise.

3.2.2 Wall Following

The robot should follow the wall, represented by a sequence of obstacles, with
its right side while not bumping into obstacles. We punish the robot if it
bumps into an obstacle. If its right side is close to the wall it gets rewarded,
otherwise punished.

Rwf (s′, a, s) = −1, if si = 5 and a = i, for i = 0, 1, 2,

and in any other case

Rwf (s′, a, s) =

{
+1, if s′2 = 5,

−1, otherwise.

3.3 Environments and MDPs

We describe how we model the robot in a grid world as an MDP. We define
states, actions and discuss how the transition probabilities are derived from
the grid world to obtain an environment. We consider two different environ-
ments: one based on positions (coordinates and directions) and one based
on sensors. The family of rewards R is defined by obstacle avoidance, Roa,
or wall following, Rwf , from the previous section.

3.3.1 Positions

We consider an m × n grid world. The positions of the robot in the grid
world define the set of states, that is a subset S of all possible positions

{(x, y, d) : x = 0, . . . ,m− 1, y = 0, . . . , n− 1 and d = 1, . . . , 4}.
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The sets of actions

A(s) = {0, 1, 2} for all s ∈ S

define the family A = (A(s))s∈S of actions. The transition probabilities can
be computed from the grid world following the definition of actions in Section
3.1.4. If the robot applies an action a ∈ A(s) in state s = (x, y, d) ∈ S it
gets to the unique successor state s′ = (x′, y′, d′) ∈ S. This data gives rise to
deterministic transition probabilities P = (P (− | a, s))s∈S,a∈A(s) , with

P (s̃′ | ã, s̃) =

{
1, if s̃ = s, s̃′ = s′ and ã = a,

0, otherwise.

The transition probabilities completely describe the dynamics of the grid
world. We obtain the environment E = (S,A,P) and the position-based
MDP (E,R,γ) with a discount rate γ.

3.3.2 Sensors

The sensor values in all positions of the robot in a grid world define the set
of states, that is a subset S of all possible sensor values

{(s0, s1, s2, s3) : si = 0, . . . , 5 for i = 1, . . . , 4},

The sets of actions

A(s) = {0, 1, 2} for all s ∈ S

define the family A = (A(s))s∈S of actions. Recall that different positions
may have the same sensor values. Thus applying an action a ∈ A(s) in
state s = (s0, s1, s2, s3) ∈ S may lead to different successor states s′ =
(s′0, s

′
1, s

′
2, s

′
3) ∈ S.

For example consider s = (5, 5, 0, 0) and action a = 2 to move to the
right, see Figure 3.2 right. If the robot is in the upper left corner looking
upwards, that is position (1, 1, 1), the successor state is (0, 5, 0, 4). If it is
in the lower right corner looking downwards, that is position (8, 8, 2), the
successor state is (0, 5, 2, 4).

If we fix a probability on all positions, then we can compute the transition
probabilities for sensor-based states. We assume a uniform distribution over
all positions and construct the transition probabilities as follows. For each
possible position (x, y, d) we compute its sensor values s = s(x, y, d) ∈ S,
apply each action a ∈ A(s) and observe the successor position (x′, y′, d′) and
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its successor sensor values s′ ∈ S. We denote the number of times that we
observed s by ns and the number of times that s′ was observed when action
a was applied in s by ns′|(a,s). We set

P (s′ | a, s) =
ns′|(a,s)

ns

.

The construction gives an environment E = (S,A,P) and we obtain the
sensor-based MDP (E,R,γ).

The transition probabilities depend on the probability distribution over
all possible positions. So, the MDP we construct is not an exact model of
the sensor-based grid world. As an interpretation of the constructed MDP
we can say that the robot switches between positions that are represented
by the same sensor values.

A more appropriate model for this situation is a partially observable
MDP (POMDP), where only stochastic observations of an underlying MDP
are available, see Kaelbling, Littman and Cassandra [KLC98], Meuleau et
al. [MKKC99] and Cassandra [Cas03]. In our example the underlying MDP
is the position-based MDP and the (deterministic) observations are the sen-
sor values.

3.4 Implementation

3.4.1 Methodology

We applied several aspects of the software development method extreme pro-
gramming , an agile methodology that favors informal and immediate de-
sign and test techniques over detailed specifications and planning, see http:

//www.extremeprogramming.org and http://www.agilealliance.com.
In particular, the technique of pair programming was used for the imple-

mentation of SimRobo. Two programmers work together on one computer.
One programmer controls keyboard and mouse and actively implements the
program and the other programmer identifies errors and thinks about the
overall program design. If required, the programmers brainstorm or switch
roles.

Williams et al. [WKCJ00] report that pair programming increases effi-
ciency and quality. For a case-study of extreme and pair programming and
its adaptation for scientific research see Wood and Kleb [WK03]. Our expe-
rience with pair programming is that, apart from producing better designed
code for complex problems faster and with fewer errors, it is truly enjoyable.

http://www.extremeprogramming.org
http://www.extremeprogramming.org
http://www.agilealliance.com
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Figure 3.4: SimRobo class structure for one MDP

3.4.2 Programming Details

SimRobo is implemented in C++ using object-oriented techniques and is com-
patible with the ISO Standard, see Stroustrup [Str97]. We worked with the
Visual C++ 6.0 development environment. To keep the code small and ef-
ficient the container classes and algorithms provided by the standard library
are used throughout the program, see Stroustrup [Str97, pp. 427]. In partic-
ular for vector operations we rely on the class valarray, specifically designed
for speed of numeric computations [Str97, pp. 662].

For 3D graphics we used OpenGL, see Section 3.4.6 for details. The pro-
gram has approximately 7000 lines of source code. In the following sections,
we describe the class structure, classes and member functions of SimRobo.
Figure 3.4 shows all classes and their relations in a UML-diagram. Refer
to http://www.uml.org for an introduction to UML (unified modeling lan-
guage).

3.4.3 Reinforcement Learning System

The computations for MDPs are done by the class RLS (reinforcement learn-
ing system), which is designed for fast computations. Within this class states
and actions are enumerated and transition probabilities and expected rewards
are represented by valarrays.

For efficiency reasons, three different types of policies are implemented.
Deterministic policies are represented by a valarray of integers. Extended

http://www.uml.org
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policies additionally include possible random actions, that is, all actions are
chosen with the same probability. Finally, stochastic (probabilistic) policies
are represented by a valarray of double values.

The optimal value function is computed by value iteration, see Al-
gorithm 3. The expected rewards and transition probabilities for a given
policy can be computed for a deterministic, extended or stochastic policy
respectively with the functions rew dpol, prob dpol, rew epol, prob epol,
rew ppol and prob ppol. The function pol eval computes the value func-
tion for a policy with the expected rewards and transition probabilities for a
policy, see Algorithm 1.

The action-values and a greedy policy are computed by the functions
qval and pol improv. The optimal value function, optimal actions and an
optimal policy are accessed by functions optval, optact and optpol. The
discounted utility of the optimal and random policy by functions dutilopt

and dutilran respectively. For details consult the header file Listing 1.

3.4.4 Environments and Rewards

The main objective of the class robo env is the interaction between robot,
grid world and the underlying MDP. It contains information concerning the
grid world and its transition probabilities, it includes functions to compute
the representations of states, actions and transition probabilities for the class
RLS. Furthermore, helper functions for the different types of policies are pro-
vided.

The grid world is stored in a member variable and can be loaded and
displayed in simple text format. The function perform a computes the suc-
cessor position (coordinates and direction) for a given position and action in
the grid world. The sensor values of a given position are provided by the
function get se. The functions setos and stose convert the sensor values
to a natural number and vice versa.

The function pos dir decides whether a position is possible to reach with
the defined actions or not. For example a position where the back of the robot
is touching the wall is only reachable if the robot stands in a corner. It is
used by the function random position that generates random coordinates
and a random direction.

Value iteration and policy evaluation are run by calling the appropriate
functions in the class RLS, that are value iteration, dpol eval, epol eval,
ppol eval, ppol eval, and xepol eval.

For position-based MDPs, see Section 3.3.1, we implemented the class
robo env pos derived from robo env. It provides a function to map positions
to states and different constructors to initialize all necessary data.
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The abstract class RF to compute rewards is implemented by the classes
RF OA for obstacle avoidance and RF WF for wall following as described in
Section 3.2. Since we use function objects, see Stroustrup [Str97, p. 514],
different rewards can be easily added. They just have to be derived from the
class RF and overload the operator(), that returns a double value given the
state-action-state triple (s′, a, s). Consult the header files Listings 2 and 3
for further details.

3.4.5 Model-free Methods

In the class online learning action-values play an important role. An ap-
proximation of action-values is a member of the class. A greedy policy for
an approximation is computed by the function get greedypolicy. An ap-
proximation of the value function is computed from an approximation of
the action-values and a given policy by the function get values, see Equa-
tion (1.46). The action-values are initialized with zero values by the function
initialize.

Derived from online learning the classes SARSA and QLS perform the
updates of the model-free methods approximate policy evaluation and Q-
learning respectively by implementing the update rule, see Equations (1.45)
and (1.47). The class SARSA contains two different updates, one for deter-
ministic policies and one for stochastic policies. In the class QLS an update

function for deterministic policies is available. See Listings 5, 6 and 7.
To compare results of the model-free methods and exact computations we

implemented the class robo env online for sensor-based MDPs. It is derived
from the class robo env and additionally provides functions to deal with the
classes SARSA and QLS. Approximate policy evaluation and Q-learning for a
given number of update steps can be done by the functions sarsa poleval

and qlearning, see Algorithms 5 and 7. States and actions are chosen with
respect to the uniform distribution over the set of states and actions. See
Listing 8.

3.4.6 Graphics and User Interface

The 3D graphics is implemented using the OpenGl utility toolkit GLUT, a win-
dow system independent programming interface for OpenGL. GLUT contains
window management, callback and idle routines, basic functions to gener-
ate various solid and wire frame objects, and it supports bitmap fonts, see
Kilgard [Kil96].

In the main function of SimRobo first the window specifications are given,
then a general lighting and two variable lights are enabled. The 3D to 2D
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perspective projection is set and the main loop function called. The graphics
are displayed in a double-buffered window.

The GLUI graphical user interface based on GLUT, see Rademacher [Rad99],
takes care of the keyboard and mouse interaction with the user and provides
a series of different buttons and controllers. The simulated robot can be
steered with the keyboard, keys 8, 4 and 6 for forward, left and right by
first clicking with the mouse into the grid world window or using the appro-
priate buttons in the lower control panel. The lower control panel contains
a rotation button to change the angle to look at the grid world and a ro-
tation button to change the light settings. The grid world can be zoomed
and moved using translation buttons. Start Position sets the default an-
gle and coordinates of the grid world. With the radio buttons Sensors and
Positions the mutually exclusive options of using the sensor-based MDP or
the position-based MDP can be set.

The right control panel provides buttons to change the displayed grid
world and current policies, it contains advanced options and control buttons
to run algorithms for one environment. In the left control panel the equivalent
buttons to run algorithms for several environments can be found. They are
explained in Section 8.3. Figure 3.5 displays the SimRobo window with all
three control panels. The controls are very useful to set and change options
to conduct the different experiments. In the next section most of the control
buttons are shortly described.

3.5 Experiments

In the following experiments we consider 10 × 10 grid worlds. We set the
discount rate γ = 0.95. In all experiments first the grid world and rewards
are fixed, then the MDP is derived, see Section 3.3. Except for the first
experiment, all of them are conducted using the sensor-based MDP. The
experiments can be repeated using SimRobo and following the instructions
given in each experiment.

To evaluate and compare policies we use the utility of a policy, see Section
1.3.3. We define the random policy πrand, which chooses all actions with the
same probability in each state, by

πrand(a | s) =
1

|A(s)| , s ∈ S and a ∈ A(s).

We compute the utilities V (π∗) and V (πrand) of the optimal policy π∗ and
the random policy πrand. We normalize the utility of an arbitrary policy π
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Figure 3.5: SimRobo and its control panels

with 1 being the utility of an optimal policy and 0 of the random policy. We
denote the normalized utility by

V (π) =
V (π)− V (πrand)

V (π∗)− V (πrand)
.

To observe the progress of the algorithms we display the normalized utilities
of the obtained policies. The precision of policy evaluation and value iteration
is set to ε = 10−8.

3.5.1 Wall Following

We want the robot to follow the wall in the grid world displayed in Figure
3.6 left. The rewards for wall following are defined in Section 3.2.2. First
we derive the position-based MDP. We start with the random policy. Then
policy iteration is run by consecutively evaluating and improving the policy,
see Algorithms 2 and 1. We choose a greedy policy in the improvement step,
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Figure 3.6: left: Grid world to learn wall following right: The robot following
an optimal policy

see Equation (1.30). Refer to the experiment in Section 8.3.6, where policy
improvement is run using a randomly chosen strictly improving action in the
improvement step. Figure 3.7 left shows the normalized utility of the policy
after each improvement step. After four iterations the policy is optimal where
one iteration consists of policy evaluation and improvement.

Figure 3.6 right shows the robot following the optimal policy obtained.
Wherever the robot starts, it moves to the wall and follows the displayed
loop, where only positive rewards are experienced.

Now we derive the sensor-based MDP and repeat the above process. Fig-
ure 3.7 right shows the normalized utility of the policy after each improve-
ment step. The policy is optimal after four iterations.

To repeat the experiment with SimRobo use the buttons on the right and
lower control panel. Choose Grid World number 5 and Wall Following

as Rewards. Put the checkerbox on Positions or Sensors depending on
the MDP you want to use. Select Show utilities in the Options rollout.
Open the Policy Iteration rollout and press Random Policy to set the
current policy to the random policy. Now press the Policy Improvement

and Policy Evaluation buttons consecutively while observing the utility of
the current (improved) policy until it gets optimal. If you want to see the
robot following the current policy select Run policy. To set the speed of the
moving robot change Speed in the Advanced rollout. To see the progress of
the utilities you can redirect the output of the utility to the console window
by pressing Policy Evaluation in the Console Output rollout.
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Figure 3.7: left: Progress of policy iteration in the position-based MDP right:
Progress in the sensor-based MDP

3.5.2 Obstacle Avoidance

The robot should learn to avoid obstacles in the grid world displayed in
Figure 3.8 left for the derived sensor-based MDP. The rewards for obstacle
avoidance are defined in Section 3.2.1. As described above we start with the
random policy and repeat policy evaluation and policy improvement. The
following table shows the utility and normalized utility of the policy after
each improvement step. After one improvement step the policy is almost
optimal, after two it is optimal.

utility normalized
optimal 19.172 1.0
random −3.489 0.0

iteration 1 19.154 0.992
iteration 2 19.172 1.0

Figure 3.8 right shows the robot following an optimal policy. Wherever
the robot starts, it moves to the center of the grid world. There are different
loops where the robot gathers only positive rewards.

In SimRobo this experiment can be repeated similarly to the previous
experiment. Just choose Grid World number 3 and Obstacle Avoidance as
Rewards and leave the checkerbox on Sensors. As an alternative to policy
iteration, that is policy evaluation and policy improvement, value iteration
can be run to directly obtain an optimal policy by pressing the button Value

Iteration, see Algorithm 3.
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Figure 3.8: left: Grid world to learn obstacle avoidance right: The robot
following an optimal policy

3.5.3 Approximate Policy Evaluation

We apply approximate policy evaluation to evaluate a policy in the model-
free case, see Algorithm 5. We choose a number of update steps n and set
the step-size parameter αt for iteration t,

αt = 1− n

t
, for t = 0, . . . , n− 1,

see Section 1.12.1. We use this step-size choice in all model-free experiments.
To compare value functions we use the maximum norm and the L1-norm

on RS, that is

‖x‖1 =
∑

s∈S
|x(s)| , for x ∈ RS.

Let π be a policy and V π its value function. Let V be an approximation
of V π. We call ‖V π − V ‖∞ the maximum error and ‖V π − V ‖1 the L1 error
of approximation V .

We set the grid world and rewards as in the previous experiment. We
choose the random policy πrand and approximate its action-values. The algo-
rithm is run with 10000 update steps. We obtain an approximation Q of the
action-values Qπrand

. We compute an approximation of the value function by
Equation (1.46), and display its error. Figure 3.9 shows the maximum and
L1 error in twelve experiments. Note that there are 149 states in the derived
MDP.

The experiment is repeated with different numbers of update steps: 1000,
5000, 10000 and 50000. In Figure 3.10 the average maximum error of twelve
experiments for each number of update steps is shown. We see that the
approximation gets closer to the exact value function if the number of update
steps is increased.
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Figure 3.9: left: Maximum error for approximate policy evaluation with
10000 update steps right: L1 error
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Figure 3.10: Average maximum error for approximate policy evaluation
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Figure 3.11: left: Grid world to learn obstacle avoidance right: The robot
following an optimal policy

To carry out this experiment with SimRobo choose Grid World number
3 and Obstacle Avoidance as Rewards. Leave the checkerbox on Sensors.
Open the rollouts Model-free and Approximate and press Initialize to set
the approximation of the action-values to zero and Random Policy. Choose
the desired number of steps and press the Policy Evaluation button in
the Approximate rollout. The maximum and L1 error can be observed in the
console window. To display the number of states in the current grid world
press the button Grid World in the Console Output rollout.

3.5.4 Approximate Policy Iteration

Obstacle avoidance in the grid world displayed in Figure 3.11 left should be
learned in the model-free case. Approximate policy iteration is run by con-
secutively applying approximate policy evaluation and policy improvement,
see Algorithm 6.

We carry out three experiments with different numbers of update steps
for approximate policy evaluation. First we use 500 and 1000 update steps.
We compute the utility of the obtained policy after each improvement step.
Figure 3.12 shows the progress of approximate policy iteration. The policy
may become worse after an improvement step depending on the error of the
approximation of the action-values. If we increase the number of update
steps for approximate policy evaluation, the obtained policies are almost
optimal after few iterations. The oscillations around the optimal policy can
be observed in Figure 3.13 for 10000 and 50000 update steps, compare Section
1.12.3.

To repeat the experiment with SimRobo, choose Grid World number 7
and Obstacle Avoidance as Rewards. Leave the checkerbox on Sensors.
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Figure 3.12: left: Progress of approximate policy iteration for 500 update
steps right: Progress for 1000 update steps
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Figure 3.13: left: Progress of approximate policy iteration for 10000 update
steps right: Progress for 50000 steps
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Figure 3.14: left: Performance of the obtained policies for Q-learning with
500 update steps right: Performance with 1000 update steps

Open the rollouts Model-free and Approximate, press Initialize to set
the approximation of the action-values to zero and Random Policy to set the
current policy to the random policy. Choose the desired number of steps

for approximate policy evaluation.
Select Show utilities in the Options rollout. Press the button Policy

Improvement in the Approximate rollout to run approximate policy evalua-
tion and then improve the policy. To observe the exact utility of the current
(improved) policy press the Policy Evaluation button above the Console

Output rollout, not the one in the Approximate rollout. Repeat this process.
If you want to see the robot following the current policy select Run policy.
To see the progress of the utilities you can redirect the output of the utility to
the console window by pressing Policy Evaluation in the Console Output

rollout.

3.5.5 Q-learning

We want the robot to learn wall following in the grid world displayed in
Figure 3.6 left, as in the first experiment. The Q-learning algorithm is run,
see Algorithm 7. We experiment with four different numbers of update steps.
First ten sample runs with 500 and 1000 update steps are conducted. Figure
3.14 shows the normalized utilities of the obtained policy for each experiment.
We see that the policies perform much better than the random policy and
are already very good after 1000 update steps. Then ten sample runs with
10000 and 50000 update steps are carried out. We see that the utilities of
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Figure 3.15: left: Performance of the obtained policies for Q-learning with
10000 update steps right: Performance with 50000 update steps

the obtained policies increase and are almost optimal for 50000 update steps,
see Figure 3.15.

To repeat the experiment with SimRobo choose Grid World number 5
and Wall Following as Rewards. Leave the checkerbox on Sensors. Select
Show utilities in the Options rollout. Open the rollouts Model-free and
Q-learning and press Initialize and Random Policy. Choose the desired
amount of steps and press the Q-learning button. The obtained policy can
be evaluated with the button Policy Evaluation. The output of the utili-
ties can be redirected to the console window by pressing Policy Evaluation

in the Console Output rollout.



Chapter 4

RealRobo

It is effective to validate control algorithms using a simulator, but the sim-
plifications involved are too restrictive for the results to be conclusive in real
world applications. Therefore experiments in the real world are essential to
show the success of control algorithms. An affordable approach is to conduct
experiments using miniature robots.

We use the mobile robot Khepera to test the proposed theory. We ex-
perienced that practical applications require a considerable amount of trial
and error and often success is obtained using methods or a combination
of methods whose properties and interrelations are not fully understood.
Intuition and heuristic considerations as well as manual parameter tuning
play an important role. Thus the sections on RealRobo emphasize a specific
implementation and ideas rather than formal methods that can be applied
generally.

We implemented the program RealRobo. Similarly to SimRobo it is im-
plemented in C++ and uses the OpenGL graphics interface and the GLUI user
interface. RealRobo contains functions to control the robot and implements
adaptations of the model-free algorithms approximate policy iteration and
Q-learning, see Algorithms 6 and 7. Approximate policy iteration and an
implementation for several realizations are described in Section 9.

4.1 The Mobile Robot Khepera and its World

4.1.1 The Robot

Khepera is a miniature mobile robot produced by the Swiss company K-
Team, http://www.k-team.com, see Figure 4.1 left. It has a cylindric shape,
is 55 mm in diameter, 30 mm high and weighs approximately 70 g. Two

79

http://www.k-team.com
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Figure 4.1: left: The mobile robot Khepera right: Range and distribution of
the eight proximity sensors

Figure 4.2: Three sample wooden boxes

wheels that can be controlled independently allow the robot to move around.
Their speed is set by integer values between −127 and 127 with a maxi-
mum speed of one meter per second. It is equipped with analogue infrared
proximity sensors to measure the distance to obstacles.

The robot can act autonomously by means of a pre-compiled program
or can be connected, via the Rs232 serial port, to a computer, where a
program to interact with the robot is installed. The program contains the
learning algorithms. It manages the memory needed and reacts in real-time
by receiving data from the robot and sending back commands the robot
should carry out. See Mondada, Franzi and Ienne [MFI94] for technical
details of the robot.

To conduct experiments we put the robot in a wooden box, that can be
filled with obstacles, see Figure 4.2 for three sample boxes.
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4.1.2 Sensors

Eight infrared proximity sensors can detect obstacles up to a range of 50 mm.
The values received are between 0 and 1023 and then normalized between
0.0 and 1.0. Thus the set of possible sensor values is

{0, 1/1023, . . . , 1022/1023, 1}.

The value represents the distance to the perceived obstacle, where a value
of 0 means that there is no obstacle in sight and 1 that there is an obstacle
right in front.

The infrared detectors are sensitive to color and reflection of the obstacle
and to the general light configuration. Figure 4.1 right shows a graphic of
the distribution, enumeration and range of the six front sensors s0, . . . , s5 and
the two back sensors s6 and s7. The sensors differ from each other in terms of
range and activation sensibility. Note that different physical positions of the
robot in a wooden box may have the same sensor values, compare Section
3.1.3.

4.1.3 Motors

The robot can move around and turn by means of two wheels. If one wheel
turns forward and the other backward with the same speed, the robot turns
around its center. If both wheels turn forward or backward with the same
speed, the robot moves straight forward or backward respectively. To control
the robot we consider only these two basic movements, to turn by a specific
angle and to move a specific distance straight forward or backward.

4.2 Rewards

We want the robot to move around while avoiding obstacles. If it moves away
from obstacles it will be rewarded, if it gets too close to an obstacle it will
be punished, and in any other case it gets a neutral reinforcement. We put
the robot in a position and observe the values of the eight proximity sensors
s0, . . . , s7 measured in this position. Then the robot conducts a movement
and gets to a successor position where we observe the sensor values s′0, . . . , s

′
7.

The formal description of the rewards Roa for obstacle avoidance is then given
by:

Roa (s′, s) = +1, if
7∑

i=0

(si − s′i) > 0.04,
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and in any other case

Roa (s′, s) =




−1,

7∑
i=0

s′i > 0.94,

0, otherwise.

These rewards for obstacle avoidance are due to Santos [San99, p. 90].

4.3 States, Actions and Transition Probabil-

ities

We describe how we model the robot in its world as an MDP. We define
states and actions and discuss how the transition probabilities are provided
by the wooden box.

The values of the eight proximity sensors of the robot in a wooden box
define the set of states, that is a subset S of all possible values

{(s0, ..., s7) : si ∈ S̃ for i ∈ 0 . . . 7},
where S̃ = {0, 1/1023, . . . , 1022/1023, 1}. In every state we consider the
same actions, that consist of turning by an integer angle between −90 and
90 degrees, and then moving forward a fixed distance of approximately 4
mm. Hence the set of actions is

A(s) = {a : a ∈ −90 . . . 90} for all s ∈ S.

The family of rewards R is defined by obstacle avoidance Roa from the pre-
vious section.

In theory, if we fix a probability on all physical positions of the robot
then transition probabilities can be derived from the wooden box by putting
the robot into the physical positions given by the distribution, observing the
sensor values, applying the actions and observing the successor positions and
their sensor values. Compare Section 3.3.2 where transition probabilities are
deduced from the grid world. This process turns out to be infeasible since
it is difficult to measure the physical position of the robot and since there
are too many different states and actions, approximately 1024 states and 181
actions.

If we consider model-free methods only, we do not need an explicit rep-
resentation of the transition probabilities. The transitions can be observed
in sample steps. Similarly the possible states s ∈ S are observed while inter-
acting.
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4.4 Q-learning

In the following two sections we discuss a variant of Q-learning, Section
1.12.4, and a method to apply it for large state and action spaces. The
considerations can be applied generally in the model-free case. They are
presented based on our robot experiments.

The goal is to compute a good approximation Q of the optimal action-
value function Q∗ and then to derive an approximation π of an optimal
deterministic policy π∗ according to Equation (1.39), that is by

π(− | s) = a ∈ arg max
a∈A(s)

Q(a, s), for s ∈ S. (4.1)

Note that V defined by

V (s) = max
a∈A(s)

Q(a, s)

is an approximation of the optimal value function V ∗ by Equation (1.33).
The online approximation of Q∗ is also called the learning phase.

One experimental run of the robot is described by a theoretically infinite
sequence

ω = (. . . , at+1, st+1, at, st, . . . , s1, a0, s0)

of states
st = (st

0, . . . , s
t
7) ∈ S ⊂ [0, 1]8

and actions at ∈ A(st). At the discrete time step t action at is applied to
state st to yield the next state st+1.

Let Ω be the space of all sequences ω. Approximate action-value vectors
Qt ∈ RAS are computed at each time step t starting with Q0 = 0. The
sequence Qt is then defined inductively by the update rule

Qt+1(a, s) =



Qt(at, st)+

αt(rt + γ maxa′∈A(st+1) Qt(a
′, st+1)−Qt(at, st)),

if (a, s) = (at, st),

Qt(a, s), otherwise,

(4.2)

where rt is the reward and αt > 0 the step-size parameter at time t, compare
Equation (1.43). The maps

Qt : Ω → RAS , ω 7→ Qt, (4.3)
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are random vectors depending on the past history

(at−1, st−1, . . . , a0, s0)

only. When at is applied to st the probability P (st+1 | at, st) is completely
determined by the environment, that is, the wooden box.

The choice of at+1 depends on the current approximation of the optimal
action-values Qt and a random term. The dependence of the chosen actions
on the approximation allows the robot to use current knowledge during learn-
ing and is called exploitation. The modification by a random term is called
exploration, see Thrun [Thr92] and Bertsekas and Tsitsiklis [BT96, p. 251].

Let π̃t+1(− | st+1) be a greedy policy for the current approximation Qt+1

in state st+1, that is

π̃t+1(− | st+1) = a ∈ arg max
a∈A(st+1)

Qt+1(a, st+1). (4.4)

Exploration signifies that π̃t+1(− | st+1) is changed randomly, for instance by

πt+1(− | st+1) = (1− βt)π̃t+1(− | st+1) + βt
1

|A(st+1)| , (4.5)

with 0 < βt ≤ 1 and where the βt form a zero-sequence. The next action
at+1 is chosen according to πt+1(− | st+1). Note that πt+1(− | st+1) becomes
a greedy policy for the approximation Qt+1 for large t.

In our experiment we specifically add a random number b ∈ [−bt, bt] to
a greedy action a ∈ −90 . . . 90 where bt > 0 is a zero-sequence and take the
action at+1 ∈ −90 . . . 90 which is nearest to a + b. In any case we obtain a
probability πt+1(− | st+1) on A(st+1) according to which the action at+1 is
selected.

The choice of the random disturbance of a current greedy action and
hence of πt+1(− | st+1) implies a probability PΩ on the space Ω which by
the Kolmogorov extension theorem is uniquely determined by the marginal
probabilities

PΩ(st+1 | at, st, . . . , a0, s0) = P (st+1 | at, st), PΩ(s0) > 0

PΩ(at+1 | st+1, at, st, . . . , a0, s0) = π(at+1 | st+1).
(4.6)

The latter conditional probability depends on Qt+1 and therefore on the
whole history (st+1, at, st, . . . , a0, s0) and hence Ω is not a Markov chain.

Convergence of Q-learning according to Algorithm 7 has been proved if
the state-action pairs (at, st) are chosen according to a pre-selected probabil-
ity P with P (a, s) > 0 for all pairs (a, s) ∈ AS. This choice signifies that all
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pairs (a, s) appear with positive probability among the (at, st). Exploration
is chosen to imitate this behavior in the situation of the robot experiment.

As far as we know the PΩ−almost sure convergence of the random vectors
Qt to the optimal action-value Q∗ has not yet been established, but is an
interesting and important problem. Compare also Singh et al. [SJLS00].
Our robot experiments suggest that this convergence takes place, and we
hence assume this convergence in the following considerations. Hence

lim
t→∞

max
a∈A(s)

Qt+1(a, s) = max
a∈A(s)

Q∗(a, s) = V ∗(s), for s ∈ S

and a greedy policy with respect to Qt+1 becomes an optimal policy for large
t. Since action at+1 is chosen greedily for Qt+1 for large t we have

at+1 ∈ A∗(st+1), for large t,

where
A∗(s) = {a ∈ A(s) : Q∗(a, s) = V ∗(s)}

is the set of optimal actions in a state s, see Section 1.10. In other terms, for
large t

(st, at, Qt(at, st)) ∼ (st, a
∗, V ∗(st)), with a∗ ∈ A∗(st). (4.7)

Thus if we run the experiment for a long time the chosen actions become
optimal actions.

4.5 Data Compression by Clustering

Approximation methods are needed to implement learning methods for large
state and action spaces. See Bertsekas and Tsitsiklis [BT96, pp. 59] for an
introduction and overview. In our experiment we have 280 ∼ 1024 states

s = (s0, . . . , s7) ∈ S ⊂ [0, 1]8

and 181 actions in A(s) = {−90, . . . , 90}. Altogether the vectors Q are
contained in R 280·181. It is obvious that vectors of such a high dimension
cannot be computed and stored. This problem is often referred to as “the
curse of dimensionality”, see Bellman [Bel57, p. ix]. To implement the Q-
learning method discussed in the previous section we apply data compression.

We use a clustering method proposed by Santos [San99, pp. 85] for the
Khepera robot, see also Bendersky [Ben03, pp. 35]. Weissensteiner [Wei03,
pp. 107] applied the presented method to find good consumption-investment
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decisions in a life cycle approach. The clustering method is a variant of vector
quantization as introduced by Kohonen [Koh95, ch. 6].

By the scaling map

{−90, . . . , 90} → [0, 1], a 7→ (a + 90)/180,

we map A(s) into the unit interval. In the following we identify

A = A(s) = {i/180 : i = 0, . . . , 180}.

Recall that in an experimental run of the robot we obtain, for each time step
t, a triple

(st, at, Qt(at, st)) = (st
0, . . . , s

t
7, at, Qt(at, st)) ∈ S×A×R ⊂ [0, 1]9×R ⊂ R 10.

Following the considerations from the previous section these triples converge
to (st, a

∗, V ∗(st)) with a∗ ∈ A∗(st), that is

lim
t→∞

((st, at, Qt(at, st))− (st, a
∗, V ∗(st))) = 0, almost surely in Ω.

We encode the wanted data a∗ and V ∗ in a matrix W ∈ Rm×10 with a
suitable number m of rows

w(j), for j = 1, . . . , m,

of the form
w(j) = (ws(j), wa(j), wq(j)) ∈ [0, 1]8+1 × R

and the following desired property. If s is a state then there is a row j with
ws(j) nearby, wq(j) is a good approximation of V ∗(s) and wa(j) is close to
an optimal action a∗ ∈ A∗(s). Or, in more precise terms,

min
j
‖ s− ws(j) ‖¿ 1,

and for
j∗ = arg min

j
‖ s− ws(j) ‖

we have
|V ∗(s)− wq(j

∗)| ¿ 1

and
arg min

a
|a− wa(j

∗)| ∈ A∗(s).
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Here ‖ − ‖ is any norm, in our implementation the L2-norm, that is

‖x‖2 = (
n∑

i=1

x2
i )

1
2 , for x ∈ Rn.

In the terminology of neural science or artificial intelligence the matrix
W is called a network with m units j = 1, . . . , m with center w(j).

Learning Phase

The network W is determined by one or more experimental runs

(. . . , at, st, . . . , a0, s0)

of the robot as the limit of networks Wt, t = 0, 1, . . . with mt units where the
mt are an increasing, but not strictly increasing sequence of row dimensions.
In neural science terminology one talks about an adaptive network W since
the number of units can change.

The sequence (. . . , at, st, . . . , a0, s0) and the mt × 10-matrices Wt with
rows

wt(j), j = 1, . . . , mt,

are obtained as follows. We start with a randomly chosen state-action pair
(a0, s0) and the 1× 10-matrix W0 with the row

w0(1) = (s0, a0, 0).

After t iterations the history (at, st, . . . , s0) has been observed and the net-
work Wt ∈ Rmt×10 has been obtained. The rows of this matrix Wt are
interpreted as a good approximation of the vectors

(sk, ak, Qk(ak, sk)), k = 0, . . . , t,

where, however, mt ¿ t in general. The matrix Wt is updated as explained
below.

For the update we need to select greedy actions based on the current
approximation. In a state s we choose a row j∗ with ws(j

∗) close to s and
wq(j

∗) as high as possible. We choose a “distance function” ds,q(x, y) of a
nonnegative real variable x for the distance between s and ws and a real
variable y for the approximate action-value wq, with the property that it is
strictly monotonically increasing in x and decreasing in y. A possible choice
would be ds,q(x, y) = x− ay with a positive constant a.
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In our actual implementation action-values q are kept in the unit interval
by cutting them off below zero and above one, and we use the distance
function

ds,q(x, q) = x2 +
(1− q)2

2
.

Moreover, we need to select a row k∗ for the current state-action pair (s, a)
with ws(k

∗) close to s and wa(k
∗) close to a. Again we choose a distance, in

our case the L2-norm. To decide when to add a new unit during the update
we additionally choose two small constants δs,a > 0 and δs,q > 0. The choice
of the distances and constants have to be made appropriately.
The actual update proceeds in the following steps.

1. Apply action at to the state st, observe the new state st+1 and compute
the reward rt = R(st+1, at, st).

2. Compute

j∗ = arg min
j

ds,q(‖ st+1 − wt,s(j) ‖, wt,q(j)).

The properties of ds,q imply that the vector (wt,s(j
∗), wt,q(j

∗)) can be
used as an approximation of (st+1, maxa′ Qt(a

′, st+1)) in the update rule
Equation (4.2).

3. Compute
δ1 = min

k
‖(st, at)− (wt,s(k), wt,a(k))‖ .

If δ1 ≤ δs,a then compute

k∗ = arg min
k
‖(st, at)− (wt,s(k), wt,a(k))‖ .

If δ1 > δs,a then add to Wt a new row or unit

wt(mt + 1) = (st, at, rt + γwt,q(j
∗))

and set
k∗ = mt + 1.

The vector wt(k
∗) is used as an approximation of (st, at, Qt(st, at)) in

the update rule Equation (4.2).
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4. Define the new network Wt+1 by

wt+1(k) = wt(k), for k 6= k∗

and update the row

wt(k
∗) = (wt,s(k

∗), wt,a(k
∗), wt,q(k

∗))

by




wt+1,q(k
∗) = wt,q(k

∗) + αt(rt + γwt,q(j
∗)− wt,q(k

∗)),

wt+1,s(k
∗) = wt,s(k

∗) + ηt,s(st − wt,s(k
∗)),

wt+1,a(k
∗) = wt,a(k

∗) + ηt,a(at − wt,a(k
∗)).

(4.8)

The sequence αt denotes step-size parameters for Q-learning and ηt,s, ηt,a

are zero-sequences of positive step-size parameters for the network.
The first of the equations (4.8) is determined by equation (4.2) with
the approximate values from the preceding steps.
The other two equations of (4.8) are typical for clustering or vector
quantization. Since the vector (wt+1,s(k

∗), wt+1,a(k
∗)) is intended to

be a better approximation of the observed state action pair (st, at)
than (wt,s(k

∗), wt,a(k
∗)) it is chosen in the interior of the line segment

between the two latter vectors and hence the updated center moves
towards (st, at).
In the actual finite runs of the robot the parameters are chosen constant
with αt = 0.7, ηt,s = 0.01, ηt,q = 0.2.

5. Finally the action at+1 is chosen. Compute

δ2 = min
i

ds,q(‖ st+1 − wt+1,s(i) ‖, wt+1,q(i)).

If δ2 ≤ δs,q then compute

i∗ = arg min
i

ds,q(‖ st+1 − wt+1,s(i) ‖, wt+1,q(i))

and use wt+1,a(i
∗) as an approximation of the greedy action a in Equa-

tion (4.4). For exploration we draw a random number b ∈ [−bt, bt] and
choose

at+1 = arg min
a
|a− wt+1,a(i

∗)− b|.
Here bt is a zero sequence of positive numbers.
If δ2 > δs,q choose at+1 randomly and add to the matrix Wt+1 the new
row or unit

wt+1(mt+1 + 1) = (st+1, at+1, 0).
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In our experiment we fix a number of iterations T for the learning phase.
For exploration in step 5 we choose b0 = 1 and

bt+1 = bt − 1

T
. (4.9)

Execution phase

After T iteration steps where T is sufficiently large the matrix W = WT

with m = mT rows is used to construct an approximation of an optimal
deterministic policy. The rows w(j) in the network approximate the optimal
action-values for large T . Thus a greedy policy π with respect to the network
which can be computed for each state as follows is a (sub)optimal policy. For
state s first the row

i∗ = arg min
i

ds,q(‖ s− ws(i) ‖, wq(i)) (4.10)

is selected and then choose action

a = arg min
a
|a− wa(i

∗)|.
Thus the policy π is given by the network W and can be executed and
evaluated.

4.6 Implementation

RealRobo was implemented in Visual C++ 6.0. Compare Sections 3.4.2 and
3.4.6 for general programming details. The program has approximately 4500
lines of source code. Figure 4.3 shows the RealRobo window including the
two control panels. The robot is visualized using texture images, taken with
a digital camera.

4.6.1 Robot Control

The function InitializeComPort sets the baud rate, COM port number and
parameters and opens the serial connection to the robot. The computer
and the robot are communicating with text messages, that represent the
different control commandos. For a complete list of all commandos consult
the Khepera user manual by K-Team [KT99, pp. 35].

The most important functions are Set Speed to set the speed of the two
motors and Read Sensors that returns the values of the eight proximity
sensors. These two functions are used by Turn and Move Forward to turn
an angle and move forward or backward. For function prototypes see Listing
12.
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Figure 4.3: RealRobo and its control panels

4.6.2 Network

We use the functions privateDistSQ and privateDistSA to compute the
distances in the learning phase from Section 4.5. The closest units are com-
puted by the functions privateNearestSQ and privateNearestSA respec-
tively. A new unit is added by the function privateAddNeuron and the
update of the centers is done by the function QUpdate. For function proto-
types consult Listing 12.

4.7 Experiments

We first describe how we implement experiments in general and then describe
a specific implementation of an obstacle avoidance experiment.



CHAPTER 4. REALROBO 92

4.7.1 Implementation Process

Implementing an experiment with a robot is a time consuming task. First
a physical environment has to be specified, in our case a wooden box with
obstacles and light settings. In our experiments we rely on natural light
since the sensors of the robot are very sensitive to artificial light and heavy
oscillation occurs. Then the actions of the robot have to be defined and
implemented in the control program. Usually a test run is carried out. The
robot is put in a state, random actions are applied and the sensor values
are observed. We ensure that the connection to the robot is established, the
actions are applied correctly and the sensors respond.

To define rewards whose optimal policy corresponds to a desired behavior
is a complex task, compare Santos [San99]. Moreover, the rewards depend
on the observed sensor values which themselves depend on the light, surface
and material of the obstacles perceived in the wooden box. The sensor values
are observed in a series of test runs where random actions are applied. The
sensor values are analyzed and the rewards adapted if necessary.

Once the physical environment and rewards are fixed a representation of
the states, actions and action-values has to be chosen, for example the adap-
tive network described in Section 4.5 or the discretization in 9.2.2. Then
a model-free learning method and exploration technique have to be imple-
mented according to the chosen representation.

The number of iterations for the learning phase has to be selected. Sample
learning runs with different numbers of iterations are conducted and action-
values are observed to estimate the appropriate number of iterations. During
the learning phase the robot has to be observed. It may possibly act in a
wrong way due to technical interferences, or it may get stuck in certain
physical positions. To overcome such problems the learning can be stopped
or the robot can be corrected manually.

In this phase of the implementation process reflexes are designed. A
reflex is an instantly applied rule that lets the robot apply an action if it is
in a certain state or perceives certain sensor values. Reflexes let the robot
avoid certain states. A reflex can also be applied by the user by correcting
the robot manually, for example, when it bumps into a wall. Note that the
reflexes influence the sequence of visited states and thus the whole learning
process.

After learning the execution phase begins and the learned policy is ap-
plied. Depending on the representation of states, actions and action-values
the policy is derived and represented differently. Different criteria are used
to decide its quality.

One criterion concerns the quality of the policy with respect to the desired
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behavior, that is whether the rewards are well chosen for the intended task.
For instance, we can measure the average distance to the obstacles for the
obstacle avoidance task. In other terms, whereas the optimal policy is, by
definition, optimal with respect to the optimal value function determined by
the chosen rewards it may not be optimal with respect to another quality
criterion.

To compare and decide the quality of a policy with respect to fixed re-
wards we use an approximation of its utility, see Section 9.4. For a high
number of iterations the approximation of the utility obtained is good. In
robot experiments relatively few iterations can be done, since the robot takes
about a second to apply an action. An experiment may take from 30 min-
utes to an hour for a few thousand iterations, while, for example, using the
simulator an experiment with 50000 iterations is carried out in less than a
second.

Instead of using the approximation obtained, we can estimate the value
function by observing the rewards in test runs. The robot is put in a starting
state and the policy is applied for a fixed number T of iterations. The
resulting sequence of states and actions is used to compute the (discounted)
return up to the chosen iteration, see Section 1.2.2. This process can be
repeated and the obtained returns averaged. The average return then serves
as an estimate of the (discounted) value function for the starting state.

If the policy obtained does not perform sufficiently well the implementa-
tion process can be repeated from the beginning and the physical environ-
ment, rewards, state-action representation or number of iterations adjusted.

4.7.2 Obstacle Avoidance

We want the robot to avoid obstacles using the rewards from Section 4.2 in
the wooden box displayed in Figure 4.4. The box is 22.5 cm long and 20 cm
wide. An obstacle is situated in the middle of the long side attached to the
wall, it is 2 cm wide and 4.5 cm long. The wall and the obstacle are 5 cm
high.

We consider the states and actions defined in Section 4.3 and apply Q-
learning described in Section 4.4 using the network implementation from
Section 4.5. The experiments are carried out with natural morning light
to illuminate the wooden box. They can be repeated using RealRobo and
following the instructions given below.

The robot is put in the center of the wooden box looking towards the
obstacle. Then the learning phase begins. While learning, the robot is pro-
vided with two reflexes. If it gets too close to an obstacle it undoes the last
action executed. This reflex prevents the robot from future collisions. If
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Figure 4.4: Wooden box to learn obstacle avoidance
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Figure 4.5: Number of units of the network during the learning phase

there is no obstacle in sight it moves straight forward until it again perceives
an obstacle. This reflex gives the robot a strategy to leave empty areas.

The exploration technique used lets the robot act randomly at the be-
ginning of the learning phase. With increasing iterations the actions of the
robot become the greedy actions with respect to the current network. The
network starts with zero units. New units are added to obtain a represen-
tation of states, actions and action-values. Figure 4.5 shows the increasing
number of units of the network during the learning phase for an experiment
with 430 iterations.

We conduct an experiment with 300 iterations. To compare the obtained
policies we use estimates of the value function derived from sample runs. The
robot is put to a start position. Then the policy is executed for 100 steps and
the rewards are observed. The average sum of the rewards is computed. This
sum can be seen as an estimate of the undiscounted value function for the
starting state. Compare Monte Carlo methods in Sutton and Barto [SB98,
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Figure 4.6: Average sum of rewards for the random policy and the policy
obtained after 150 and 300 Q-learning iterations

pp. 113] and Bertsekas and Tsitsiklis [BT96, pp. 181].
For the random policy, a policy obtained after 150 iterations and a policy

obtained after 300 iterations we conduct three sample runs each and average
the obtained estimates. In Figure 4.6 these averages for the three policies
are displayed. We observe that the average sums of rewards raise with the
iterations. Figure 4.7 shows the robot following the policy obtained after
300 iterations. The robot starts on the left side looking towards the wall. It
turns right and proceeds to the center approaching the wall. It turns right
and continues straight towards the right corner. There it turns right and
gets quite close to the obstacle, since its corner is difficult to perceive with
the sensors. Then the robot turns right again and proceeds to the center of
the wooden box.

In Figure 4.8 the actions chosen by the learned policy in two sample
states are displayed. The arrows show the actions of the policy. In the state
displayed on the left, the obstacles are quite near on the right side of the
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Figure 4.7: The robot following a learned policy

Figure 4.8: The actions chosen by the learned policy in two sample states
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robot and the action is to turn 27 degrees to the left. In the right state the
robot stands close to obstacles on its left and front side. The action is to
turn 71 degrees to the right.

To repeat this experiment connect your Khepera mobile robot to the
serial port and start RealRobo. Open the Properties rollout and choose
the appropriate COM port and baud rate. The settings of the parameters of
the Properties and the Options rollout can be saved by pressing the button
Save Config. The next time RealRobo is started the new settings will be
loaded automatically. To restore the default settings press the button Set

Default.
The connection with the robot is initialized by pressing Initialize

Khepera. Now the sensor cones show the current sensor values graphically.
They can be turned off and on by switching the checkerbox Draw sensors.
With Show sensors the current sensor values are displayed in the window.
Turn on Show Learning to display details on the current iteration, explo-
ration, number of units and actions executed. The temperature value is the
random factor for the exploration, compare Equation 4.9.

Now put the robot in a wooden box and switch the Mode to Learn Mode.
Choose the desired amount of 300 iterations in Iterations spinner in the
Properties rollout. To start the learning phase press the button Run/Stop

Mode. After each 10 iterations the current network is saved with the name
given in the Save editbox in the Properties rollout. The number of iteration
is added to the file name, for example filename net150.dat for the network
after 150 iterations.

To run a policy choose the file name of the network you want to load
in the Load editbox. Then go to Run Mode and press the button Run/Stop

Mode. Now the policy derived from the loaded network will be executed for
the number of iterations set in the Iterations spinner in the Properties

rollout. The observed rewards are displayed in the console window. To run
the random policy switch the Mode to Random Angle and press the button
Run/Stop Mode.



Part II

Several Environments
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Chapter 5

Reinforcement Learning

Several methods to find optimal or suboptimal policies for one Markov deci-
sion process are discussed in the first part. Now we investigate a general view
of behavior, independently from a single environment. As an example imag-
ine that a robot should learn to avoid obstacles. What we have in mind is a
behavior suitable for not only one, but several environments simultaneously,
see Figure 5.1.

Obviously, a policy for several environments cannot – in general – be
optimal for each one of them. Improving a policy for one environment may
result in a worse performance in another. Nevertheless it is often possible to
improve a policy for all environments.

As far as we know, the problem of learning a policy for several MDPs
has not yet been investigated. The special case of finding a policy for several
rewards is often referred to as multi-objective or multi-criteria reinforcement
learning, see Section 5.8 for a discussion.

5.1 The State Action Space and Realizations

To apply one policy to different environments we introduce the following
notions. A state action space (SAS) E is given by

• A finite set S of states.

• A family A = (A(s))s∈S of finite sets of actions.

Let E = (S,A) be an SAS. We call an environment E = (SE,AE,PE) a
realization of the state action space E if the set of states is a subset of S and
the actions are the same as in the SAS, that is SE ⊂ S and

AE(s) = A(s) for all s ∈ SE.

99
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Figure 5.1: Obstacle avoidance for several environments simultaneously

We call an MDP (E,R, γ) a realization of the SAS E if the environment E
is a realization of E.

Since the set of actions for each state is given by the state action space,
we can define policies for E, which can be applied to any realization. A policy
for E is given by

• A family π = (π(− | s))s∈S of probabilities π(− | s) on A(s).

Let E = (SE,AE,PE) be a realization for E. Then the restriction

π|E = (π(− | s))s∈SE

is a policy for E. A family of rewards for E is given by

• R = (R(s′, a, s))s′,s∈S,a∈A(s) with R(s′, a, s) ∈ R.

Rewards can be restricted to any realization E of E,

R|E = (R(s′, a, s))s′,s∈SE ,a∈A(s).

We write again π and R for the restrictions π|E and R|E.
Let E = (S,A) be an SAS. Let E =(Ei)i∈I be a family of realizations of

E, where Ei = (Si,Ai,Pi). We denote by

SE =
⋃
i∈I

Si ⊂ S
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the set of all states for the family of realizations E. Again since the set of
actions for each state is given by the state action space, we can define policies
and a family of rewards for E, which can be restricted to any realization Ei.
A policy for a family of realizations E is given by

• A family π = (π(− | s))s∈SE
of probabilities π(− | s) on A(s).

Figure 5.2 shows the relation of the state action space and its realizations
graphically. Note that one MDP is obviously a realization of the SAS defined

family of realizations E = (Ei,Ri, γi)i∈I

state action space E = (S,A)
π

R1, γ1 R2, γ2 R3, γ3

E1 = (S1,A1,P1) E2 = (S2,A2,P2) E3 = (S3,A3,P3)

Figure 5.2: A state action space and a family of realizations

by its states and actions.
Let

E =(Ei,Ri, γi)i∈I

be a family of realizations of an SAS. In particular the following cases are
included in our model: Several environments with a fixed family of rewards
R for E, that is

E =(Ei,R, γ)i∈I .

Several rewards and discount rates for one fixed environment E, that is

E =(E,Ri, γi)i∈I .

The second case is called a multi-criteria reinforcement problem, see biblio-
graphical remarks in Section 5.8.
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5.2 Improving Policies and Policy Improve-

ment

We extend the notions of improving policies to families of realizations. Let
E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS and π a policy for E.
We denote the value function and action-values for realization (Ei,Ri, γi) by
V π

i and Qπ
i and likewise for all other definitions from the first part.

We define the set of improving policies for policy π and the family of
realizations E in state s ∈ SE by

Cπ,E
≥ (s) =

⋂
i∈I,s∈Si

Cπ
i,≥(s),

where Cπ
i,≥(s) denotes the set of improving policies for Ei in state s ∈ Si. See

Section 1.6.
The set of equivalent policies for policy π and the family of realizations

E in state s is defined by

Cπ,E
= (s) =

⋂
i∈I,s∈Si

Cπ
i,=(s).

Note that
π(− | s) ∈ Cπ,E

= (s) ⊂ Cπ,E
≥ (s).

We define the set of strictly improving policies for policy π and the family of
realizations E in state s by

Cπ,E
> (s) = Cπ,E

≥ (s) \ Cπ,E
= (s).

Observe that the strictly improving policies are the improving policies in s,
that are contained in the set of strictly improving policies for at least one
realization, that is

Cπ,E
> (s) =

{
π̃(− | s) ∈ Cπ,E

≥ (s) : π̃(− | s) ∈ Cπ
i,>(s) for at least one i ∈ I

}
.

With these definitions Corollaries 13 and 14 imply the following proposi-
tions for families of realizations.

Corollary 24. Let E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS.
Let π and π̃ be policies for E. Then

π̃(− | s) ∈ Cπ,E
≥ (s) for all s ∈ SE
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implies
V π̃

i ≥ V π
i for all i ∈ I.

If additionally

π̃(− | s) ∈ Cπ,E
> (s) for at least one s ∈ SE

then
V π̃

i > V π
i for at least one i ∈ I.

Corollary 25. Let E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS.
Let π and π̃ be policies for E. Then

V π̃
i = V π

i for all i ∈ I

if and only if
π̃(− | s) ∈ Cπ,E

= (s) for all s ∈ SE.

Recall from Section 1.6 that the sets of (strictly) improving policies for one
Markov decision process are invariant if we multiply the family of rewards
by a positive real number and the equivalent policies are invariant if we
multiply the rewards with a nonzero real number. Hence the same property
holds for the sets of (strictly) improving and equivalent policies for a family
of realizations.

5.3 Balanced Policies

Let E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS. We call a policy
π for E balanced if there are no strictly improving policies, that is

Cπ,E
> (s) = ∅ for all s ∈ SE.

For one environment the notions of balanced and optimal coincide by Theo-
rem 15 (iii). Again, the notion of balanced policies is invariant if the rewards
are multiplied by a positive number.

We give a characterization of balanced policies. For s ∈ SE let πs denote
the set of all policies that are arbitrary in s and equal π otherwise, that is

πs = {π̃ : π̃(− | s̃) = π(− | s̃) for all s̃ ∈ SE \ s} .

The following theorem says that if we change a balanced policy in one state
the value functions remain unchanged in all realizations or it is worse in at
least one. Compare the notion of equilibrium points in game theory Nash
[Nas51] and for example Owen [Owe95].
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Theorem 26. Let E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS
and π be a policy for E. Then π is balanced if and only if for all s ∈ SE and
all π̃ ∈ πs either

V π̃
i = V π

i for all i ∈ I or

V π̃
i < V π

i for at least one i ∈ I.
(5.1)

Proof. Let π be balanced. Let s ∈ S and π̃ ∈ πs. Since π is balanced we
have Cπ,E

> (s) = ∅. So either π̃(− | s) ∈ Cπ,E
≥ (s) and hence

π̃(− | s) ∈ Cπ,E
= (s) = Cπ,E

≥ (s)

and
V π̃

i = V π
i for all i ∈ I

by Theorem 24, or π̃(− | s) is not contained in Cπ,E
≥ (s). Then there exists

an i ∈ I such that s ∈ Si and π̃(− | s) is not contained in Cπ
i,≥(s), that is

∑

a∈A(s)

Qπ
i (a, s)π̃(a | s) < V π

i (s).

Corollary 10 (ii) implies V π̃
i < V π

i . Suppose now that π is not balanced.
Then there exists an s ∈ SE with Cπ,E

> (s) 6= ∅. We define a policy π̃ by
choosing

π̃(− | s) ∈ Cπ,E
> (s)

and set π̃(− | s̃) = π(− | s̃) for all s̃ ∈ SE \ s. Note that π̃ ∈ πs. Theorem
24 gives V π̃

i ≥ V π
i for all i ∈ I and V π̃

i > V π
i for at least one i ∈ I, a

contradiction to (5.1).

5.4 Joint Optimal Policies

In this section we show that there exists a policy for a family of realizations
that is optimal for all of them if and only if the intersection of the optimal
actions is not empty.

Let E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS. We denote
the optimal actions for realization (Ei,Ri, γi) in state s by A∗

i (s).

Theorem 27. There exists a policy π for the family of realizations E such
that π is optimal for each (Ei,Ri, γi) if and only if

⋂
i∈I,s∈Si

A∗
i (s) 6= ∅ for all s ∈ SE.
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Proof. Let be π a policy for E such that π is optimal for each (Ei,Ri, γi).
Let s ∈ SE. Choose an a ∈ A(s) with π(a | s) > 0. Then a ∈ A∗

i (s) for
i ∈ I and s ∈ Si by Theorem 21. If the intersection of optimal actions is not
empty for all states, we define a deterministic policy π by

π(− | s) = a ∈
⋂

i∈I,s∈Si

A∗
i (s) for all s ∈ SE

Then π is optimal for each realization (Ei,Ri, γi), again by Theorem 21.
Note that a policy for a family of realizations that is optimal for each

realization is balanced. If such a policy exists then we can find a deterministic
policy with the same property by choosing an action in the intersection of
optimal actions for each state.

The proof of Theorem 21 characterizing all optimal policies for an MDP
can be adapted to prove the next result characterizing all policies for a family
of realizations that are optimal in each one of them.

Theorem 28. Let π be a policy for E. Then π is optimal for each (Ei,Ri, γi)
if and only if

π(a | s) > 0 implies a ∈
⋂

i∈I,s∈Si

A∗
i (s) for all s ∈ SE.

5.5 Policies and Cones

In this section we discuss geometrical aspects of the sets of (strictly) improv-
ing and equivalent policies of a family of realizations. Since we allow infinite
families, we recall some concepts and results for arbitrary convex sets. The
notation and references are as in Section 1.8. Further references on convexity
used for this sections are Rockafellar [Roc70] and Webster [Web94].

5.5.1 Faces and Extreme Points

The concept of faces for polyhedra can be generalized to arbitrary convex
sets. A face of a convex subset K ⊂ Rd is a convex subset F ⊂ K such
that every line segment in K with a relative interior point in F has both
endpoints in F , that is, whenever

λx + (1− λ)y ∈ F, with x,y ∈ K and 0 < λ < 1

then x,y ∈ F . For polyhedra this definition of faces is equivalent to the
definition with valid inequalities given in Section 1.8.1.
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The zero-dimensional faces of K are called extreme points . Clearly, a
point x ∈ K is an extreme point of K if it is not a convex combination of
two other points K; that is, x ∈ K is an extreme point if it has the property
that whenever

x = λy + (1− λ)z, with y, z ∈ K and 0 < λ < 1,

then x = y = z. For polyhedra the notion of extreme points and vertices
coincide.

Recall that polyhedra are defined as subsets given by a finite intersection
of halfspaces. For closed convex subsets we have the following theorem, see
Rockafellar [Roc70, p. 99] or Webster [Web94, p. 70].

Theorem. Every closed convex subset of Rd is the intersection of the halfs-
paces containing it.

Every polytope is the convex hull of its vertices, see Theorem 1.8.1. This
is a special case of the Krein-Milman theorem. For a proof in Rd see for
example Webster [Web94, p. 86] and in an arbitrary vector spaces Lang
[Lan93, pp. 83].

Theorem. Every compact convex subset of Rd is the convex hull of its ex-
treme points.

5.5.2 Convex Cones

A nonempty subset C ⊂ Rd is a (convex) cone if with any two points x,y ∈ C
it contains all their linear combinations with nonnegative coefficients, that is

λx + µy ∈ C, for λ, µ ≥ 0.

In particular, every cone contains the origin 0 ∈ Rd. The intersection of
any number of cones is again a cone. The conical hull of a subset X ⊂ Rd,
cone(X), is defined as the intersection of all cones in Rd that contain X. It
is given by

cone(X) = {λ1x1 + · · ·+ λnxn : n ≥ 1,xi ∈ X, λi ≥ 0}.

The conical hull of the empty set is defined as {0}. The only bounded cone
is {0}.

Let a ∈ Rd be a nonzero row vector. A set of the form
{
x ∈ Rd: ax ≤ 0

}
is a linear halfspaces . Linear halfspaces are obviously cones. For a proof of
the following result see Rockafellar [Roc70, p. 101].
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Theorem. Every closed convex cone in Rd is the intersection of the linear
halfspaces containing it.

For convex cones the notion of extreme points is not useful, since the
origin is the only possible candidate. Instead one considers extreme rays ,
which are one-dimensional faces, that are halflines starting from the origin.

The lineality space L of a convex cone C is defined as L = C ∩−C. It is
the largest linear subspace contained in C. A cone is pointed if its lineality
space is {0}. Every cone C is the direct sum of its lineality space L and the
pointed cone C ∩ L⊥, that is

C =
(
C ∩ L⊥

)⊕ L,

where L⊥ denotes the orthogonal complement. For a proof of the next result
see Rockafellar [Roc70, p. 167].

Theorem. Every pointed and closed convex cone in Rd not {0} is the conical
hull of its extreme rays.

A cone C is called finitely generated if C = cone(X) for a finite set of
vectors X. A cone C ⊂ Rd is polyhedral if it is a polyhedron given by the
intersection of finitely many linear halfspaces, that is

C = P (A,0) =
{
x ∈ Rd : Ax ≤ 0

}

for a matrix A. The following theorem shows that the concepts of polyhedral
and finitely generated cones are equivalent, compare the finite basis theorem
for polytopes in Section 1.8.1. For a proof we refer to Schrijver [Sch86, p.
87] or Ziegler [Zie98, pp. 30].

Theorem. A cone is finitely generated if and only if it is polyhedral.

5.5.3 Improving Policies

Let E =(Ei,Ri, γi)i∈I be a family of realizations of an SAS, π a policy for E
and s ∈ SE.

Recall from Section 5.2 that the set of improving policies Cπ,E
≥ (s) for π

and E in state s is defined as the intersection of the improving policies for
each realization (Ei,Ri, γi) with s ∈ Si,

Cπ,E
≥ (s) =

⋂
i∈I,s∈Si

Cπ
i,≥(s).
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The set of improving policies Cπ
i,≥(s) for realization (Ei,Ri, γi) is given by

the intersection of the standard simplex C(s) in RA(s) and the halfspace

Hπ
i,≥(s) = {x ∈ RA(s) :

∑

a∈A(s)

Qπ
i (a, s)x(a) ≥ V π

i (s)},

that is
Cπ

i,≥(s) = Hπ
i,≥(s) ∩ C(s),

see Section 1.8.3. Let

Hπ,E
≥ (s) =

⋂
i∈I,s∈Si

Hπ
i,≥(s).

Then
Cπ,E
≥ (s) = Hπ,E

≥ (s) ∩ C(s).

Recall that by the Bellman equation (1.7) we have
∑

a∈A(s)

Qπ
i (a, s)π(a | s) = V π

i (s)

for each realization (Ei,Ri, γi) with s ∈ Si. Hence

Hπ
i,≥0(s) = {x ∈ RA(s) :

∑

a∈A(s)

Qπ
i (a, s)x(a) ≥ 0} = Hπ

i,≥(s)− π(− | s).

We denote the closed convex cone given by the intersection of these linear
halfspaces by

Hπ,E
≥0 (s) =

⋂
i∈I,s∈Si

Hπ
i,≥0(s).

Then

Hπ,E
≥ (s) =

⋂
i∈I,s∈Si

Hπ
i,≥(s) =

⋂
i∈I,s∈Si

(π(− | s)+Hπ
i,≥0(s)) = π(− | s)+Hπ,E

≥0 (s).

Summing up we note that the set of improving policies in state s is the
intersection of π(− | s) + Hπ,E

≥0 (s) with the standard simplex.
The set of equivalent policies Cπ,E

= (s) for π and E in state s is defined in
Section 5.2 as

Cπ,E
= (s) =

⋂
i∈I,s∈Si

Cπ
i,=(s).

Recall from Section 1.8.3 that the set of equivalent policies is the intersection
of an affine hyperplane with the standard simplex,

Cπ
i,=(s) = Hπ

i,=(s) ∩ C(s),
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with
Hπ

i,=(s) = {x ∈ RA(s) :
∑

a∈A(s)

Qπ
i (a, s)x(a) = V π

i (s)}.

Hence
Cπ,E

= (s) = Hπ,E
= (s) ∩ C(s)

with
π(− | s) ∈ Hπ,E

= (s) =
⋂

i∈I,s∈Si

Hπ
i,=(s).

See Figure 5.3 for an example with three actions and two realizations. The

a2

a3

a1

Hπ
1,=(s)

Hπ
2,=(s)

π(− | s)

Figure 5.3: Improving polices for two realizations

halfspaces Hπ
1,≥(s) and Hπ

2,≥(s) are marked by the small arrows and the set

of improving policies Cπ,E
≥ (s) is the shaded area.

The set Hπ,E
= (s) is an affine subspace (or flat) given by the intersection

of affine hyperplanes. The associated linear subspace

Hπ,E
=0 = Hπ,E

= (s)− π(− | s)
is the lineality space of the cone Hπ,E

≥0 and is given by

Hπ,E
=0 =

⋂
i∈I,s∈Si

{x ∈ RA(s) :
∑

a∈A(s)

Qπ
i (a, s)x(a) = 0}.
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Thus the set of equivalent policies is the intersection of an affine subspace
through π(− | s) with the standard simplex.

The set of strictly improving policies Cπ,E
> (s) for π and E in state s is

defined as
Cπ,E

> (s) = Cπ,E
≥ (s) \ Cπ,E

= (s).

Geometrically, this is the intersection of the standard simplex with the cone
Hπ,E
≥0 without its lineality space plus the point π(− | s).

5.5.4 Improving Vertices

We consider finite family of realizations. Then the set of (strictly) improving
and equivalent policies are defined by finitely many (in)equalities and are
thus polytopes. We discuss geometrical and computational aspects for this
case specializing the results from the previous section.

Let E =(Ei,Ri, γi)i∈I be a finite family of realizations of an SAS. Let π
be a policy for E and s ∈ SE. The set of improving policies Cπ,E

≥ (s) for π
and E in state s is a polytope given by the intersection of a polyhedral cone
plus the point π(− | s) with the standard simplex.

We call the vertices vert(Cπ,E
≥ (s)) improving vertices for policy π and the

family of realizations E in state s. We define the strictly improving vertices
for π and E in state s by

vert(Cπ,E
> (s)) = vert(Cπ,E

≥ (s)) ∩ Cπ,E
> (s).

The set of equivalent policies Cπ,E
= (s) for π and E in state s is a polytope

given by the intersection of an affine subspace through π(− | s) with the
standard simplex. We call the vertices vert(Cπ,E

= (s)) equivalent vertices for
policy π and the family of realizations E in state s.

A polytope representing the set of improving policies in a state for two
realizations is shown in Figure 5.4. The set of improving policies is the

π(− | s)

v32

a3

a2a1

v31

Figure 5.4: Improving policies for two realizations
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shaded area, the strictly improving vertices vert(Cπ
>(s)) = {v31, a3,v32} and

the equivalent vertices vert(Cπ,E
= (s)) = {π(− | s)}. Note that a3 is an action

that improves the policy in both environments. Figure 5.5 shows that it may
happen that all improving policies in a state are stochastic. In particular,

π(− | s)
a1 a2

a3

v32

v23

Figure 5.5: (Stochastic) improving policies for two realizations

the strictly improving vertices vert(Cπ
>(s)) = {v23,v32} represent stochastic

policies in a state.
For one MDP the strictly improving vertices are just the strictly improv-

ing actions. To see this, recall Equation (1.27)

vert(Cπ
≥(s)) = A>(s) ∪ vert(Cπ

=(s)).

Thus

vert (Cπ
>(s)) = vert(Cπ

≥(s)) ∩ Cπ
>(s)

= (vert(Cπ
=(s)) ∪ Aπ

>(s)) ∩ Cπ
>(s) = Aπ

>(s). (5.2)

There exist several algorithms to compute all vertices of a polytope given
by a system of linear inequalities. See Fukuda [Fuk00] for a discussion and
related software. Bremner [Bre00] gives an extensive annoted bibliography
on vertex and facet enumeration and related questions. Linear programming
methods to find strictly improving vertices are discussed in the following
section.

Two Realizations

We discuss how all strictly improving vertices for two realizations can be
computed. We consider a family E of two realizations

(E1,R1, γ1) and (E2,R2, γ2)
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of an SAS. Let π be a policy for E. We denote the value function and action-
values for realization (Ei,Ri, γi) by V π

i and Qπ
i . Let s be a state contained

in both realizations, that is s ∈ S1 ∩ S2 ⊂ SE. Let A(s) = {a1, . . . , ad+1},

c1 = (Qπ
1 (a1, s), . . . , Q

π
1 (ad+1, s)), z1 = V π

1 (s),

c2 = (Qπ
2 (a1, s), . . . , Q

π
2 (ad+1, s)), z2 = V π

2 (s).

The polytope of improving policies Cπ,E
≥ (s) is defined by the (in)equalities

for the standard d + 1-simplex,

1x = 1, x ≥ 0

with 1 = (1, . . . , 1) ∈ Rd+1 and the additional inequalities

c1x ≥ z1 and c2x ≥ z2. (5.3)

A strictly improving vertex is a vertex of Cπ,E
≥ (s) such that at least one from

the above inequalities is strict. Recall from Section 1.8.3 that the improving
policies Cπ

i,≥(s) are given by the (in)equalities for the standard simplex and

cix ≥ z.

Theorem 29. We have

vert(Cπ,E
> (s)) =

(
vert(Cπ

1,≥(s)) ∪ vert(Cπ
2,≥(s))

) ∩ Cπ,E
> (s).

Proof. We use the characterization of vertices from Corollary 16. So to
compute the vertices of Cπ,E

≥ (s), we have to choose all subsets of d+1 linearly
independent rows from the d + 4 (in)equalities for the standard simplex and
Equation (5.3). Then we compute the unique solution x ∈ Rd+1 of the
resulting system of linear equations and test whether the solution satisfies
the remaining (in)equalities. For a strictly improving vertex at least one
of the inequalities (5.3) must be strict. Hence the above remark on the
improving policies Cπ

i,≥(s) and computations in the proof of Theorem 17
imply the result.

This result gives us a method to compute all strictly improving vertices
for two realizations. We first compute the improving vertices for the two
realizations with the formulas given in Theorem 17 and then test for each
vertex if one of the inequalities (5.3) is strict. Note that improving vertices
in one realization correspond to policies in a state s with π(a | s) > 0 for at
most two different actions, compare Theorem 18. Thus the strictly improving
vertices for two realizations have the same property.
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Three actions

We finally describe how all strictly improving vertices can be computed di-
rectly for a finite family of realizations (Ei,Ri, γi)i∈I of an SAS if we have
only three actions A(s) = {a1, a2, a3} in a state. We use this observation for
the simulator SimRobo, see Section 8.

Let s ∈ SE and J be the set of indices j with s a state of environment
Ej, that is

J = {j ∈ I : s ∈ Sj}.
Let

cj = (Qπ
j (a1, s), Q

π
j (a2, s), Q

π
j (a3, s)) and zj = V π

j (s), for j ∈ J.

Then the polytope of improving policies Cπ,E
≥ (s) is defined by the inequalities

cjx ≥ zj, for j ∈ J, (5.4)

and the (in)equalities for the standard simplex.

Theorem 30. We have

vert(Cπ,E
> (s)) = (

⋃
j∈J

vert(Cπ
j,≥(s))) ∩ Cπ,E

> (s).

Proof. We use the characterization of vertices from Corollary 16. So to
compute the vertices of Cπ,E

≥ (s), we have to choose all subsets of 3 linearly
independent rows from (in)equalities for the standard simplex and (5.4).
Then we compute the unique solution x ∈ R3 of the resulting system and
test whether the solution satisfies the remaining (in)equalities. For a strictly
improving vertex at least one of the inequalities cjx ≥ zj must be strict. We
consider two cases to choose 3 linearly independent rows. For the first case
we choose three linear independent equations either of the form

cjx = zj with j = j1, j2, j3 ∈ J

or
cjx = zj with j = j1, j2 ∈ J and 1x = 1.

Recall that the policy x = π(− | s) in state s satisfies

cjx = zj for all j ∈ J (5.5)

by the Bellman equation (1.13). Hence for any possible choices of linear
independent equation above the policy π(− | s) is the unique solution of the
resulting system but it is not an improving vertex by Equation (5.5).
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For the second case we choose one equation of the form

cjx = zj, with j ∈ J

and two equations from the (in)equalities for the standard simplex. The
possible solutions for the resulting system are just the improving vertices
vert(Cπ

j,≥(s)), see the proof of Theorem 17.
We obtain the following method to compute the strictly improving ver-

tices. We first compute the improving vertices vert(Cπ
j,≥(s)) with the formulas

given in Theorem 17 and then test for each vertex if all inequalities (5.4) are
satisfied and one them is strict.

5.5.5 Linear Programming

Linear Programming methods can be used to decide whether there exists a
strictly improving vertex and to find one. We refer to Fourer [Fou00] for
references and a discussion of available software. See Chvátal [Chv83] for a
description of Dantzig’s simplex method [Dan51] and Schrijver [Sch86] for
a survey of linear programming methods, complexity analysis and historical
informations. We discuss the related linear programming problems to find
strictly improving vertices.

Let E =(Ei,Ri, γi)i∈I be a finite family of realizations of an SAS and π
a policy for E. Let s ∈ SE and J be the set of indices j with s a state of
environment Ej, that is

J = {j ∈ I : s ∈ Sj}.
We denote the value function and action-values for realization (Ei,Ri, γi) by
V π

i and Qπ
i . Let

cj = (Qπ
j (a1, s), . . . , Q

π
j (ad+1, s)) and zj = V π

j (s), for j ∈ J,

Then the polytope of improving policies Cπ,E
≥ (s) is defined by

cjx ≥ zj, for j ∈ J,

1x = 1, and x ≥ 0.

Let i ∈ J . We consider the following linear program

maximize cix

subject to cjx ≥ zj, for j ∈ J \ {i},
1x = 1, and

x ≥ 0.

(5.6)
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Let Pi be the polytope defined by the (in)equalities (5.6). Then the above
linear program is

max{cix : x ∈ Pi}.
The maximum is attained in a vertex of Pi. If

max{cix : x ∈ Pi} > zi,

then a vertex v of Pi that maximizes cix, is a strictly improving vertex.
If

max{cix : x ∈ Pi} = zi, for all i ∈ J,

then
vert(Cπ,E

> (s)) = ∅
and thus the set of strictly improving policies is empty.

5.6 Policy Iteration

We introduce policy iteration for a finite family of realizations of an SAS,
which computes a balanced stochastic policy, see [MR01a] and [MR01b].

We start with an arbitrary policy and compute its value functions and
action-values for all realizations. Then we try to improve the policy by
choosing a strictly improving vertex in as many states as possible, see Section
5.2 and 5.5.4. Once improved we evaluate the new policy in all realizations
and again try to improve it. The algorithm terminates if there are no strictly
improving vertices. Then the policy is balanced by definition. A formal
description is given in Algorithm 8.

Input: a finite family of realizations E =(Ei,Ri, γi)i∈I of an SAS
Input: a policy π for E
Output: a balanced policy π̃ with V π̃

i ≥ V π
i for i ∈ I

π̃ ← π
repeat

compute V π̃
i and Qπ̃

i for i ∈ I
for all s ∈ SE do

if vert(C π̃,E
> (s)) 6= ∅ then

choose π′(− | s) ∈ vert(C π̃,E
> (s))

π̃(− | s) ← π′(− | s)
until vert(C π̃,E

> (s)) = ∅ for all s ∈ SE

Algorithm 8: Policy Iteration for several realizations
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The balanced policies obtained depend on the starting policy. Different
choices of strictly improving vertices may also lead to different balanced
policies. Compare the experiment in Section 8.3.7. Since for one realization
the improving vertices are just the improving actions (5.2), Algorithm 8
coincides with policy iteration for one MDP.

A geometric interpretation of one step of policy iteration for three states
and two realizations can be seen in Figure 5.6. In state s1 there are no strictly

a3 a3

state s1 state s2

a3

a1a1

state s3

a2 a2 a2a1

Figure 5.6: Strictly improving vertices in policy iteration for two MDPs

improving vertices. In state s2 there are three strictly improving vertices, one
of them is the action a3. In state s3 there are two, both of them a stochastic
combination of a2 and a3.

In all our computational experiments the algorithm terminated after
finitely many steps. So far, we have no formal proof of this proposition.
Note however that the sequence of the value functions produced by the algo-
rithm is increasing and bounded and therefore converges componentwise for
each realization.

Conceptionally, policy iteration can be extended to the case of infinite
families of realizations using extreme points of the set of strictly improving
policies, see Section 5.5.3.

5.7 Approximate Policy Iteration

We formulate approximate policy iteration [MR03a] for a finite family of re-
alizations of an SAS in the model-free case, when the environments are not
explicitly known. The idea is analogous to approximate policy iteration for
one MDP, see Section 1.12.3. We use approximate policy evaluation for each
realization, Algorithm 5, and then improve the policy with the approxima-
tions.

Let E =(Ei,Ri, γi)i∈I be a finite family of realizations of an SAS and π
be a policy for E. Let i ∈ I and Qi ∈ RASi an approximation of the action-
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values Qπ
i . We can compute an approximation Vi ∈ RS of the value functions

V π
i by Equation (1.46).

For each realization we consider (strictly) improving policies and vertices
for policy π using the approximations instead of exact action-values and
value functions. Let s ∈ SE. We define the improving policies for π, E and
approximations Qi in state s by

Cπ,E,Q
≥ (s) =

⋂
i∈I,s∈Si

Cπ,Q
i,≥ (s).

A formal description of the algorithm is given in Algorithm 9.

Input: a finite family of realizations E =(Ei,Ri, γi)i∈I of an SAS
Input: a policy π for E
Output: a (balanced) policy π̃

π̃ ← π
repeat

approximate Qπ
i for i ∈ I

compute V π
i for i ∈ I

for all s ∈ S do
compute Cπ,E,Q

> (s)
if Cπ,E,Q

> (s) 6= ∅ then
choose π′(− | s) ∈ vert(Cπ,E,Q

> (s))
π(− | s) ← π′(− | s)

Algorithm 9: Approximate policy iteration for several realizations

Empirically, the policy improves well in the first iteration steps and then
begins to oscillate, see the computational experiments in Section 8.3.9.

5.8 Bibliographical Remarks

Multi-criteria problems are discussed in the literature on reinforcement learn-
ing and on MDPs, where they are also called vector-valued MDPs . We sum-
marize several approaches. In all proposed methods only deterministic poli-
cies are considered.

One approach is to find policies that maximize a positive linear combina-
tion of the different rewards, see for example White [Whi93, pp. 159].

Let E = (S,A,P) be an environment, (Ri)i∈I a finite family of rewards,
(αi)i∈I positive real numbers and γ a discount rate. Then an MDP is defined
by the environment E, the rewards

R =
∑

i∈I
αiRi,
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and the discount rate γ. Now all algorithms including model-free methods
can be applied to find (sub)optimal deterministic policies for this MDP. A
problem of this approach is that the learned policies depend on the particular
choice of the weights αi. Note that policy improvement as described in
Theorem 24 improves a policy for all possible families of weights (αi)i∈I ,
since the set of improving policies is invariant if the rewards are multiplied
by positive numbers.

The work of Singh and Cohn [SC98] is related to this approach. They
merge different MDPs into a composite MDP that is based on the cross
product of all states and actions and the sum of rewards. Shelton [She01]
balances the rewards to restrict their influence on the learned policy.

Several authors discuss methods where action-values or policies are first
learned for each reward and then a compromising policy is constructed based
on heuristic considerations. Humphrys [Hum96] and Karlsson [Kar97] use Q-
learning for each reward and then apply different action selection methods
to identify a policy. Sprague and Ballard[SB03] apply Sarsa(0) instead of
Q-learning to find policies that maximize the sum of rewards in a composite
MDP. Mariano and Morales [MM00] apply distributed Q-learning agents for
each reward and negotiate the resulting policy after each learning episode.

Gábor, Kalmár and Szepesvári [GKS98] fix a total order on the differ-
ent rewards, discuss the existence of optimal policies and describe solution
methods for this case.

For vector-valued MDPs Wakuta [Wak95] discusses a variant of policy
iteration to find optimal deterministic policies, where in his context a policy
is optimal if its value function is Pareto optimal for all states. An algorithm to
find optimal deterministic policies for vector-valued MDPs was first proposed
by Furukawa [Fur80]. The considerations are limited to one MDP with several
rewards and deterministic policies.

White [Whi98] describes different vector-maximal sets of policies. Fein-
berg and Shwartz [FS94] discuss the case of several rewards and different
discount rates. Novak [Nov89] uses multi-objective linear programming to
find nondominated deterministic policies for vector-valued MDPs.

Finding good policies for multi-criteria MDPs can be interpreted as a
special case of multiple criteria optimization, for a recent overview on this
topic see Ehrgott and Gandibleux [MG02].



Chapter 6

Generalization over
Environments

The fact that a policy learned in one environment can successfully be applied
in other environments has been observed, but not investigated in detail. We
discuss the influence of the environment on the ability to generalize over
environments in [MR02] and [MR03b].

Given a policy for a family of realizations of an SAS, we consider the
average utility of the policy in all realizations. We learn an optimal policy in
one realization and then extend it to a policy for the family of realizations.
We say that a realization, with an optimal policy having a high average
utility, generalizes well over other environments. How can we find such an
environment? Are there criteria to decide if an environment generalizes well
over others? Figure 6.1 motivates this question, see the attached paper in
Section 11.5.2 for details.

Figure 6.1: Four one-block grid worlds. Which one would you choose to learn
in?

119



Chapter 7

MDP Package

The MDP package provides functions for two realizations with the same num-
ber of states and actions in each state. It implements the computation of
strictly improving vertices and policy improvement and iteration. See Section
11.2.8 for a short description of all functions and examples.

The functions from the MDP package and the corresponding theorems and
algorithms:

• StrictlyImprovingVertices2, Theorem 29.

• PolicyImprovement2 PolicyIteration2, Algorithm 8.

The following examples show the functions of the package for two realiza-
tions and how to use them, see the example file on the attached CD-ROM.

7.1 Two Realizations

Transition probabilities for two realizations with three states and three ac-
tions in each state.

> s:=3:a:=3:
> P:=[RandomTransitionProbability(s,a,10),\
> RandomTransitionProbability(s,a,10)]:

> R:=[RandomReward(s,a,-2,2),RandomReward(s,a,-2,2)]:
> ER:=[ExpectedReward(P[1],R[1]),\ % rev1 p.120: added linebreak
> ExpectedReward(P[2],R[2])]:

A random policy.

> Pol:=RandomStochasticMatrix(a,s,10);

120
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Pol :=




9

10

1

10

1

5

0
1

10
0

1

10

4

5

4

5




Two discount rates.

> ga:=[1/2,1/2]:
> ERp:=[ExpectedRewardPolicy(ER[1],Pol),\
> ExpectedRewardPolicy(ER[2],Pol)]:
> Pp:=[TransitionMatrix(P[1],Pol),\
> TransitionMatrix(P[2],Pol)]:

The value functions
> Vp:=[ValueFunction(ERp[1],Pp[1],ga[1]),\
> ValueFunction(ERp[2],Pp[2],ga[2])];

Vp := [

[−1011238

1005375
,
−267634

143625
,
−2224538

1005375

]
,

[−65829

132025
,
−41979

132025
,

58271

132025

]
]

and action-values
> Qp:=[ActionValues(P[1],ER[1],Vp[1],ga[1]),\
> ActionValues(P[2],ER[2],Vp[2],ga[2])]:

We compute the strictly improving vertices for the policy in the first state.
The action-values for the two realizations in the first state

> Qps:=[LinearAlgebra:-Column(Qp[1],1),\
> LinearAlgebra:-Column(Qp[2],1)];

Qps :=







−133817

143625
815686

1005375
−1681909

1005375




,




−193869

264050
126161

264050
428241

264050







and the value function

> Vps:=[Vp[1][1],Vp[1][2]];

Vps := [
−1011238

1005375
,
−267634

143625
]

Then the strictly improving vertices are

> StrictlyImprovingVertices2(Qps,Vps);



CHAPTER 7. MDP PACKAGE 122







1
0
0


 ,




0
1
0


 ,




9

10

0
1

10


 ,




0
670671

2497595
1826924

2497595







With the policy iteration algorithm for several realizations we compute a
balanced policy with starting policy Pol

> balPol:=PolicyIteration2(P,ER,Pol,ga,’steps’);

balPol :=




0 0 1
670671

2497595

1148507007892665

2166047408033131
0

1826924

2497595

1017540400140466

2166047408033131
0




How many improvement steps were used to obtain this balanced policy?

> steps;

2

Is this policy really balanced?
> ERp:=[ExpectedRewardPolicy(ER[1],balPol),\
> ExpectedRewardPolicy(ER[2],balPol)]:
> Pp:=[TransitionMatrix(P[1],balPol),\
> TransitionMatrix(P[2],balPol)]:
> Vp:=[ValueFunction(ERp[1],Pp[1],ga[1]),\
> ValueFunction(ERp[2],Pp[2],ga[2])]:
> Qp:=[ActionValues(P[1],ER[1],Vp[1],ga[1]),\
> ActionValues(P[2],ER[2],Vp[2],ga[2])]:

> IsBalanced2(Qp,Vp);

true



Chapter 8

SimRobo

The implementation and experiments for several realizations with the simu-
lator SimRobo, see Section 3, are described. Figure 8.1 shows the complete
UML-diagram of SimRobo, including classes for several realizations.

8.1 State Action Space and Realizations

We describe how we model the robot in several environments. The states,
actions and rewards are as described in Sections 3.1 and 3.2. We consider
sensor-based MDPs only, see Section 3.3.2. Then the state action space is
given by the set S of all possible sensor values, that is

S = {(s0, s1, s2, s3) : si = 0, . . . , 5 for i = 0, . . . , 3},

and the family A = (A(s))s∈S of all possible actions, where

A(s) = {0, 1, 2} for all s ∈ S.

We obtain an SAS E = (S,A). Let now a finite number of grid worlds
and rewards be given. We can derive a realization of E from each grid world
and family of rewards and obtain a family of realizations E, see Section 5.1.
Policies can then be defined on the set SE of all states for the family of
realizations E.

In the SimRobo implementation, first the grid worlds and rewards are
specified, then the MDPs are derived. They form a family of realizations
and the set of all states for the family is computed.

123



CHAPTER 8. SIMROBO 124

Figure 8.1: SimRobo class structure

8.2 Implementation

8.2.1 Environments

The family of realizations is represented by a vector of pointers to robo env

objects. The class sev robo env contains this vector. In the constructor, the
list of all states of the realizations is computed. The function pol improv

computes an improved policy for all robo env objects by first computing
the action-values and value function of each realization and then choosing
randomly an improving vertex in each state, compare one iteration of Algo-
rithm 8. There are two versions of pol improv, one that improves a policy by
choosing strictly improving vertices, one that chooses only strictly improving
actions to improve the policy as long as it is possible. The latter version is a
deterministic variant of Algorithm 8. For details, see the header file Listing
10.

8.2.2 Improving Polytopes and Strictly Improving Ver-
tices

Improving polytopes and (strictly) improving vertices are implemented. They
are represented by the class impolytop, that contains the value function, the
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action-values and the (strictly) improving and equivalent vertices for one re-
alization, see Section 1.6. In the class inters impolytop the strictly improv-
ing vertices are computed when the constructor is called. See the remarks
in Section 5.5.4 on how to compute the strictly improving vertices for a fi-
nite family of realizations with three actions. The polytopes are given by a
vector of impolytop objects. The function get simprovpol returns a vector
of strictly improving vertices. In the class sev robo env, inters impolytop

and impolytop objects are used for computations. The header files can be
found in Listing 9.

8.2.3 Model-free

For the model-free case, the class sev robo env online is implemented. It
contains a vector of pointers to robo env online objects. The function
pol improv runs approximate policy evaluation for each robo env online

object and then approximate policy improvement, see one step of Algo-
rithm 9. It uses inters impolytop and impolytop objects to compute the
(strictly) improving vertices for the approximations. Consult the header file
Listing 11 for details.

8.2.4 User Interface

The left control panel is designed to set options and run algorithms for sev-
eral environments. It provides spinners and edit boxes to choose up to four
grid worlds and rewards. The MDPs and the family of realizations is de-
rived from the chosen grid worlds and rewards by pressing Build Envs. See
Figure 3.5, where SimRobo with all control panels is shown. The policies
obtained by learning in several environments are stochastic and stored in
a different format. To evaluate or show stochastic policies use the buttons
Policy Evaluation and Run Policy in the left panel. The controls are
shortly explained in the next section, where they are used to conduct a series
of experiments.

8.3 Experiments

We use the settings for the discount rate, step-size parameters and precision
and the notion of normalized utilities described in Section 3.5. In all exper-
iments first the grid worlds and rewards are fixed to derive the MDPs that
form a family of realizations for which policies are learned. All experiments
are conducted using sensor-based MDPs.



CHAPTER 8. SIMROBO 126

Figure 8.2: Two grid worlds to learn obstacle avoidance

The experiments can be repeated using SimRobo and following the instruc-
tions given in each experiment. See [MR01a], [MR03a] for other experiments
with SimRobo.

8.3.1 Obstacle Avoidance - two Realizations

We want the robot to learn obstacle avoidance in the two grid worlds dis-
played in Figure 8.2. The rewards for obstacle avoidance are defined in
Section 3.2.1. We derive two sensor-based MDPs and obtain two realizations
that form the family of realizations to learn with. We start with the random
policy. Then policy iteration is run by consecutively evaluating the policy in
each realization and then improving the policy for all realizations, see Algo-
rithm 8. In the policy improvement step we randomly choose an improving
vertex, see Section 5.5.4.

The experiment is carried out twice. Figure 8.3 left shows the normalized
utility of the policy for both realization after each improvement step for the
first experiment and Figure 8.3 right for the second experiment. The solid
line represents the progress of the policy in the MDP derived from the left
grid world, the dashed line shows the progress in the MDP derived from
the right grid world. We see that the policies improve for both realizations
after each improvement step. In these experiments the algorithm terminated
with different balanced policies that are close to optimal in both grid worlds
after four iterations where one iteration consists of policy evaluation and
improvement.

The following table shows the utilities of the balanced policies obtained
in both realizations for the two experiments:
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Figure 8.3: left: Progress of policy iteration for obstacle avoidance in two
realizations, first experiment right: Second experiment

policy, in grid world: left right
balanced, experiment 1 18.428 8.867
balanced, experiment 2 18.435 8.866

Comparing the utilities of the balanced policies with the utility of optimal
policies in each realization given in the following table, we see that they are
close to optimal in both.

policy, in grid world: left right
optimal 18.449 8.882
random −6.060 −6.960

To repeat this and the following experiments with SimRobo use the but-
tons on the left and lower control panel. To set the realizations use the grid
world and reward spinners and list boxes in the panel Grid World / Rewards,
where up to four realizations can be initialized. If the grid world is set to −1
it will not be considered, when the family of realizations is built using the
button Build Envs. Leave the checkerbox on Sensors for all experiments.

For this experiment choose grid worlds number 5 and 7 and rewards OA

for obstacle avoidance for both. Leave the third and fourth grid world set
to −1. Now press Build Envs to build the two MDPs and the family of
realizations. Select Show utilities. Open the Policy Iteration rollout
and press Random Policy. Change the currently displayed grid world by
selecting grid world number 5 or 7 and the Rewards to Obstacle Avoidance

in the right control panel. Note that only one grid world can be displayed at
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Figure 8.4: The robot following a balanced policy learned for both grid worlds

the same time and that for policy evaluation the according rewards have to
be set.

Now press the Policy Improvement and Policy Evaluation buttons
consecutively while observing the utility of the stochastic (improved) policy
in the currently displayed grid world. If you want to see the robot following
the current policy in the currently displayed grid world select Run policy.
The utilities for both realizations can be printed to the console window by
pressing Policy Evaluation in the Console Output rollout.

8.3.2 Wall Following - two Realizations

Now we want the robot to learn wall following for the two grid worlds of
the experiment above. We choose the rewards for wall following described in
Section 3.2.2 and derive two MDPs. Again we run policy iteration. In Figure
8.4 an obtained balanced policy is displayed in both grid worlds.

The following table shows the utility of a balanced policy for both real-
izations.

policy, in grid world: left right
balanced 10.060 9.900

Comparing the utility of the balanced policy with the utility of optimal
policies in each realization, we see that it is close to optimal in both.

policy, in grid world: left right
optimal 10.098 9.920
random −12.765 −11.282

The experiment can be repeated with SimRobo similar to the experiment
above. Just choose Grid Worlds number 5 and 7 and rewards WF for wall
following. Then repeat the steps described in the previous experiment.
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Figure 8.5: left: Progress of policy iteration for obstacle avoidance and wall
following in one environment, first experiment right: Second experiment

8.3.3 Obstacle Avoidance and Wall Following - one En-
vironment

We learn a policy that performs obstacle avoidance and wall following simul-
taneously in one grid world. Obviously it is difficult to find one policy that
satisfies both tasks. This is a multi-criteria reinforcement problem, where we
have two rewards in one environment, see Section 5.1.

We choose the grid world displayed in Figure 8.2 right and derive two
realizations from the grid world, one with rewards for obstacle avoidance and
one with rewards for wall following. We start with the random policy and
run policy iteration. The progress of policy iteration is shown in Figure 8.5
left for the first experiment and in Figure 8.5 right for the second experiment.

In general balanced policies can be stochastic. Figure 8.6 shows two
states, in which the obtained balanced policy chooses between different ac-
tions. In the state displayed on the left, the robot chooses to move forward
with probability 0.675 and to move left with probability 0.325. If the robot
moves forward it receives a reward of +1 for wall following, but −1 for ob-
stacle avoidance. If it moves left it receives a value of −1 for both rewards.
On the long run it is better for obstacle avoidance to turn left. In the state
displayed on the right side, it chooses to go forward, left or right with the
same probability of one third as in the random policy. So the policy in this
state did not change.

In SimRobo choose Grid World number 7 with OA for obstacle avoidance
and Grid World number 7 with WF for wall following in the Grid World /
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Figure 8.6: Two states where the obtained balanced policy is stochastic

Rewards panel. Leave the third and fourth Grid World set to −1. Now press
Build Envs to build the two MDPs.

Select Show utilities, open the Policy Iteration rollout and press
Random Policy. Press the Policy Improvement and Policy Evaluation

buttons consecutively while observing the utility of the stochastic (improved)
policy in the currently displayed grid world with the according rewards. To
see if a policy is stochastic or deterministic in a state, open the Advanced

rollout and select Draw robot steps. Now the number of policy steps given
by Steps will be applied while showing the robot in the successor positions.
Choose one step and observe the successor position. If the policy is stochastic
various successor position are shown since each action is taken according to
the probability given by the policy.

8.3.4 Obstacle Avoidance and Wall Following - two Re-
alizations

The robot should learn to avoid obstacles in the grid world displayed in
Figure 8.7 left and to follow the wall in the grid world displayed in Figure
8.7 right. Figure 8.8 left and right shows the progress of policy iteration for
two experiments. In both experiments the policies became balanced after four
iterations and cope well with the possibly contradicting task to do obstacle
avoidance in one grid world and wall following in another grid world.

To repeat this experiment in SimRobo choose grid world number 19 with
OA for obstacle avoidance and grid world number 20 with WF for wall following
in the Grid World / Rewards panel. Leave the third and fourth grid world
set to −1 and press Build Envs to build the two MDPs. Open the Policy

Iteration rollout and press Random Policy. Now proceed as described in
the previous experiments to run policy iteration and show the obtained utility
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Figure 8.7: left: Grid world to learn obstacle avoidance right: Grid world to
learn wall following
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Figure 8.8: left: Progress of policy iteration for obstacle avoidance and wall
following in two realizations, first experiment right: Second experiment
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Figure 8.9: Eight grid worlds to learn obstacle avoidance

after each policy iteration step.

8.3.5 Many Realizations

Policy iteration is applied to learn obstacle avoidance for eight different grid
worlds, see Figure 8.9.

After deriving the eight MDPs from the grid worlds with rewards for ob-
stacle avoidance we obtain a family of realization and apply policy iteration,
starting with the random policy. The progress of the normalized utility for
one experiment is shown in Figure 8.10. We see that the utility of the policy
increases dramatically in the first improvement step for all realizations. The
algorithm terminated after five iterations.

We conduct several experiments and obtain different balanced policies.
The normalized utilities of two balanced policies are shown in the following
table.

policy, in grid world 0 1 2 3 4 5 6 7
balanced 1 0.999 0.903 0.912 0.959 0.690 0.949 0.817 0.932
balanced 2 0.999 0.908 0.899 0.956 0.690 0.953 0.815 0.934

In SimRobo the eight realizations can be built by pressing the button Grid

Worlds 0-7,OA in the Advanced Rollout. It sets the eight grid worlds 0 to
7 with rewards for obstacle avoidance and builds the family of realizations.

Select Show utilities, open the Policy Iteration rollout and press
Random Policy. Change the currently displayed grid world by selecting one
of the grid worlds, number 0 to 7, and Obstacle Avoidance as Rewards in
the right control panel. Now press the Policy Improvement and Policy
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Figure 8.10: Progress of policy iteration for obstacle avoidance in eight real-
izations

Evaluation buttons consecutively while observing the utility of the stochas-
tic (improved) policy in the currently displayed grid world. If you want to
see the robot following the current policy in the currently displayed grid
world select Run policy. The utilities for all realizations can be printed to
the console window by pressing Policy Evaluation in the Console Output

rollout.

8.3.6 One Realization

As a special case the algorithms for several realizations can be used for one
realization. The robot should follow the wall in the grid world displayed in
Figure 8.2 left. The difference to the experiment discussed in Section 3.5.1 is
the choice of the strictly improving actions in the policy improvement step.
In this experiment a randomly chosen improving action is selected instead
of the greedy choice. The progress of the utilities was different for each run
and the algorithm terminated with the optimal policy after five, six and four
iterations for the three experiments. Figure 8.11 shows the progress of policy
iteration. The progress of the normalized utilities is given in the following
table.
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Figure 8.11: Progress of policy iteration for obstacle avoidance in one real-
ization, three experiments

iteration experiment 1 experiment 2 experiment 3
1 0.680 0.765 0.659
2 0.913 0.949 0.972
3 0.997 0.990 0.996
4 0.999 0.998 1.0
5 1.0 0.999 1.0
6 1.0 1.0 1.0

To repeat the experiment with SimRobo choose grid world number 7 with
WF for wall following as rewards. Leave the second, third and fourth grid
world set to −1. Press Build Envs to build the MDP. Change the currently
displayed Grid World to grid world 7 and Rewards to Wall Following in the
right control panel. Open the Policy Iteration rollout and press Random

Policy. Now apply policy iteration as described in the previous experiments.

8.3.7 Improvement of an Optimal Policy

We consider wall following in the two grid worlds displayed in Figure 8.7. We
want the robot to learn a policy that is optimal in the left grid world and as
good as possible in the right grid world. After deriving the two MDPs we first
learn an optimal policy in the left grid world by applying policy iteration in
the corresponding MDP. Then we try to improve the obtained policy for the
other MDP. So instead of starting policy iteration with the random policy
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Figure 8.12: Progress of policy iteration for two realizations with the starting
policy being optimal in one realization

we start with the obtained optimal policy. We have to extend the optimal
policy to be defined in states that are contained only in the second MDP. We
choose the random policy in these states. Figure 8.12 shows the progress of
policy iteration for one experiment. Observe that the policy remains optimal
in the first MDP and gets better in the second MDP.

To repeat this experiment in SimRobo first we have to learn an optimal
policy for one MDP. Choose grid world number 19 with WF for wall following
as rewards in the Grid World / Rewards panel. Leave the second, third and
fourth grid world set to −1. Now press Build Envs to build the MDP. Select
Show utilities. Change the currently displayed grid world by selecting grid
world number or 19 and the Rewards to Wall Following in the right control
panel. Now apply policy iteration using the left control panel as described
in the previous experiment to obtain an optimal policy.

To improve the obtained optimal policy we have to build the two real-
izations. Choose grid worlds number 19 and 20 with WF for wall following as
rewards in the Grid World / Rewards panel and leave the third and fourth
grid world set to −1. Now press Build Envs to build the two realizations.
Instead of pressing Random Policy we directly proceed with policy iteration
described in the above experiments.
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8.3.8 Joint Optimal Policies

Obstacle avoidance for two grid worlds should be learned. We select the first
two grid worlds displayed in Figure 8.9, the empty and the grid world with
one obstacle. Again we apply policy iteration and observe that the obtained
balanced policy is optimal for each realization. See Section 5.4, where joint
optimal policies are discussed. In the following table we give the progress of
the utility for two experiments. In the first experiment the policy becomes
optimal for both realizations after three iterations, in the second experiment
after four iterations.

experiment 1 experiment 2
iteration one obstacle empty one obstacle empty

1 0.967 0.96 0.978 0.944
2 1.0 0.997 0.996 0.993
3 1.0 1.0 1.0 0.999
4 1.0 1.0 1.0 1.0

The experiment can be repeated with SimRobo as follows. Choose grid
worlds number 0 and 1 and OA for both as rewards. Press Build Envs to
build the two MDPs and the family of realizations. Select Show utilities.
Change the currently displayed grid world to grid world 0 or 1 and the
Rewards to Obstacle Avoidance in the right control panel. Now apply
policy iteration as described in the previous experiments while observing the
utility of the stochastic (improved) policy.

8.3.9 Approximate Policy Iteration - two Realizations

The experiment described in Section 8.3.4 is repeated for the model-free case.
The robot should avoid obstacles in the grid world displayed in Figure 8.7 left
and follow the wall in the grid world displayed in Figure 8.7 right. We apply
approximate policy iteration by consecutively applying approximate policy
evaluation and improving the policy with the obtained approximations, see
Algorithms 1.12.2 and 9.

Approximate policy evaluation is performed for each realization as de-
scribed in Section 3.5.3. We carry out several experiments with different
numbers of update steps for approximate policy evaluation. After each im-
provement step the exact utility of the obtained policy is computed in each
realization. In Figure 8.13 the normalized utilities for experiments with 500
and 1000 update steps are shown. We observe that the utility can decrease
due to the error of the approximation.
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Figure 8.13: left: Progress of approximate policy iteration for two realizations
for 500 update steps right: Progress for 1000 update steps

Figure 8.14 shows the progress of approximate policy iteration for 10000
and 50000 update steps. The policies get more stable with a high number of
update steps for approximate policy evaluation.

To repeat this experiment in SimRobo choose grid world number 19 with
rewards OA and grid world number 20 with rewards WF. Leave the third and
fourth grid world set to −1. Now press Build Envs to build the two MDPs
and the family of realizations. Select Show utilities. Change the cur-
rently displayed grid world by selecting grid world number 19 or 20 and the
corresponding reward in the right control panel.

Now open the Approximate rollout and press Random Policy. Choose
the desired number of Steps for approximate policy evaluation. Press the
Policy Improvement button in the Approximate rollout and the Policy

Evaluation button consecutively while observing the utility of the stochastic
(improved) policy in the currently displayed grid world. If you want to see the
robot following the current policy in the currently displayed grid world select
Run policy. The utilities for both realizations can be printed to the console
window by pressing Policy Evaluation in the Console Output rollout.
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Figure 8.14: left: Progress of approximate policy iteration for two realizations
for 10000 update steps right: Progress for 50000 update steps

Figure 8.15: Four grid worlds to learn wall following

8.3.10 Approximate Policy Iteration - four Realiza-
tions

Wall following should be achieved in the model-free case for the four differ-
ent grid worlds displayed in Figure 8.15. We use the rewards for obstacle
avoidance for the four grid worlds and obtain four realizations. Again policy
iteration is performed for 10000 and 50000 policy evaluation update steps.
The progress of the normalized utilities is shown in Figure 8.16.

To repeat this experiment in SimRobo choose grid world numbers 11, 14,
16 and 18 with rewards WF. Press Build Envs to build the four MDPs and
the family of realizations. Select Show utilities. Change the currently
displayed grid world by selecting grid world number 11, 14, 16 or 18 and
Rewards to Obstacle Avoidance in the right control panel.

Now open the Approximate rollout and repeat the process described in
the previous experiment. Note that the policy improvement step may take
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Figure 8.16: left: Progress of approximate policy iteration for four realiza-
tions for 10000 update steps right: Progress for 50000 update steps

some time depending on your computer for computing the 50000 policy eval-
uation updates in the four MDPs.
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RealRobo

RealRobo, see Section 4, is used to conduct an experiment for several re-
alizations. We first describe how the sensors of the robot and the chosen
actions define an SAS and how realizations are obtained. Then we focus on
a specific experiment in which we want the robot to learn a target following
behavior, inspired by Bendersky [Ben03] and Bendersky and Santos [BS03].
It consists of learning a policy for one environment and two different families
of rewards.

9.1 State Action Space and Realizations

Consider the robot and its infrared sensors to perceive obstacles. All possible
sensor values represent the possible states for the robot. Thus an SAS is given
by the set S of all possible sensor values, that is

S = {(s0, ..., s7) : si ∈ S̃ for i ∈ 0 . . . 7},

where S̃ = {0, 1/1023, . . . , 1022/1023, 1} and a family of possible actions.
For example we choose the actions defined in Section 4.3, where

A(s) = {a : a ∈ −90 . . . 90}, for all s ∈ S.

Let now a finite number of wooden boxes and rewards be given. We
can derive a realization of the SAS from each box and family of rewards
and obtain a family of realizations. In real world applications policies are
generally defined for the SAS.

140
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9.2 Target Following

Bendersky [Ben03] considers two different families of rewards to achieve a
target following behavior, one to keep a certain distance and one to keep a
specified angle with respect to a target.

For keeping distance only forward and backward movements, for keeping
the angle, only turns by a given angle are considered. The robot is put in
front of a fixed target and Q-learning is applied for keeping distance and for
keeping the angle separately. Then a new policy is built by combining the two
(sub)optimal policies obtained by having the new policy execute the actions
of the two policies consecutively in each state. The new policy performs the
desired target following behavior, also for a moving target. This concept
of a policy does not fit into the previously described model. It works with
actions that are a combination of two subactions. In this context the term
task decomposition is used, see Brooks [Bro86].

Since the two actions are learned independently, they may be contra-
dictory in terms of the received rewards. Imagine that the robot applies a
backward movement and turns to the left. This may be good to keep the
angle but bad to keep the distance. Using an adaptation of approximate
policy iteration for several realizations a policy can be learned that satisfies
both rewards simultaneously.

9.2.1 Rewards

The two rewards for keeping distance and keeping the angle are defined. For
keeping distance, the robot should look towards the target and keep a certain
distance to it. If its maximal front sensor value is in a certain range, it gets
rewarded. If the maximal sensor value is close to the desired range, it gets a
neutral reinforcement. In any other case it will be punished.

The rewards depend only on the successor sensor values s′ = (s′0, . . . , s
′
7).

Let
m = arg max

i∈1...4
s′i

be the number of the sensor with the maximal value of the four front sensors.
We define the rewards for keeping distance by:

Rkd(s
′) =





1, if 0.2 ≤ s′m ≤ 0.8,
0, if 0.1 ≤ s′m < 0.2,
0, if 0.8 < s′m ≤ 0.9,
−1, otherwise.

For keeping the angle, the robot should look towards the target and keep
a certain angle to it. If the target is far away it will receive a punishment.
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If the target is straight ahead, it gets rewarded. If the target is a bit to the
left or right a neutral reinforcement is given. In any other case it will be
punished. The rewards for keeping the angle are defined as follows:

Rka(s
′) = −1, if s′m ≤ 0.2,

and in any other case

Rka(s
′) =





+1, if m ∈ {2, 3},
0, if m ∈ {1, 4},
−1, otherwise.

See Bendersky [Ben03].

9.2.2 States and Actions

We model the target following task described above. The four front sensors
are considered to define the states. The actions are to turn an integer angle
between−90 and 90 degrees followed by moving forward or backward between
−100 and 100 steps, where one step is 1/12 mm. We have 240 ≈ 1012 states
and 36381 actions and the action values Q are contained in R 240·36381.

In practice, to implement and apply a new algorithm in a task with a high
dimensional state and action space, often a discrete representation of states
and actions is considered first. This way the action-values can be stored in a
table and the algorithm and its functionality can be tested more easily. Note
that the sets of actions are assumed to be equal for each state.

Once the algorithm is implemented adaptive networks or function approx-
imation methods can be applied, see Section 4.4. In the following we describe
the discrete representation used to test approximate policy iteration for two
realizations in the target following task.

To decide which states and actions are used for the discretization we
choose a fixed number of actions uniformly distributed among the action
space. Then a sample robot run is conducted by putting the robot in a start
position, applying random actions and observing the sensor values received
for a given number of iterations. The received sensor values are recorded and
used to find representative states, that are states close to the sensor values
received using a distance. Once a list of states is selected, the sample run is
repeated and the sensor values and their corresponding states are observed.
If a state occurs very often a new state close to it can be added, if a state
does not occur very often it can be omitted.

In another sample run, the successor states and rewards are recorded. If
applying an action in a state leads to many different successor states, then
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the discretization of states and/or actions is usually made finer. Also if
different rewards are observed when the same action is applied in the same
state yielding to the same successor state. Compare Bertsekas and Tsitsiklis
[BT96, pp. 341].

We use a simplified representation by mapping the sensor values to an
integer value between 0 and 10. Let

s̃ = (s̃1, ..., s̃4) ∈ {0, 1/1023, . . . , 1022/1023, 1}4

be the vector of the four front sensor values. Then we define the integer value
representation of s̃ by

ŝ = (ŝ1, ...ŝ4) with ŝi = b10 · s̃ic , for i = 1 . . . 4.

For target following we select the 13 integer vectors given in the following
table to be the representative states:

(0, 0, 0, 0) (0, 0, 0, 3) (0, 0, 0, 6) (0, 0, 0, 9) (0, 0, 6, 6)
(9, 9, 9, 9) (3, 0, 0, 0) (6, 0, 0, 0) (9, 0, 0, 0) (6, 6, 0, 0)

(9, 9, 0, 0) (6, 9, 9, 6) (0, 0, 9, 9)

A vector of sensor values s̃ is represented by the vector of the table that
is closest to the integer sensor values ŝ using the L2-norm. The vectors in
the table define the set of states S.

We select the following degrees for turning by an angle

−20◦ −10◦ 0◦ 10◦ 20◦

and the following steps to move

−60 −30 0 30 60

to form the representative actions. We used small angles, since for larger
angles many different successor states occurred in our discretization when
actions were applied in the same states.

The resulting 25 representative actions define the set A = A(s) of actions
for all states s. Note that the robot is also allowed to stand still. Using this
discretization the state and action space is reduced and the action values can
be computed by a table in R 13·25.

We consider the two families of rewards from the previous section and
observe the transitions by applying actions in the wooden box.
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9.3 Approximate Policy Iteration

Approximate policy iteration for several realizations is applied by consecu-
tively applying approximate policy evaluation and policy improvement, see
Algorithms 5 and 9. A variant of approximate policy iteration arises as in
Section 4.4. Exploration techniques have to be used. For target following
we use the simple exploration technique of applying a policy that consecu-
tively chooses greedy actions for 6 iterations and then random actions for 2
iterations.

The approximate policy iteration algorithm is implemented similar to
SimRobo, see Section 8.2. We represent stochastic policies by a triple

(a, ã, p) ∈ A2 × [0, 1].

To apply the random policy we use a flag. If it is set the robot chooses
random actions, if not it chooses the action a with probability p and the
action ã with probability (1 − p). This representation is suitable since the
strictly improving vertices for two realizations can be described by such a
triple, compare the remarks on two realizations in Section 5.5.4. A policy π
is represented by a table, where for each s ∈ S a triple (a, ã, p) is stored.

To compute the approximation of the action-values we use another table,
where for each s ∈ S and a ∈ A the approximation q1 ∈ R of the action-
value for policy π in the first realization and the approximation q2 ∈ R of
the action-value for policy π in the second realization are stored.

9.4 Target Following Experiment

We put the robot in an empty wooden box with a fixed target, see Figure
9.1. The target is a cylindric shaped paper with a diameter of 55 mm.

The idea of using a fixed target to learn a target following behavior is
due to Bendersky [Ben03, pp. 32]. With a moving target the robot would
loose it very often especially at the beginning of the learning phase and thus
observe very few positive rewards being in state (0, 0, 0, 0) most of the time.

While learning, the robot is provided with a reflex. If it gets too close
to the target or if it gets too far from the target, it undoes the last action
executed. This reflex assures that the robot does not loose the target.

We start with the random policy and run approximate policy evaluation
for a fixed number of steps for the two realizations. The two approximations
of the action-values q1 and q2 for the policy are updated simultaneously
with respect to the corresponding rewards. Then the policy is improved by
approximate policy improvement for two realizations and again evaluated.
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Figure 9.1: The robot and a fixed target to learn target following
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Figure 9.2: left: Progress of approximate policy iteration for two realizations
for 100 update steps right: Progress for 200 update steps

We carry out two experiments with different numbers of update steps for
approximate policy evaluation. To compare the policies we use the utility of
the obtained policies. Let π be a policy and V an approximation of V π. We
define the approximated utility of a policy π and the approximation V by

1

|S|
∑
s∈S

V (s).

After each improvement step the approximated utility of the obtained policy
is computed in each realization. Figure 9.2 shows the approximated utility
for experiments with 100 and 200 update steps.

We observe that the utility can decrease due to the error of the approxi-
mation. The obtained policies perform well in both realizations. The robot



CHAPTER 9. REALROBO 146

receives positive rewards for both families of rewards quite often. The keep
distance behavior was more difficult to learn, since only certain sensor values
are positively rewarded. The sensor values are most of the time either close
to zero or close to one.

We look at the actions of the obtained policy in two states. In state
(9, 9, 9, 9), the robot chooses the action to move backward 60 steps and to
turn 0 degrees. In state (6, 6, 0, 0), it moves backward 30 steps and turns
−20 degrees.

When applying the obtained policies with a moving target the robot does
not always follow the target well. The obtained behavior may be improved
with a finer discretization of states and actions and by applying more of the
time consuming approximate policy evaluation steps. The main purpose of
the experiments is to show that it is possible to adapt approximate policy
iteration for several realizations to real world applications. First promising
tests with a variant of the network described in Section 4.5 have been made.

To repeat this experiment connect your Khepera mobile robot to the
serial port and start RealRobo. Open the Properties rollout and choose
the appropriate COM port and baud rate. Initialize the connection with
the robot by pressing Initialize Khepera. Now the sensor cones show
the current sensor values graphically. They can be turned off and on by
switching the checkerbox Draw sensors. With Show sensors the current
sensor values are displayed in the window.

Now put the robot in front of a target. Open the Target Following roll-
out. Choose the desired number of approximate policy evaluation Steps and
press the button Initialize to set all action-values to zero. Press Random

Policy Ev. to run approximate policy evaluation for the random policy.
Wait for the robot to carry out the number of steps. Then press the but-
ton Policy Improvement to apply policy improvement for both realizations.
The rewards and information about the improved states are displayed in the
console window. To evaluate the improved policy press Policy Evaluation.

To run a policy choose Run/Stop policy and observe the rewards dis-
played in the console window.
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Discussion and Future Work

One of the main results of this thesis is policy improvement and policy iter-
ation for a family of realizations, see Section 5.6. In all our computational
experiments policy iteration, Algorithm 8, terminated after a finite number
of improvement steps. We could not yet prove this conjecture.

In the policy improvement step strictly improving vertices were chosen
randomly. Their choice influences the resulting balanced policy and the num-
ber of iterations until termination; details are to be investigated. A charac-
terization of all balanced policies and its connection to Pareto optimality are
of further interest, also methods to compute strictly improving vertices.

Policy improvement is formulated for an infinite number of realizations,
see Section 5.2. In the future we would like to discuss how to find strictly
improving extreme points and to apply a variant of policy iteration for prob-
lems with infinitely many realizations, for example considering parametrized
transition probabilities or rewards.

We consider discounted MDPs only. Several aspects of the theory and
algorithms could possibly be adapted for other models and criteria of MDPs,
like finite horizon MDPs, undiscounted and average expected rewards, see
for example Puterman [Put94] and Kallenberg in [FS94, pp. 23].

For model-free methods our future research will include a further inves-
tigation of the underlying theory. Since for several realizations there is no
unique optimal value or action-value function methods such as value itera-
tion and Q-learning cannot be applied. Moreover, there is no natural method
to derive a policy for several realizations from a single value or action-value
function.

Approximate policy iteration for several realizations requires a good ap-
proximation of the action-values for each realization in the approximate pol-
icy evaluation step. In this context the number of update steps and the
choice of the states and actions that are updated play an important role.

147
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Especially in real world applications, updates can be very costly and time
consuming. Optimistic policy iteration methods that work with incomplete
evaluations of the policy could be adapted and applied, see Tsitsiklis [Tsi03].

For problems with several realizations in real world applications we present
an adaptation of approximate policy iteration for a target following behav-
ior. We use a discrete state and action representation. Experiments using
function approximation are a future focus of our work. The method from
Section 4.5 has been applied in a first test. It was changed to represent the
action-values of a policy that has to be explicitly given and included in the
implementation. First promising results have been obtained.

The proposed theory for several realizations can be used in a variety of
research topics and applications. For discounted stochastic games a single
strategy can be found that performs well against several players who follow
fixed strategies, see Filar and Vrieze [FV97]. Several applications to partially
observable MDPs seem to be possible. For example, policies can be improved
for several probability distributions over all states of the underlying MDP
simultaneously, compare with Section 3.3.2. Our theory can also be applied
in the field of constrained MDPs by including linear constraints on policies
in the improvement step.

We plan an implementation of the simplex algorithm to exactly compute
balanced policies for a finite number of realizations for the MDP package. The
simulator SimRobo was not only programmed to test our algorithms. It is
also meant to serve as a didactic tool for lectures on reinforcement learning.
We intend to implement additional classes for sensors and actions and hope
that in the future new functions, like the simplex algorithm, will be added
not only by the authors.

For RealRobo an object-oriented implementation of the robot control and
its functions is in progress. Also a general redesign and the object-oriented
implementation of the network are projected.

Refer to the website of our project, http://mathematik.uibk.ac.at/
users/rl, for the latest versions of the MDP package, SimRobo and RealRobo.

http://mathematik.uibk.ac.at/users/rl
http://mathematik.uibk.ac.at/users/rl
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Appendix

11.1 Listings

The header files of all classes from SimRobo. The full source code can be
found on the attached CD-ROM.

11.1.1 One Environment

Listing 1: class RLS
class RLS {
public :
// number o f s t a t e s ( ns , ns2=ns∗ns )
// number o f a c t i on s (na ) ( wi th ns>=na)
// t r a n s i t i o n s p r o b a b i l i t i e s , P( s ’ | a , s ) = [ a∗ns2+s ’∗ ns+s ]
// rewards , R( s ’ , a , s ) = [ a∗ns2+s ’∗ ns+s ]
RLS( int , int , const map<int , double>&,
RLS( int , int , const map<int , double>&,
const map<int , double>&,double ) ;
// as above
// expec ted rewards , R(a , s ) = [ a∗ns+s ]
RLS( int , int , const map<int , double>&,
const valarray<double>&,double ) ;
RLS( ) {}

map<int , double> transprob ( ) const ; // t r a n s i t i o n
double transprob ( int , int , int ) const ; // p r o b a b i l i t i e s
va larray<double> rewas ( ) const ; // expec ted reward
double get gamma ( ) const ; // d i scoun t ra t e
// opt imal p o l i c i e s :
void v a l u e i t e r a t i o n ( ) ; // runs va lue i t e r a t i o n
double du t i l op t ( ) ; // d i scounted u t i l i t y
va larray<double> optva l ( ) ; // computes va lue func t i on

149
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va larray<int> optpo l ( ) ; // an opt imal p o l i c y
multimap<int , int> optact ( ) ; // opt imal a c t i on s
// random po l i c y :
void r an eva l ( ) ; // computes va lue func t i on
double du t i l r an ( ) ; // d i scounted u t i l i t y

// p o l i c y improvement
// re turns greedy p o l i c y f o r act ion−va l u e s
va larray<int> pol improv ( const valarray<double>&) const ;

// computes R( s ) , P( s ’ | s ) o f :
// d e t e rm in i s t i c p o l i c i e s , ac t i on a in s t a t e [ s ] = a
va larray<double> rew dpol ( const va larray<int>&) const ;
va larray<double> prob dpol ( const valarray<int>&) const ;

// extended p o l i c i e s , random ac t ion in s t a t e [ s ] = −1
va larray<double> rew epo l ( const va larray<int>&) const ;
va larray<double> prob epo l ( const valarray<int>&) const ;

// s t o c h a s t i c p o l i c i e s , p i (a , s ) = [ a∗ns+s ]
va larray<double> rew ppol ( const va larray<double>&) const ;
va larray<double> prob ppol ( const valarray<double>&) const ;

// act ion−va l u e s o f p o l i c y wi th va lue func t i on V,
// Q(a , s )=[a∗ns+s ]
va larray<double> qval ( const valarray<double>&) const ;
void s a v e r l s ( const char∗) const ; // saves MDP
void s a v e r e s ( const char∗ f i l ename ) const ; // saves r e s u l t s
void l o a d r e s ( const char∗ f i l ename ) ; // loads r e s u l t s

private :
// MDP:
int ns , ns2 ; // number o f s t a t e s , ns2=ns∗ns
int na ; // number o f a c t i on s
map<int , double> tprob ; // t r a n s i t i o n p r o b a b i l i t i e s
va larray<double> ra s ; // expec ted rewards
double gamma; // d i scoun t ra t e
// opt imal p o l i c i e s :
bool optimal ; // computed
va larray<double> ova l ; // va lue func t i on
va larray<int> opol ; // an opt imal p o l i c y
multimap<int , int> oact ; // opt imal a c t i on s
double duo ; // d i scounted u t i l i t y
// random po l i c y :
bool random ; // computed
double dur ; // d i scounted u t i l i t y
} ;
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// po l i c y e va l ua t i on : R( s ) , P( s ’ | s ) , p r e c i s i on
va larray<double> po l e v a l ( const va larray<double>&,
const valarray<double>&,double , double ) ;
// undiscounted va lue func t i on up to time T : R( s ) , P( s ’ | s ) , T
va larray<double> uval ( const valarray<double>&,
const valarray<double>&,int ) ;

Listing 2: class RF
class RF {
public :
// succe s sor s t a t e s ’ , ac t i on a , s t a t e s
virtual int operator ( ) ( int , int , int ) = 0 ;
virtual RF∗ c l one ( ) const = 0 ;
virtual s t r i n g get name ( ) const { return name ; }
protected :
s t r i n g name ;
} ;

// o b s t a c l e avoidance :
class RF OA : public RF {
public :
RF OA() { name=”Obstac le avoidance ” ; }
int operator ( ) ( int , int , int ) ;
RF∗ c l one ( ) const ;
} ;

// wa l l f o l l ow i n g :
class RF WF : public RF {
public :
RF WF() { name=”Wall f o l l ow i ng ” ; }
int operator ( ) ( int , int , int ) ;
RF∗ c l one ( ) const ;
} ;

Listing 3: class robo env
// from pos to coord ina t e s x , y
// and v i c e versa
// environment
// dimx
// x
// XXXXXXX (x , y ) |−> x+y∗dimx=pos
// X
// X X pos |−> ( x=pos mod dimx , y=(pos−x )/ dimx )
// yX
// X
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// number o f d i r e c t i o n s ( d i r e c t i o n s 1 , . . . ,ND)
const int ND=4;
// d i r e c t i o n s 1
// o f robo t 3 4 1 : A, 2 : V, 3 : <, 4 : >
// 2

const int NSE=4; // number o f sensors
const int FRONT=5; // range o f sensors
const int LEFT=5;
const int RIGHT=5;
const int BACK=5;

// >X f ron t sensor = 5
// > X f ron t sensor = 4
// > X f ron t sensor = 2
// > X f ron t sensor = 1
// > X f ron t sensor = 0
// > X f ron t sensor = 0 . . .

const int NA=3; // number o f a c t i on s

// ac t ions , move :
// 0 forward
// 1 to the l e f t
// 2 to the r i g h t

const int M=6; // M=max( range o f sensors ) + 1
const int M2=6∗6; // Mˆ2
const int M3=6∗6∗6; // Mˆ3

// sensors −> s t a t e
// sensors : f r on t se [ 0 ] s t a t e :
// l e f t se [ 1 ] |−> se [ 0 ] ∗M3+se [ 1 ] ∗M2+se [ 2 ] ∗M+se [ 3 ]
// r i g h t se [ 2 ]
// back se [ 3 ]

class robo env {
public :
// environment
// dimension x
// re in forcement func t i on ( de r i v ed from RF)
// d i scoun t ra t e
robo env ( const va larray<int>&,int ,RF∗ ,double ) ;
// environment
// dimension x
// r l s f i l e
robo env ( const va larray<int>&,int , const char ∗ ) ;
robo env ( ) {}
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va larray<int> get env ( ) const ; // environment
int get dimx ( ) const ; // dimension x
int ge t n s ( ) const ; // number o f s t a t e s
l i s t <int> g e t s t a t e s ( ) const ; // l i s t o f s t a t e s
bool i s s t a t e ( int ) const ; // i s a s t a t e o f env
map<int , double> transprob ( ) const ; // t r a n s i t i o n
double transprob ( int , int , int ) const ; // p r o b a b i l i t i e s
double get gamma ( ) const ; // d i scoun t ra t e

// opt imal p o l i c i e s :
void v a l u e i t e r a t i o n ( ) ; // runs va lue i t e r a t i o n
double du t i l op t ( ) ; // d i scounted u t i l i t y
map<int , double> optva l ( ) ; // computes va lue func t i on
map<int , int> optpol ( ) ; // an opt imal p o l i c y
multimap<int , int> optact ( ) ; // opt imal a c t i on s
// random opt imal p o l i c y
map<pair<int , int >,double> ran optpo l ( ) ;
// random po l i c y :
void r an eva l ( ) ; // computes va lue func t i on
double du t i l r an ( ) ; // d i scounted u t i l i t y
double dlearnpot ( ) ; // l e a rn ing p o t e n t i a l

// p o l i c y improvement
// re turns improved d e t e rm in i s t i c p o l i c y
map<int , int> pol improv ( const map<int , int>&) const ;

// po l i c y e va l ua t i on :
// re turns va lue func t i on o f (V( s )=[number o f s ] ) :
// d e t e rm in i s t i c p o l i c i e s , ac t i on a in s t a t e [ s ]=a
va larray<double> dpo l eva l ( const map<int , int>&) const ;
// extended p o l i c i e s , random ac t ion in s : [ s]=−1
va larray<double> e p o l e v a l ( const map<int , int>&) const ;
// s t o c h a s t i c p o l i c i e s , p i (a , s )=[(a , s ) ]
va larray<double> ppo l eva l ( const map<pair<int , int >,
double>&) const ;
// re turns va lue func t i on o f (V( s )=[ s ] ) :
// extended p o l i c i e s , random ac t ion in s : [ s]=−1
map<int , double> xepo l e va l ( const map<int , int>&) const ;

// act ion−va l u e s f o r va lue func t i on V( s )=[number o f s ]
map<pair<int , int >,double> qval ( const va larray<double>&) const ;

// d e t e rm in i s t i c or extended p o l i c y to extended po l i c y
map<int , int> po l2epo l ( const map<int , int>&) const ;

void s a v e r l s ( const char∗ f i l ename ) const ; // saves MDP
void s a v e r e s ( const char∗ f i l ename ) const ; // saves r e s u l t s
void l o a d r e s ( const char∗ f i l ename ) ; // loads r e s u l t s
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// ac t ions , sensors , p o s i t i o n s :
// perform ac t ion : pos , d i r e c t i on , ac t i on
// re turn pos , d i r e c t i o n
pair<int , int> perform a ( int , int , int ) const ;
// ge t sensors : pos , d i r e c t i o n
va larray<int> g e t s e ( int , int ) const ;
// can robo t g e t i n t o t h i s p o s i t i o n by a l l owed ac t i on s ?
// pos , d i r e c t i o n
bool po s d i r ( int , int ) const ;
// chooses random po s i t i o n : x , y , d i r
void random pos i t ion ( int&, int&, int &);

// t e x t format :
void view env ( ) const ; // environment
void v i ew r e s u l t s ( ) ; // r e s u l t s
void view rob ( int , int , int ) const ; // robo t ( x , y , d i r )

protected :
va larray<int> env ; // environment
int dimx ; // dimension x
int ns , ns2 ; // number o f s t a t e s , ns2=ns∗ns
l i s t <int> s t a t e s ; // l i s t o f s t a t e s
map<int , int> s tons ; // s t a t e to number o f s t a t e

RLS r l s ; // re in forcement l e a rn ing system
} ;

int s e t o s ( const valarray<int >&); // sensors to s t a t e
va larray<int> s t o s e ( int ) ; // s t a t e to sensors

// f unc t i on s f o r p o l i c i e s :

// s t o c h a s t i c p o l i c y = p r o b a b i l i s t i c p o l i c y
// genera t e s a random s t o c h a s t i c p o l i c y f o r l i s t o f s t a t e s
map<pair<int , int >,double> gene ra t e ppo l ( const l i s t <int >&);
// ex tends s t o c h a s t i c p o l i c y f o r l i s t o f s t a t e s
map<pair<int , int >,double> extend ppol (map<pair<int , int >,double>,
const l i s t <int >&);
// de t e rm in s t i c to s t o c h a s t i c p o l i c y f o r l i s t o f s t a t e s
map<pair<int , int >,double> dp2pp ( const map<int , int>&,
const l i s t <int >&);
// loads d e t e rm in i s t i c and s t o c h a s t i c p o l i c i e s , f i l ename
map<int , int> l o ad po l ( const char ∗ ) ;
map<pair<int , int >,double> l oad ppo l ( const char ∗ ) ;
// saves d e t e rm in i s t i c and s t o c h a s t i c p o l i c i e s , f i lename , p o l i c y
void s ave po l ( const char∗ ,map<int , int >);
void save ppo l ( const char∗ ,map<pair<int , int >,double>);
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Listing 4: class robo env pos
// environment :
// dimx
// x
// XXXXXXX (x , y ) |−> x+y∗dimx=pos
// X
// X X pos |−> ( x=pos mod dimx , y=(pos−x )/ dimx )
// yX
// X

const NDIR=4; // ( d i r e c t i o n s 1 , . . . ,ND)

// po s i t i o n and d i r e c t i o n −> s t a t e
// po s i t i o n = i −> i ∗NDIR+(j−1)
// d i r e c t i o n = j

// and v i c e versa
// s t a t e −> po s i t i o n and d i r e c t i o n
// pos = s t a t e /NDIR
// d i r e c t i o n = s t a t e

// d i r e c t i o n s 1
// o f robo t 3 4 1 : A, 2 : V, 3 : <, 4 : >
// 2

class robo env pos : public robo env {
public :
// environment
// dimension x
// re in forcement func t i on ( de r i v ed from RF)
// d i scoun t ra t e
robo env pos ( const valarray<int>&,int ,RF∗ ,double ) ;
// environment
// dimension x
// r l s f i l e
robo env pos ( const valarray<int>&,int , const char ∗ ) ;
robo env pos ( ) {}
} ;

// pos and d i r e c t i o n to s t a t e
int po sd i r t o s ( int , int ) ;

11.1.2 Model-free Methods

Listing 5: class online learning
class on l i n e l e a r n i n g {
public :
// number o f ac t ions , d i s coun t ra t e
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on l i n e l e a r n i n g ( int , double ) ;
o n l i n e l e a r n i n g ( ) {}

double get gamma ( ) const ; // d i scoun t ra t e
map<pair<int , int >,double> // act ion−va l u e s
ge t qva lu e s ( ) const ;
void i n i t i a l i z e ( ) ; // s e t q va l u e s to zero

// greedy p o l i c y from approximation f o r s t a t e s l i s t
// extended p o l i c y : random ac t ion f o r unknown s t a t e s
map<int , int> g e t g r e edypo l i c y ( const l i s t <int>&) const ;
// approximation o f the va lue func t i on f o r s t a t e l i s t
// 0.0 f o r unknown s t a t e s
// extended p o l i c i e s
va larray<double> g e t va l u e s ( const l i s t <int>&,
const map<int , int>&) const ;
// s t o c h a s t i c p o l i c i e s
va larray<double> g e t va l u e s ( const l i s t <int>&,
const map<pair<int , int >,double>&) const ;

protected :
int na ; // number o f a c t i on s
double q gamma ; // d i scoun t ra t e
map<pair<int , int >,double> qva lues ; // approximation
// o f act ion−va l u e s
} ;

Listing 6: class SARSA
class SARSA : public on l i n e l e a r n i n g {
public :
SARSA( int , double ) ;
SARSA( ) {}
// update f o r approximate p o l i c y e va l ua t i on
// f o r d e t e rm in i s t i c p o l i c i e s
// ac t i on in succe s sor s t a t e a ’ , succe s sor s t a t e s ’ ,
// ac t i on a , s t a t e s , reward r ,
// step−s i z e parameter
void update ( int , int , int , int , int , double ) ;
// update f o r approximate p o l i c y e va l ua t i on
// f o r s t o c h a s t i c p o l i c i e s
// s t o c h a s t i c p o l i c y in s ’ , succe s sor s t a t e s ’ ,
// ac t i on a , s t a t e s , reward r ,
// step−s i z e parameter
void update ( const vector<double>&,int , int , int , int , double ) ;
} ;

Listing 7: class QLS
class QLS : public on l i n e l e a r n i n g {
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public :
// number o f ac t ions , d i s coun t ra t e
QLS( int , double ) ;
QLS( ) {}
// update ru l e f o r Q−l e a rn ing :
// succe s sor s t a t e s ’ , ac t i on a , s t a t e s , reward r ,
// step−s i z e parameter
void update ( int , int , int , int , double ) ;
} ;

Listing 8: class robo env online
class r obo env on l i n e : public robo env {
public :
// environment
// dimension x
// re in forcement func t i on ( de r i v ed from RF)
// d i scoun t ra t e
r obo env on l i n e ( const va larray<int>&,int dx ,RF∗ ,double ) ;
// environment
// dimension x
// r l s f i l e
// re in forcement func t i on ( de r i v ed from RF)
r obo env on l i n e ( const va larray<int>&,int dx , const char∗ ,RF∗ ) ;
r obo env on l i n e ( ) {}
// copy cons t ruc t o r
r obo env on l i n e ( const r obo env on l i n e &);
// assignment
r obo env on l i n e& operator=(const r obo env on l i n e &);
˜ robo env on l i n e ( ) ; // d e s t r u c t o r

// ge t name o f re in forcement func t i on
s t r i n g get r f name ( ) const { return r f−>get name ( ) ; }

// Q−Learning :
// s teps , s t a r t i n g step−s i z e parameter , d i s coun t rate , QLS
QLS q l ea rn ing ( int , double , double ,QLS) ;
// s teps , s t a r t i n g step−s i z e parameter , d i s coun t ra t e
QLS q l ea rn ing ( int , double , double ) ;

// approximate p o l i c y e va l ua t i on f o r s t o c h a s t i c p o l i c i e s :
// po l i c y ,
// s teps , s t a r t i n g step−s i z e parameter , d i s coun t rate , SARSA
SARSA sa r s a p o l e v a l ( const map<pair<int , int >,double>&,
int , double , double ,SARSA) ;
// po l i c y ,
// s teps , s t a r t i n g step−s i z e parameter , d i s coun t ra t e
SARSA sa r s a p o l e v a l ( const map<pair<int , int >,double>&,
int , double , double ) ;
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// t e x t format :
void v i ew po l i c y ( const map<int , int>&) const ; // opt imal p o l i c y
void v iew optact ( ) ; // opt imal a c t i on s

private :
RF∗ r f ;
} ;

11.1.3 Several Environments

Listing 9: class impolytop and class inters impolytop
// l i s t o f a c t i on s and p r o b a b i l i t i e s
typedef l i s t <pair<int , double> > ver tex ;

typedef ver tex : : c o n s t i t e r a t o r CIV ;
typedef l i s t <vertex > : : c o n s t i t e r a t o r CILV ;

class impolytop {
public :
// act ion−va l u e s and va lue func t i on in s t a t e s
// Q( a 1 , s ) , . . . ,Q( a d+1, s ) ,V( s )
impolytop ( const valarray<double>&,double ) ;
impolytop ( ) {}

va larray<double> ge t q ( ) const ; // act ion−va l u e s
double ge t v ( ) const ; // va lue func t i on V( s )

// improving , s t r i c t l y improving and
// e qu i v a l e n t p o l i c i e s f o r a MDP
vector<vertex> get improvpo l ( ) const ;
vector<vertex> get s improvpo l ( ) const ;
vector<vertex> ge t equpo l ( ) const ;

private :
va larray<double> q ; // act ion−va l u e s
double v ; // va lue func t i on V( s )
vector<vertex> impol ; // improving
vector<vertex> s impol ; // s t r i c t l y improving
vector<vertex> equpol ; // e qu i v a l e n t p o l i c i e s
} ;

class i n t e r s impo ly top {
public :
// improving p o l i c i e s
i n t e r s impo ly t op ( const vector<impolytop >&);
// s t r i c t l y improving p o l i c i e s
// f o r a f i n i t e f ami l y o f MDPs
vector<vertex> get s improvpo l ( ) const ;
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private :
vector<impolytop> po lytops ; // improving p o l i c i e s
vector<vertex> s impol ; // s t r i c t l y
} ;

double round (double wert ) ;

Listing 10: class sev robo env
class sev robo env {
public :
// environments
s ev robo env ( const vector<robo env∗>&);
sev robo env ( ) { }
// copy cons t ruc t o r
s ev robo env ( const s ev robo env &);
// assignment
s ev robo env& operator=(const s ev robo env &);
˜ sev robo env ( ) ; // d e s t r u c t o r

int ge t n s ( ) const ; // number o f s t a t e s
l i s t <int> g e t s t a t e s ( ) const ; // l i s t o f s t a t e s
int get numenv ( ) const ; // number o f environments
robo env get env ( int ) const ; // robo environment
// number ( 0 . . . ne−1)
// d i scounted u t i l i t y
vector<double> du t i l op t ( ) ; // opt imal p o l i c i e s
vector<double> du t i l r an ( ) ; // random po l i c y

// p o l i c y improvement f o r s e v e r a l MDPs
// f o r d e t e rm in i s t i c p o l i c i e s
// ( chooses on ly s t r i c t l y improving ac t i on s )
// re turns improved p o l i c y
map<int , int> pol improv ( const map<int , int>& pol ) const ;
// po l i c y improvement f o r s e v e r a l MDPs
// f o r s t o c h a s t i c p o l i c i e s
// ( chooses s t r i c t l y improving v e r t i c e s )
// re turns improved p o l i c y
map<pair<int , int >,double>
pol improv ( const map<pair<int , int >,double>& pol ) ;

// s t o c h a s t i c p o l i c i e s , p i (a , s )=[(a , s ) ]
// re turns u t i l i t y f o r each environment
vector<double> ppo l eva l ( const map<pair<int , int >,
double>&) const ;

private :
vector<robo env∗> env ; // environments
int ne ; // number o f environments
int ns , ns2 ; // number o f s t a t e s , ns2=ns∗ns
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l i s t <int> s t a t e s ; // l i s t o f s t a t e s
map<int , int> s tons ; // s t a t e to number o f s t a t e
} ;

Listing 11: class sev robo env online
class s e v r obo env on l i n e {
public :
// on l ine environments
s e v r obo env on l i n e ( const vector<r obo env on l i n e ∗>&);
s e v r obo env on l i n e ( ) {}
// copy cons t ruc t o r
s e v r obo env on l i n e ( const s e v r obo env on l i n e &);
// assignment
s e v r obo env on l i n e& operator=(const s e v r obo env on l i n e &);
˜ s ev r obo env on l i n e ( ) ; // d e s t r u c t o r

int ge t n s ( ) const ; // number o f s t a t e s
l i s t <int> g e t s t a t e s ( ) const ; // l i s t o f s t a t e s
int get numenv ( ) const ; // number o f environments
r obo env on l i n e get env ( int ) const ; // robo environment
// number ( 0 . . . ne−1)
// d i scounted u t i l i t y
vector<double> du t i l op t ( ) ; // opt imal p o l i c i e s
vector<double> du t i l r an ( ) ; // random po l i c y

// approximate p o l i c y improvement f o r s e v e r a l MDPs
// f o r s t o c h a s t i c p o l i c i e s
// re turns ” improved” p o l i c y
// po l i c y ,
// s teps , s t a r t i n g step−s i z e parameter , d i s coun t ra t e
map<pair<int , int >,double>
pol improv ( const map<pair<int , int >,double>& pol ,
int steps , double q lambda , double q gamma ) ;

// s t o c h a s t i c p o l i c i e s , p i (a , s )=[(a , s ) ]
// re turns u t i l i t y f o r each environment
vector<double> ppo l eva l ( const map<pair<int , int >,
double>&) const ;

private :
vector<r obo env on l i n e∗> env ; // environments
int ne ; // number o f environments
int ns , ns2 ; // number o f s t a t e s , ns2=ns∗ns
l i s t <int> s t a t e s ; // l i s t o f s t a t e s
map<int , int> s tons ; // s t a t e to number o f s t a t e
} ;
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11.1.4 RealRobo

Listing 12: RealRobo
// COM port v a r i a b l e s
stat ic DCB dcb ;
stat ic HANDLE hCom, hStdout ;
stat ic DWORD dwError ;
stat ic BOOL fSucc e s s ;
stat ic COMMTIMEOUTS comt ;

stat ic char comm[10]=”COM2” ;
stat ic unsigned int bauds=9600;

int s e r i a l p o r t =2; // s e r i a l por t
int s e r i a l s p e e d =9600; // baud ra t e 9600 ,19200 or 38400

stat ic char t bu f f [ 2 5 6 ] ; // s t r i n g b u f f e r to send data
stat ic char r bu f f [ 5 1 2 ] ; // s t r i n g b u f f e r to r e c e i v e data

// Khepera commandos
// s e t Speed o f motors l e f t=b [ 0 ] , r i g h t=b [ 1 ] (K−Commando D)
void Set Speed ( int b [ 2 ] ) ;
// read po s i t i o n counter o f two motors (K−Commando H)
void Read Pos i t ion ( int motors [ 2 ] ) ;
// read 8 prox imi ty sensors to s (K−Commando N)
void Read Sensors ( f loat s [CTD SENSORES ] ) ;
// s e t p o s i t i o n counters f o r motors (K−Commando G)
void Set Pos i t i on Counte r ( int c p [ 2 ] ) ;
// s e t p o s i t i o n counters to reach f o r motors (K−Commando C)
void Set Pos i t ion To Reach ( int c p [ 2 ] ) ;
// read s t a t u s o f motion c o n t r o l l e r to c e s t ado (K−Comando K)
void Read Motion Contro l l er ( int c e s tado [ 6 ] ) ;

void Turn ( int ang ) ; // Turn an i n t e g e r ang l e

// conver t ang l e from [ 0 , 1 ] to [−90 and 90]
int Value To Angle ( f loat value ) ;
// move s t e p s forward /backward , 1 s t ep =0.08mm
void Move Forward ( int s t ep s ) ;

// r e f l e x 1 move s t r a i g h t when no o b s t a c l e s
void Re f l e j o 1 o a ( ) ;
// f o r r e f l e x 2 , r e turns 1 i f o b s t a c l e , 0 e l s e
int Co l i s i on ( ) ;

// network f unc t i on s
void l e e r r e d (char ∗ f i l ename ) ; // load we i gh t s
void save r ed (char ∗nombre archivo , int epoca ) ; // save we i gh t s



CHAPTER 11. APPENDIX 162

// s e t winner un i t c l o s e s t to s ,Q=1
void privateNearestSQ ( f loat s [CTD SENSORES] , f loat Q, int umbral ) ;
// compute d i s t ance s ,Q=1
f loat privateDistSQ ( f loat x [ c td ent radas+CTD ACCIONES] , int nodo ) ;
// s e t winner un i t c l o s e s t to s , a
void privateNearestSA ( f loat s [ 8 ] , f loat acc [CTD ACCIONES ] ) ;
// compute d i s t ance s , a
f loat pr ivateDistSA ( f loat x [ c td ent radas+CTD ACCIONES] , int nodo ) ;
// update we i gh t s
void QUpdate ( f loat s en so r a [CTD SENSORES] ,
f loat a [CTD ACCIONES] , f loat s enso r [CTD SENSORES] , int r ) ;
// add new un i t
void privateAddNeuron ( f loat s enso r [CTD SENSORES] ,
f loat acc [CTD ACCIONES] , double q ) ;

11.2 MDP Package

The following is list of all functions in the MDP Maple package with short
descriptions and examples.

11.2.1 Rewards and Transition Matrix

ExpectedReward - compute the expected rewards

Calling Sequence
ExpectedReward(P,R)

Parameters
P - Array; transition probabilities
R - Array; rewards

Description
The ExpectedReward(P,R) function computes the expected rewards for

transition probabilities P and rewards R.

Examples

> with(MDP):

> P:=Array(1..2,1..2,1..2):

> P[1..2,1..2,1]:=<<1/4,3/4>|<2/3,1/3>>;

P1..2, 1..2, 1 :=




1

4

2

3
3

4

1

3



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> P[1..2,1..2,2]:=<<1/6,5/6>|<3/5,2/5>>:

> R:=Array(1..2,1..2,1..2):

> R[1..2,1..2,1]:=<<1,-1>|<1,0>>;

R1..2, 1..2, 1 :=

[
1 1

−1 0

]

> R[1..2,1..2,2]:=<<0,1>|<1,-1>>:

> ER:=ExpectedReward(P,R);

ER :=



−1

2

5

6
2

3

1

5




ExpectedRewardPolicy - compute the expected rewards for a pol-
icy

Calling Sequence
ExpectedRewardPolicy(ER,Pol)

Parameters
ER - Matrix; expected rewards
Pol - Matrix; policy

Description
The ExpectedRewardPolicy(ER,Pol) function computes the expected re-

wards for policy Pol and expected rewards ER.

Examples

> with(MDP):

> P:=Array(1..2,1..2,1..2):

> P[1..2,1..2,1]:=<<1/4,3/4>|<2/3,1/3>>:

> P[1..2,1..2,2]:=<<1/6,5/6>|<3/5,2/5>>:

> R:=Array(1..2,1..2,1..2):

> R[1..2,1..2,1]:=<<1,-1>|<1,0>>:

> R[1..2,1..2,2]:=<<0,1>|<1,-1>>:

> ER:=ExpectedReward(P,R);

ER :=



−1

2

5

6
2

3

1

5



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> Pol:=<<1/2,1/2>|<1/2,1/2>>;

Pol :=




1

2

1

2
1

2

1

2




> ERp:=ExpectedRewardPolicy(ER,Pol);

ERp :=

[
1

12
,

31

60

]

TransitionMatrix - compute the transition matrix for a policy

Calling Sequence
TransitionMatrix(P,Pol)

Parameters
P - Array; transition probabilities
Pol - Matrix; policy

Description
The TransitionMatrix(P,Pol) function computes the transition matrix

for policy Pol and transition probabilities P.

Examples

> with(MDP):

> P:=Array(1..2,1..2,1..2):

> P[1..2,1..2,1]:=<<1/4,3/4>|<2/3,1/3>>:

> P[1..2,1..2,2]:=<<1/6,5/6>|<3/5,2/5>>:

> Pol := <<1/2,1/2>|<1/2,1/2>>;

Pol :=




1

2

1

2
1

2

1

2




> Pp:=TransitionMatrix(P,Pol);

Pp :=




11

24

23

60
13

24

37

60




> IsStochastic(Pp);

true
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11.2.2 Value Function and Action-Values

ValueFunction - compute the discounted value function

Calling Sequence
ValueFunction(ERp,Pp,ga)

Parameters
ERp - Vector[row]; expected rewards for a policy
Pol - Matrix; transition matrix for a policy
ga - algebraic; discount rate

Description
The ValueFunction(ERp,Pp,ga) command computes the discounted value

function for a policy given the expected rewards ERp the transition matrix
Pp and a discount rate ga.

Examples

> with(MDP):

> P:=Array(1..2,1..2,1..2):

> P[1..2,1..2,1]:=<<1/4,3/4>|<2/3,1/3>>:

> P[1..2,1..2,2]:=<<1/6,5/6>|<3/5,2/5>>:

> R:=Array(1..2,1..2,1..2):

> R[1..2,1..2,1]:=<<1,-1>|<1,0>>:

> R[1..2,1..2,2]:=<<0,1>|<1,-1>>:

> ER:=ExpectedReward(P,R):

> Pol:=<<1/2,1/2>|<1/2,1/2>>:

> ERp:=ExpectedRewardPolicy(ER,Pol);

ERp :=

[
1

12
,

31

60

]

> Pp:=TransitionMatrix(P,Pol);

Pp :=




11

24

23

60
13

24

37

60




> ga:=1/2;

ga :=
1

2
> Vp:=ValueFunction(ERp,Pp,ga);
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Vp :=

[
569

1386
,

1193

1386

]

ActionValues - compute action-values

Calling Sequence
ActionValues(P,ER,Vp,ga)

Parameters
P - Array; transition probabilities
ER - Matrix; expected rewards
Vp - Vector[row]; value function for a policy
ga - expression; discount rate

Description
The ActionValues(P,ER,Vp,Vp) command computes the action-values

for a policy given the transition probabilities P, the expected rewards ER,
the value function Vp and a discount rate ga.

Examples

> with(MDP):

> P:=Array(1..2,1..2,1..2):

> P[1..2,1..2,1]:=<<1/4,3/4>|<2/3,1/3>>:

> P[1..2,1..2,2]:=<<1/6,5/6>|<3/5,2/5>>:

> R:=Array(1..2,1..2,1..2):

> R[1..2,1..2,1]:=<<1,-1>|<1,0>>:

> R[1..2,1..2,2]:=<<0,1>|<1,-1>>:

> ER:=ExpectedReward(P,R);

ER :=



−1

2

5

6
2

3

1

5




> Pol:=<<1/2,1/2>|<1/2,1/2>>:

> ERp:=ExpectedRewardPolicy(ER,Pol):

> Pp:=TransitionMatrix(P,Pol);

Pp :=




11

24

23

60
13

24

37

60



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> ga:=1/2;

ga :=
1

2
> Vp:=ValueFunction(ERp,Pp,ga);

Vp :=

[
569

1386
,

1193

1386

]

> Qp:=ActionValues(P,ER,Vp,ga);

Qp :=



−349

2772

103

84
125

132

1373

2772




11.2.3 Improving Actions and Vertices

StrictlyImprovingActions - compute strictly improving actions

Calling Sequence
StrictlyImprovingActions(Qps,Vps)

Parameters
Qps - Vector; action-values in a state
Vps - algebraic; value function in a state

Description
The StrictlyImprovingActions(Qps,Vps) function returns a list of strictly

improving actions given the action-values Qps and the value function Vps
in a state.

Examples

> with(MDP):

> Qps:=<0,2,4,7>;

Qps :=




0
2
4
7




> Vps:=2;

Vps := 2

> StrictlyImprovingActions(Qps,Vps);

[3, 4]
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EquivalentVertices - compute equivalent vertices

Calling Sequence
EquivalentVertices(Qps,Vps)

Parameters
Qps - Vector; action-values in a state
Vps - algebraic; value function in a state

Description
The EquivalentVertices(Qps,Vps) function returns a list of equivalent

vertices given the action-values Qps and the value function Vps in a state.

Examples

> with(MDP):

> Qps:=<0,2,4,7>;

Qps :=




0
2
4
7




> Vps:=2;

Vps := 2

> EquivalentVertices(Qps,Vps);






0
1
0
0


 ,




1

2

0
1

2

0




,




5

7

0
0
2

7







ImprovingVertices - compute improving vertices

Calling Sequence
ImprovingVertices(Qps,Vps)

Parameters
Qps - Vector; action-values in a state
Vps - algebraic; value function in a state

Description
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The ImprovingVertices(Qps,Vps) function returns a list of improving
vertices given the action-values Qps and the value function Vps in a state.
The first element is a list of improving vertices corresponding to strictly
improving actions and the second element the list of equivalent vertices.

Examples

> with(MDP):

> Qps:=<0,2,4,7>;

Qps :=




0
2
4
7




> Vps:=2;

Vps := 2

> IV:=ImprovingVertices(Qps,Vps);

IV :=










0
0
1
0


 ,




0
0
0
1





 ,







0
1
0
0


 ,




1

2

0
1

2

0




,




5

7

0
0
2

7










> IV[1]; 





0
0
1
0


 ,




0
0
0
1







> IV[2];






0
1
0
0


 ,




1

2

0
1

2

0




,




5

7

0
0
2

7







11.2.4 Stochastic Matrices

IsStochastic - test if a Matrix is stochastic

Calling Sequence
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IsStochastic(A)

Parameters
A - Matrix

Description
The IsStochastic(A) function determines if A is a stochastic Matrix (non-

negative and column sums equal to 1).

Examples

> with(MDP):

> A:=<<1/2,1/2>|<1/3,2/3>>;

A :=




1

2

1

3
1

2

2

3




> IsStochastic(A);

true

IsTransitionProbability - test if an Array defines valid transition
probabilities

Calling Sequence
IsTransitionProbability(P)

Parameters
P - Array; transition probabilities

Description
The IsTransitionProbability(P) function determines if P defines valid

transition probabilities.

Examples

> with(MDP):

> P:=Array(1..2,1..2,1..2):

> P[1..2,1..2,1]:=<<1/4,3/4>|<2/3,1/3>>;

P1..2, 1..2, 1 :=




1

4

2

3
3

4

1

3




> IsStochastic(%);
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true

> P[1..2,1..2,2]:=<<1/6,5/6>|<3/5,2/5>>:

> IsTransitionProbability(P);

true

11.2.5 Random Rewards and Transition Probabilities

RandomReward - construct random rewards

Calling Sequence
RandomReward(s,a,m,n)

Parameters
s - positive integer; number of states
a - positive integer; number of actions
m - integer; lower bound
n - integer; upper bound

Description
The RandomReward(s,a,m,n) command returns an Array representing

rewards for an environment with s states and a actions in each state. The
entries are integers between m and n.

Examples

> with(MDP):

> R:=RandomReward(3,3,-1,1);

RandomStochasticVector - construct a random stochastic Vector

Calling Sequence
RandomStochasticVector(d,n)

Parameters
d - non-negative integer; dimension of the resulting Vector
n - positive integer; maximal denominator

Description
The RandomStochasticVector(d,n) command returns a random stochas-

tic column Vector (non-negative and sum of entries equal to 1) of dimension
d with rational entries and denominator less or equal n.

Examples
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> with(MDP):

> RandomStochasticVector(3,5);



0
1

5
4

5




RandomStochasticMatrix - construct a random stochastic Matrix

Calling Sequence
RandomStochasticMatrix(r,c,n)

Parameters
r - non-negative integer; row dimension of the resulting Matrix
c - non-negative integer; column dimension of the resulting Matrix
n - positive integer; maximal denominator

Description
The RandomStochasticMatrix(r,c,n) command returns a random stochas-

tic (non-negative and column sums equal to 1) r x c Matrix with rational
entries and denominator less or equal n.

Examples

> with(MDP):

> A:=RandomStochasticMatrix(3,3,10);

A :=




1

2

3

5

2

5

0
1

10

2

5
1

2

3

10

1

5




> IsStochastic(A);

true

RandomTransitionProbability - construct random transition prob-
abilities

Calling Sequence
RandomTransitionProbability(s,a,n)



CHAPTER 11. APPENDIX 173

Parameters
s - positive integer; number of states
a - positive integer; number of actions
n - positive integer; maximal denominator

Description
The RandomTransitionProbability(s,a,n) command returns an Array rep-

resenting random transition probabilities for an environment with s states
and a actions in each state. The entries are non-negative rational numbers
with a denominator less or equal n.

Examples

> with(MDP):

> P:=RandomTransitionProbability(3,3,5):

> IsTransitionProbability(P);

true

11.2.6 Policy Improvement and Iteration

PolicyImprovement - improve a policy

Calling Sequence
PolicyImprovement(Qp,Vp,Pol)
PolicyImprovement(Qp,Vp,Pol,’improved’)

Parameters
Qp - Matrix; action-values for a policy
Vp - Vector[row]; value function for a policy
Pol - Matrix; policy
improved - (optional) name; is improved

Description
The PolicyImprovement(Qp,Vp,Pol) function returns an improved pol-

icy given action-values Qp and the value function Vp for policy Pol. The
optional parameter ’improved’ is set to 1 if the policy is improved and 0
otherwise (that is, the policy is optimal).

Examples

> with(MDP):

> s:=3: a:=3:

> P:=RandomTransitionProbability(s,a,5):
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> R:=RandomReward(s,a,-1,1):

> ER:=ExpectedReward(P,R):

> Pol:=RandomStochasticMatrix(a,s,5);

Pol :=




3

5

3

5

3

5
1

5

1

5

2

5
1

5

1

5
0




> ERp:=ExpectedRewardPolicy(ER,Pol):

> Pp:=TransitionMatrix(P,Pol):

> ga:=1/2:

> Vp:=ValueFunction(ERp,Pp,ga);

Vp :=

[−1447

5665
,
−5002

5665
,

1223

5665

]

> Qp:=ActionValues(P,ER,Vp,ga):

> imPol:=PolicyImprovement(Qp,Vp,Pol,’improved’);

imPol :=




0 0 0
0 1 1
1 0 0




> improved;

1

> Pimp:=TransitionMatrix(P,imPol):

> ERimp:=ExpectedRewardPolicy(ER,imPol):

> Vimp:=ValueFunction(ERimp,Pimp,ga);

Vimp :=

[
257

335
,
−98

335
,

357

335

]

> Vimp-Vp; [
77626

75911
,

44820

75911
,

64508

75911

]

PolicyIteration - policy iteration

Calling Sequence
PolicyIteration(P,ER,Pol,ga)
PolicyIteration(P,ER,Pol,ga,’steps’)

Parameters
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P - Array; transition probabilities
ER - Matrix; expected rewards
Pol - Matrix; policy
ga - algebraic; discount rate
steps - (optional) name; number of improvement steps

Description
The PolicyIteration(P,ER,Pol,ga,’steps’) command performs policy it-

eration and returns an optimal policy given transition probabilities P, ex-
pected rewards ER, a starting policy Pol and a discount rate ga. The
optional parameter ’steps’ is set to the number of improvement steps used
to obtain the returned optimal policy.

Examples

> with(MDP):

> s:=3: a:=3:

> P:=RandomTransitionProbability(s,a,5):

> R:=RandomReward(s,a,-1,1):

> ER:=ExpectedReward(P,R):

> Pol:=RandomStochasticMatrix(a,s,5):

> ga:=1/2:

> optPol:=PolicyIteration(P,ER,Pol,ga,’steps’);

optPol :=




0 0 1
0 1 0
1 0 0




> steps;

2

> Pp:=TransitionMatrix(P,optPol):

> ERp:=ExpectedRewardPolicy(ER,optPol):

> Vp:=ValueFunction(ERp,Pp,ga):

> Qp:=ActionValues(P,ER,Vp,ga):

> IsOptimal(Qp,Vp);

true
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IsOptimal - test if a policy is optimal

Calling Sequence
IsOptimal(Qp,Vp)

Parameters
Qp - Matrix; action-values for a policy
Vp - Vector[row]; value function for a policy

Description
The IsOptimal(Qp,Vp) function tests if a policy with action-values Qp

and value function Vp is optimal.

Examples

> with(MDP):

> s:=3: a:=3:

> P:=RandomTransitionProbability(s,a,5):

> R:=RandomReward(s,a,-1,1):

> ER:=ExpectedReward(P,R):

> Pol:=RandomStochasticMatrix(a,s,5):

> ga:=1/2:

> optPol:=PolicyIteration(P,ER,Pol,ga):

> ERp:=ExpectedRewardPolicy(ER,optPol):

> Pp:=TransitionMatrix(P,optPol):

> Vp:=ValueFunction(ERp,Pp,ga);

Vp :=

[
20

13
,

10

13
,

92

91

]

> Qp:=ActionValues(P,ER,Vp,ga);

Qp :=




20

13

16

35

32

65
358

455

10

13

92

91
334

455

−4

13

−3

13




> IsOptimal(Qp,Vp);

true
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11.2.7 Plots

improvingpolicyplot3d - plot improving policies

Calling Sequence
improvingpolicyplot3d(IVs,Pols)

Parameters
IVs - list; improving vertices in a state
Pols - Vector[column]; policy in a state

Description
The improvingpolicyplot3d(IVs,Pols) command plots the improving poli-

cies given the improving vertices IVs and the policy Pols in a state.

Examples

> with(MDP):

> s:=3: a:=3:

> P:=RandomTransitionProbability(s,a,20):

> R:=RandomReward(s,a,-1,1):

> ER:=ExpectedReward(P,R):

> Pol:=RandomStochasticMatrix(a,s,10):

> ERp:=ExpectedRewardPolicy(ER,Pol):

> Pp:=TransitionMatrix(P,Pol):

> ga:=1/2:

> Vp:=ValueFunction(ERp,Pp,ga):

> Qp:=ActionValues(P,ER,Vp,ga):
> for i from 1 to s do
> improvingpolicyplot3d(ImprovingVertices(\
> LinearAlgebra:-Column(Qp,i),Vp[i]),\
> LinearAlgebra:-Column(Pol,i));
> end do;

11.2.8 Two Realizations

StrictlyImprovingVertices2 - compute strictly improving vertices

Calling Sequence
StrictlyImprovingVertices2(Qps,Vps)

Parameters
Qps - list(Vector); action-values in a state
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Vps - list(algebraic); value functions in a state

Description
The StrictlyImprovingVertices2(Qps,Vps) function returns a list of strictly

improving vertices given the action-values Qps and the value functions Vps
in a state for two realizations.

Examples

> with(MDP):

> Qps:=[<1,2,3,8>,<3,4,7,3>];

Qps :=







1
2
3
8


 ,




3
4
7
3







> Vps:=[2,4];

Vps := [2, 4]

> StrictlyImprovingVertices2(Qps,Vps);






0
0
1
0


 ,




1

2

0
1

2

0




,




0
0
1

4
3

4







PolicyImprovement2 - improve a policy

Calling Sequence
PolicyImprovement2(Qp,Vp,Pol)
PolicyImprovement2(Qp,Vp,Pol,’improved’)

Parameters
Qp - list(Matrix); action-values for a policy
Vp - list(Vector[row]); value functions for a policy
Pol - Matrix; policy
improved - (optional) name; is improved

Description
The PolicyImprovement2(Qp,Vp,Pol) function returns an improved pol-

icy given action-values Qp and value functions Vp for policy Pol for two
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realizations. The optional parameter ’improved’ is set to 1 if the policy is
improved and 0 otherwise (that is, the policy is balanced).

Examples

> with(MDP):

> s:=3:a:=3:
> P:=[RandomTransitionProbability(s,a,5),\
> RandomTransitionProbability(s,a,5)]:

> R:=[RandomReward(s,a,-1,1),RandomReward(s,a,-1,1)]:
> ER:=[ExpectedReward(P[1],R[1]),\
> ExpectedReward(P[2],R[2])]:

> Pol:=RandomStochasticMatrix(a,s,5);

Pol :=




0
2

5

2

5
4

5

1

5

2

5
1

5

2

5

1

5




> ERp:=[ExpectedRewardPolicy(ER[1],Pol),\
> ExpectedRewardPolicy(ER[2],Pol)]:
> Pp:=[TransitionMatrix(P[1],Pol),\
> TransitionMatrix(P[2],Pol)]:

> ga:=[1/2,1/2]:
> Vp:=[ValueFunction(ERp[1],Pp[1],ga[1]),\
> ValueFunction(ERp[2],Pp[2],ga[2])];

Vp := [

[−461

4275
,
−1687

1425
,
−163

450

]
,

[−12097

18725
,

6128

18725
,
−6322

18725

]
]

> Qp:=[ActionValues(P[1],ER[1],Vp[1],ga[1]),\
> ActionValues(P[2],ER[2],Vp[2],ga[2])]:

> imPol:=PolicyImprovement2(Qp,Vp,Pol,’improved’);

imPol :=




448

905

14753

18825
0

0 0
13331

20170
457

905

4072

18825

6839

20170




> improved;

1
> ERimp:=[ExpectedRewardPolicy(ER[1],imPol),\
> ExpectedRewardPolicy(ER[2],imPol)]:
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> Pimp:=[TransitionMatrix(P[1],imPol),\
> TransitionMatrix(P[2],imPol)]:
> Vimp:=[ValueFunction(ERimp[1],Pimp[1],ga[1]),\
> ValueFunction(ERimp[2],Pimp[2],ga[2])]:

> Vimp[1]-Vp[1];[
48749710091603

295058147899275
,

7081447992017

32784238655475
,

21121785852899

31058752410450

]

> Vimp[2]-Vp[2];[
69401197803974914

78467072456007025
,

17673362669093164

78467072456007025
,

15723509098557564

78467072456007025

]

PolicyIteration2 - policy iteration

Calling Sequence
PolicyIteration2(P,ER,Pol,ga)
PolicyIteration2(P,ER,Pol,ga,’steps’)

Parameters
P - list(Array); transition probabilities
ER - list(Matrix); expected rewards
Pol - Matrix; policy
ga - list(algebraic); discount rates
steps - (optional) name; number of improvement steps

Description
The PolicyIteration2(P,ER,Pol,ga,’steps’) command performs policy

iteration for two realizations. It returns a balanced policy given transition
probabilities P, expected rewards ER and discount rates ga for two realiza-
tions and a starting policy Pol. The optional parameter ’steps’ is set to the
number of improvement steps used to obtain the returned balanced policy.

Examples

> with(MDP):

> s:=3:a:=3:
> P:=[RandomTransitionProbability(s,a,10),\
> RandomTransitionProbability(s,a,10)]:

> R:=[RandomReward(s,a,-2,2),RandomReward(s,a,-2,2)]:
> ER:=[ExpectedReward(P[1],R[1]),\
> ExpectedReward(P[2],R[2])]:

> Pol:=RandomStochasticMatrix(a,s,10);
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Pol :=




9

10

1

10

1

10
1

10

2

5

1

2

0
1

2

2

5




> ga:=[1/2,1/2]:

> balPol:=PolicyIteration2(P,ER,Pol,ga,’steps’);

balPol :=




1 0 0

0
3463063

7173190

832053429779429

3400439142403598

0
3710127

7173190

2568385712624169

3400439142403598




> steps;

2
> ERp:=[ExpectedRewardPolicy(ER[1],balPol),\
> ExpectedRewardPolicy(ER[2],balPol)]:
> Pp:=[TransitionMatrix(P[1],balPol),\
> TransitionMatrix(P[2],balPol)]:
> Vp:=[ValueFunction(ERp[1],Pp[1],ga[1]),\
> ValueFunction(ERp[2],Pp[2],ga[2])]:
> Qp:=[ActionValues(P[1],ER[1],Vp[1],ga[1]),\
> ActionValues(P[2],ER[2],Vp[2],ga[2])]:

> IsBalanced2(Qp,Vp);

true

IsBalanced2 - test if a policy is balanced

Calling Sequence
IsBalanced2(Qp,Vp)

Parameters
Qp - list(Matrix); action-values for a policy
Vp - list(Vector[row]); value functions for a policy

Description
The IsBalanced2(Qp,Vp) function tests if a policy with action-values Qp

and value functions Vp for two realizations is balanced.

Examples

> with(MDP):
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> s:=3:a:=3:
> P:=[RandomTransitionProbability(s,a,5),\
> RandomTransitionProbability(s,a,5)]:

> R:=[RandomReward(s,a,-2,2),RandomReward(s,a,-2,2)]:
> ER:=[ExpectedReward(P[1],R[1]),\
> ExpectedReward(P[2],R[2])]:

> Pol:=RandomStochasticMatrix(a,s,5):

> ga:=[1/2,1/2]:

> balPol:=PolicyIteration2(P,ER,Pol,ga);

balPol :=




0 0
2

5

1 1
3

5

0 0 0




> ERp:=[ExpectedRewardPolicy(ER[1],balPol),\
> ExpectedRewardPolicy(ER[2],balPol)]:
> Pp:=[TransitionMatrix(P[1],balPol),\
> TransitionMatrix(P[2],balPol)]:
> Vp:=[ValueFunction(ERp[1],Pp[1],ga[1]),\
> ValueFunction(ERp[2],Pp[2],ga[2])];

Vp := [

[
272

1075
,

952

1075
,
−58

1075

]
,

[−17

20
,
−41

35
,
−11

10

]
]

> Qp:=[ActionValues(P[1],ER[1],Vp[1],ga[1]),\
> ActionValues(P[2],ER[2],Vp[2],ga[2])];

Qp :=







−416

215

1079

1075

−2014

1075
272

1075

952

1075

1246

1075
229

215

−2014

1075

−29

1075




,




−5

7

−137

70

−191

280
−17

20

−41

35

−193

140
−193

140

−67

70

−83

56







> IsBalanced2(Qp,Vp);

true
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11.3 Content of the CD-ROM

The attached CD-ROM contains the programs and source codes for

• MDP package, Sections 2 and 7,

• SimRobo, Sections 3 and 8,

• RealRobo, Sections 4 and 9.

Moreover, the publications [MR01a], [MR01b], [MR02], [MR03a], [MR03b]
and the dissertation are included.

All programs can be installed by copying the programs directory with
all its subdirectories to your hard disc. For details see the installation notes
info.txt in each directory. For the MDP package the program Maple 9 is
required. RealRobo and SimRobo run on a Microsoft Windows system.

The source code for all programs can be found in the sources directory.
The Visual C++ project file for SimRobo is ROBO3D.DSW and realrobo.dsw

for RealRobo.
Refer to the website of our project, http://mathematik.uibk.ac.at/

users/rl, for the latest versions of the MDP package, SimRobo and RealRobo.

The following is an overview of the directories on the CD-ROM:

publications

programs sources

MDP-package MDP-package

RealRobo RealRobo

data data

LIB

SimRobo SimRobo

slots slots

mdpoa mdpoa

mdpwf mdpwf

oa oa

wf wf

http://mathematik.uibk.ac.at/users/rl
http://mathematik.uibk.ac.at/users/rl


CHAPTER 11. APPENDIX 184

11.4 Contributions

In the following we give a list of the contributions of each author.

Both authors:

• Introduction, Bibliographical Remarks and Discussion

• Sections: 1.1, 1.3-1.7, 1.10, 3.1-3.4, 5.1-5.4, 5.6-5.7, 8.1-8.2.

• Simulator SimRobo, Sections 11.1.1-11.1.3.

• Publications in Section 11.5 and Chapter 6.

Andreas Matt:

• Chapters: 4 and 9.

• Sections: 1.9, 1.12.2-1.12.4, 3.5, 8.3.

• Program RealRobo, Section 11.1.4.

Georg Regensburger:

• Chapters: 2 and 7.

• Sections: 1.2, 1.8, 1.11, 1.12.1, 5.5.

• MDP package, Section 11.2.

Andreas Matt : Studies in Mathematics and Computer Science in Inns-
bruck, Vienna, Sevilla and Buenos Aires. Scholarship from the University of
Innsbruck. Scholarships for short term research abroad. Teaching assistant
at the Institute of Computer Science, University of Innsbruck.

Georg Regensburger : Studies in Mathematics in Innsbruck and Madrid.
Scholarship from the University of Innsbruck. Research assistant at the In-
stitute of Computer Science, Prof. Otmar Scherzer. Teaching assistant at
the Institute of Computer Science, University of Innsbruck.
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11.5 Publications

The publications are also available on our website http://mathematik.

uibk.ac.at/users/rl.

11.5.1 Policy Improvement for several Environments

Abstract. In this paper we state a generalized form of the policy improve-
ment algorithm for reinforcement learning. This new algorithm can be used
to find stochastic policies that optimize single-agent behavior for several en-
vironments and reinforcement functions simultaneously. We first introduce
a geometric interpretation of policy improvement, define a framework to ap-
ply one policy to several environments, and propose the notion of balanced
policies. Finally we explain the algorithm and present examples.

See [MR01a] and the extended version [MR01b].

11.5.2 Generalization over Environments in Reinforce-
ment Learning

Abstract. We discuss the problem of reinforcement learning in one environ-
ment and applying the policy obtained to other environments. We first state
a method to evaluate the utility of a policy. Then we propose a general
model to apply one policy to different environments and compare them. To
illustrate the theory we present examples for an obstacle avoidance behavior
in various block world environments.

See [MR03b] and [MR02].

11.5.3 Approximate Policy Iteration for several Envi-
ronments and Reinforcement Functions

Abstract. We state an approximate policy iteration algorithm to find stochas-
tic policies that optimize single-agent behavior for several environments and
reinforcement functions simultaneously. After introducing a geometric inter-
pretation of policy improvement for stochastic policies we discuss approxi-
mate policy iteration and evaluation. We present examples for two block-
world environments and reinforcement functions.

See [MR03a].

http://mathematik.uibk.ac.at/users/rl
http://mathematik.uibk.ac.at/users/rl


Policy Improvement for several Environments

Andreas Matt andreas.matt@uibk.ac.at
Georg Regensburger georg.regensburger@uibk.ac.at
Institute of Mathematics1 , University of Innsbruck, Austria

Abstract
In this paper we state a generalized form of
the policy improvement algorithm for rein-
forcement learning. This new algorithm can
be used to …nd stochastic policies that op-
timize single-agent behavior for several envi-
ronments and reinforcement functions simul-
taneously. We …rst introduce a geometric in-
terpretation of policy improvement, de…ne a
framework to apply one policy to several en-
vironments, and propose the notion of bal-
anced policies. Finally we explain the algo-
rithm and present examples.

1. Idea
Until now reinforcement learning has been applied to
learn behavior within one environment. Several meth-
ods to …nd optimal policies for one environment are
known (Kaelbling et al., 1996; Sutton & Barto, 1998).

In our research we focus on a general point of view of
behavior that appears independently from a single en-
vironment. As an example imagine that a robot should
learn to avoid obstacles, a behavior suitable for more
than one environment. Obviously a policy for several
environments cannot - in general - be optimal for each
one of them. Improving a policy for one environment
may result in a worse performance in an other. Nev-
ertheless it is often possible to improve a policy for
several environments. Compared to multiagent rein-
forcement learning as in Bowling and Veloso (2000),
where several agents act in one environment, we have
one agent acting in several environments.

2. Equivalent and Improving Policies
We …x a …nite Markov Decision Process (S;A;P;R),
use the standard de…nitions of value function V and Q-
value and write ¼(a j s) for the probability that action

1We wish to thank Prof. Ulrich Oberst for his mo-
tivation, comments and support. This research was
partially supported by “Forschungsstipendien an öster-
reichische Graduierte” and Project Y-123 INF.

a is chosen in state s. We say that two policies ¼ and
~¼ are equivalent if their value functions coincide, i.e.
V ¼ = V ~¼.

Theorem 1 Two policies ~¼ and ¼ are equivalent if
and only if

X
a2A

Q¼(a; s)~¼(a j s) = V ¼(s) for all s 2 S.

This gives us a description of the equivalence class of a
policy. We interpret ¼(¡ j s) as a point on a standard
simplex and the equivalence class as the intersection
of the hyperplane H de…ned by Q¼(¡ j s) and V ¼(s)
with the simplex. See Figure 1 left for an example with
three actions a1, a2 and a3. The following theorem is

a2

a3

¼(s)

H

a1

a1 a2

a3

v12

v23

¼(s)

Figure 1. left: A policy in state s and its equivalence class
right: Improving policies in state s

a general version of the policy improvement theorem.

Theorem 2 Let ¼ and ~¼ be policies such that
X

a2A
Q¼(a; s)~¼(a j s) ¸ V ¼(s) for all s 2 S.

Then V ~¼ ¸ V ¼. If additionally there exists an s 2 S
such that

P
Q¼(a; s)~¼(a j s) > V ¼(s) then V ~¼ > V ¼.

We de…ne the set of improving policies for ¼ in s by

C¼
¸(s) =

n
~¼(¡ j s) :

X
Q¼(a; s)~¼(a j s) ¸ V ¼(s)

o
,



and in analogy the set of strictly improving policies
C¼

>(s) and the set of equivalent policies C¼
=(s) for ¼ in

s. We de…ne the set of strictly improving actions of ¼
in s by A¼

>(s) = fa : Q¼(a; s) > V ¼(s)g.
The set of improving policies C¼

¸(s) is a polytope given
by the intersection of a half-space and a standard sim-
plex. Its vertices are vert

¡
C¼

¸(s)
¢

= vert(C¼
=(s)) [

A¼
>(s). See Figure 1 right, where A¼

>(s) = fa1; a3g,
vert(C¼

=(s)) = fv12;v23g and C¼
¸(s) is the shaded

area, the side marked by the small arrows.

3. Policies for several Environments
Consider a robot and its sensors to perceive the world.
All possible sensor values together represent all pos-
sible states for the robot. In each of these states the
robot can perform some actions. We call all possi-
ble states and actions the state action space (SAS)
E = (S;A). Now we put the robot in a physical en-
vironment, where we can observe all possible states
for this environment, a subset SE ½ S of all possible
states in general, and the transition probabilities PE.
We call E = (SE;A;PE) a realization of an SAS.

Let E =(Ei;Ri)i=1:::n be a …nite family of realizations
of an SAS with rewards Ri. Since the actions are
given by the SAS it is clear what is meant by a policy
¼ for E. For each (Ei;Ri) we can calculate the value
function, which we denote by V ¼

i . We de…ne the set
of improving policies of ¼ in s 2 S by

C¼
¸ (s) =

\
i2[n]; s2Si

C¼
i;¸(s)

and the set of strictly improving policies of ¼ in s by

C¼
>(s) =

½
~¼(¡ j s) 2 C¼

¸(s) such that
9 i 2 [n] with ~¼(¡ j s) 2 C¼

i;>(s)

¾
,

where [n] = f1; : : : ; ng. The set of improving policies
of ¼ in s is the intersection of a …nite number of half-
spaces through a point with a standard simplex.

Theorem 3 Let ~¼ be a policy for E such that

~¼(¡ j s) 2 C¼
¸(s) for all s 2 S:

Then V ~¼
i ¸ V ¼

i for all i 2 [n]. If additionally there
exist an s 2 S with ~¼(¡ j s) 2 C¼

>(s) then there exists
an i 2 [n] such that V ~¼

i > V ¼
i .

In order to describe C¼
¸(s) and …nd an ~¼(¡ j s) 2

C¼
>(s) we consider its vertices. We call the vertices

of C¼
¸ (s) improving vertices and de…ne the strictly

improving vertices by vert(C¼
> (s)) = vert(C¼

¸ (s)) \
C¼

> (s). There exist several algorithm to …nd all ver-
tices of a polytope (Fukuda, 2000). Linear Program-
ming methods can be used to decide whether there

exist strictly improving vertices and to …nd one (Schri-
jver, 1986). Observe that for a single environment the
strictly improving vertices are just the set of strictly
improving actions.

Let s 2 S. We de…ne ¼s as the set of all policies that
are arbitrary in s and equal ¼ otherwise. We call a
policy balanced if and only if for all s 2 S and all
~¼ 2 ¼s either V ~¼

i = V ¼
i for all i 2 [n] or there exists

i 2 [n] such that V ~¼
i < V ¼

i . This means that if one
changes a balanced policy in one state s it is the same
for all environments or it gets worse in at least one.
Compare to the notion of an equilibrium point in game
theory (Nash, 1951). Note that for one environment
the notions of optimal and balanced policies coincide.

Theorem 4 A policy ¼ is balanced if and only if there
are no strictly improving policies, i.e. C¼

>(s) = ; for
all s 2 S.

4. General Policy Improvement
We state a generalized form of the policy improvement
algorithm for a family of realizations of an SAS which
we call general policy improvement (algorithm 1). The
idea is to improve the policy by choosing in each state
a strictly improving vertex. If there are no strictly
improving vertices the policy is balanced and the al-
gorithm terminates.

Input: a policy ¼ and a family of realizations (Ei;Ri)
Output: a balanced policy ~¼ : V ~¼

i ¸ V ¼
i for all i 2 [n]

~¼ Ã¡ ¼
repeat

calculate V ~¼
i and Q~¼

i for all i 2 [n]
for all s 2 S do

if vert(C~¼
>(s)) 6= ; then

choose ¼0(¡ j s) 2 vert(C~¼
>(s))

~¼(¡ j s) Ã¡ ¼0(¡ j s)
until vert(C~¼

>(s)) = ; for all s 2 S

Algorithm 1: General Policy Improvement

In each step of the algorithm we try to choose a strictly
improving vertex. Di¤erent choices may result in dif-
ferent balanced policies and in‡uence the number of
improvement steps before termination. The algorithm
includes policy improvement for one environment as a
special case.

A geometric interpretation of one step of the general
policy improvement algorithm for three states and two
realizations can be seen in Figure 2. In state s1 there
are no strictly improving vertices. In state s2 there
are three strictly improving vertices, one of them is
the action a3. In state s3 there are only two, both of



state s1
a1 ¼(s1)

¼(s2)
¼(s3)

state s2
a2 a1 a2

state s3
a1 a2

a3a3a3

Figure 2. Improving policies for two realizations

them a stochastic combination of a2 and a3.

5. Examples
All experiments are made with a 10x10 gridworld sim-
ulator to learn an obstacle avoidance behavior. The
robot has 4 sensors, forward, left, right, and back,
with a range of 5 blocks each. There are 3 actions
in each state: move forward, left and right. The robot
gets rewarded if it moves away from obstacles, it gets
punished if it moves towards obstacles.

Environment 1 Environment 2 Environment 3

Figure 3. Three di¤erent environments

We choose three environments (see Figure 3) with the
same reinforcement function and run the algorithm. In
all experiments we start with the random policy. We
calculate in each step all strictly improving vertices
and choose one randomly. In order to evaluate and
compare policies we consider the average utilities of all
states, and normalize it, with 1 being an optimal and
0 the random policy in this environment. Four sample
experiments show performances in each environment
of the di¤erent balanced policies learned.

Experiment: 1 2 3 4
Environment 1 0:994 0:771 0:993 0:826
Environment 2 0:862 0:876 0:788 0:825
Environment 3 0:872 0:905 0:975 0:878

Figure 4 shows the progress of the algorithm for each
environment in experiment 2. In all experiments the
algorithm terminates after 6 to 8 iteration steps.

6. Discussion
The general policy improvement algorithm can be used
to improve a policy for several realizations of a state
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Figure 4. The progress of general policy improvement for
each environment.

action space simultaneously. This means that it can
be used to learn a policy for several environments and
several reinforcement functions together. A useful ap-
plication is to add a new environment or behavior to
an already optimal policy, without changing its perfor-
mance. We have already implemented Value Iteration
for several realizations which leads to an extension of
Q-learning. Our future research focuses on the imple-
mentation of on-line algorithms, methods to …nd the
strictly improving vertices and to decide which of them
are best regarding to learning speed. For more detailed
information please consult the extended version of this
paper on http://mathematik.uibk.ac.at/~rl.
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1 Idea

Until now reinforcement learning has been ap-
plied to abstract behavior within one environ-
ment. Several methods to find optimal or near
optimal policies are known, see Bertsekas and
Tsitsiklis [2], Kaelbling et al. [4], Sutton and
Barto [6]. The fact that a policy learned in
one environment can be successfully applied to
other environments has been observed, but not
investigated in detail.

In our research we focus on a general point of
view of behavior that appears independently
from a single environment. As an example
imagine that a robot should learn to avoid ob-
stacles. What we have in mind is a behavior
suitable for any kind of environment.

We give a method to optimize single-agent be-
havior for several environments and reinforce-
ment functions by learning in several environ-

ments simultaneously in [5]. Now we address
the problem of learning in one and applying the
policy obtained to other environments. We dis-
cuss the influence of the environment on the
ability to generalize over other environments.
How do good learning environments look like?

2 Preliminaries

We propose the following notation for reinforce-
ment learning models, which allows us to treat
several environments and reinforcement func-
tions. The main difference to the standard defi-
nition of a Markov decision process, see Howard
[3] or White [8], is, that we separate the rein-
forcement function from the environment.

An environment is given by

• A finite set S of states.

1



• A family A = (A(s))s∈S of finite sets of
actions.
The set A(s) is interpreted as the set of all
allowed actions in state s.

• A family of probabilities P =P (− | a, s) on
S with (a, s) such that s ∈ S and a ∈ A(s).
We interpret P (s0 | a, s) as the transi-
tion probability that performing action a
in state s leads to the successor state s0.

Let E = (S,A,P) be an environment. A policy
for E is given by

• A family of probabilities π = π(− | s) on
A(s) for s ∈ S.
We interpret π(a | s) as the probability
that action a is chosen in state s.

A Markov decision process (MDP) is given by
an environment E = (S,A,P) and

• A family R =R(s0, a, s) ∈ R with (s0, a, s)
such that s0, s ∈ S and a ∈ A(s).
The value R(s0, a, s) represents the ex-
pected mean reward if performing a in state
s leads to the successor state s0. The fam-
ily R is called a reinforcement function.

The goal of reinforcement learning is to find
policies that maximize the sum of the expected
rewards. Let (E,R) be a MDP and 0 ≤ γ < 1
be a discount rate. Let π be a policy for E. The
value function or utility of policy π in state s is
given by

V π(s) =
X
a

π(a | s)

·
Ã
R(a, s) + γ

X
s0

V π(s0)P (s0 | a, s)
!
,

where

R(a, s) =
X
s0∈S

R(s0, a, s)P (s0 | a, s)

is the expected reward of action a in state s.
The value function describes the expected (dis-
counted) sum of rewards following a certain pol-
icy starting in state s. The action—value of π

Directions

Actions

Sensors

Figure 1: States and actions used in the simu-
lator. The set of actions A(s) = {forward, left,
right} and the sensor values in this example are
s = (4, 2, 5, 0)

of action a ∈ A (s) in state s is defined by

Qπ (a, s) = R(a, s) + γ
X
s0

V π(s0)P (s0 | a, s).

The action value is the expected (discounted)
sum of rewards if action a is chosen in state s
and afterwards policy π is followed. A policy
π∗ is optimal if V π(s) ≤ V π∗(s) for all policies
π and all s ∈ S. There exists at least one deter-
ministic optimal policy and all optimal policies
share the same value function, which we denote
by V ∗.

3 The Blockworld Simula-
tor Robo

To illustrate the theory developed in this paper
we use the simple blockworld simulator Robo1

to learn an obstacle avoidance behavior. The
simulated robot acts in a 10x10 blockworld and
has four sensors, forward, left, right, and back,
with a range of 5 blocks each. The sensor values
are encoded in a vector s = (s1, ..., s4). The
values vary between 0 and 5, where 5 means
that there is a block right in front and 0 means
that there is no block in the next 5 fields. There
are three actions in each state, move forward,
left and right one block (see Fig. 1).

The robot gets rewarded if it is far from obsta-
cles or moves away from obstacles, it gets pun-
ished if it bumps into an obstacle or it moves

1More information on the blockworld simulator Robo
is available at http://mathematik.uibk.ac.at/users/
rl.



towards obstacles. Let s = (s1, . . . , s4) and
s0 = (s01, . . . , s

0
4) be the sensor values for the

state and the successor state. The reinforce-
ment function is defined as follows:

R(s0, a, s) =


+1 if s0i ≤ 3 for i = 1 . . . 4

or
P

s0i − si ≤ −1,
−1 if it bumps into the wall

or
P

s0i − si ≥ 0.0,
0 else.

The optimal value function is calculated using
value iteration, see Bellman [1] or Sutton and
Barto [6]. In all examples and experiments we
use the discount rate γ = 0.95 and accuracy
10−6.

4 Utility of a Policy

Let (E,R) be a MDP and γ a discount rate.
Let π be a policy for E. We define the utility
of π, denoted by V (π), by

V (π) =
1

|S|
X
s∈S

V π(s).

It is the average utility of all states.

Let π∗ be an optimal policy. Then V (π) ≤
V (π∗) for all policies π. A policy is optimal
if and only if its utility is maximal. The dis-
counted utility allows us to describe a policy
with one number and thus to easily compare
all policies.

Example 1 We calculate the utilities of the
random policy and the optimal policy in a sam-
ple blockworld (see Fig. 2) with the reinforce-
ment function of Sect. 3. The discounted
utility of the random policy πrand, that is all
actions are chosen with the same probability,
V (πrand) = −4.712 and the discounted utility
of the optimal policy V (π∗) = 18.511.

5 The State Action Space

To apply a policy to different environments we
need some new notions, which are motivated by
the following example.

Figure 2: A sample blockworld

Consider a robot with its sensors to perceive
the world. All possible sensor values together
represent all possible states for the robot. In
each of these states the robot can perform some
actions. We call all possible states and actions
the state action space.

A state action space E = (S,A) is given by

• A finite set S of states.
• A family A = (A(s))s∈S of finite sets of
actions.

Since the actions are given by the state action
space it is clear what is meant by a policy for
E. Now we imagine the robot in a physical en-
vironment, where we can observe all possible
states for this environment, a subset SE ⊂ S
of all possible states in general, and the transi-
tion probabilities PE . We call an environment
E = (SE ,AE ,PE) a realization of a state ac-
tion space E if

SE ⊂ S and AE(s) = A(s) for all s ∈ S.

We call a MDP (E,R) a realization of E if the
environment E is a realization of E.

Let E = (S,A) be a state action space and E =
(SE ,AE ,PE) be a realization of E. In order to
apply the policy π for E to another realization
of E we (randomly) extend the policy π to a
policy πe for E in the following way:

πe =

(
πe(a | s) = π(a | s) for s ∈ SE ,

πe(a | s) = 1
|A(s)| for s ∈ S \ SE ,

and a ∈ A(s). This means that in unknown
states the actions are chosen randomly. Once
extended, the policy πe can be applied to all
realizations of E. We simply write π for πe.



Figure 3: Sample blockworlds for the realiza-
tions B1, B2 and B3

Example 2 In the blockworld simulator the
state action space is given by all possible sen-
sor values S = {(s1, . . . , s4) with 0 ≤ si ≤ 5}
and in each state the actions forward, left,
right. We consider three different blockworlds
(see Fig. 3). By observing the possible states
and transition probabilities in each blockworld
we obtain realizations B1, B2 and B3 with the
reinforcement function of Sect. 3.
We extend an optimal policy π∗1 for B1 and ap-
ply it to the realizations B2 and B3. Evaluating
the utilities of π∗1 in all realizations, and the op-
timal and random policies, π∗i resp. πrandi , for
each realization Bi, we obtain:

Results π∗1 π∗i πrandi

B1 18.448 18.448 −6.060
B2 15.190 18.877 −4.873
B3 3.081 18.951 −3.678

(1)

Note that π1 performs relatively well in B2 and
bad in B3.

Example 3 Let the state action space and B2
be as in Example 2. We consider the empty
blockworld and obtain realization B0. Compar-
ing the utilities of their extended optimal poli-
cies π∗i we obtain:

Results π∗2 π∗0 πrandi

B2 18.877 9.360 −4.873
B0 19.264 19.264 −4.473

Observe that the optimal policy for B2 remains
optimal in B0, but not viceversa.

6 Optimal Actions

Let E = (S,A) be a state action space and
(E,R) be a realization of E. There can be sev-
eral optimal policies for this realization. While

they are equally optimal in (E,R) they can per-
form better or worse in other realizations of E.
Since we do not know which of the optimal poli-
cies performs best in other realizations we pro-
pose a random choice between all optimal ac-
tions.

Let (E,R) be a MDP and γ a discount rate.
Let s ∈ S. Let V ∗ be the optimal value function
and Q∗ be the optimal action values. We define
the set of optimal actions in s by

A∗(s) = {a∗ ∈ A(s) with Q∗(a∗, s) = V ∗(s)} .
We define the random optimal policy πrand ∗ by

πrand ∗ =


π∗(a | s) = 1

|A∗(s)| for s ∈ SE

and a ∈ A∗(s),
π∗(− | s) = 0 else.

Example 4 We repeat the Example 2 with the
random optimal policy πrand ∗1 for B1 and ob-
tain:

Results πrand ∗1 π∗i πrandi

B1 18.448 18.448 −6.060
B2 15.166 18.877 −4.873
B3 3.202 18.951 −3.678

(2)

Comparing (1) and (2) we find that πrand ∗1 per-
forms better in B3 and slightly worse in B2.

7 Utility of a Policy for a
Family of Realizations

Let E = (S,A) be a state action space. Let
E =(Ei,Ri)i=1...n be a finite family of realiza-
tions of E and (γi)i=1...n discount rates. Note
that the reinforcement functions and discount
rates can be different for each realization. Let π
be a policy for E. We calculate for each (Ei,Ri)
and γi the utility of π, which we denote by
Vi(π).

We define the utility of π for a finite family of
realizations E by

VE(π) =
1

n

X
i=1...n

Vi(π),

the average utility of π in all realizations. This
utility is used to measure the performance of
policies for a family of realizations. We say that
a policy π performs better in E than policy π0

if VE(π) > VE(π
0).



8 Generalizing over Envi-
ronments

Recall our main idea to learn a policy in one en-
vironment and apply it to other environments.
We say that an environment generalizes over
other environments if a policy learned in this
environment performs well in the others.

In the framework defined above we can formu-
late this more precisely using random optimal
policies: Let E = (S,A) be a state action space
and E =(Ei,Ri)i=1...n be a finite family of real-
izations of E. We say that (Ei,Ri) generalizes
better over E than (Ej ,Rj) if VE(πrand ∗i ) >
VE(π

rand ∗
j ).

This general approach includes generalization
over reinforcement functions. In our con-
text generalization is established without using
methods such as neural networks.

9 Experiments

We observed in the above examples that the
environment influences the utility of its opti-
mal policies for other realizations. Our ques-
tion now is, how to choose an environment that
generalizes well over other environments. We
conduct three experiments.

In all experiments we use the blockworld simu-
lator as described in Sect. 3. We choose a fam-
ily E of realizations of the state action space in
Example 2. We calculate the random optimal
policies (Sect. 6) for all realizations of E and
compare their utilities for E (Sect. 7).

9.1 How Many Blocks?

In the first experiment we discuss how many
blocks we should distribute in an empty block-
world. We generate environments with one to
ten blocks distributed randomly. We generate
ten environments for each number of blocks and
obtain a family E of 100 realizations. The util-
ity of the random optimal policies of the n-block
environments for all realizations of E are then
averaged for n = 1 . . . 10. The results of two
experiments are shown in Fig. 4.

We observe that the average utility first in-
creases with the number of blocks and then
decreases if there are more than three blocks.
This confirms the intuitive idea that a “good”
environment to generalize should be neither too
simple nor too complex, more on the simple side
though.
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Experiment 1         
Experiment 2         

Figure 4: Averaged utility of the random opti-
mal policies of the n-block environments for all
realizations

9.2 One-Block Environments

We consider all 64 possible one-block environ-
ments. The question is now, on which position
we put the block in order to have a good en-
vironment to generalize over all one-block en-
vironments. Before you read on, you can think
by yourself where to put the block.

The checkerboard in Fig. 5 represents the util-
ities. The brighter the color of the block the
higher is the utility of the random optimal pol-
icy for all one-block environments of the en-
vironment with a block on this position. The
utilities vary between 13.584 and 14.873. Note
the symmetry of the environments and the eight
best ones.

The checkerboard in Fig. 6 shows the number of
different states in each one-block environment.
Again the brighter the color of the block the
higher is the number. The number of states
lies between 65 and 104. The best one-block
environment has 100 different states.
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Figure 5: The checkerboard shows the utility
for all 64 one-block environments

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9

Figure 6: The checkerboard represents the
number of different states for all 64 one-block
environments

9.3 Two-Block Environments

We extend the above experiment to all two-
block environments. There are 2016 different
environments to compare. Using symmetries
we end up with 632 which still results in a fair
amount of calculations. The best and worst en-
vironment are shown in Fig. 7.

The utility of the random optimal policy of the
best environment is 11.195, the utility of the
worst environment 3.404. The number of states
ranges from 51 to 143. The best environment
has 126 different states, the worst 60. We ob-
serve that “good” environments to generalize
have a high number of different states.

Figure 7: The left blockworld is the best, the
right one the worst environment generalizing
over all two-block environments

10 Discussion

We give a method to apply policies to different
environments and compare them. The results
in Sect. 9 emphasize the influence of the real-
ization, that is the environment with its states
and transition probabilities and the reinforce-
ment function, on the ability to generalize over
other realizations. Example 3 even shows that
an environment may include all the necessary
information to learn an optimal policy for other
environments.

To obtain one policy suitable for many real-
izations it is important to choose an appropri-
ate environment to learn in. Our future work
consists in finding a priori criteria, such as the
number of states, complexity of transitions, re-
wards, etc., to predict the ability of an environ-
ment to generalize.

In Sect. 6 we extend the policy randomly
for unknown states. Applying neural net-
works to choose similar actions for similar un-
known states as in Touzet [7] could improve the
method.
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Abstract
We state an approximate policy iteration al-
gorithm to find stochastic policies that op-
timize single-agent behavior for several envi-
ronments and reinforcement functions simul-
taneously. After introducing a geometric in-
terpretation of policy improvement for sto-
chastic policies we discuss approximate pol-
icy iteration and evaluation. We present ex-
amples for two blockworld environments and
reinforcement functions.

1. Introduction

Reinforcement learning methods usually achieve op-
timal policies for one reinforcement function in one
environment (Bertsekas & Tsitsiklis, 1996; Kaelbling
et al., 1996). Multicriteria reinforcement learning is
concerned with optimizing several reinforcement func-
tions in one environment. Gábor et al. (1998) order
the different criteria, Wakuta (1995) discusses policy
improvement to find optimal deterministic policies for
vector-valued Markov decision processes. In our re-
search we focus on finding stochastic policies, which
can perform better than deterministic policies, for sev-
eral environments and reinforcement functions.

2. MDP’s and State Action Space

An environment E = (S,A,P) is given by a finite
set S of states, a family A = (A(s))s∈S of finite
sets of actions and a family P =P (− | a, s)s∈S,a∈A(s)
of transition probabilities on S. A policy for E is
given by a family π = π(− | s)s∈S of probabili-
ties on A(s). A Markov decision process (MDP) is
given by an environment E = (S,A,P) and a family
R =R(s0, a, s)s0,s∈S,a∈A(s) of rewards in R. Let (E,R)
be a MDP and 0 ≤ γ < 1 be a discount rate. Let
π be a policy for E. We denote by V π(s) the (dis-
counted) value function or utility of policy π in state
s and write Qπ (a, s) for the (discounted) action-value.
The goal of reinforcement learning is to find policies

that maximize the value function.

To apply one policy to different environments we in-
troduce the following notions. A state action space
E = (S,A) is given by a finite set S of states and a
family A = (A(s))s∈S of finite sets of actions. We call
an environment E = (SE ,AE ,PE) and a MDP (E,R)
a realization of a state action space if the set of states
is a subset of S and the actions for all states are the
same as in the state action space, that is SE ⊂ S and
AE(s) = A(s) for all s ∈ SE . We can define policies
for a state action space which can be applied to any
realization.

3. Policy Improvement

3.1 One Realization

The policy improvement theorem for stochastic poli-
cies gives a sufficient criterion to improve a given policy
π. Let π̃ be a policy such thatX

a∈A(s)Q
π(a, s)π̃(a | s) ≥ V π(s) for all s ∈ S. (1)

Then V π̃ ≥ V π, that is V π̃ (s) ≥ V π (s) for all s ∈ S.
If additionally there exists an s ∈ S such that the
inequality (1) is strict then V π̃ > V π. A usual choice
for policy improvement is π̃(a | s) = 1 for an action a ∈
A (s) such that Qπ(a, s) = maxaQ

π(a, s). Repeating
policy improvement leads to policy iteration.

Considering all stochastic policies satisfying (1), we
define the set of improving policies for π in s by

Cπ
≥(s) =

n
π̃(− | s) :

X
Qπ(a, s)π̃(a | s) ≥ V π(s)

o
.

The set of strictly improving policies Cπ
>(s) and the

set of equivalent policies Cπ
=(s) for π in s are defined

analogously. We define the set of strictly improving
actions of π in s by Aπ

>(s) = {a : Qπ(a, s) > V π(s)}.
The set of improving policies Cπ

≥(s) is a polytope given
by the intersection of a half-space and a standard sim-
plex. Its vertices are

vert
¡
Cπ
≥(s)

¢
= vert(Cπ

=(s)) ∪Aπ
>(s). (2)



v12a1

π(s)

v32

a2

v32π(s)

v23

a2 a1

a3 a3

Figure 1. left: Improving policies for one realization right:
Improving policies for two realizations

See Figure 1 left, where Cπ
≥(s) is the shaded area, the

side marked by the small arrows, Aπ
>(s) = {a1, a3} and

vert(Cπ
=(s)) = {v12,v32}. Let A(s) = {a1, . . . , an},

c = (c1, . . . , cn)∈ Rn with ci = Qπ(ai, s) and b =
V π(s). Let ei ∈ Rn denote the ith standard basis
vector. Then vert (Cπ

=(s)) is {ek : ck = b}∪½
vij=

b− cj
ci − cj

ei +
ci − b

ci − cj
ej : ci > b, cj < b

¾
. (3)

3.2 Several Realizations

Let E =(S,A) be a state action space. We want to
improve a policy π for two realizations (E1,R1) and
(E2,R2) of E with value functions V π

i and Qπ
i for dis-

count rates γi, i = 1, 2. Let π̃ be a policy such thatX
a∈A(s)Q

π
1 (a, s)π̃(a | s) ≥ V π

1 (s) and (4)X
a∈A(s)Q

π
2 (a, s)π̃(a | s) ≥ V π

2 (s) (5)

for all s ∈ S1∩S2 and that π̃ (− | s) satisfies (4) or (5)
if s is only contained in S1 or S2 respectively. Then
V π̃
1 ≥ V π

1 and V π̃
2 ≥ V π

2 , see equation (1).

We define the set of improving policies Cπ
≥(s) =

Cπ
1,≥(s) ∩ Cπ

2,≥(s) for π in s ∈ S1 ∩ S2. The set of
strictly improving policies Cπ

>(s) is given by all poli-
cies π̃ (− | s) ∈ Cπ

≥(s) such that one inequality (4) or
(5) is strict. If s is only contained in S1 or S2 we use
the definition from the previous subsection. Let π̃ a
policy such that π̃(− | s) ∈ Cπ

≥(s) for all s ∈ S and
π̃(− | s) ∈ Cπ

>(s) for at least one s. Then π̃ per-
forms better than π since V π̃

i ≥ V π
i and V π̃

1 > V π
1 or

V π̃
2 > V π

2 by the previous subsection.

We call a policy balanced if Cπ
>(s) is empty for all s. In

general there exist several balanced policies which can
be stochastic. In one environment a policy is optimal
if and only if it is balanced. For further details and
policy iteration for the general case with a finite family
of realizations see Matt and Regensburger (2001).

To describe Cπ
≥(s) and find a π̃(− | s) ∈ Cπ

>(s)
we consider its vertices, see Figure 1 right. We call
the vertices vert(Cπ

≥ (s)) improving vertices and de-
fine the strictly improving vertices by vert(Cπ

> (s)) =

vert(Cπ
≥ (s)) ∩ Cπ

> (s). For one realization the strictly
improving vertices are the strictly improving actions.
To find all strictly improving vertices for two realiza-
tions and an s ∈ S1 ∩ S2 we take all elements from
vert(Cπ

1,≥(s)) ∪ vert(Cπ
2,≥(s)) that are in Cπ

1,> (s) or
Cπ
2,> (s), where vert(C

π
i,≥(s)) are given by (2) and (3).

4. Approximate Policy Iteration

For policy iteration we need the action-values. If the
model of the environment is not given explicitly we can
approximate them. We use a SARSA related method,
see algorithm 1, (Sutton & Barto, 1998).

repeat
choose s ∈ S and a ∈ A(s) derived from π
take action a and observe r and s0

choose a0 ∈ A(s0) according to π
Q(a, s)← Q(a, s) + α (r + γQ(a0, s0)−Q(a, s))

Algorithm 1: Approximate Policy Evaluation

We call Algorithm 2 approximate policy iteration for
several realizations. We start with an arbitrary policy
and approximate the action-values. The value function
can be derived by the Bellman equation. Then we
improve the policy according to Section 3.2 with the
approximated values.

repeat
approximate V π

i and Qπ
i for i ∈ [n]

for all s ∈ S do
if vert(Cπ

>(s)) 6= ∅ then
choose π0(− | s) ∈ vert(Cπ

>(s))
π(− | s)← π0(− | s)

Algorithm 2: Approximate Policy Iteration

5. Experiments

All experiments are made with the simulator Sim-
Robo1. The robot has four sensors, forward, left, right,
and back, with a range of five blocks each. There
are three actions in each state, move forward, left and
right. The state action space is defined by all possible
sensor values and actions. We consider two environ-
ments, see Figure 2, and two reinforcement functions.
For obstacle avoidance, Roa, the robot gets rewarded
if it moves away from obstacles and it gets punished if
it moves towards them. For wall following, Rwf , the
robot gets rewarded if there is a block on its right side
and punished otherwise.

1More information on the blockworld simulator is avail-
able at http://mathematik.uibk.ac.at/users/rl.



Figure 2. Environments E1 and E2
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Figure 3. The performance of approximate policy iteration
for wall following in two environments

In each experiment we consider two realizations and
run Algorithm 2 starting with the random policy. For
policy evaluation, Algorithm 1, we use discount rate
γ = 0.95, start with learning rate α = 0.8 and run 5000
iterations. We choose action a using the �−greedy pol-
icy derived from π. We define the utility of a policy
by the average utilities of all states. To evaluate and
compare the policies obtained after each improvement
step we calculate the utilities of the policies exactly us-
ing value iteration. The utilities are then normalized,
with 1 being an optimal and 0 the random policy in
this realization.

5.1 Two Environments

We want to learn a policy for a wall following be-
havior for the environments E1 = (S1,A1,P1) and
E2 = (S2,A2,P2). Thus we have the realizations
(E1,Rwf ) and (E2,Rwf ). Figure 3 shows the utilities
of the learned policy in each iteration step for each re-
alization. Since the action values and value functions
are only approximated the utility may decrease after
a policy improvement step.

5.2 Two Environments and Two
Reinforcement Functions

We look for a policy that avoids obstacles inE1 and fol-
lows the wall in E2. The realizations are (E1,Roa) and
(E2,Rwf ). Figure 4 shows the utilities. Even tough
wall following and obstacle avoidance together may be
contradicting we obtain a stochastic policy that per-
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Figure 4. The performance of approximate policy iteration
for wall following and obstacle avoidance in two environ-
ments

forms well in both realizations.

6. Discussion

Approximate policy iteration requires good approxi-
mations of all action-values in all realizations for the
improvement step. Therefore the approximate policy
evaluation step is critical and exploration plays a fun-
damental role. We note that the starting policy influ-
ences the policy learned by the algorithm. Our future
research focuses on optimistic policy iteration meth-
ods, where the policy is improved after incomplete
evaluation steps.
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Notation

← Assignment operator, 38

aff(X) Affine hull of the set X ⊂ Rd, 22

cone(X) Conical hull of the set X ⊂ Rd, 106

conv(X) Convex hull of the set X ⊂ Rd, 21

vert(P ) Set of vertices of polytope P , 23

(E,R, γ) Discounted MDP with environment E, rewards R and discount
rate γ, 9

[π] Equivalence class of policy π, 13

α A step-size parameter, 38

αt A step-size parameter at iteration t, 39

4d Standard d-simplex, 23

δa Standard basis vector in RA(s), 23

γ A discount rate, 5

dxe Ceiling function for x ∈ R, 28

bxc Floor function for x ∈ R, 23

‖B‖∞ Matrix norm of matrix B, 8

‖x‖∞ Maximum norm of vector x, 8

E = (S,A) A state action space with states S and actions A, 99

Eπ Expectation value, 5
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A Family of actions, 2

AS Set of allowed state-action pairs, 4

E = (Ei)i∈I A family of realizations of a state action space, 100

ei ith standard basis vector, 23

P Family of transition probabilities, 2

R Family of rewards, 3

π(− | s) A policy in state s, that is, a probability on A(s), 3

π∗ An optimal policy, 32

Π Set of all policies, 3

π A policy, 2

πrand Random policy, 69

P̃ π Transition Matrix of policy π for state-action pairs, 11

T̃ Contraction mapping with fixed point Q∗, 35

T̃ π Contraction mapping with fixed point Qπ, 12

a An action, 2

A(s) Set of available actions in state s, 2

A∗(s) Set of optimal actions in state s, 33

Aπ
>(s) Set of strictly improving actions for policy π in state s, 18

Aπ,Q
> (s) Set of strictly improving actions for policy π and approximation Q

in state s, 41

C(s) Standard simplex in RA(s), 23

Cπ,E
= (s) Set of equivalent policies for policy π and the family of realizations

E in state s, 102

Cπ
=(s) Set of equivalent policies for policy π in state s, 18

Cπ,E
> (s) Set of strictly improving policies for policy π and the family of real-

izations E in state s, 102
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Cπ
>(s) Set of strictly improving policies for policy π in state s, 18

Cπ,E
≥ (s) Set of improving policies for policy π and the family of realizations

E in state s, 102

Cπ,Q
≥ (s) Set of improving policies for policy π and approximation Q in state

s, 41

Cπ
≥(s) Set of improving policies for policy π in state s, 17

d Direction of the simulated robot in SimRobo, 60

Dπ̃,π One-step difference between policies π̃ and π, 15

E = (S,A,P) Environment E with states S, actions A and transition prob-
abilities P, 2

H∞ Set of infinite histories, 5

HT Set of histories up to time T , 4

hT A history of states and actions up to time T , 4

I Identity Matrix, 8

P (s′ | a, s) Transition probability that action a in state s leads to successor
state s′, 2

P π(s′ | s) Transition probability from state s to s′ for policy π, 3

P π Transition Matrix of policy π, 7

Q∗(a, s) Optimal action-value of action a in state s, 32

Qπ(a, s) Action-value of action a in state s for policy π, 11

R(a, s) Expected reward of action a in state s, 3

R(s′, a, s) Reward if performing action a in state s leads to the successor
state s′, 3

Rπ(s) Expected reward for policy π in state s, 3

Rγ
∞ Discounted return of infinite histories, 5

RT Return of histories up to time T , 5
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Rγ
T Discounted return of histories up to time T for discount rate γ, 5

S Set of states, 2

s A state, 2

SE Set of states for the family of realizations E, 101

T Contraction mapping with fixed point V ∗, 34

T π Contraction mapping with fixed point V π, 9

V (π) Discounted utility of policy π, 14

V ∗ Optimal value function, 32

V π Discounted value function for policy π, 9

V π,γ
T (s) Discounted value function of state s for policy π up to time T , 6

V π
T (s) Undiscounted value function of state s for policy π up to time T , 6

xB Multiplication of row vector x ∈ RS and matrix B ∈ RS×S, 7
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Spieltheorie, Birkhäuser Verlag, Basel, 2001. MR 2002b:90001
20

[Bre00] David Bremner, Polytopebase, URL: http://www.cs.unb.ca/

profs/bremner/PolytopeBase/, 2000. 111

[Bro86] Rodney A. Brooks, A robust layered control system for a mobile
robot, IEEE Journal of Robotics and Automation 2 (1986), no. 1,
14–23. 141

209

http://www.ams.org/mathscinet-getitem?mr=16:732c
http://www.ams.org/mathscinet-getitem?mr=19:820d
http://www.ams.org/mathscinet-getitem?mr=87i:01045
http://www.ams.org/mathscinet-getitem?mr=1 975 026
http://www.ams.org/mathscinet-getitem?mr=2002b:90001
http://www.cs.unb.ca/profs/bremner/PolytopeBase/
http://www.cs.unb.ca/profs/bremner/PolytopeBase/


BIBLIOGRAPHY 210

[BS03] Diego Ariel Bendersky and Juan Miguel Santos, Robot forma-
tions as an emergent collective task using target-following behav-
ior, IberoAmerican Journal of Artificial Intelligence 21 (2003),
9–18. 140

[BT89] Dimitri P. Bertsekas and John N. Tsitsiklis, Parallel and dis-
tributed computation: numerical methods, Prentice-Hall, Inc.,
1989, available online URL: http://hdl.handle.net/1721.1/
3719. 9, 10

[BT96] , Neuro-dynamic programming, Athena Scientific, Bel-
mont, MA, 1996. 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 84,
85, 95, 143

[Cas03] Anthony R. Cassandra, Partially observable markov decision pro-
cesses, URL: http://www.cassandra.org/pomdp, 2003. 65
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