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Abstract

Motivation: Elementary flux mode (EFM) analysis allows an unbiased description of metabolic networks
in terms of minimal pathways (involving a minimal set of reactions). To date, the enumeration of EFMs is
impracticable in genome-scale metabolic models. In a complementary approach, we introduce the concept
of a flux tope (FT), involving a maximal set of reactions (with fixed directions), which allows one to study
the coordination of reaction directions in metabolic networks and opens a new way for EFM enumeration.
Results: A FT is a (nontrivial) subset of the flux cone specified by fixing the directions of all reversible
reactions. In a consistent metabolic network (without unused reactions), every FT contains a “maximal
pathway”, carrying flux in all reactions. This decomposition of the flux cone into FTs allows the enumeration
of EFMs (of individual FTs) without increasing the problem dimension by reaction splitting. To develop
a mathematical framework for FT analysis, we build on the concepts of sign vectors and hyperplane
arrangements. Thereby, we observe that FT analysis can be applied also to flux optimization problems
involving additional (inhomogeneous) linear constraints. For the enumeration of FTs, we adapt the reverse
search algorithm and provide an efficient implementation. We demonstrate that (biomass-optimal) FTs can
be enumerated in genome-scale metabolic models of B. cuenoti and E. coli , and we use FTs to enumerate
EFMs in models of M. genitalium and B. cuenoti .
Availability: The source code is freely available at https://github.com/mpgerstl/FTA
Contact: st.mueller@univie.ac.at, juergen.zanghellini@boku.ac.at
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The development of constraint-based modeling (CBM) approaches
contributed tremendously to our understanding of metabolic processes, in
particular, to the analysis of genome-scale metabolic models (GSMMs).
Combined with CBM approaches, GSMMs provide a mechanistic basis
for our understanding of the genotype-phenotype relationship.

For the analysis of GSMMs, two branches within the CBM spectrum
turned out to be most successful: flux-balance analysis and elementary

flux mode (EFM) analysis. Both method families use stoichiometric
information and consider the linear equalities and inequalities for
the reaction rates (fluxes) that arise from the steady-state assumption
and irreversibility constraints. Whereas flux-balance analysis identifies
optimal solutions (under additional linear constraints) and remains
computationally practicable even at genome scale, EFM analysis describes
all feasible solutions (the flux cone) in terms of minimal metabolic
pathways. Due to the combinatorial nature of EFM enumeration, such
an analysis faces severe computational challenges already for medium-
scale metabolic models (Jungreuthmayer et al., 2013). Despite major
advances in algorithm design (Gagneur and Klamt, 2004; Terzer and
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Stelling, 2008; Hunt et al., 2014; van Klinken and Willems van Dijk, 2016),
EFM enumeration for GSMMs is not practicable to date. Hence other
approaches focused on the enumeration of subsets of EFMs characterized
by particular qualities (Kaleta et al., 2009; De Figueiredo et al., 2009).

In metabolic networks with reversible reactions, (thermodynamically
feasible) EFMs can be grouped into largest (thermodynamically)
consistent sets (LTCSs) Gerstl et al. (2016). For all EFMs within one
LTCS, the directions of all reactions are fixed (as determined by the Gibbs
free energy). Importantly, every flux mode can be written as a sum of EFMs
from one LTCS. In fact, a fundamental result of EFM analysis states that
every flux mode can be written as a conformal sum of EFMs, that is, if a
component of the flux mode has a certain sign, then this component has the
same sign (or is zero) in all EFMs involved (Urbanczik and Wagner, 2005;
Müller and Regensburger, 2016). In our previous work, it remained open
whether LTCSs can be defined without referring to EFMs and computed
without enumerating all EFMs beforehand. In the present paper, we show
that this is indeed possible.

We introduce the novel concept of a flux tope (FT) as a (nontrivial)
subset of the flux cone specified by fixing the directions of all reversible
reactions. Obviously, every flux mode is contained in a FT, that is, the
flux cone is decomposed into FTs. A feasible combination of reaction
directions naturally corresponds to a sign vector (having −, 0, or +

entries) of the flux cone, and every FT corresponds to a support-maximal
sign vector of the flux cone. In fact, the term “tope” comes from the
theory of oriented matroids, where it refers to a maximal sign vector of
a linear subspace (Bachem and Kern, 1992; Bokowski, 2006). Whereas
an EFM represents a minimal pathway (involving a minimal set of
reactions), a FT contains a maximal “pathway” (involving a maximal set
of reactions). As EFMs, FTs need not be thermodynamically feasible, and
we discuss the definition and computation of thermodynamically feasible
FTs (corresponding to LTCSs) in the outlook. Ultimately, FT analysis can
be used to study the coordination of reaction directions in GSMMs, that
is, the thermodynamic repertoire of cellular metabolism.

Most importantly, the enumeration of FTs (as opposed to EFMs) is
computationally practicable even at larger scale. Our implementation is
based on the reverse search algorithm for cell enumeration in hyperplane
arrangements (Avis and Fukuda, 1996; Fukuda, 2016). Moreover, FTs
can be used to enumerate EFMs in GSMMs with reversible reactions.
Indeed, FTs can be computed first, and EFMs (of individual FTs) can
be enumerated efficiently (without increasing the problem dimension by
reaction splitting) in a second step.

2 Methods

2.1 Sign vectors

For a vector x ∈ Rn, we define the sign vector sign(x) ∈ {−, 0,+}n

by applying the sign function component-wise, that is,

sign(x)i = sign(xi) for i = 1, . . . , n, (1)

and we write
sign(S) = {sign(x) | x ∈ S} (2)

for a subset S ⊆ Rn.
The relations 0 < − and 0 < + induce a partial order on {−, 0,+}n:

for sign vectorsξ,η ∈ {−, 0,+}n, we writeξ ≤ η if the inequality holds
component-wise and say that ξ conforms to η. Analogously, for x ∈ Rn

and ξ ∈ {−, 0,+}n, we say that x conforms to ξ if sign(x) ≤ ξ. E.g.,

sign

−10
2

 =

−0
+

 ≤
−−
+

 = sign

−2−1
1

 ,

that is, (−, 0,+)T conforms to (−,−,+)T , and (−1, 0, 2)T conforms
to (−, 0,+)T (trivially) and (−,−,+)T .

Given a subset S ⊆ Rn and a sign vector ξ ∈ {−, 0,+}n, we define

S≤ξ = {x ∈ S | sign(x) ≤ ξ}, (3)

the subset of S conforming to ξ. (In the application to metabolic networks
below, the set S is the flux cone, and the sign vector ξ is a maximal sign
vector of the flux cone, fixing the directions of all reactions.)

Finally, we call the vectors x,y ∈ Rn conformal if there exists a sign
vector ξ ∈ {−, 0,+}n such that sign(x), sign(y) ≤ ξ or, equivalently,
if xiyi ≥ 0 for i = 1, . . . , n.

2.2 Metabolic networks

A metabolic network is given by m internal metabolites, r reactions, and
the corresponding stoichiometric matrixN ∈ Rm×r , which contains the
net stoichiometric coefficients of each metabolite in each reaction. The
sets of irreversible and reversible reactions are given by Iirr ⊆ {1, . . . , r}
and Irev = {1, . . . , r} \ Iirr, respectively. A vector of reaction rates that
satisfies the steady-state and irreversibility constraints is called a flux mode.
In geometric terms, a flux mode is an element of the flux cone

C = {v ∈ Rr |Nv = 0 and vi ≥ 0 for i ∈ Iirr}, (4)

a polyhedral cone defined by the nullspace of the stoichiometric matrix
and nonnegativity conditions.

2.3 Flux topes

An EFM e ∈ C is a support-minimal nonzero flux mode, and every
element of the ray {λe | λ > 0} is an EFM, too. With respect to the
partial order on {−, 0,+}r defined above, the sign vector sign(e) is a
minimal nonzero element of

sign(C) = {sign(v) | v ∈ C}, (5)

the set of all sign vectors of the flux cone. Conversely, a minimal nonzero
sign vector σ ∈ sign(C) determines the ray

C≤σ = {v ∈ C | sign(v) ≤ σ}

= {v ∈ C | sign(v) = σ}

= {λe | λ > 0},

where e ∈ C is some EFM with sign(e) = σ. Analogously, a maximal
sign vector τ ∈ sign(C) determines the pointed subcone

C≤τ = {v ∈ C | sign(v) ≤ τ}, (6)

which we call a flux tope (FT).
A FT C≤τ consists of all flux modes that conform to the defining

sign vector τ ∈ sign(C), in particular, it contains all conforming EFMs.
Indeed, EFMs are extreme rays of FTs, and this property may serve as a
definition of EFMs (Müller and Regensburger, 2016; Klamt et al., 2017).

2.4 Consistency

A flux cone is called consistent (Acuña et al., 2009) if every reaction (in
every possible direction) is supported by a flux mode, that is, if for every
i ∈ {1, . . . , r} there exists v ∈ C such that vi > 0 and, additionally, for
every i ∈ Irev there exists v′ ∈ C such that v′i < 0. We say that a flux
mode has full support, if all its components are nonzero.
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Fig. 1: (a) Toy model with three internal metabolites (A, B, C) and six reactions, where |Iirr| = 3 reactions are irreversible (R1, R2, R6) and |Irev| = 3

are reversible (R3, R4, R5). Forward and backward directions are indicated by full and empty arrow heads, respectively. Reaction R3 produces two
molecules of C (stated next to the arrow head), all other stoichiometric coefficients are one. (b) Three-dimensional table listing the EFMs ei and the
FTs τj . Containment of EFMs in FTs is marked by “∗”. Note that out of 2|Irev| = 8 full sign vectors, only five define FTs, while the remaining three do
not correspond to flux modes, see also Figure 2. (c) EFMs and FTs projected on the flux components v1, v2, v4 with colors as in table (b). The projected
EFMs εi are depicted by (full and dashed) arrows, and their components are highlighted in the top plane of table (b) and listed in Equation (12). The
projected EFMs generate the projected FTs and the projected hyperplane (separating the FTs). In particular, the projected EFMs ε2, ε3, and ε5 (thick
arrows) generate the projected flux cone.

Proposition 1. If a flux cone is consistent, then every reaction (in every
possible direction) is supported by a flux mode with full support.

Proof. Let C be a consistent flux cone and i ∈ {1, . . . , r}. Then there
exists v ∈ C such that vi > 0. Suppose v does not have full support, that
is, vj = 0 for some j 6= i. By consistency, there existsw ∈ C such that
wj > 0. Now, consider the convex combinationu = (1−λ)v+λw ∈ C.
For sufficiently small 0 < λ < 1, sign(u) > sign(v), in particular,
ui, uj > 0. Repetition of the argument eventually yields a flux mode with
full support.

Finally, let i ∈ Irev. Then there exists v ∈ C such that vi < 0, and a
flux mode with full support can be constructed as above.

We say that a FT C≤τ has full support, if the defining maximal sign
vector τ ∈ sign(C) has full support, that is, if τ ∈ {−,+}r .

Proposition 2. If a flux cone is consistent, then all FTs have full support.

Proof. Let C be a consistent flux cone. Suppose there exists a FT C≤τ

with a maximal sign vector τ ∈ sign(C) that does not have full support,
and let v ∈ C≤τ with sign(v) = τ . By consistency, there existsw ∈ C
with full support. Now, consider the convex combination u = (1 −
λ)v + λw ∈ C. For sufficiently small 0 < λ < 1, u has full support
and sign(u) > sign(v) = τ , contradicting that τ is maximal.

Note that a flux cone can be made consistent using flux variability
analysis, see section 3.1.

2.5 Hyperplane arrangements

Let the columns of the matrixK ∈ Rr×d form a basis of the nullspace of
the stoichiometric matrixN , and henceNK = 0. Further, letKi ∈ Rd

for i = 1, . . . , r denote the i-th row ofK and

hi = {x ∈ Rd |Kix = 0} for i = 1, . . . , r (7)

be the corresponding (central) hyperplane. Then, every flux mode v ∈ C
can be written as

v =Kx, (8)

where x ∈ Rd is unique and vi = Kix ≥ 0 for i ∈ Iirr. Most
importantly, sign(v) ∈ {−, 0,+}r describes the positions of x with
respect to the hyperplanes h1, . . . , hr . In particular, a sign vector of the
flux cone with full support (defining a FT) corresponds to a cell of the
hyperplane arrangement that satisfies the irreversibility constraints.

For a general central hyperplane arrangement of r hyperplanes in Rd,
there is a well-known upper bound for the number of cells: Out of 2r full
sign vectors, 2

∑d−1
i=0

(r−1
i

)
correspond to cells (Buck, 1943; Fukuda,

2016). This upper bound simplifies to 2r if d ≥ r. In case of irreversibility
constraints, where r = |Irev| + |Iirr|, we have the obvious upper bound
2|Irev| for the number of FTs. In case |Irev| = 0, there is only one FT.

2.6 A toy model

We consider the small network displayed in Figure 1(a). It consists of three
internal metabolites and six reactions. The resulting stoichiometric matrix
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Fig. 2: Enumeration of FTs for the toy network in Figure 1 (with colors as in Figure 1). Out of 2|Irev| = 8 full sign vectors, only five define FTs. Two
FTs maximize the flux through reaction R2 (dark blue frames), three are sub-optimal (light blue frames). Three full sign vectors do not represent a FT
(red frames), since either C is only produced or B is only consumed. Sign vectors are depicted as nodes of a directed acyclic graph (arranged in levels
n = 0 through n = 3) with directed edges pointing from ’parent’ to ’child’ sign vectors.

amounts to

N =

1 0 0 −1 0 −1
0 −1 0 1 1 0

0 0 2 0 −1 1

 . (9)

A basis of the nullspace ofN is given by the columns of the matrix

K =



1 0 0

0 1 0

− 1
2

1
2

0

0 0 1

0 1 −1
1 0 −1


. (10)

Every flux mode can be written as v =Kxwith a unique x ∈ R3. Since
the submatrix of K consisting of the rows 1, 2, and 4 (corresponding to
the reactions R1, R2, and R4) is the identity matrix, we get

v =K

v1v2
v4

 . (11)

Now, the irreversible reactions R1, R2, and R6 define the nonnegativity
conditions v1 ≥ 0, v2 ≥ 0, and v1 − v4 ≥ 0 and shape the flux cone,
whereas the reversible reactions R3, R4, and R5 determine the hyperplanes
− 1

2
v1 + 1

2
v2 = 0, v4 = 0, and v2 − v4 = 0 and divide the flux cone

into FTs. The resulting five FTs are listed in Figure 1(b). The projection of
the FTs on the flux components v1, v2, and v4 is depicted in Figure 1(c).

The six (generating) EFMs ei of the toy network are listed in
Figure 1(b), and their projections εi are depicted in Figure 1(c). According
to Equation (11), we can write them as

(e1, . . . , e6) =K(ε1, . . . , ε6) =K

2 0 0 2 2 2

0 2 0 2 0 2

0 0 −2 0 2 2

 . (12)

Each FT is generated by three EFMs. (This is the smallest possible
number since the dimension of the nullspace is three.) The EFMs e4,

e1, and e6 are contained in the largest number of FTs (four and three,
respectively), see Figures 1(b) and (c). They generate the most “central”
FT τ2 (depicted in pink), having the largest number of neighbours (three).
The EFMs e2 and e3 are contained in two FTs each. Together with the
above EFMs, they generate four (out of five) FTs. The remaining EFM
e5 is contained only in the most “peripheral” FT τ5, having only one
adjacent FT. As opposed to the other FTs, flux vectors in τ5 use reaction
R5 in reverse direction.

2.7 Reverse search

If (i) the flux cone is consistent, then all maximal sign vectors have full
support, by Proposition 2. If (ii) the nullspace matrix does not contain rows
which are multiples of each other, then hyperplanes are distinct, and cells
can be enumerated using reverse search (Avis and Fukuda, 1996). The
algorithm starts from a cell in the hyperplane arrangement (represented by
a full sign vector) and recursively checks all adjacent full sign vectors
(differing in exactly one component) whether they represent cells.

In our implementation, we use the idea that only adjacent full sign
vectors need to be checked, however, for efficiency reasons, we adapt the
algorithm. In particular, we do not operate on the hyperplane arrangement,
but directly on full sign vectors, see section 3.2.

In the following, we assume (i) and (ii) which can be ensured using
appropriate pre-processing, see section 3.1.

2.8 Flux optimization

In flux-balance analysis, one often optimizes linear combinations of
reaction rates under box constraints, i.e., one solves linear programs (LPs)

max cT v s.t. v ∈ P, (13)

defined on the flux polyhedron

P = {v ∈ Rr |Nv = 0 and `i ≤ vi ≤ ui for i = 1, . . . , r}, (14)

where `i, ui ∈ [−∞,+∞]. The lower and upper bounds define a
corresponding flux cone C, in particular, i ∈ Iirr if and only if `i ≥ 0.
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Table 1. Algebraic characteristics of consistent GSMMs: dimensionsm×r of the stoichiometric matrix N , dimension of the nullspace with basis K,
d = rank(K), and number of independent reactions, rind. (Numbers in brackets refer to the numbers of reversible reactions.) Computational results:
number of EFMs (computed by FluxModeCalculator (van Klinken and Willems van Dijk, 2016)), number of FTs (computed by our implementation),
and number of FTs that maximize biomass production (max.BM).

Organism model ID m× r d EFMs run time rind FTs run time rind FTs (max.BM) run time

M. genitalium iPS189+ 271 × 277(21) 28 3,252,686 10.3 h 83(13) 672 1.0 s 83(7) 48 <1.0 s
B. cuenoti iCG238 306 × 350(45) 51 c.i.† — 137(31) 60,226,956 29.8 h 137(10) 270 <1.0 s
E. coli iJR904 450 × 667(53) 233 c.i.† — 432(49) c.i.† — 432(27) 11,796,480 34.8 h

† computationally infeasible

If `i = −∞ or 0 and ui = +∞ for all i ∈ {1, . . . , r}, then P = C,
otherwise P ⊂ C.

Let v∗ be an optimal flux and d = cT v∗ the corresponding optimal
value. Then P ∗ = {v ∈ P | cT v = d} is the polyhedron of optimal
fluxes. As for the flux cone C, FTs and consistency can be defined for
the optimal flux polyhedron P ∗ (Klamt et al., 2017). After ensuring
consistency using flux variability analysis, all FTs of the flux polyhedron
have full support and correspond to cells in a (non-central) hyperplane
arrangement that satisfy the box constraints. Finally, after ensuring that
hyperplanes are distinct (see section 3.1), FTs can be enumerated using
reverse search.

In our toy model (Figure 1), assume upper bounds for the uptake
reactions R1 and R3 in Figure 1(a), in particular, v1 ≤ 10 and v3 ≤ 10.
Then the projected flux cone in Figure 1(c) becomes a polyhedron with
v2 ≤ 30, v3 ≥ −5, v4 ≤ 10, and v5 ≥ −10. Still, since EFM
e3 (the internal cycle) is not constrained by the uptake reactions, there
is no lower bound for v4 (and no upper bounds for v5 and v6). As a
consequence, FTs τ1, τ2, and τ5 become bounded, whereas τ3 and τ4
remain unbounded (for negative v4). When the flux through the product
reaction R2 is optimized, then the maximum v2 = 30 is attained at flux
distributions in FTs τ1 and τ3, see again Figure 1(c) and also Figure 2.
Note that optimal solutions are contained in adjacent FTs, in particular,
τ1 and τ3 are separated by the hyperplane v4 = 0, and the direction of
reaction R4 is not determined by the optimum.

2.9 Genome-scale metabolic models

We study GSMMs of Mycoplasma genitalium, iPS189+ (Suthers
et al., 2009 including recent modifications by Hartleb et al., 2016),
Blattabacterium cuenoti Bge, iCG238 (González-Domenech et al., 2012),
and Escherichia coli K-12 MG1655, iJR904 (Reed et al., 2003). For
iPS189+ and iCG238, we allow the consumption of all nutrients for which
uptake reactions are present in the model. For iJR904, we model growth on
minimal medium (ammonium, hydrogen(+), oxygen, phosphate, sulfate)
with glucose as the sole carbon source. A summary of the algebraic
characteristics of the models is given in Table 1. All models are available
in the supplementary material.

3 Implementation

3.1 Pre-processing

We use flux variability analysis (Mahadevan and Schilling, 2003) to make
the flux cone consistent. That is, we remove all reactions that cannot
carry nonzero steady-state flux and change all reversible reactions into
irreversible that cannot carry flux in both directions.

Further, we identify an initial FT determined by a maximal sign vector
of the flux cone. By consistency, this sign vector has full support and, after
changing the directions of reversible reactions having a minus entry, it has
only plus entries.

Finally, we determine reaction dependencies. We compute a basis
matrix for the nullspace of the stoichiometric matrix, using the nullspace
method of the R package pracma, and determine rows (dependent
reactions) that are multiples of other rows (independent reactions).

3.2 Efficient enumeration of flux topes

To check if a full sign vector τ ∈ {−,+}r (with τi = + for i ∈ Iirr)
determines a FT, we check the feasibility of the LP

Nv = 0, ` ≤ τivi ≤ u for i = 1, . . . , r. (15)

For numerical reasons, we set lower and upper bounds, ` = 10−6 and
u = 103, respectively, and a tolerance of the LP solver of at most 10−10.

The algorithm starts with the sign vector having only plus entries. In
the first step, it visits all full sign vectors having one minus entry in an
independent reversible reaction (and all reactions depending on it) and
checks their feasibility, using the above LP (see Figure 2). In the second
step, the algorithm visits all feasible, full sign vectors having two minus
entries in an independent reversible reaction, and so on.

More specifically, in step n, the algorithm starts with the set of all
feasible full sign vectors having n − 1 minus entries (the ’parent’ sign
vectors), and visits all full sign vectors withnminus entries (the ’child’ sign
vectors). Note that ’child’ sign vectors can be reached from several ’parent’
sign vectors. If a sign vector is visited for the first time, its feasibility is
checked using the above LP and stored in a tree of bit patterns (one bit,
plus or minus, for each independent reversible reaction), in order to avoid
the repetition of the feasibility check. The algorithm terminates if there
are no feasible full sign vectors having n minus entries or if n reaches
the number of independent reversible reactions. For an illustration of our
implementation, see Figure 2 and Table S1.

Our enumeration algorithm can be threaded efficiently. In particular,
checking the feasibility of ’child’ sign vectors for a given ’parent’ sign
vector forms an independent task.

We implemented the algorithm in C. LPs are solved with CPLEX. The
source code is available at https://github.com/mpgerstl/FTA.
Unless otherwise stated, computations were carried out using six threads on
a Xeonr E5-1650v3 CPU with DDR4 RAM modules running on Debian 8.

4 Results

4.1 FTs correspond to maximal sets of conformal EFMs

We analyzed a GSMM of M. genitalium, iPS189+ (Suthers et al.,
2009; Hartleb et al., 2016) and enumerated all FTs and all EFMs. (The
enumeration of all EFMs was possible since the model is sufficiently
small.) More than 3 million EFMs were found, which are contained in
only 672 FTs, see Table 1. The FTs were enumerated within 1 second,
whereas EFM computation took 10 hours.

We verified that the 672 FTs correspond to maximal sets of conformal
EFMs (having matching signs). Thereby, we first computed the set of all
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Fig. 3: Frequency of the number of adjacent FTs, computed in iCG238.

EFMs and formed the maximal sets of conformal EFMs using a mixed
integer LP described in Gerstl et al. (2016) and previously used for the
computation of LTCS from the set of EFMs. We also computed the sets
of EFMs for all individual FTs and found that their union equals the set of
all EFMs.

We conclude that in network containing reversible reactions (i) FTs can
be enumerated efficiently, (ii) few FTs condense the information contained
in many EFMs, and (iii) EFMs can be computed using FTs.

4.2 FT analysis may be feasible when EFM analysis is not

We studied a GSMM of B. cuenoti, a mutualistic, bacterial endosymbiont
living in fat cells of cockroaches. The model iCG238 (González-
Domenech et al., 2012) is significantly larger than iPS189+, and a full
EFM analysis is infeasible with current methods. However, we were able
to enumerate all FTs within 30 hours and found60.2×106 FTs, see Table 1.

We note that the number of FTs is much smaller than the obvious
upper bound 231 = 2.15× 109, where 31 is the number of independent
reversible reactions. To attain this upper bound, each FT would need to
have 31 adjacent FTs. However, most frequently, a FT has only 22 adjacent
FTs, see Figure 3.

4.3 Optimal FTs can be enumerated in GSMMs

For the model iCG238 (González-Domenech et al., 2012), we were further
interested in fluxes that maximize biomass production. As described in
section 2.8, we enumerated the FTs of the optimal flux polyhedron. We
found that, out of the 60 million FTs of the flux cone, only 270 are FTs
of the optimal flux polyhedron, see Table 1. In fact, the optimal FTs
could be identified within 1 second, without first enumerating all FTs
(taking 30 hours) and then selecting the optimal ones. We verified that
both approaches result in the same set of biomass-optimal FTs.

The decrease in the number of FTs from 60 million to 270
is a consequence of additional irreversibility constraints arising
from the optimality condition. While the model iCG238 contains
31 independent reversible reactions, biomass-optimality enforces 21
additional irreversibility constraints leaving only ten reactions reversible,
see Table 1. Interestingly, out of all amino acid transport reactions, only
the exchange of Alanine remained reversible. All other amino acids cannot
be produced when B. cuenoti is growing optimally.

To complete the study of the model iCG238, we randomly selected
10% of the biomass-optimal FTs and performed an EFM analysis. All FTs
contained around 109 EFMs, see Figure 4; however, the run times for
EFM enumeration varied strongly, ranging from 1 hour to more than 60
hours in one extreme case.

Finally, we analyzed a GSMM of E. coli, iJR904 (Reed et al., 2003).
We enumerated all biomass-optimal FTs and found around twelve million
FTs within less than 35 hours runtime. Interestingly, the number of FTs

Fig. 4: Runtime (of EFM enumeration) vs. number of EFMs for 27
randomly selected, biomass-optimal FTs, computed in iCG238.

computed in each step of our algorithm is distributed normally, see left
panels in Figure 6 and Figure S2. Indeed, the same distribution was found
for B. cuenoti, iCG238, see Figure S3 in the supplement.

Next, we studied the frequency of reaction directions in biomass-
optimal FTs of iJR904. The direction of fructose-bisphosphate aldolase
(FBA) turned out to be most rigid, with the forward direction being used
in 80% of the FTs. On the other hand, 12 (out of the 27) reversible reactions
were most flexible, showing no preference for forward or backward
directions, see the diagonal in Figure 5. In fact, Figure 5 illustrates the
coordination of reaction directions for pairs of reversible reactions. Only 7
(out of

(2×27
2

)
= 1431) pairs of reaction directions are infeasible (black

squares in the off-diagonal cells in Figure 5), thereby highlighting the
plasticity of metabolic networks. While most infeasible pairs occurred
within the nucleotide salvage pathway, some also occurred across different
pathways, e.g. the infeasible pair of malate dehydrogenase (MDH) and
fructose-bisphosphate aldolase (FBA) from the tricarboxylic acid cycle
and glycolysis, respectively.

The enumeration of all FTs turned out to be computationally infeasible.
In fact, the enumeration of all FTs up to step n = 11 (see Figure 6)
required two months and 260 GB memory, thereby using 20 threads on
two Intelr Xeonr E5-2650v3 CPUs with DDR4 RAM modules running
on CentOS 7. Assuming that the incremental number of FTs is distributed
normally, we estimated the total number of FTs to be around 1012, see top-
right panel in Figure 6. This prediction is by two orders of magnitude lower
than the upper bound determined by the number of independent reversible
reactions. The quality of the fit was evaluated for iCG238 (B. cuenoti) and
biomass-optimal FTs of iJR904 (E. coli), where already after a few steps
the predictions are within a 50% range of the true value, cf. Figure S4.

5 Discussion
In this work, we introduced the novel concept of a flux tope (FT). For a
consistent metabolic network, a FT is a full-dimensional pointed subcone
of the flux cone, specified by fixing the directions of all (reversible)
reactions. In particular, every FT contains a full “pathway”, carrying
flux in all reactions. Whereas flux variability analysis allows to study the
feasible directions of individual reactions, FT analysis allows to study all
feasible (or all optimal) combinations of reaction directions. We developed
a mathematical framework for FT analysis, building on the concepts of sign
vectors and hyperplane arrangements, we provided an efficient algorithm
for the enumeration of FTs, we demonstrated that FTs can be enumerated
in large metabolic networks, and we used FTs to enumerate EFMs in
metabolic networks with reversible reactions. Ultimately, we are interested
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Fig. 5: Relative frequency of pairs of reaction directions in biomass-
optimal FTs of iJR904. (Tick labels correspond to reaction identifiers
in iJR904.) Every cell corresponds to a pair of reversible reactions and
is divided in four squares corresponding to the possible combinations of
reaction directions. E.g, 50% of all biomass-optimal FTs are supported
by reaction NDPK1 in backward and reaction ADK1 in forward direction
(see inset). Black squares depict unfeasible pairs of reaction directions.

in FTs that are both stoichiometrically and thermodynamically feasible and
hence characterize the thermodynamic repertoire of cellular metabolism.

To efficiently enumerate FTs, we build on the correspondence between
FTs and cells in a (central) hyperplane arrangement. In particular, we
adapt the reverse search algorithm for cell enumeration in hyperplane
arrangements. Reverse search is both compact and output-polynomial.
(Recall that an algorithm is compact if its space requirement is polynomial
in the input size only and output-polynomial if its runtime is polynomial
in both input and output size.) Moreover, it constantly produces output
(not just upon completion). As it turns out, enumerating cells in the
hyperplane arrangement (7) is problematic. In particular, solving LPs
involving the (dense) null-space matrix K is slow. Hence, we directly
solve the LPs (15) involving the (sparse) stoichiometric matrixN . Further,
we trade some space requirements for smaller runtime and store the
solutions of LPs to avoid repeated computations. Finally, we change
the algorithm from depth-first to breadth-first search. This allows to
investigate neighborhoods of a given FT, if the enumeration of all FTs
is computationally infeasible or if the reversion of reaction directions
increases an objective function (e.g. biomass). In fact, it was suggested that
reversing reaction directions can improve strain performance (Nishikawa
et al., 2008). Moreover, coordination of reaction directions is key to the
study of emergent properties in cross-feeding communities. Currently, it is
unclear if members of a community adjust their metabolism in an optimal
manner, and unbiased methods like FT analysis are required to identify
essential interactions between species (Gottstein et al., 2016).

For EFM enumeration, a metabolic network is often “reconfigured”
by splitting reversible reactions, and one considers the resulting
higher-dimensional network involving irreversible forward and backward
reactions. This approach is not practicable for FT enumeration. For the
reconfigured system, there is exactly one (trivial) FT. To identify the FTs
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Fig. 6: Cumulative and incremental number of FTs as a function of the
step size n (top and bottom panels, respectively). In particular, number of
biomass-optimal and all FTs (left and right panels, respectively), computed
in iJR904 (E. coli). Dashed lines represent fits to normal distributions.
Parameter values are listed in Table S2.

of the original system, additional constraints have to be added: For every
reversible reaction, either the forward or the backward flux has to be zero.
Due to the enforced zero fluxes, the FT enumeration problem is not an LP
(but a mixed integer LP), and (efficient) reverse search cannot be used.

All models under study have significantly fewer FTs than EFMs. In
fact, in the GSMM of B. cuenoti, every single FT has more EFMs than
the whole network has FTs. This is in contrast to general hyperplane
arrangements, in which there are least as many topes (sign vectors with
maximal support) as vertices (sign vectors with minimal support) (Fukuda
et al., 1991). We conjecture that the lower number of FTs compared to
EFMs is a typical feature of GSMMs; a detailed comparison will be the
scope of further work. Currently, metabolic pathway analysis is restricted
to medium-scale models since the number of EFMs explodes with the
size of a model. FTs helps to accommodate this problem in two ways:
(i) there are fewer FTs than EFMs, and (ii) they can be enumerated more
efficiently. (Recall that the complexity of the double description method
for EFM enumeration is not even known).

Finally, the enumeration of FTs opens up a new way for enumerating
EFMs in GSMMs. The flux cone is the union of all FTs, which can be
subject to EFM analysis, individually. For a given FT, the directions of all
(reversible) reactions are fixed, and the double description method can be
used without increasing the problem dimension by reaction splitting. On
our machines, a conventional EFM analysis of iCG238 (B. cuenoti) was
infeasible due to memory restrictions. Still, we were able to enumerate
all EFMs of individual FTs, cf. Figure 4, which suggests the parallel
enumeration of EFMs for all FTs. Clearly, a naive parallelization is
inefficient, since EFMs are typically contained in several FTs. Especially
EFMs contained in FTs with many adjacent cells are shared frequently.
Tests with iPS189+ indicate that, on average, an EFM is enumerated more
than 100 times. Yet, despite the frequent repetitions, the total CPU run time
(compared to a standard EFM analysis) increased only by a factor of ten.
Further work is needed to make a FT-based EFM enumeration competitive
in terms of run time.

6 Outlook: Thermodynamically feasible FTs
Recently, it has been shown that many EFMs are thermodynamically
infeasible and hence irrelevant for the characterization of metabolic

Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty550/5047765
by Universitaet Linz user
on 01 August 2018



8 Gerstl et al.

phenotypes (Peres et al., 2017; Gerstl et al., 2016, 2015a,b;
Jungreuthmayer et al., 2015). The same constraints apply to FTs. In our
toy model, the FTs τ3 and τ4 contain the thermodynamically infeasible
EFM e3 (the internal cycle), cf. Figures 1(b) and Figure 2, and hence they
are irrelevant biologically. A single thermodynamically infeasible EFM
leads to the elimination of two FTs, that is, thermodynamic constraints
reduce the number of FTs even more than the number of EFMs.

A thermodynamically feasible FT represents one possible combination
of reaction directions and contains all corresponding pathways. Thereby,
the thermodynamic feasibility of a FT is determined by the metabolite
concentrations via the Gibbs free energy. By cellular control of the
metabolite concentrations, a FT can be reached and the corresponding
pathways can be activated.

A first generalization of our enumeration algorithm involves the
elimination of FTs that do not contain any thermodynamically feasible flux
mode: either by straightforward post-processing or by further adaptation
of reverse search. In the end, we are not just interested in FTs (defined
by full sign vectors) that contain thermodynamically feasible flux modes
(possibly with smaller sign vectors), but rather in thermodynamically
feasible FTs (defined by maximal sign vectors). The latter definition leads
to combinatorial problems which require further theoretical analysis and
algorithmic developments.
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