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1. Introduction

This paper defines two new normal forms of differential fractions (i.e. fractions of two differential 
polynomials) in the context of differential algebra (Ritt, 1950; Kolchin, 1973). The differential polyno-
mial ring R considered in this paper is as follows: one of its derivation is denoted δ; one assumes 
that there exists an element x of R such that δx = 1; and K is its field of constants w.r.t. δ (see 
however Section 2 for the rigorous assumptions on R). The set S of the so-called differential frac-
tions is defined as the field of fractions of R . A major result of the paper is Proposition 52 which 
shows that any differential fraction F ∈ S can be uniquely decomposed as a sum:

F = P +
∞∑

i=0

δi W i , (1)

where P ∈ K [x] is a polynomial, the W i are differential fractions in the set SF ⊂ S of the so-called 
“functional” fractions, and where only a finite number of W i are nonzero. Moreover, we provide Al-
gorithm IteratedIntegrate (see page 37) for computing (1) and prove in Proposition 52 that Normal 
Form (1) is unique and additive, i.e. that, if

F̄ = P̄ +
∞∑

i=0

δi W̄ i

is the unique decomposition of some differential fraction F̄ ∈ S then

F + F̄ = (P + P̄ ) +
∞∑

i=0

δi(W i + W̄ i)

is the unique decomposition of F + F̄ . More precisely, in terms of vector spaces, Proposition 52 shows 
that

S = K [x] ⊕ SF ⊕ δSF ⊕ δ2SF ⊕ · · ·
where S is seen as a K -vector space.

These results improve those of Boulier et al. (2013) since the decomposition provided by Boulier 
et al. (2013) depends on the implementation of Boulier et al. (2013, Algorithm integrate) and is not 
additive. Moreover, (Boulier et al., 2013, Algorithm integrate) is flawed since it may not terminate 
over some inputs (see Boulier et al., 2014). Our results also extend (Boulier et al., 2014), which fixes 
the flaw in Boulier et al. (2013, Algorithm integrate) but does not address the additivity property.

Even without the additivity property, algorithms for computing (1) are important: they permit to 
reduce the size of formulas in the output of differential elimination methods (when polynomials are 
solved w.r.t. their leading derivatives, the left-hand sides become differential fractions), they give more 
insight to understand the structure of an equation, and they lead to better numerical schemes in the 
context of parameter estimation problems over noisy data, from the input–output equations, because 
they permit to replace, at least partially, numerical derivation methods by numerical integration ones. 
See Boulier et al. (2014) for details. It is worth mentioning that working with fractions instead of 
polynomials yields more freedom by adjusting the denominators. Indeed, decomposition (1) highly 
depends on the denominator of F , i.e. the decomposition of F/Q , where Q is a polynomial, can be 
completely different from the decomposition of F . Finding a suitable Q is a difficult task and depends 
on the application (in the context of Boulier et al. (2013), the goal was to obtain order zero W i ).

Variants of Normal Form (1) can be easily obtained, e.g. by bounding the value of i. Bounding i
by 1, a unique decomposition of a fraction F can be defined by

F = W + δR (2)

where W is a functional fraction, and R is a fraction. Actually, Normal Form (1) is in practice ob-
tained by iterating Normal Form (2), which is obtained by Algorithm Integrate (see page 33 and 
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Proposition 49). Note that Normal Form (2) is related to the decomposition of ordinary differential 
polynomials by Gao and Zhang (2008, 2004) in the particular case where F is polynomial and W is 
zero.

The additional additivity property is also very interesting since it provides more intrinsic (i.e. 
not algorithm dependent) formulas and makes it simpler to study linear dependencies between 
differential fractions (see Remark 50): given k differential fractions F1, F2, . . . , Fk , how to find k coef-
ficients α1, α2, . . . , αk in K such that

F = α1 F1 + α2 F2 + · · · + αk Fk

is the derivative δ G of some unknown differential fraction G? Thanks to the additivity property, it is 
now sufficient to decompose each Fi as W i + δRi as in (2), and look for coefficients in K such that

α1 W1 + α2 W2 + · · · + αk Wk = 0 .

Suitable techniques for finding linear dependences between fractions are described by Boulier and 
Lemaire (2015). Moreover, this might give an alternative for the problems addressed by Raab (2013).

More generally, the additivity property is a further step towards an algorithmic elimination theory 
of integro-differential polynomials, as stated in the conclusion of Boulier et al. (2013).

Finally, all algorithms presented in this paper were implemented in Maple, using the Differen-
tialAlgebra package (Boulier and Cheb-Terrab, 2010).

The rest of the paper is organized as follows. Basic notions of differential algebra, the decomposi-
tion of a multivariate fraction and a slight variant of the Hermite method for decomposing a fraction 
in the univariate case are reviewed in Section 2.

Section 3 is mainly a generalization of the work of Bilge (1992) to the context of differential al-
gebra (partial derivations and general rankings are handled). Functional monomials and functional 
polynomials are defined. The section finally introduces Algorithm polyIntegrate which computes Nor-
mal Form (2) in the polynomial case (i.e. when F is a polynomial in R).

Section 4 provides proofs of the existence and uniqueness of Normal Form (2) for differential 
fractions, and presents Algorithm Integrate for computing it. As opposed to the polynomial case, the 
fractional case is surprisingly difficult. Functional fractions are defined in Section 4.1. The term R in (2)
is defined up to a constant. In order to make it unique, the notions of polynomial part and constant 
term of a fraction are introduced in Section 4.2. Algorithm Integrate is presented in Section 4.3, as 
well as its proof.

Finally, the existence and uniqueness of Normal Form (1) is proved in Section 5 (Proposition 52), 
and Algorithm IteratedIntegrate, which computes it, is presented.

2. Preliminaries

2.1. Differential algebra tools

Reference textbooks are Ritt (1950) and Kolchin (1973). A differential ring R is a ring endowed 
with finitely many, say m, derivations δ1, . . . , δm , i.e., unary operations satisfying the following axioms, 
for all A, B ∈ R:

δ(A + B) = δ(A) + δ(B) , δ(A B) = δ(A) B + A δ(B) ,

and which commute pairwise. The derivations generate a commutative monoid w.r.t. composition 
denoted by

� = {δa1
1 · · · δam

m | a1, . . . ,am ∈ N} ,

where N stands for the nonnegative integers. The elements of � are called derivation operators. If 
θ = δ

a1
1 · · · δam

m is a derivation operator then ord(θ) = a1 + · · · + am denotes its order, with ai being 
the order of θ w.r.t. derivation δi . In order to form differential polynomials, let us introduce a set 
U = {u1, . . . , un} of n differential indeterminates. The monoid � acts on U , giving the infinite set �U
of derivatives. For readability, we often index derivations by letters like δx and δy , denoting also the 
corresponding derivatives by these subscripts, so uxy denotes δx δy u.
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In the rest of the paper, δ is a distinguished derivation. Without loss of generality, we assume 
that δ = δ1. Let us assume there exists an independent variable x such that δx = 1 and δi x = 0 for all 
i ≥ 2. We consider the differential ring R = K [{x} ∪�U ] where K is a field containing Q such that 
δa = 0 for all a in K . Due to axioms of derivations, the derivative δ acts on elements of R in the 
following way:

δ = ∂

∂x
+

∑
w∈�U

(δw)
∂

∂ w
· (3)

A ranking is a total ordering on �U that satisfies the two following axioms:

(1) v ≤ θ v for every v ∈ �U and θ ∈ �,
(2) v < w ⇒ θ v < θ w for every v, w ∈ �U and θ ∈ �.

Rankings are well-orderings, i.e., every strictly decreasing sequence of elements of �U is finite (see 
Kolchin, 1973, §I.8). From now on, we assume a ranking is fixed. In the sequel, it will sometimes 
be emphasized that some notions are ranking dependent by referring to this fixed ranking. Let P
be a differential polynomial in R \ K [x]. The leading derivative, or leader, of P , denoted ld(P ), is 
the highest derivative v such that d = deg(P , v) is nonzero. The monomial vd is the rank of P . The 
leading coefficient of P w.r.t. v is the initial of P , and it is denoted i P . The differential polynomial 
∂ P/∂v is the separant of P . A rank ud is said to be lower than a rank ve if u < v or both u = v and 
d < e. The ordering on the ranks is also a well-ordering.

Differential fractions are defined as quotients of differential polynomials i.e. elements of S =
K ({x} ∪ �U ). The leader of a differential fraction F in S \ K (x) is defined as the greatest deriva-
tive v such ∂ F

∂v �= 0. Let F be a polynomial in some variable y. One denotes val(F , y) the valua-
tion of F w.r.t. y i.e. the minimum degree in y of all monomials occurring in F , if F �= 0, and 
∞ if F = 0. Let F/G be a nonzero fraction and y a variable (in the differential context, a vari-
able is either the independent variable or a derivative). The degree of F/G w.r.t. y is defined by 
deg(F/G, y) = deg(F , y) − deg(G, y). If the fraction F is zero, then deg(F , y) = −∞. One easily no-
tices that the definition of the degree of a fraction does not depend on the chosen representative of 
the fraction. Moreover, as in the polynomial case, for any fractions A and B , one has

deg(A + B, y) ≤ max{deg(A, y),deg(B, y)} (4)

with equality if deg(A, y) �= deg(B, y). Finally, polynomials and fractions are denoted with uppercase 
letters (A, B, . . .), and derivatives as well as independent variables are denoted with lowercase letters 
(u, v, . . . , x, y1, . . .).

2.2. Multivariate partial fraction decomposition

Since an antiderivative (or primitive) is only defined up to a constant, we introduce the constant 
term of a multivariate fraction as well as its polynomial part. These notions rely on the generalization 
to multivariate fractions of the partial fraction decomposition introduced by Stoutemyer (2009). We 
present a slight modification of Stoutemyer’s multivariate decomposition of a fraction in order to 
guarantee some uniqueness property. We however do not recall the complete algorithm since we will 
only need to compute constant terms and polynomial parts of fractions.

Following essentially Stoutemyer (2009), we consider multivariate partial decompositions for mul-
tivariate fractions in the variables yi ordered by y1 > y2 > · · · > ys . Accordingly, the main variable of 
a polynomial p is defined as the highest variable yi such that deg(p, yi) > 0. In order to completely 
normalize the representative of a reduced fraction, it suffices to normalize one of its coefficients. This 
is achieved using the notions of admissible orderings and leading coefficients in the Gröbner basis 
sense (see Cox et al., 1992, chap. 2).

Definition 1 (Multivariate partial fraction). Consider a field A of characteristic 0 and an admissible 
ordering. Take an irreducible fraction P/Q in A (y1, . . . , ys) with Q = Q a1

1 · · · Q ar
r where each Q i is 
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an irreducible factor in A [y1, . . . , ys] and each ai is a positive integer. The fraction P/Q is called a 
multivariate partial fraction if it satisfies the conditions:

(1) i �= j implies Q i and Q j have different main variables (for the chosen ordering y1 > y2 >

· · · > ys),
(2) the leading coefficient of each Q i for the admissible ordering is equal to 1,
(3) for each 1 ≤ i ≤ r, deg(P , ȳ) < deg(Q i, ȳ) where ȳ denotes the main variable of Q i .

Lemma 2. Consider a field A of characteristic 0 and an admissible ordering. Any multivariate fraction F of 
A (y1, . . . , ys) can be written as a unique sum of multivariate partial fractions with pairwise distinct denom-
inators. The sum is called the multivariate partial decomposition of F .

Proof. See Stoutemyer (2009). �
Remark 3. Lemma 2 slightly strengthens (Stoutemyer, 2009) by ensuring a unique decomposition as 
well as making the P and Q unique (thanks to the item 2 of Definition 1).

Remark 4. The condition deg(P , ȳ) < deg(Q i, ȳ) could be relaxed to deg(P , ȳ) < deg(Q ai
i , ȳ), follow-

ing a remark by Stoutemyer (2009, page 208) stating: “In that case, ‘degree of P ’ should be replaced with 
‘degree of Pn’ in property b of Definition 1”. In practice, this relaxed condition leads to fewer terms in the 
decomposition.

Example 5 sketches the computation of the decomposition of some fraction.

Example 5. In this example, A = Q and the admissible ordering is the lexicographic ordering given 
by y1 > y2. The decomposition of F = y2

(y2
1+1)(y1+y2)

is

F = y2

(y1 + y2)(y2
2 + 1)

+ 1

y2
1 + 1

+ −y1 y2 − 1

(y2
1 + 1)(y2

2 + 1)
·

It is obtained by first computing a partial fraction decomposition w.r.t. y1 yielding

F = y2

(y1 + y2)(y2
2 + 1)

− (y1 − y2)y2

(y2
1 + 1)(y2

2 + 1)

and then computing a partial fraction decomposition w.r.t. y2 on each term after removing the factor 
in y1 in the denominator (i.e. computing a partial fraction decomposition w.r.t. y2 on y2

y2
2+1

and 
(y1−y2)y2

y2
2+1

).

Remark 6. Please note that unlike in the univariate case, the irreducible factors of the denominators 
in the decomposition of a fraction F do not necessarily divide the denominator of F . In Example 5
the factor (y2

2 + 1) in the final decomposition does not divide the denominator of F .

Definition 7 (Polynomial part and constant term of a multivariate fraction). Keep the assumptions of 
Lemma 2 and take F ∈ A (y1, . . . , ys). The unique multivariate partial fraction P/Q of the multivariate 
decomposition of F satisfying Q = 1 is called the polynomial part of F (it belongs to A [y1, . . . , ys]). 
The term of degree 0 w.r.t. the yi of the polynomial part of F is called the constant term of F (it 
belongs to A ).

Remark 8. The polynomial part as well as the constant term of a fraction F do not depend on the 
admissible ordering. However, they depend on the ordering y1 > · · · > ys . Consider the fraction F
whose multivariate decomposition for y1 > y2 is

y1 y2 + y2 ·

y1 + y2
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Its polynomial part and its constant term are equal to y1 y2 and 0 for y1 > y2. However, the polyno-
mial part and the constant term of the same F for the ordering y2 > y1 are y1 y2 + 1 and 1 since the 
decomposition of F for y2 > y1 is

y1 y2 + 1 − y1

y1 + y2
·

Lemma 9. Consider a field A of characteristic 0 and an admissible ordering. Take two fractions F and G in 
A (y1, . . . , ys) and consider a linear combination H = αF +βG for some α and β in A . Denote 

∑s
i=1 Fi and ∑t

j=1 Gi the respective multivariate partial fraction decompositions of F and G. By grouping the Fi and G j
with the same denominators, the multivariate partial fraction decomposition of H can be obtained from those 
of F and G as follows:

H =
∑

(i, j)∈I F G
αFi+βG j �=0

(αFi + βG j) +
∑
i∈I F

αFi +
∑
j∈IG

βG j (5)

where

• I F G is the set of pairs (i, j) such that Fi and G j have the same denominators,
• I F is the set of the integers 1 ≤ i ≤ s such that (i, j) /∈ I F G for all 1 ≤ j ≤ t,
• IG is the set of the integers 1 ≤ j ≤ t such that (i, j) /∈ I F G for all 1 ≤ i ≤ s.

Proof. By construction of I F G and I F , each integer 1 ≤ i ≤ s is either in the first component of an 
element of I F G or belongs to I F . With a similar argument on I F G and IG , the right hand side of 
Equation (5) equals αF + βG . It is also clear that each term of the form αFi + βG j is a multivariate 
partial fraction because Fi and G j have the same denominators. Thus Equation (5) is the multivariate 
partial fraction decomposition of H . �
Corollary 10. The polynomial part and constant term operations are A -linear.

Proof. This is a direct consequence of Lemma 9. �
2.3. The Hermite Algorithm

Let us first borrow two definitions from Bronstein (1997, Definitions 1.7.1 and 1.7.2).

Definition 11 (Squarefree polynomial). Consider a unique factorization domain A and a polynomial P
in A [y]. The polynomial P is said squarefree (w.r.t. y) if there exists no Q ∈ A [y] \ A such that Q 2

divides P in A [y].

Definition 12 (Squarefree factorization). Consider a unique factorization domain A and a polynomial 
P in A [y]. A squarefree factorization of P is a factorization of the form P = P1 P 2

2 · · · P t
t where each Pi

is squarefree and gcd(Pi, P j) ∈ A for i �= j.

Our integration problem contains as a subproblem the well known problem of integrating a uni-
variate fraction. Indeed, integrating ∂ F

∂u w.r.t. u to retrieve F can be done by integrating ux
∂ F
∂u w.r.t. x

since δF = ux
∂ F
∂u . Given a univariate fraction F in the variable u, the Hermite reduction computes two 

fractions W and R such that F = W + ∂ R
∂u , deg(W , u) < 0, and W has a squarefree denominator. See 

for example the different variants of Algorithm HermiteReduce given by Bronstein (1997, pages 40, 
41 and 44).

In order to ensure the uniqueness of the Hermite reduction (R, W ), we also require that R has a 
zero constant term w.r.t. the variable u (in the sense of Definition 7). In the univariate case, this last 
condition is equivalent to the simple condition: if R is a polynomial in u, the term of degree 0 of 
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R is zero ; if R = A/B is a fraction with deg(B, u) > 0, by writing R = P + Ā/B where P and Ā are 
polynomials such that deg(A, u) < deg(B, u), the term of degree 0 of P is zero.

This paper relies on Algorithm Hermite, based on a slight modification of Bronstein (1997, Algo-
rithm HermiteReduce, page 44). Algorithm Hermite performs an extra division to ensure that R has 
a zero constant term, since we could not easily deduce from the code by Bronstein (1997, Algorithm 
HermiteReduce, page 44) whether this last condition is true or not.

Algorithm 1: Hermite(F , u)

Input: F a univariate fraction in u
Output: the unique pair of fractions (W , R) such that F = W + ∂ R

∂u , deg(W , u) < 0, the denominator of 
W is squarefree, and R has a zero constant term.

1 begin

2 compute (W , R̄) using (Bronstein, 1997, HermiteReduce, page 44) such that F = W + ∂ R̄
∂u ;

3 remove from R̄ its constant term (w.r.t u) (e.g. using an Euclidean division) thus obtaining R ;
4 return (W , R)

Algorithm Hermite is actually a nondifferential algorithm, and it will be called later by Integrate
with a parameter u which can be either a derivative or the independent variable x.

Example 13. Take F = k2ke V e

y + ke
+ ke V e ẏ

(y + ke)2
seen as a univariate fraction in y. Then Hermite(F , y) =

(W , R) where W = k2ke V e

y + ke
and R = − ke V e ẏ

y + ke
· One easily checks that F = W + ∂ R

∂ y , deg(W , y) < 0, W

has a square free denominator and R (seen as a univariate fraction in y) has a zero constant term.

3. Polynomial integration

This section is mainly a generalization of the work of Bilge (1992) to the context of differential 
algebra. In particular, partial derivations and general rankings are handled.

The differential ring R can be seen as a K -vector space. The set δR is trivially a proper vector 
subspace of R; it represents the set of all differential polynomials which are derivatives of some 
differential polynomial.

Suppose we fix a complementary vector space F to δR in order to have R = F ⊕ δR . Then 
integrating a differential polynomial P can be seen as projecting P on F and δR , yielding a unique 
decomposition (W , Q ) ∈ F × δR such that P = W + Q , where W is the “nonintegrable” part, and Q
is the integrable part. The vector space F is not unique and has to be chosen. In this section, we show 
that F can be chosen as RF which denotes the set of functional polynomials (see Definition 15). The 
choice of the letter F in RF comes from the term functional which is used by Bilge (1992) after being 
introduced by Gel’fand and Dikii (1976).

3.1. Functional and integrable monomials

We must distinguish between the integrable and functional (= nonintegrable) parts of a differ-
ential polynomial. In the case of differential polynomials, the most natural way to achieve this is 
on a monomial-by-monomial basis, guided by the following discussion. Consider a monomial M =
xe vd1

1 · · · vds
s where e ≥ 0, s > 0, the di are positive, the vi are derivatives sorted by v1 > v2 > · · · > vs

for a chosen ranking. Due to the axioms of rankings, δM is equal to M2 = d1xe(δv1)vd1−1
1 vd2

2 · · · vds
s

plus other monomials with leaders strictly less than δv1. The monomial M2 has very special proper-
ties. Its leader δv1 appears with an exponent 1 and it belongs to δ(�U ). Moreover, ld M2 = δv1 ≥ δv
for all derivatives v occurring in M2 such that v �= ld M2. This discussion leads naturally to the fol-
lowing definitions.
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Definition 14 (Functional and integrable monomials). Consider a ranking. Consider a monomial M =
xe vd1

1 · · · vds
s where e ≥ 0, the di are positive, the vi are derivatives sorted by v1 > v2 > · · · > vs for 

the considered ranking. The monomial M is said to be integrable w.r.t. x and the ranking, if

(s = 0) or
(

v1 ∈ δ(�U ) and d1 = 1 and (s = 1 or δv2 ≤ v1)
)
. (6)

In the opposite case, that is if

(s ≥ 1) and
(

v1 /∈ δ(�U ) or d1 > 1 or (s ≥ 2 and δv2 > v1)
)
, (7)

M is said to be functional w.r.t. x and the ranking.

Definition 15 (Functional polynomial). Consider a ranking. A differential polynomial P is said to be 
functional w.r.t. x and the ranking if it can be written as a linear combination over K of functional 
monomials w.r.t. x and the ranking. The set of functional polynomials is denoted by RF .

Example 16. Consider the ranking u < v < ux < vx < u y < v y < uxx < · · · . The monomials xv , u2
x u, 

ux v , v yu y are functional (w.r.t. x and the ranking). The monomials x, uxu, vxu, uxx v , xvxxu2
x u are 

integrable (w.r.t. x and the ranking).

The notion of functional monomial clearly depends on the chosen x and the chosen ranking, so a 
monomial may be functional for some x and some ranking, but not for another choice of x or another 
ranking. In the rest of the paper, the dependency w.r.t. x and the ranking will be simply omitted when 
there is no ambiguity.

The following example gives some insight on how the functional and integral parts of a polynomial 
will be extracted.

Example 17. Following Example 16, each of the integrable monomials uxu, vxu, uxx v , vxxu2
x ux can 

be rewritten as the derivative of some monomial (times a constant) plus a linear combination of 
monomials with smaller leaders:

• uxu = 1
2 δ(u2), vxu = δ(vu) − ux v , uxx v = δ(ux v) − vxux ,

• xvxxu2
x u = δ(xvxu2

x u) − 2xvxuxxuxu − xvxu3
x − vxu2

x u.

Note that some functional monomials can be written in a similar way. An example is given by: 
ux v = δ(uv) − vxu where ux v is functional. However, one has ld(ux v) = ux < vx = ld(vxu). Continuing 
the process would lead to an infinite loop since ux v = δ(uv) − vxu = δ(uv) − (δ(uv) − ux v) = ux v =
· · · . In order to achieve a finite rewriting process (as Algorithm polyIntegrate will do), it is better not 
to rewrite the functional monomials.

3.2. The polyIntegrate Algorithm

Proposition 18. We have RF ∩ δR = {0}.

Proof. Let us assume P ∈ RF ∩ δR and P �= 0. We show that P involves at least one integrable 
monomial. This contradiction with the hypothesis P ∈ RF will prove the proposition. Since P ∈ RF
and P �= 0, one has P /∈ K [x] (condition s ≥ 1 in (7)). Denote v = ld P . Since P ∈ δR , there exists P̄
with leader v̄ such that P = δ P̄ and, by the axioms of rankings, v = δ v̄ . Consider the formula

P = δ P̄ = v
∂ P̄

∂ v̄
+

∑
w∈E,w �=v̄

(δw)
∂ P̄

∂ w
+ ∂ P̄

∂x
(8)

where E denotes the set of the derivatives occurring in P̄ . Consider any monomial M occurring in P , 
such that ld M = v (such a monomial exists since v = ld P ). By the axioms of rankings, M must occur 
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in v ∂ P̄
∂ v̄ . Thus deg(M, v) = 1. Moreover, any derivative w �= v such that deg(M, w) > 0 satisfies w ≤ v̄

hence, by the axioms of rankings, δw ≤ v . The monomial M is thus integrable since all conditions 
of (6) are fulfilled (v playing the role of v1 in (6)), contradicting the hypothesis P ∈ RF . �

We now introduce Algorithm polyIntegrate and prove its correctness and termination.

Algorithm 2: polyIntegrate(P )

Input: P a differential polynomial in R
Output: The unique pair of differential polynomials (W , R) in RF × R such P = W + δR and R (viewed 

as a polynomial over K ) has no degree zero term.
1 begin
2 if P ∈ K [x] then
3 return (0, 

∫ x
0 P dx) ;

4 else
5 vd := rank P ;
6 if (d > 1) or (v /∈ δ�U ) then

// addition is performed componentwise

7 return (i P vd, 0) + polyIntegrate(P − i P vd) ;

8 else
9 let v̄ such that δ v̄ = v ;

10 write i P as i P≤ + i P> where i P> is the polynomial involving all
monomials of i P whose leaders are strictly greater than v̄ ;

11 R := ∫ v̄
0 i P≤ dv̄ ;

12 return (i P> v, R) + polyIntegrate(P − i P> v − δR) ;

Proposition 19. Algorithm polyIntegrate terminates.

Proof. The algorithm terminates trivially if P ∈ K [x]. Suppose now that P /∈ K [x]. Any strictly de-
creasing sequence of ranks is finite (see Kolchin, 1973, Chapter 0, §17, Lemma 15). Thus, the algorithm 
terminates since each recursive call is made on a polynomial either in K [x] or of strictly smaller 
rank than that of P . Indeed, the first call at line 7 calls polyIntegrate with P − i P vd . The second call 
at line 12 calls polyIntegrate with P − i P> v − δR , which is free of v: δR has the form i P≤ v plus terms 
with leader strictly smaller than v , thus the term i P v of P is cancelled by i P> v + δR . �
Proposition 20. Algorithm polyIntegrate computes a pair (W , R) in RF × R such that P = W + δR, and R
(viewed as a polynomial over K ) has no degree zero term.

Proof. The proposition is proven by induction on the rank of P . The proposition holds for any poly-
nomial in K [x]. Assume the proposition holds for any polynomial in K [x] and any polynomial in R
whose rank is strictly less than vd . Let us prove it also holds for P ∈ R with rank vd .

Suppose that the condition at line 6 is true. Thus, i P vd is a functional polynomial. Denote (W̄ , R̄) =
polyIntegrate(P − i P vd), which is properly defined thanks to Proposition 19. By induction, one has 
P − i P vd = W̄ + δ R̄ where R̄ has no degree zero term. The algorithm returns (i P vd + W̄ , R̄). Then, 
(i P vd + W̄ ) + δ R̄ = i P vd + (W̄ + δ R̄) = i P vd + (P − i P vd) = P . Since W̄ is a functional polynomial, so 
is i P vd + W̄ . This concludes the case when the condition at line 6 is true.

Suppose now that the condition at line 6 is not true. Then, the derivative v̄ is well defined at 
line 9, and the rank of P is v . Denote (W̄ , R̄) = polyIntegrate(P − i P> v − δR). By induction, one has 
P − i P> v − δR = W̄ + δ R̄ where R̄ has no degree zero term. The algorithm returns (i P> v + W̄ , R + R̄). 
Then (i P> v + W̄ ) + δ(R + R̄) = (i P> v + δR) + (W̄ + δ R̄) = (i P> v + δR) + (P − i P> v − δR) = P . Since 
i P> v is a functional polynomial, so is i P> v + W̄ . Moreover, R and R̄ have no degree zero terms. This 
concludes the induction proof. �
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Proposition 21. We have R = RF ⊕ δR .

Proof. Proposition 18 shows that RF ∩ δR = {0}. Proposition 20 gives a constructive proof that R =
RF + δR . Consequently, R = RF ⊕ δR . �
Proposition 22. Algorithm polyIntegrate is correct.

Proof. Proposition 20 shows that P = W + δR . The terms W and δR are unique by Proposition 21. 
Moreover R is unique since it has no degree zero term. �
Example 23. Take the ranking u < v < ux < vx < u y < v y < uxx < vxx < uxy < · · · and take K =
Q(a, y).

• polyIntegrate(ux v) = (ux v, 0),
• polyIntegrate(vxu) = (−ux v, uv),
• polyIntegrate(a + x2 + vxxu + u2) = (−vxux + u2, ax + x3/3 + uvx),
• polyIntegrate(uxu + axvx) = (−av, u2/2 + axv),
• polyIntegrate(uxy + 2u y) = (2u y, ux).

4. Fraction integration

The algorithm presented by Boulier et al. (2013) is not additive, as shown by Boulier et al. 
(2013, Example 4). This issue is solved in this section. The development of this section is similar 
to that of Section 3. Section 4.1 introduces the so-called functional monomial fractions (resp. the set 
SF of functional fractions) which are the generalization of the functional monomials (resp. the set 
RF of functional polynomials) for the differential fractions. After defining the polynomial part, the 
nondifferential polynomial part and the constant term of a differential fraction, Algorithm Integrate
(Algorithm 4) is presented. It is the generalization of polyIntegrate for differential fractions. Anticipat-
ing slightly on the definitions, for any fraction F of S , Integrate(F ) returns the unique pair (W , R)

such that F = W + δR , W is a functional fraction and R has a zero constant term (to ensure unique-
ness of R). The main difficulty was to find a proper definition of functional fractions, as well as the 
associated algorithm Integrate.

4.1. Functional fractions

Definition 24 below introduces the so-called functional monomial fractions, which are the general-
ization for fractions of the functional monomials. Since Definition 24 is a bit technical, we start by 
some discussion (in the spirit on the first paragraph of Section 3.1) to make it more natural.

Let us consider a fraction G in S \ K (x), denote v̄ = ld(G) and take F = δG . By the axioms of 
rankings, the leader of F , denoted v , satisfies v = δ v̄ . Moreover, the fraction F can be written as

F = δG = v
∂G

∂ v̄
+

∑
w∈E,w �=v̄

(δw)
∂G

∂ w
+ ∂G

∂x
(9)

where E is the set of derivatives in �U occurring in G .
The term v ∂G

∂ v̄ of (9) has some important properties. First, it is the only term in (9) where the 
leader v of F occurs. Thus, v occurs linearly in F and it is multiplied by the separant ∂G

∂ v̄ of G . Since 
the leader of G is v̄ and since v = δ v̄ , any derivative w occurring in G satisfies δw ≤ δ v̄ = v . Finally, 
anticipating on Proposition 44, if the denominator of G involves v̄ , then ∂G

∂ v̄ cannot be written with a 
squarefree denominator in v̄ .

By negating those properties, we were led to the definition of functional monomial fraction, which 
roughly speaking corresponds to “nonintegrable fractions”.
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Definition 24 (Functional monomial fraction, FMF). Consider a ranking. A (irreducible) fraction M/Q in 
S where M is a monomial is said to be a functional monomial fraction (FMF in short) w.r.t. x for the 
ranking if one of the following cases is satisfied:

C1 both M and Q are in K [x], deg(M, x) < deg(Q , x), and Q is squarefree,
C2 M is a functional monomial and Q is in K [x],
C3 Q is not in K [x] (denote its leader by v), deg(M, v) < deg(Q , v). Moreover, one of the following 

subcases is satisfied:
C3.1 M is a functional monomial,
C3.2 M is an integrable monomial, M /∈ K [x], ld(M) = δv , Q is squarefree w.r.t. v ,
C3.3 M is an integrable monomial and either M ∈ K [x] or ld(M) < δv .

In this paper, we have chosen not to introduce any logarithm. For this reason, fractions of type C1
and C3.2 are functional.

Example 25. Take the ranking u < v < ux < vx < u y < v y < uxx < vxx < uxy < · · · . The fraction 3x
x2−2

is a FMF of type C1. The fractions u2
x

(1+x)2 and ux vx
(x2−2)(1+x)

are FMF of type C2. The fraction ux vx
(1+ux)2 is a 

FMF of type C3.1. The fraction uxx

1+u2
x

is a FMF of type C3.2. The fraction v y

1+u2
x

is a FMF of type C3.3.

Definition 26 (Functional fraction). A fraction is said to be functional if it can be written as a linear 
combination of FMF over K . The set of functional fractions is denoted SF .

Remark 27. Functional monomials are special cases of FMF of type C2 (by taking Q ∈ K ). Conse-
quently, the functional polynomials are special cases of functional fractions (i.e. RF ⊂ SF ).

Remark 28. Unlike the functional monomials, the FMF are not linearly independent over K , as shown 
by the following example, involving only FMF of type C2:

0 = u

(x − y)(y − z)
+ u

(y − z)(z − x)
+ u

(z − x)(x − y)
·

As a consequence, the FMF do not form a K -basis of the functional fractions. However, this does not 
raise any problem in our paper. Indeed, we are mainly interested in computing functional fractions, 
but we do not need to decompose those functional fractions in a basis.

Checking that a fraction is functional is not immediate as opposed to the polynomial case, because 
of Remark 28. To this extent, we will need to rely on Algorithm Integrate and admit for the moment 
the following consequences of Proposition 49:

• for any differential fraction F , Algorithm Integrate computes a pair (W , R) where W and R are 
differential fractions, F = W + δR , and W is functional,

• a fraction F is functional if and only if Algorithm Integrate returns (F , 0) (i.e. W = F and R = 0).

Example 29. Take the ranking u < v < ux < vx < u y < v y < uxx < vxx < uxy < · · · . The fraction F1 =
u2 v2−v4+2uvx

u2−v2 is a functional fraction since it is equal to v2 + vx
u−v + vx

u+v , which is a sum of three FMF. 

The fraction F2 = vx(u2 v2−v4+2u)

u2−v2 can be written as vx v2 + vx
u−v + vx

u+v · The fraction F2 is not functional. 

Indeed Algorithm Integrate rewrites F2 as F2 = W + δR where W = vx
u−v + vx

u+v and R = v3

3 · Thus F2
is not functional since R �= 0.

Example 29 shows that it does not seem straightforward to directly define functional fractions 
by comparing leading derivatives and degrees as in Definition 24. Indeed, fractions F1 and F2 in 
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Example 29 have similar properties in terms of degrees and have the same denominator, but F1 is 
functional whereas F2 is not.

Example 30. Consider the fraction F = vxx
ux+1 + u

ux−1 · Algorithm Integrate computes F = W + δR , where 
W = uxx vx

(ux+1)2 + u
ux−1 and R = vx

ux+1 · Thus, F is not functional since R �= 0.

Example 30 shows that FMF cannot be defined by simply assuming that the denominator is square-
free.

Proposition 31. A FMF satisfies exactly one case among C1, C2 and C3. Moreover, a FMF satisfying C3 satisfies 
exactly one of the subcases among C3.1, C3.2 and C3.3.

Proof. Cases C1 and C3 are independent because of the conditions Q ∈ K [x] (C1) and Q /∈ K [x]
(C3). The same applies for C2 and C3. Since a functional monomial cannot lie in K [x], cases C1 and
C2 are independent. Now consider the subcases for C3. Cases C3.1 and C3.2 are independent because 
M is functional in C3.1 and is not in C3.2. The same applies for C3.1 and C3.3. Finally cases C3.2 and
C3.3 are independent because of the conditions δv = ld(M) (C3.2) and ld(M) < δv (C3.3). �

Even if the FMF do not form a K -basis (see Remark 28), the cancellations that can occur between 
FMF is not totally random, mainly because of the degree conditions in Definition 24. This statement 
is made precise in Proposition 34 below.

Lemma 32. Consider a FMF F = M/Q ∈ S \ K (x) and take u = ld(F ). Thus F cannot be of type C1 since 
F /∈ K (x). Then, denoting d = deg(F , u), exactly one of the two following conditions is satisfied:

Case d ≥ 1: u = ld M, deg(M, u) = d and F has the form ud M̄/Q where M̄/Q is free of u,
Case d < 0: deg(M, u) < deg(Q , u).

Proof. First assume that Q is free of u. Then one necessarily has u = ld(M), deg(F , u) = deg(M, u) =
d and F has the form ud M̄/Q where M̄/Q is free of u. This shows the case d ≥ 1. Now assume 
that Q involves u, which implies that ld(Q ) = u. By the degree condition of C3, one has deg(M, u) <
deg(Q , u) so d = deg(F , u) < 0. �
Lemma 33. Consider a variable y, a polynomial F + in y with val(F +, y) > 0, some element F 0 free of y, and 
a fraction F − with deg(F −, y) < 0, such that F + + F 0 + F − = 0. Then F + = F 0 = F − = 0.

Proof. Assume that F + is nonzero. Then its degree is positive. It implies deg(F 0 + F −, y) > 0 which 
contradicts deg(F 0 + F −, y) ≤ 0 (by Condition (4)). Thus, F + is necessarily zero. Assume now that 
F − is nonzero. It implies that the degree of F − is negative and different from −∞, which implies 
deg(F 0, y) is not −∞. This contradicts the assumption that deg(F 0, y) = −∞ since F 0 is free y. 
Consequently F − is also zero, and F 0 is zero as well. �
Proposition 34. Consider a linear combination F = ∑s

i=1 αi F i over K , where the Fi are FMF. If all Fi are of 
type C1 and F is free of x, then F is zero. Similarly, if all Fi are of type C2 or C3 with the same leader v, and F
is free of v, then F is zero.

Proof. Assume all Fi are of type C1 and F is free of x. Because of the degree condition of C1 in 
Definition 24 and by Condition (4) of page 19, if F is nonzero, then it is necessary a fraction of 
negative degree in x. This leads to a contradiction since F is free of x, so F has to be zero.

Now assume that all Fi are of type C2 or C3 and have the same leader v . By viewing the Fi as 
univariate fractions in v (with coefficients in some fraction field), and using Lemma 32, each Fi is 
either a monomial in v with a positive degree or a fraction with a negative degree. Without loss of 
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generality, assume that the t first Fi are the monomials in v and the other Fi are the fractions in 
v . Then F − ∑t

i=1 αi F i − ∑s
i=t+1 αi F i = 0. By applying Lemma 33 with F + = − 

∑t
i=1 αi F i , F 0 = F , 

F − = − 
∑s

i=t+1 αi F i and y = v , one has F 0 = F = 0 which concludes the proof. �
Proposition 35. Take a nonzero fraction F in SF . If F ∈ K (x), then F can be written as a linear combination 
over K of FMF of type C1. Otherwise, F can be written as a linear combination over K of FMF either in K (x)
or with leaders less than or equal to ld(F ).

Proof. Take F in K (x) ∩ SF . If F is a linear combination of FMF of type C1 only, then the proof is 
completed. Otherwise, suppose that F is a linear combination involving at least a FMF of type C2 or
C3. Denote v the highest leader of the FMF of type C2 or C3 in the combination. By grouping the 
FMF with leaders less than v , one has F = F̄ + ∑p

i=1 αi F i where F̄ is a fraction free of v , the αi are 
in K , and where all the Fi are FMF of type C2 or C3 with leaders v . Since both F and F̄ are free 
of v , Proposition 34 ensures that F = F̄ . Consequently, F can be written as a linear combination of 
FMF in K (x) or with leaders strictly less than v . By an induction argument, since F ∈ K (x), F can 
be written as a linear combination of FMF of type C1.

A similar induction process can be applied when F /∈ K (x). �
4.2. Polynomial parts and constant term of a differential fraction

To make the output of Integrate canonical, we ensure that the value of the integrated part has a 
zero constant term: a notion which needs to be defined for differential fractions.

Definition 36 (polynomial part, nondifferential polynomial part, and constant term of a differential fraction). 
Consider a ranking. Extend the ranking by taking x smaller than any derivative. Take F ∈ S and 
consider F as a fraction in x and �U over the field K . The polynomial part and constant term of 
the differential fraction F w.r.t. x and the ranking are defined as in Section 2.2, by taking A = K
and Y = {x, �U }, and by using the extended ranking mentioned above. They respectively belong to 
K [x, �U ] and K . Moreover, the nondifferential polynomial part of F , denoted nondiffPolyPart(F ), is 
defined as the zero degree term of the polynomial part of F seen as a polynomial in the �U . It 
belongs to K [x].

The computation of the nondifferential polynomial part will be needed for ensuring the termi-
nation of the iterated integration presented in Section 5 (since a polynomial in x can be integrated 
infinitely many times). The notions defined in Definition 36 depend on x and the ranking, as the poly-
nomial part and the constant term of a multivariate fraction depend on the ordering (see Remark 8). 
From now on, this dependency will not be mentioned if there is no possible confusion.

Example 37. Take the ranking u < ux < uxx < · · · and consider K = Q(a, b) where a and b are con-
stant w.r.t. δ. Take F = A

xab
(
ux

2+b
) where

A = u2x2abu2
x + u2x2ab2 + xbu2

x + xb2 + x3au2
x +

x3ab + b3xau2
x + b4xa + abu2

x + ab2 + uxxab.

The multivariate partial decomposition of F (w.r.t. x and the ranking) is

F = u2 x + x2

b
+ b2 + 1

a
+ 1

x
+ ux

u2
x + u

,

the polynomial part is u2 x + x2

b + b2 + 1
a , the nondifferential polynomial part is x2

b + b2 + 1
a , and the 

constant term is b2 + 1
a ·
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Remark 38. Following Corollary 10, the polynomial part, nondifferential polynomial part and constant 
term operations are K -linear.

Example 39. Consider the ranking y < ẏ < ÿ < · · · (where the dot denotes the derivation) and the 
input–output equation in Boulier et al. (2013, Example 5)

p = (y2 + ke)
2 ÿ + ((k1 + k2) y2 + 2 ke(k1 + k2) y + k2

e (k1 + k2) + ke V e) ẏ +
y k2 ke V e + y2 k2 V e.

Take the fraction Fio = p

(y2 + ke)2
. The multivariate decomposition of Fio is

ÿ + (k1 + k2) ẏ + k2 V e − k2ke V e

y + ke
+ ke V e ẏ

(y + ke)2
,

its polynomial part is ÿ +(k1 +k2) ẏ+k2 V e , its nondifferential polynomial part is k2 V e and its constant 
term is also k2 V e .

The nondifferential polynomial part can be computed by Algorithm 3, which avoids computing the 
multivariate partial fraction decomposition. Indeed, we follow the method from Stoutemyer (2009), 
but only compute the polynomial part at each step (using Euclidean division of polynomials), thus 
ignoring terms with a nonconstant denominator.

Algorithm 3: NondifferentialPolynomialPart(F )

Input: F a differential fraction
Output: the nondifferential polynomial part of F

1 begin
2 G := F ;
3 while denom(G) /∈ K [x] do

// quo(P , Q , x) is the remainder of the Euclidean division of P by Q with respect to variable x
4 G := quo(numer(G), denom(G), ld(denom(G))) ;

5 G := quo(numer(G), denom(G), x) ;
6 return the zero degree term of G viewed as a polynomial in �U , with coefficients in K (x);

Lemma 40. Let F = vn A
B be a fraction (with n > 0) where v is a derivative in �U such that deg(A, v) =

deg(B, v) = 0 (this condition holds in particular if v is strictly greater than all derivatives involved in A and B). 
Then, the nondifferential polynomial part and the constant term of F are zero.

Proof. The hypothesis deg(A, v) = deg(B, v) = 0 ensures that if Q and R are the quotient and re-
mainder of A by B w.r.t. ld(denom(B)), then vn Q and vn R are the quotient and remainder of vn A
by B . Following Algorithm 3, the polynomial G after line 5 has the form vn P , where P is a polyno-
mial. Thus, both the nondifferential polynomial part and the constant term are zero. �
Corollary 41. If F = ∑d

i=1
Ai
Bi

vi , and if deg(Ai, v) = deg(Bi, v) = 0 for each 1 ≤ i ≤ d, then the nondifferen-
tial polynomial part and the constant term of F are zero.

Proof. This is a direct consequence of Lemma 40 and the linearity of the nondifferential polynomial 
part (see Remark 38). �
Lemma 42. If F is a FMF then its nondifferential polynomial part is zero.
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Proof. It is clear for fractions of type C1 because deg(M, x) < deg(Q , x). If F has type C2, then M
depends on at least one derivative of �U (see condition (7) of Definition 14) and the proof follows 
from Corollary 41. Suppose F has type C3. Apply Algorithm 3. The fraction G is zero after only one 
loop because of the condition deg(M, v) < deg(Q , v). �
Lemma 43. Consider a differential fraction R ∈ S \ K (x) and denote v = ld(R). If R seen as a univariate 
fraction in v has a zero constant term w.r.t v (in the sense of Definition 7), then R has a zero nondifferen-
tial polynomial part. As a consequence, if R has been computed by a call to Algorithm 1, then R has a zero 
nondifferential polynomial part, hence a zero constant term.

Proof. Since R seen as a univariate fraction in v has a zero constant term w.r.t v (in the sense of 
Definition 7), R can be written in the form 

∑d
i=1

Ai
Bi

vi + F , where F is either zero, or a fraction with 
leader v such that deg(F , v) < 0. By Corollary 41, 

∑d
i=1

Ai
Bi

vi has a zero nondifferential polynomial 
part. If F is zero, the lemma is proven. Now assume F is not zero. Following Algorithm 3 and using 
the assumption deg(F , v) < 0, the fraction G is zero after the first execution of Line 4. Thus F has a 
zero nondifferential polynomial part, and the lemma is proven. �
4.3. The Integrate Algorithm

This section proves that S = SF ⊕ δS . Moreover Algorithm Integrate is presented and proven.

Proposition 44. Let G = P
Q be a univariate irreducible fraction in A (x) where A is a unique factoriza-

tion domain and Q satisfies deg(Q , x) > 0. Denote by Q = A1 A2
2 · · · At

t a squarefree factorization of Q (see 
Definition 12 in Section 2.3). Then dG

dx can be written as P̄
A2

1 A3
2···At+1

t
where gcd( P̄ , A2

1 A3
2 · · · At+1

t ) ∈ A . As a 

consequence dG
dx cannot be written as a fraction with a squarefree denominator.

Proof. From

dG

dx
=

dP
dx Q − P (dA1

dx
Q
A1

+ 2 dA2
dx

Q
A2

+ · · · + t dAt
dx

Q
At

)

Q 2

=
dP
dx − P (dA1

dx /A1 + 2 dA2
dx /A2 + · · · + t dAt

dx /At)

Q
,

one has dG
dx = P̄/Q̄ where

P̄ = dP

dx
A1 · · · At − P (

dA1

dx
A2 . . . At + 2A1

dA2

dx
A3 · · · At + · · · + t A1 · · · At−1

dAt

dx
)

and Q̄ = A2
1 A3

2 · · · At+1
t . The proof is finished by showing that gcd( P̄ , Q̄ ) ∈ A . Since the polynomials 

A1, . . . , At come from a squarefree factorization, gcd(Ai, A j) ∈ A when i �= j. Thus, it is sufficient to 
show that gcd( P̄ , Ai) ∈ A for any i. For any i, one has gcd( P̄ , Ai) = gcd(A1 · · · Ai−1

dAi
dx Ai+1 · · · At , Ai) =

gcd(
dAi
dx , Ai). By a classical argument gcd(

dAi
dx , Ai) is in A because Ai is squarefree. Consequently, 

gcd( P̄ , Q̄ ) ∈ A . �
Proposition 45. SF ∩ δS = {0}.

Proof. We consider an irreducible fraction F = δG in SF ∩ δS with F �= 0, and prove that it yields 
a contradiction. Suppose that G ∈ K (x). Then F = δG = ∂G

∂x . Since F is in SF , and using Proposi-
tion 35, F can be written as a linear combination over K of FMF of type C1. As a consequence, the 
denominator of F is squarefree. Since F is nonzero, F necessarily involves x in its denominator. By 
Proposition 44, the denominator of ∂G

∂x is not squarefree, which yields a contradiction. Thus F = 0.
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Now suppose that G /∈ K (x) and denote v̄ = ld(G). Necessarily, F is not in K (x) either, and its 
leader v = ld(F ) satisfies v = δ v̄ , for some derivative v̄ . Then

F = δG = v
∂G

∂ v̄
+

∑
w∈E,w �=v̄

(δw)
∂G

∂ w
+ ∂G

∂x
, (10)

where E is the set of derivatives in �U occurring in G . Since F is in SF , and using Proposition 35, 
F can be written as a linear combination F = ∑t

i=1 αi F i where the αi are in K , and the Fi are FMF 
either in K (x), or with leaders less than or equal to v . The rest of the proof shows that v ∂G

∂ v̄ can be 
written as a linear combination of FMF, which in turn yields a contradiction.

Let us group the Fi by considering their degrees w.r.t. v . On the one hand, we have

F =
∑
i∈I1

αi F i

︸ ︷︷ ︸
deg(Fi ,v)>1

+
∑
i∈I2

αi F i

︸ ︷︷ ︸
deg(Fi ,v)=1

+
∑
i∈I3

αi F i .

︸ ︷︷ ︸
deg(Fi ,v)≤0

(11)

On the other hand, F can be written as

F = v
∂G

∂ v̄
+ H (12)

with deg(H, v) ≤ 0. By Lemma 32, one has val(Fi, v) > 1 for i ∈ I1 and val(Fi, v) = deg(Fi, v) = 1 for 
i ∈ I2. Since G is free of v (and consequently ∂G

∂ v̄ is free of v) and deg(H, v) ≤ 0, the terms of degree 
1 between Equations (11) and (12) can be identified. This yields

v
∂G

∂ v̄
=

∑
i∈I2

αi F i .

Each FMF Fi , for i ∈ I2, can be written as vNi
Q i

where Ni
Q i

is free of v . Assume that some Ni
Q i

involves a derivative strictly greater than v̄ , and denote ṽ the highest derivative occurring in the Ni
Q i

·
The expression v ∂G

∂ v̄ can be decomposed in two sums of FMF

v
∂G

∂ v̄
=

∑
i∈I4

αi
vNi

Q i︸ ︷︷ ︸
ld(Ni/Q i)=ṽ

+
∑
i∈I5

αi
vNi

Q i
·

︸ ︷︷ ︸
Ni/Q i∈K (x) or ld(Ni/Q i)<ṽ

Consider vNi
Q i

for some i ∈ I4. Either Ni or Q i involves ṽ . If Q i involves ṽ , then vNi
Q i

is necessarily 
of type C3 and deg(Ni, ̃v) < deg(Q i, ̃v). If Q i does not involve ṽ , then Ni necessarily does and in 
that case val(vNi, ̃v) > 0 since vNi is a monomial. Moreover ∂G

∂ v̄ is free of ṽ (since ld(G) = v̄ <

ṽ) and the sum
∑

i∈I5
αi

vNi
Q i

is also free of ṽ . By Applying Lemma 33 with y = ṽ , F 0 = − ∂G
∂ v̄ +∑

i∈I5
αi

vNi
Q i

and splitting the sum
∑

i∈I4
αi

vNi
Q i

into F + (resp. F −) the sum of the fractions with 
positive (resp. negative) degree in ṽ , one has F + = F − = 0, which implies that 

∑
i∈I4

αi
vNi
Q i

= 0. By 
an easy induction on ṽ , and because rankings are well-orderings, one can assume that v ∂G

∂ v̄ can be 
written as combinations of vNi/Q i where the Ni and Q i do not involve any derivative strictly greater 
than v̄:

v
∂G

∂ v̄
=

∑
i∈I6

αi
vNi

Q i
·

︸ ︷︷ ︸
Ni/Q i∈K (x) or ld(Ni/Q i)≤v̄

As a consequence, a monomial vNi when i ∈ I6 cannot be functional since v = δ v̄ , deg(vNi, v) = 1
and Ni does not involve a derivative strictly greater than v̄ . This shows that, for i ∈ I6, Fi cannot 
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be of type C2 or C3.1. Moreover, vNi/Q i when i ∈ I6 cannot be of type C3.3 since vNi /∈ K [x] and 
ld(vNi) = v = δ v̄ ≥ δ ld(Q i).

Consequently, v ∂G
∂v is a linear combination of FMF of type C3.2. As a consequence, for each i ∈

I6, one has v = δ ld(Q i) which implies ld(Q i) = v̄ . Since ∂G
∂ v̄ is not zero (since ld(G) = v̄), the sum ∑

i∈I6
αi

Ni
Q i

(which is equal to ∂G
∂ v̄ ) is not zero either. Moreover, since each Q i is squarefree, and 

deg(Ni/Q i, ̄v) < 0 for any i ∈ I6, the sum 
∑

i∈I6
αi

Ni
Q i

, seen as a univariate fraction in v̄ , can be written 
as a nonzero fraction with a negative degree and with a squarefree denominator in v̄ .

Assume the denominator of G does not involve v̄ . Then ∂G
∂ v̄ is a polynomial in v̄ . Applying 

Lemma 33 with y = v̄ , F − = ∑
i∈I6

αi
Ni
Q i

, and writing − ∂G
∂ v̄ as F 0 + F + , where F 0 is the zero degree 

term in v̄ , one has ∂G
∂ v̄ = 0, hence a contradiction. Thus the denominator of G involves v̄ . By Proposi-

tion 44, ∂G
∂ v̄ has a nonsquarefree denominator, which yields a contradiction since the sum 

∑
i∈I6

αi
Ni
Q i

can be written as a fraction with a squarefree denominator as seen in the paragraph above.
In summary, both cases G ∈ K (x) and G /∈ K (x) yield a contradiction. As a consequence, the 

assumption F �= 0 yields a contradiction, which proves the proposition. �
To help understanding the termination and correctness proofs of Algorithm Integrate (Proposi-

tions 47 and 49), let us see the output of Integrate on some examples.

Example 46. Take the ranking u < ux < u y < uxx < uxy < u yy < uxxx < · · · and consider K =Q(y).

Consider F ∈ K (x). Integrate simply behaves as the Algorithm Hermite.

Consider a FMF F of type C2. Integrate returns (F , 0) either at line 9 or at line 14 (because iN≤ = 0 and 
iN> = iN ).

Consider F = xux
x+1 which is not a FMF. Lines from 11 to 14 will be executed. One has v N = ux , v̄ = u, 

iN = iN≤ = x and iN> = 0. Then R = xu
x+1 . Finally, δR = ux(x2+x)+u

(x+1)2 and F − δR − iN> v N/Q = −u
(x+1)2

which is a FMF of type C2. Thus Integrate returns 
( −u

(x+1)2 , xu
x+1

)
.

Consider F = x
(ux+1)2 or F = ux

(ux+1)2 . Then F = A/T and Integrate returns (F , 0) at line 21.

Consider F = u2
x

(u+1)2 or F = u yy
u+1 . Then F = A/T = i A vd

A/T and Integrate returns (F , 0) at line 25.

Consider F = (1+uxx)uxy

(u+1)2 . Then F = A/T with A = (1 + uxx)uxy , T = (u + 1)2. Lines starting from 27

are executed and Integrate returns at line 31. One has vd
A = uxy , v̄ = u y , i A = (1 + uxx), i A≤ = 1, 

i A> = uxx . Then R = u y

(u+1)2 . Finally, δR = uxy(u+1)−2uxu y

(u+1)3 and F − δR − i A> v A/T = 2uxu y

(u+1)3 . Consequently, 

Integrate returns 
(

uxxuxy

(1+u)2 ,
u y

(u+1)2

)
+ Integrate

(
2uxu y

(u+1)3

)
where 2uxu y

(u+1)3 is a FMF. Further computations 

yields Integrate(F ) =
(

2uxu y

(u+1)3 + uxxuxy

(1+u)2 ,
u y

(u+1)2

)
·

Finally consider F = uux
(u+2)2 . Then F = A/T with A = uux , T = (u + 2)2. Lines starting from 27 are exe-

cuted and Integrate returns at line 34. One has vd
A = ux , v̄ = u, i A = i A≤ = u, i A> = 0. Then (W , R) =

( 1
u+2 , 2

u+2 ). Finally, δR = −2ux
(u+2)2 . Consequently (A − i A> v A)/T −δR − W v A = uux

(u+2)2 − −2ux
(u+2)2 − ux

(u+2)
=

0 so Integrate(F ) =
(

ux
u+2 , 2

(u+2)

)
·

Proposition 47. Integrate terminates.
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Algorithm 4: Integrate(F )

Input: F a differential fraction
Output: The unique pair of differential fractions (W , R) such that (W , δR) is the decomposition of F on 

SF ⊕ δS and R has a zero constant term.
1 begin
2 write F as an irreducible fraction N/Q ;
3 if N ∈ K [x] and Q ∈ K [x] then
4 (W , R) := Hermite(F , x) ;
5 return (W , R) ;

6 elif Q ∈ K [x] then
7 vd

N := rank(N) ;
8 if d > 1 or v N /∈ δ�U then
9 return (iN vd

N/Q , 0) + Integrate(F − iN vd
N/Q ) ;

10 else
11 let v̄ such that v N = δ v̄ ;
12 write iN as iN≤ + iN> where iN> is the polynomial involving

all monomials of iN whose leaders are strictly greater than v̄ ;

13 R := 1/Q
∫ v̄

0 iN ≤ dv̄ ;
14 return (iN> v N/Q , R) + Integrate(F − δR − iN> v N/Q ) ;

15 else
// Q is not in K [x]

16 v Q := ld(Q ) ;
17 let S1 (resp. S2) be the quotient (resp. remainder)

of a pseudo-division of N by Q w.r.t. v Q ;

// thus iαQ N = S1 Q + S2 , for some nonnegative integer α ; consequently F = N
Q = S1

iαQ
+ S2

iαQ Q and 
deg(S2, v Q ) > 0 since N/Q is irreducible

18 compute an irreducible fraction A/T such that A/T = S2/(iαQ Q ) ;

// thus F = S1
iαQ

+ A
T and ld(T ) = v Q since 0 < deg(S2, v Q ) < deg(Q , v Q )

19 I S1 = Integrate(S1/iαQ ) ;

20 if A ∈ K [x] or ld(A) < δv Q then
21 return I S1 + (A/T , 0) ;

22 else
23 vd

A := rank A ;
24 if (d > 1 or v A /∈ δ�U ) then
25 return I S1 + (i A vd

A/T , 0) + Integrate((A − i A vd
A)/T ) ;

26 else
27 take v̄ s.t. v A = δ v̄ ;
28 write i A as i A≤ + i A> where i A> is the polynomial involving

all monomials of i A whose leaders are strictly greater than v̄ ;
29 if v A > δv Q then

30 R := 1/T
∫ v̄

0 i A≤ dv̄ ;
31 return I S1 + (i A> v A/T , R) + Integrate((A − i A> v A)/T − δR);

32 else
33 (W , R) := Hermite(i A≤/T , ̄v) ;
34 return I S1 + (W v A + i A> v A/T , R) +

Integrate((A − i A> v A)/T − δR − W v A) ;

Proof. The algorithm terminates when both N and Q are in K [x] since there is no recursion (line 5). 
First assume that N /∈ K [x] and Q ∈ K [x]. Then both recursive calls at lines 9 and 14 are made 
on a fraction with a denominator in K [x] as well. Moreover, the rank of the numerator is strictly 
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decreasing. Thus the algorithm terminates when the denominator is in K [x]. Indeed, the rank of N
trivially decreases at line 9. The term δR only involves derivatives less than or equal to δ v̄ = v N , 
and the subtraction at line 14 of δR + iN> v N/Q cancels the rank iN v N of N (since d = 1), thereby 
reducing the rank of N .

Assume now that Q is not in K [x]. Let us show that the algorithm performs one or two recursive 
calls, and that in both cases either the leader of the denominator strictly decreases, or it remains 
the same but the rank of the numerator strictly decreases. This last situation can only occur finitely 
many times: indeed, the lexicographic order on the Cartesian product of the sets of derivatives by the 
set of ranks is a well-ordering (because a ranking and the ordering on the ranks are well-orderings). 
Consequently, the algorithm eventually reaches the case where Q is in K [x].

Recursive call at line 19. Since iαQ is free of v Q , the leader of denominator strictly decreases.

Recursive call at line 25. The rank of the numerator obviously strictly decreases in the recursive call.

Recursive call at line 31. One has

δR = δ

(
1

T

)
P

︸ ︷︷ ︸
S1

+ 1

T
δP︸︷︷︸

S2

where P denotes 
∫ v̄

0 i A≤ dv̄ .
From ld(T ) = v Q and v A > δv Q , and because P involves derivatives smaller than v̄ , the first 

term S1 has a leader strictly less than v A . The second term S2 has a leader equal to v A . One has 
δP = i A≤ v A + U with U in K [x] or ld(U ) < v A . Consequently

A − i A> v A

T
− δR = A − i A v A − U

T
− δ

(
1

T

)
P . (13)

From δ
(

1
T

)
= − δT

T 2 , and since δv Q < v A , Equation (13) can be written as Ā/T 2 where Ā is free of 
v A . Consequently, the rank of the numerator has dropped. Please note that in that recursive call, the 
degree of the denominator in the variable v Q might increase.

Recursive call at line 34. One has v A = δv Q due to the conditions at lines 20 and 29. Since v A = δ v̄ , 
one has v̄ = v Q . Moreover W + ∂ R

∂ v̄ = i A≤/T . Both R and W involve derivatives less than or equal 
to v̄ (since i A≤/T also involves derivatives less than or equal to v̄ and ld(T ) = v Q = v̄). Thus, δR =
v A

∂ R
∂ v̄ + R̄ where R̄ involves derivatives strictly less than v A . It follows that δR + W v A = v A

∂ R
∂ v̄ + R̄ +

W v A = i A≤ v A/T + R̄ . Consequently (A − i A> v A)/T ) − δR − W v A = (A − i A v A)/T − R̄ . Thus, the rank 
of the denominator drops since R̄ involves derivatives strictly less than v A . �
Proposition 48. Integrate(F ) computes a pair (W , R) in SF × S such that F = W + δR. If F ∈ K (x), then 
W and R are also in K (x). Otherwise, if F /∈ K (x), W is either in K (x) or satisfies ld(W ) ≤ ld(F ), and R is 
either in K (x) or satisfies δ ld(R) ≤ ld(F ).

Proof. The conditions on the leaders of W and R , and the fact that F = W + δR are immediate to 
prove. The main issue consists in proving that W is indeed a functional fraction.

The term W computed at line 4 is a linear combination of FMF of type C1 because of the specifi-
cation of Algorithm 1. The contribution iN vd

N/Q at line 9 is a linear combination of FMF of type C2
since d > 1 or v N /∈ δ�U . The contribution iN> v N/Q at line 14 is also a linear combination of FMF 
of type C2, since all monomials of iN> involve a derivative ṽ such that δ ṽ > v N . The contribution A/T
at line 21 is a linear combination of FMF of type C3.1 or C3.3. The contribution i A vd

A/T at line 25 is a 
linear combination of FMF of type C3.1. The contribution i A> v A/T at line 31 is a linear combination 
of FMF of type C3.1. Finally, if the term W computed at line 33 is not zero, it is necessarily a fraction 
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with a squarefree denominator whose leader is v Q . Moreover, the leader of W cannot be greater than 
v Q since ld(i A≤/T ) = v Q = v̄ . Consequently, ld(W ) = v Q and W v A is a linear combination of FMF of 
type C3.2. Finally, the contribution i A> v A/T is a linear combination of FMF of type C3.1.

All contributions to W were discussed. This shows that W is a functional fraction, which ends the 
proof. �
Proposition 49 (Normal Form (2)). Let F be a differential fraction. Then there exists a unique pair of differential 
fractions (W , R) such that (W , δR) is the decomposition of F on SF ⊕ δS and R has a zero constant term. 
In particular, Integrate is correct.

Proof. Together, Propositions 45 and 48 show that S = SF ⊕ δS . It only remains to prove that the 
pair (W , R) returned by Integrate is uniquely defined and that the fraction R computed by Integrate
has a zero constant term.

We first prove that the fraction R computed by Integrate has a zero constant term. It is true for 
line 5 thanks to the specification of Algorithm 1. The contribution for R is zero at lines 9, 21 and 
25. The contributions for R at lines 14 and 31 have a zero constant term thanks to Corollary 41. The 
contribution for R at line 34 has a zero constant term by Lemma 43.

Let us now prove that (W , R) is uniquely defined. From S = SF ⊕ δS , it is clear that W and 
δR are uniquely defined. Assume that the fraction F is written as F = W + δR = W + δ R̄ . Thus 
δ(R − R̄) = 0. Since we assumed in the paper that δa = 0 for all a ∈ K , this implies that R − R̄ ∈ K . 
If both R and R̄ have zero constant terms, then R − R̄ is necessarily zero, so R = R̄ and R is uniquely 
defined. �
Remark 50 (Finding “exact” derivatives). Suppose one has a (possibly infinite) family of fractions Fi and 
that one looks for a fraction F = ∑

αi F i (i.e. a linear combination over K ) such that F = δG for some 
fraction G . One can proceed in the following manner: compute (W i, Ri) = Integrate(Fi) and look for 
a linear combination 

∑
αi W i = 0. Indeed, if 

∑
αi W i = 0, then Integrate(

∑
αi F i) = ∑

αi(W i, Ri) =
(0, 

∑
αi Ri) so F = δ(

∑
αi Ri) and the expected G can be chosen as G = ∑

αi Ri .

Example 51. Remark 50 can be used to solve the following problem. Given the fraction

F1 = (−6u + 11uv + 8u2 + 3v2)ux + (5uv + 5u2 − 6u)vx

6(u + v)2u
,

can we find an expression G of the form H +α ln(u) +β ln(u + v) where H is a fraction, α and β are 
rational numbers, such that F1 = δG? Note that the expected G is not a differential fraction because 
of the presence of logarithm. If such an expression G exists, necessarily

F1 = δG = δH + α
ux

u
+ β

ux + vx

u + v

implying

F1 − α
ux

u
− β

ux + vx

u + v
= δH .

Following Remark 50 by taking F2 = ux
u and F3 = ux+vx

u+v , one finds:

• Integrate(F1) = (W1, R1) =
(

5uvx+8uux+3ux v
6u(u+v)

, 1
u+v

)
,

• Integrate(F2) = (F2, 0),
• Integrate(F3) = (F3, 0).

Finally, using technics from Boulier and Lemaire (2015), one finds that W1 − 1
2 F2 − 5

6 F3 = 0. As a 
consequence, G = 1

u+v + 1
2 ln(u) + 5

6 ln(u + v) solves our problem.
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5. Iterated integration

Boulier et al. (2013, Algorithm 4) present an algorithm which roughly speaking iterates the inte-
gration until one gets a coefficient as defined by Boulier et al. (2013), i.e. a fraction free of �U . 
(Boulier et al., 2013, Algorithm 4) takes as an input a fraction F0 and returns a decomposition 
F0 = W0 + δW1 + · · · + δt Wt where all W i are also fractions (satisfying some further properties). 
(Boulier et al., 2013, Algorithm 4) is not additive as shown by the simple following example; it de-
composes x into x, ux into 0 + δu, but ux + x into 0 + δ(u + x2/2). On this example, the problem 
comes from the polynomial x which can be integrated infinitely many times.

We prevent this problem by isolating the nondifferential polynomial part in x at each step.

Proposition 52 (Normal Form (1)). Let F be a differential fraction. Then F can be written in a unique way as 
F = P + ∑∞

i=0 δi W i where

(1) P is a polynomial of K [x],
(2) each W i is a functional fraction,
(3) only a finite number of W i are nonzero.

Moreover, S = K [x] ⊕ SF ⊕ δSF ⊕ δ2SF ⊕ · · · where S is seen as a K -vector space.

Please note that in the special case where F is in K [x], then the iterated integration decomposi-
tion of F is F itself (i.e. all the W i are zero).

Proof. Let us first admit the existence of such a decomposition which is proven in Proposition 54
based on Algorithm 5. Let us now prove the uniqueness by considering two decompositions of the 
same fraction F = P̂ +∑∞

i=0 δi Ŵ i = P̄ +∑∞
i=0 δi W̄ i . Since both decompositions involve a finite number 

of terms, and by subtracting the two decompositions, 0 = P + W0 + δW1 + · · · + δt Wt for some t ≥ 0, 
where P = P̂ − P̄ is in K [x] and the W i = Ŵ i − W̄ i are in SF . Let us now prove that all W i are 
zero. Since P is in K [x], it also belongs to δS , and P = δP1 for some polynomial P1 in K [x]. 
Thus, 0 = W0 + δ(P1 + W1 + δW2 + · · · + δt−1Wt). Since SF ∩ δS = {0}, one has W0 = 0. Since we 
assumed in the paper that δa = 0 for all a ∈ K , there exists a constant c1 in K , such that c1 =
P1 + W1 + δW2 + · · · + δt−1Wt , which can be rewritten as 0 = (P1 − c1) + W1 + δW2 + · · · + δt−1Wt . 
By an induction process, all W i are zero, and consequently P = 0. Thus, both decompositions of F are 
equal.

It remains to prove that S = K [x] ⊕ SF ⊕ δSF ⊕ δ2SF ⊕ · · · . The sets K [x], SF , δSF , δ2SF , 
. . . are obviously K -vector spaces. The existence of the decomposition shows that S = K [x] +SF +
δSF + δ2SF + · · · . The uniqueness ensures that the sum is direct i.e. S = K [x] ⊕ SF ⊕ δSF ⊕
δ2SF ⊕ · · · . �
Proposition 53. Algorithm IteratedIntegrate terminates.

Proof. Let us first prove the following loop invariant: nondiffPolyPart(G) = 0. Indeed, it is true just 
before entering the loop, since nondiffPolyPart(G) = nondiffPolyPart(F ) − nondiffPolyPart(P ); more-
over nondiffPolyPart(P ) = P = nondiffPolyPart(F ). After line 9, one has nondiffPolyPart(G) = 0 since 
G is equal to R minus the polynomial part of R . This proves the invariant.

Suppose that the algorithm does not terminate. If G is not initially in K (x), then the leader of 
G decreases at each loop using Proposition 48. Since the leader of G cannot decrease infinitely many 
times, G eventually lies in K (x). At this point, each call to Integrate is a call to Hermite. Each call 
to Hermite reduces the degree of the denominator (see Bronstein, 1997, last formulae of page 39). 
For this reason, G must eventually become a polynomial. When G becomes a polynomial of K [x], it 
must be equal to its polynomial part, and thus must be zero, thanks to the loop invariant. This leads 
to a contradiction, so the algorithm terminates. �
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Algorithm 5: IteratedIntegrate(F )

Input: F a differential fraction
Output: The unique pair (P , [W0, . . . , Wt ]) satisfying P ∈ K [x], the W i are in SF , F = P + ∑t

i=0 δi W i , 
and Wt �= 0 when the list [W0, . . . , Wt ] is not empty

1 begin
2 P := NondifferentialPolynomialPart(F ) ;
3 G := F − P ;
4 i := 0 ;
5 while G �= 0 do
6 (W i, R) := Integrate(G) ;
7 P̄ := NondifferentialPolynomialPart(R) ;

8 P := P + ∂ i+1 P̄
∂xi+1 ;

9 G := R − P̄ ;
10 i := i + 1 ;

11 return (P , [W0, . . . , W i−1])

Proposition 54. For any differential fraction F ∈ S , Algorithm IteratedIntegrate computes a pair (P , [W0,

. . . , Wt]) such that F = P + W0 + · · · + δt Wt , P ∈ K [x], the W i are functional fractions, and Wt �= 0 when 
the list [W0, . . . , Wt] is not empty.

Proof. All the W i are in SF since they are computed by Integrate. The polynomial P is an element 
of K [x] by construction. Finally, let us prove the following loop invariant: F = P + δi G +∑i−1

j=0 δ j W j . 
The invariant is true when entering the loop since F = P + G and i = 0. Suppose the invariant is true 
at some step. After line 7, one has G = W i + δR and P̄ = nondiffPolyPart(R). Thus

F = P + δi G +
i−1∑
j=0

δ j W j = P + δi W i + δi+1 R +
i−1∑
j=0

δ j W j

= (P + ∂ i+1 P̄

∂xi+1
) + δi+1(R − P̄ ) +

i∑
j=0

δ j W j

since ∂ i+1 P̄
∂xi+1 = δi+1 P̄ .

Consequently the invariant is true after line 10 (i.e. after updating the values of P , G and i). 
By Proposition 53, IteratedIntegrate terminates and the invariant plus the property G = 0 imply F =
P + ∑t

j=0 δ j W j . �
Proposition 55. Algorithm IteratedIntegrate is correct.

Proof. This is a direct consequence of Propositions 52 and 54. �
Example 56. The iterated integration of Fio (see Example 39) is P + W0 + δt W1 + δ2

t W2 where P =
k2 V e , W0 = − k2ke Ve

y+ke
, W1 = (k1+k2)(y2−k2

e )−ke Ve
(y+ke)

, and W2 = y.
This decomposition is almost the same as in Boulier et al. (2013) except the constant term k2 V e

has been isolated. At first sight, one could think that W1 = (k1+k2)(y2−k2
e )−ke Ve

(y+ke)
is not a functional 

fraction because the degree in y of the numerator is 2, and the one of the denominator is 1. However, 
it is a functional fraction since W1 = (k1 + k2)y − ke Ve

y+ke
(where y and 1

y+ke
are FMF).

Remark 57. At first, the authors had tried to collect from the beginning the nondifferential part of 
F , hoping that all following calls to Integrate would return a pair (W , R) where R would have a 
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zero nondifferential polynomial part. However, this does not work because taking the nondifferential 
polynomial part and applying δ do not commute.

For example, take F = u+uxx
ux

, and G = δF . The nondifferential polynomial part of F is zero. How-

ever the nondifferential polynomial part of G = δF is 1 and not 0, since δF = 1 + uxxx
ux

− uxx(uxx−u)

u2
x

·
This shows the calls to NondifferentialPolynomialPart at line 7 are needed.

Remark 58. The iterated integration decomposition can lead to some variants. For example, a non-
negative integer t can be fixed and the infinite sum in Proposition 52 can be replaced by 

∑t
i=0 δi W i . 

In that case, the condition 3 can obviously be discarded, and the condition 2 needs to be replaced by 
“Wt , δWt , . . . , δt−1Wt have a zero constant term and W i is a functional fraction for any 0 ≤ i ≤ t − 1”. By 
fixing t = 1, Algorithm Integrate is obtained.

Remark 59. Remark 50 can be generalized to find a linear combination F = ∑
αi F i such that F = δ2G

for some fraction G . By using t = 2 in Remark 58, and by using IteratedIntegrate, it suffices to cancel 
both the W0 and W1 parts of the Fi .

6. Conclusion

We presented in this paper two new normal forms for differential fractions, which have a linear 
structure as opposed to the decompositions presented by Boulier et al. (2013). This improvement is 
hopefully a step towards the construction of an elimination method for integro-differential polynomi-
als or fractions.

Allowing a differential operator L instead of the simple derivation δ would be a major generaliza-
tion. An example of such generalized operators can be found in Bostan et al. (2013), where operators 
L of the form D y + f are considered in Bostan et al. (2013, Equation (2)). Given a fraction F , one 
could seek for a unique pair (W , R) such that F = W + L(R). This is a challenging problem, at least 
for the following reason: even assuming one could properly define the functional part W , the fraction 
R is defined up to an element of the kernel of L which is not immediate to compute for a general 
operator.
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