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Abstract. We propose a general algorithmic approach to noncommu-
tative operator algebras generated by linear operators using quotients
of tensor algebras. In order to work with reduction systems in tensor
algebras, Bergman’s setting provides a tensor analog of Grobner bases.
We discuss a modification of Bergman’s setting that allows for smaller
reduction systems and tends to make computations more efficient. Verifi-
cation of the confluence criterion based on S-polynomials has been imple-
mented as a Mathematica package. Our implementation can also be used
for computer-assisted construction of Grébner bases starting from basic
identities of operators. We illustrate our approach and the software using
differential and integro-differential operators as examples.
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1 Introduction

For an algorithmic treatment of many common operator algebras, like differen-
tial and difference operators, skew polynomials are a well-established algebraic
construction; see e.g. the survey [4] describing also implementations in computer
algebra systems. However, not all common operator algebras are covered by this
setting. For example, integral operators cannot be constructed that way.

The principle that can always be applied is construction by generators and
relations. In practice, normal forms are needed for effective computation. Find-
ing and proving the structure of normal forms is a difficult task, the general
problem is even undecidable. For skew polynomials, normal forms are given by
the standard polynomial basis. For tensor algebras, Bergman’s paper [1] also pro-
vides a framework in which reduction systems and corresponding normal forms
can be analyzed, analogous to Grobner bases. Tensor algebras can be seen as a
generalization of free noncommutative polynomial algebras and inherit all their
algorithmic obstructions. At the same time, parts of the tensor setting can be
automated, in particular, verification of the confluence criterion and subsequent
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computations with normal forms. We provide an implementation in the Math-
ematica package TenReS including our generalization of Bergman’s setting [6]:
http://gregensburger.com/software/TenReS.zip.

When representing linear operators as tensors, composition of operators is
modeled by the tensor product. We briefly describe the main building blocks
of the algebraic construction. Over some K-module of basic operators M, we
consider the tensor algebra

oo

K(M) = M@,

n=0

where K is commutative ring with unit element. Operator identities are encoded
as a reduction system X for K (M). Then the operator algebra is constructed as

K({M)/Ix,

where Iy is a two-sided ideal induced by the reduction system Y. This setting
allows for finite reduction systems even in cases where the module M does not
have a finite basis. As our examples illustrate, this approach does not make use
of a basis of M at all.

2 Reduction Systems for Tensor Algebras

Using the well-known example of differential operators, we explain the main
theoretical notions as well as the most important commands of our package.
Usually one defines the differential operators directly via skew polynomials with
normal forms > f; &* and noncommutative multiplication defined by

of = fo+f.

Suppose we do not already know the normal forms of differential operators
and we just have the definition of the derivation 9 as a K-linear operator on some
differential K-algebra (R, ) obeying the Leibniz rule dfg = (0f)g+ f0g. (Note
that we use operator notation in this paper.) Recall that differential operators
with polynomial coefficients (Weyl algebra) over a field K O Q can be defined
as the quotient algebra K(X,D)/(DX — XD — 1) of the free noncommutative
polynomial algebra K (X, D) modulo the two-sided ideal (DX — XD — 1). Now,
we want to do an analogous construction for the differential operators with
coefficients in an arbitrary differential K-algebra (R, d). To this end, we work
in the tensor algebra over the K-module M = R @ K0. First, we explain some
main points informally before explaining necessary technical details later.

We interpret elements f € R as multiplication operators, 9 as the derivative
operator on R. Then we have three basic identities between these operators:
Multiplication by 1 € R acts like applying no operator at all. So we can replace
it by the empty tensor €, which represents the unit element in the tensor algebra.
For f,g,h € R with fg = h the multiplication operators

f®g and h
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act in the same way on R. Finally, the Leibniz rule implies that the operators
0 f and f®JI+0f

act in the same way as well. Deciding to move the differential operators to the
right results in the following reduction rules to simplify parts of tensors repre-
senting a composition of multiplication operators and the derivative operator:

l—e f®g—fg, and 0® fr— f®0+Jf.

A priori it is not clear that we will always end up with the same result if we
apply the reduction rules in different ways. Suppose we have a tensor of the form

[1®f2® f3

with f1, f2, f3 € R arbitrary but fixed. Then we can apply the reduction rule for
composition of multiplication operators in different ways obtaining (f1f2) ® f3
and f; ® (fafs). Trivially, another application of the same rule yields f; f2 f5 in
both cases. In general, a minimal case where two (not necessarily distinct) rules
can be applied differently to a tensor is called an ambiguity and the difference

(fif2) ® fs = f1r® (fafs)

is called the corresponding S-polynomial. If all S-polynomials of an ambiguity
can be reduced to zero by the reduction rules, like above for all fy, fo, f3, then
we call the ambiguity resolvable.

Analogous to Buchberger’s criterion for Groébner bases [3] and the
Composition-Diamond Lemma for Groébner-Shirshov bases [2], we have a con-
fluence criterion for tensor reduction systems due to Bergman [1]. A reduction
system defines unique normal forms if and only if all ambiguities are resolvable.
Termination of the reduction process, depends on a compatible Noetherian order-
ing on words; see [1,6] for details. Throughout this paper and in the package,
we tacitly assume that such an ordering exists.

One can distinguish four different types of ambiguities: overlaps and inclu-
sions, each with or without specialization. The ambiguity above is an overlap
ambiguity since the factors f1 ® fo and fo ® f3 of the tensor fi ® fo ® f3 on which
the rules act overlap. There is no specialization involved since all cases on which
the rules may act actually arise in this way. On the other hand, the tensor

o®c

with ¢ € R and dc = 0 may be reduced by the rules 1 — eor 0® f — f®I+9If
to either ¢0 or ¢ ® 0. Obviously, another application of 1 — € in the second case
gives c0 as well, so this ambiguity is resolvable again. In this case one factor ¢
of O ® ¢ on which one rule acts is contained in the other factor 0 ® ¢ acted on
by the other rule. So we call it an inclusion ambiguity. Moreover, not all cases
of the rule 0® f — f® 0+ Jf are needed here, just f € K C R, so we say that
this ambiguity involves specialization.
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2.1 Tensor Algebras

For computation in the tensor algebra K (M) over the K-module M, we need to
be able to check when objects are contained in K. The user has to implement
the function CoeffQ returning True whenever its argument is contained in K.
Based on that, tensors m1 ®- - -®m,, € K(M) are represented as Prod[my, . ..,my]
respecting K-multilinearity of the tensor product.

In order to fix domains for the reduction rules, we need corresponding direct
sum decompositions of the module M indexed by some finite set (alphabet). In
our example above, we define Mp = R and Mp = K0 so that

M = Mp & Mp.

Hence, in terms of the word monoid (Y) over the alphabet Y = {F, D}, we
have the following decomposition of the tensor algebra into modules My, =
My, ® - @M, for W=y...y, €(Y):

K(M)= P Mw.
We(Y)

For each submodule M and Mp of M, the user has to implement a mem-
bership test MemberQr and MemberQp indexed by the corresponding letter of the
alphabet. Moreover, the user has to implement all computations with elements
of each module. In particular, this applies to additional operations on a module,
like in our example multiplication and derivation on My respecting the Leib-
niz rule in R. For computation with S-polynomials, we need to compute with
general elements of non-cyclic modules. For example, in the module Mg, gen-
eral elements will always be called F[1], F[2], ..., which together with their
derivatives also have to be recognized by the membership test.

In order to formalize the rule 1 — ¢, we need a refinement of the above
decomoposition of M by choosing a complement Mz of My = K such that

Mp = My ® M.

Of course, also for the new submodules, membership tests have to be imple-
mented. All such refinements of submodules have to be stored in the variable

Specialization={F—{K,F}}.
Altogether, with X = {K, F, D} we have two decompositions of M:
V=@~ P,
reX yey

For all cyclic submodules the user should store the letter and the generator as a
pair in the list CyclicModules. In our example we denote 0 by Diff, so that

CyclicModules={{K,1},{D,Diff}}.
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2.2 Reduction Systems

With the submodules introduced above, the reduction rule f ® g — fg can
be formally defined as the pair (FF,hpp) consisting of the word FF € (Y)
and the module homomorphism hpp: Mpp — Mp C K(M). The homomor-
phism hpp is defined by f ® g — fg and could be implemented by the user
as hpp[f_, g-] := Prod[mul[f, g]], for example. Similarly, we have the reduction
rule (DF,hpr), where hpp: Mpr — Mpp ® Mp may be implemented as
hpr[Diff, f_| := Prod[f,Diff] + Prod[Diff[f]]. Thanks to the refinement, we also
can define the reduction rule 1 — e as the pair (K, hx) with the homomorphism
hi: Mg — M. (hg[1] := Prod[]), where € is the empty word. These homomor-
phisms have to be implemented by the user.
Our reduction system over the combined alphabet Z = X UY is given by

Y={(FF,f®gw~ fg), (DF,0®f— f@0+0f), (K,1—¢€}

The corresponding definition for our package is

RedSys = {{{F7 F}thF}v {{Dv F}a hDF}v {{K}7hK}}'

In general, any reduction rule r = (W, h), where h is a K-module homomor-
phism h: My — K (M) reduces tensors a ® w ® b with a € M4, w € My, and
b e Mg for some A,B € (Z) by a@w®b —, a ® h(w) ® b. In other words,
similarly to polynomial reduction, we “replace” the “monomial” w by the “tail”
h(w) given by the homomorphism h. The reduction ideal induced by a reduction
system X is defined as the two-sided ideal

I = (t—h(t) | (W,h) € ¥ and t € My) C K(M).

If one tensor can be reduced to another, then their difference is contained in I.
This is implemented via the command ApplyRules. For example, we can reduce
f1®0® fato (fif2) ® O+ f10f2 by the reflexive-transitive closure B
ApplyRules [Prod[F[1], Diff, F[2]], RedSys]
Prod[mul[F([1], Diff[F[2]]]] + Prod[mul[F([1], F[2]], Diff]

2.3 Normal Forms and Confluence

Determination of normal forms and ambiguities can be reduced to problems in
the word monoid (Z) over the combined alphabet. We introduce the notion of
specializing a word W € (Z) to a word in (X) by replacing all letters of W from
Y \ X by corresponding letters from X. For example, the specializations of the
word FFD € (Z) are given by {KKD, KFD, FKD, FFD} C (X). In terms of
modules, we then have that My, is the direct sum of all My such that V is a
specialization of W.

The module K (M), of irreducible tensors, i.e. tensors that cannot be
reduced by any reduction rule in Y, is determined by the set of irreducible
words (X)) C (X) via

K(M)w= & Mw.
We(X)irr



510 J. Hossein Poor et al.

Irreducible words are those words over the refined alphabet X that do not contain
a subword that is a specialization of the word W of any rule (W, h) € X. In our
example one easily sees that the irreducible words are given by DJ and EFDJ
with j € Ny. Consequently, irreducible tensors are of the form 9%/ and f ® 9%/
with j € Ng and f € Mz and K-linear combinations thereof.

In order to show that irreducible tensors already define a normal form of
tensors in K (M) modulo the reduction ideal I's, we need to verify that the S-
polynomials of all ambiguities can be reduced to zero. In our example, there are
5 ambiguities, which we may informally denote by FFF, DFF, KF, FK, and
DK. Two of them (FFF and DK) already have been dealt with above. The
S-polynomials associated to the remaining ambiguities are given by

hpr(0® f)@g—0@hpr(f@g)=f@I0®@g+ (0f)®g—0®(fg)
hrpr(c® f) —hk(c)® f=0
hrr(f®c)— f@hg(c)=0

for all c € Mg and f,g € Mp. The first “family” can be reduced to zero by the
rules (FF,hpp) and (DF, hpr) and the others are zero anyway.

Using the commands ExtractReducibleWords, GenerateAmbiguities,
SPoly, and ApplyRules of the package we can verify that all S-polynomials
reduce to zero in the following way.

ambiguities = GenerateAmbiguities[ExtractReducibleWords [RedSys]]
{Ooverlap[{F, F, F}, {F}, {F}],
Ooverlap[{D, F, F}, {F}, {D}], SpecialInclusion[{K, F}, {}, {F}],
SpecialInclusion[{F, K}, {F}, {}], SpecialInclusion[{D, K}, {D}, {}]}
spolys = Map [SPoly[#, RedSys] &, ambiguities]
{-Prod[F[1], mul[F[2], F[3]]] +Prod[mul[F([1], F[2]], F[3]],
-Prod[Diff, mul(F[1], F[2]]] + Prod[Diff[F[1]], F[2]] + Prod[F[1], Diff, F[2]],
0, 0, -Prod[Diff] + Prod[1l, Diff]}
ApplyRules [spolys, RedSys]
{0, 0, 0, 0, 0}

This process is also available through the command CheckResolvability, which
returns a list of all ambiguities that are not resolvable together with the reduced
from of their S-polynomials, see also its application in the following section.
If CheckResolvability[RedSys] returns the empty list, then the irreducible
tensors w.r.t. the reduction system given by RedSys really are normal forms.

3 Applications

In this section, we illustrate how to use the package for constructing a confluent
reduction system starting from a given one. For tensor reduction systems, the
computer-assisted process is heuristic and users can proceed in different ways.
In each step, we add new rules to the reduction system based on S-polynomials,
similar to Buchberger’s algorithm for computing Grobner bases [3] and
Knuth-Bendix completion [7].
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As an example, we consider the algebra of integro-differential operators.
Based on the free noncommutative polynomial algebra using a basis of the “func-
tion” algebra, it was introduced in [8,9] to study boundary problems; see also [10]
for an automated confluence proof relying on free integro-differential algebras.
First, we recall the definition of an integro-differential algebra [5,9].

Definition 1. Let K be a commutative ring and let (R, 0) be a differential K-
algebra such that 1 € R and OR = R. Moreover, let [: R — R be an K-linear
operation on R such that

off =1
for all f € R. Then we call (R,0, [) an integro-differential algebra over K if
the evaluation E: R — K defined by E = id — [0 is multiplicative, i.e. for all
fyg € R we have Efg = (Ef)Eg.

We fix an integro-differential K-algebra (R,d, [) with ring of constants K
and evaluation E = id — [d. Recall from [5] that in any integro-differential
algebra, we have the direct sum decomposition

R=Ko [R

into constant and non-constant “functions”. We consider the corresponding K-
modules Mg = K and My = fR. Note that the elements of Mg and M are
not interpreted as functions but as multiplication operators induced by those
functions. For the K-linear operators 9, [, and E we consider the free modules
Mp = K9, M; = K [, and Mg = KE generated by them. Now, let

M=Mp®Mp®M;® Mg

with Mp = Mg @ Mj and alphabets Y = {F,D,I,E} and X = {K,F,D,I,E}.
In order to compute with these operators we need to collect the identities they
satisfy in form of a reduction system. The above definition contains the following
basic identities for all f,g € R:

0fg=fog+(0f)g, 90fg=g. [O09=g—Eg, Efg=(Ef)Eg.
Based on these, we start with the following reduction system:

Y={(FF.f®g— fg),(DF,0® fr f©d+0f),(DI,0® [+ ¢),
(ID,[®0—e—E),(EF.E® f— (Ef) ®E), (K,1— ¢)}

Using our package, we determine that out of the 10 ambiguities 6 are resolvable
and 4 remain. The reduced forms of the corresponding S-polynomials give rise
to additional identities, among tensors as well as among elements of Mp.

CheckResolvability[RedSys]

10 ambiguities in total

2 ambiguities have all S-polynomials equal to zero

6 ambiguities are resolvable

{{overlap[{D, I, D}, {D}, {D}], Prod[Diff, Eval]}, {Overlap[{I, D, F}, {F}, {I}],
Prod(F[1]] - Prod[Int, Diff[F[1]]] - Prod[Eval[F([1]], Eval] - Prod[Int, F[1], Diff]},
{Overlap([{I, D, I}, {I}, {I}], -Prod[Eval, Int]},

{SpecialInclusion|{E, K}, {E}, {}], -Prod[Eval] + Prod[Eval[l], Eval]}}
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To proceed, we introduce 3 new rules. We also update the implementation of
computations in Mp = R correspondingly, including the relation E1 = 1.

Y =YU{(DE,0®E~0),(ELLE® [ — 0),
(IFD,[®@ f@d— f— [@df — (Ef)E)}

Repeating the steps above, 15 of 20 ambiguities can be resolved. Only 3 of
the 5 S-polynomials not reduced to zero are essentially different, and we add
corresponding rules to the reduction system.

Yy =X1U{(EE,EQE~E),(IFE,[@ fOE— [f®E),
UFL [ofe [ [fe[-]® [}

Now, among 37 ambiguities 35 are resolvable, resulting in two new rules.
Y3:=XU{(IE, [®Ew— [1®E),II,[® [~ [1® [ - [® [1)}

Finally, we get 52 ambiguities which are all resolvable. This means that the
derived reduction system X5 is confluent. The function IrreducibleWords of the
package generates all irreducible words up to a given length. One can prove that
the irreducible words are given by FEDJ and FIF with j € Ny. Consequently,
irreducible tensors are K-linear combinations of tensors of the form f @ E® 9%/
and f ® [ ® g with j € Ny, f,g € Mz where f, g, and E can also be absent.
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