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1 Introduction

Wavelets and their generalizations are used in many areas of mathenaatisgr
from harmonic analysis over numerical analysis to signal and imagegsing, see
for example Daubechies [11], Mallat [29], and Strang and Nguy@h [A function
¥ € L*(R) is anorthonormal waveleif the family

Yin(x) = 292290 — k) forj,keZ

of translated an dilated versions ¢fis an orthonormal basis of the Hilbert space
L?(R). Alfred Haar gave in his dissertation from 1909, published in [17], thst fir
example of an orthonormal wavelet

1, foro<az<i,
Y(x)=4¢ -1, fori<az<1,
0, otherwise

which is now known as thelaar wavelet Daubechies introduced in her seminal paper
[10] a general method to construct compactly supported waveletscditistruction is
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based orscaling functionssatisfying adilation equation

N
$(x) = hio(2x — k) (1.1)
k=0

given by a linear combination of reélter coefficientsh;, and dilated and translated
versions of the scaling function; see the next section for an outline.

Imposing conditions on the scaling function gives, via the dilation equatidr), (1
constraints on the filter coefficients. Orthonormality implies quadratic equeatad
vanishing moments of the associated wavelet and normalization lineairaiots
Daubechies wavelets [10] have the maximal number of vanishing msrfara fixed
number of filter coefficients, and so there are only finitely many solutiBagametriz-
ing all possible filter coefficients that correspond to compactly supportédnormal
wavelets has been studied by several authors [21, 28, 33, 38, 447489]. All
parametrizations express the filter coefficients in terms of trigonometratiains, and
there is no natural interpretation of the angular parameters for the rgsattaling
function. Furthermore, one has to solve transcendental constrairitefparameters
to find wavelets with more than one vanishing moment.

We gave parametrizations of filter coefficients such that the corresppnévelets
have several vanishing moments and that use the first discrete moasgrasameters
first in [36] and then simplified in [35]. See section 3 for the parametrinatiof
four to eight filter coefficients with one parameter and at least one, tna,tlaree
vanishing moments, respectively. To compute these parametrizatiarsedsymbolic
computation and for the more involved equations in particuld@b@er bases, which
were introduced by Buchberger in [3], see also [4]. Other applicatdrsrobner
bases to the design of wavelets and filter coefficients are for examplesdext in
[6, 7,16, 25, 26, 31, 32, 39].

As a first application of parametrized wavelets, we discussed in [36]theycan
by used for compression by computing an optimal parameter for a gigmal, see
also [18]. In this paper, we describe several other applicationsctioeet, we discuss
the regularity of the scaling functions and wavelets corresponding toavanetriza-
tions. We construct wavelets that have a highétddr exponent than the Daubechies
wavelets. Filter design is another possible application of our parametrigatidsdeal
with the construction of least asymmetric orthonormal wavelets in sectiginally,
we address the existence of rational filter orthogonal filter coefficierstsdtion 6. For
example, we show that there are no orthogonal filters with six nonzero doeffi-
cients and at least two sum rules. A Maple worksheet with all computatensyal
MATLAB functions to produce the figures and a GUI to compute with and il&istr
parametrized wavelets are available on request from the author.

2 Wavelets and moments

We outline the construction of orthonormal wavelets based on scalingidascand
recall the polynomial equations for the filter coefficients, see for exaDpubechies
[11] or Strang and Nguyen [42].
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Orthonormality of the integer translatés(z — 1)}z in L?(R), that is,

[ oot iz = o,
implies, using the dilation equation (1.1), the quadratic equations

> hihio =200, forlez (2.1)

keZ

where we seb;, = 0 for k < 0 andk > N. We can assume thaph # 0. Then with
equation (2.1) we see that must be odd and the number of filter coefficients even.

If the filter coefficients satisfy the necessary conditions for orthogon@ity) and
the normalization

N
> =2, (2.2)
k=0

there exists a unique solution of the dilation equation (1. ZFifR) with support0, V]
and for which [ ¢ = 1, see Lawton [23]. For almost all such scaling functions the
integer translate§s(z — 1) },cz are orthogonal, and then

N

b(@) =Y (=1)*hn_kp(2 — k) (2.3)

k=0

is an orthonormal wavelet.

Necessary and sufficient conditions for orthonormality were give@diyen [8] and
Lawton [24], see also Daubechies [11, section 6.3]. The only exawifiefour filter
coefficients that satisfies the equations (2.1) and (2.2) and wheretdigeirranslates
of the corresponding scaling are not orthogonaljs= h3 = 1 andh; = hy = 0 with

the scaling function
1/3, for0<z<3
= ’ - ’ 2.4
¢(x) {0, otherwise (2.4)

The corresponding scaling function for the Haar wavelet is the boxifumc

, foro<uz<1,
9(z) = {O, otherwise

with the filter coefficientsiy = hy = 1. In general, there is no closed analytic form
for the scaling function, and for computations with scaling functions anelgts only
the filter coefficients are used.

Vanishing moments of the associated wavelet are related to severaljgemf the
scaling function and wavelet. For example, to regularity, the polynompabckiction
and the approximation order of the scaling function, and the decay ofahelet coef-
ficients for smooth functions, see Strang and Nguyen [42] and theys[#8] by Unser
and Blu for details. The condition that the figsitnoments of the wavelet vanish

/azlw(w)dx:O fori=0,...,p—1
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is using equation (2.3) equivalent to thiem rules

N
> (~1Fk'h, =0 fori=0,....p—1. (2.5)
k=0

One then says that hasp vanishing momentsr the filter coefficients satisfy sum
rules.
Since we useliscrete moments

N
my, = Z hyk™
k=0

of the filter coefficients as a parameters, we recall a well-known rizeurslation
between discrete ar@bntinuous moments

M, = /x”¢(x) dx
of the scaling function. Lep be a scaling function satisfying/, = [ ¢ = 1. Then

mo = 2 and

n

1 n
M, = o+l _ 9 Z <i>miMn—i7

i=1
n—1

my, = (2n+1 _ 2) M, — Z <7Z) m;M,_; forn >0,

=1

see for example Strang and Nguyen [42, p. 396]. Using the recungabtain for the

first moments
M1 = 1/2 mi,

My =1/6m3 +1/6my,
My =1/28m3 +1/Tmymsg + 1/14m3

and
my = 2 My,

my = —4 M}E + 6 My,
ms = 12 M3 — 24 My M, + 14 Ms.
Explicit formulas expressing the discrete moments in terms of the consraumdivice

versa are given in [36].
3 Parametrizations

We discuss the parametrizations from [35] of four, six, and eight fileaffients
corresponding respectively to orthonormal wavelets with at leasttame,and three
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vanishing moments. All families depend on the first discrete moment

N
m=my = Z hik
k=0

of the filter coefficients.

3.1 Four filter coefficients

We have the following parametrization of filter coefficients with at least @méshing
moments:

ho=1/2—1/4a —1/4w,

hi=1/2-1/4a+ 1/4w,

he=1/24+1/4a+1/4w,

hs=1/24+1/4a—1/4w

with w = v4 —a? anda =m — 3 € [-2,2].

Note that fora = —a we obtain the flipped filter coefficients. Far= 0 we get
the filter coefficients0, 1, 1, 0), which correspond to a translated Haar scaling function
and wavelet. The parameter values: —2, 2 give also Haar scaling functions with the
filter coefficients(1, 1,0,0) and(0, 0, 1, 1). TheDaubechies wavelétas two vanishing
moments, so we have one more sum rule

(3.1)

2hg — hi1 + hg =0.

Substituting the parametrized filter coefficients into this equations and sobiingvire
get the two solutions = —+/3, /3 with the first discrete moments = 3—/3, 3+/3.
The first solution gives the famous Daubechies filters [10]

1/4(14+V3,3+3,3—-V3,1-3) (3.2)

and the second the flipped version. See Figure 3.1 for plots of scaliwgidas for
various parameter values.
We have a second parametrization of filter coefficients with at least arishiag

moment:

ho=1/2—1/4a+1/4w,

hi=1/2—1/4a—1/4w,

he =1/24+1/4a—1/4w,

hy =1/2+1/4a+1/4w

with w = v/4 —a? anda =m — 3 € [-2,2].

Comparing this solution with the parametrized filter coefficients (3.1), wetsw
is replaced by-w and so the two first and the two last filter coefficients are swapped.
Note that again foa = —a we obtain the flipped filters.

(3.3)
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2 2 2
15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5

2 2 2
15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5

Figure 3.1: Scaling functions for = —2, —/3, —1/3 /3 — 2/3 (first row)
anda = 1/3v/3 — 4/3,—2 + /3,0 (second row).
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Fora = 0 we now get the filter coefficientd, 0, 0, 1), which give the scaling func-
tion (2.4) where the integer translates of the scaling function are notgmtiad. The
parameter values = —2, 2 also give Haar scaling functions with the filter coefficients
(1,1,0,0) and(0, 0,1, 1). This parametrization does not contain filter coefficients with
a second vanishing moment. The corresponding scaling functionsoangared to the
parametrization (3.1), irregular, see section 4 for details.

3.2 Six filter coefficients

We have the following parametrization of filter coefficients with with at leastvamo
ishing moments:
ho = —3/32—1/8a+1/32a% — 1/32w,

hy =5/32—1/8a+1/32a* + 1/32w,
hy =15/16 —1/16a> + 1/16 w

hs =15/16 —1/16a* — 1/16 w,

hy =5/32+1/8a+1/32a* — 1/32w,
hs = —3/32+1/8a+1/32a* + 1/32w

with w = v/—a* + 1442 + 15 anda = m — 5 € [—/15,/15].
The Daubechies wavelet has one more vanishing moment, that is, itesatefisum
rule

(3.4)

~9hg+4hy —hy —hy +4hs =0.
Substituting the parametrized filter coefficients into this equations and soking f
we get one real solutiom= —+/5 + 2 /10, which gives the filter coefficients

1/16 (1 + V10 + w, 5 + V10 + 3w, 10 — 210 + 2w,

(3.5)
10 —2V10 — 2w, 5 + V10 — 3w, 1+ V10 — w)
with w = /5 + 2+/10. The Daubechies filters with four nonzero filter coefficients

(3.2) satisfy two sum rules and are therefore contained in this paraat&tnz Their
first discrete moment is» = 3 — /3. So here the corresponding parametes is
—2 — /3. We get a translated version fer= —/3. Fora = —/15 we obtain

1/8(3+ 15,54+ 15,0,0,5 — /15,3 — V15).
The parametes = —1 gives the first coiflet
1/16 (1 = V7,5 4+ V7,14 + 27,14 —2V/7,1 =7, -3+ V7),
see Daubechies [12] and [11, section 8.2]. &ef 0 we get
1/32 (=3 — V15,5 + V15,30 + 215,30 — 2v15,5 — /15, -3 4+ V/15).

See Figure 3.2 for plots of scaling functions for various parameteesallihe corre-
sponding scaling functions and wavelets dor 0 become increasingly irregular, see
section 4 for detalils.
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15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
0 5 0 5 0 5
15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
0 5 0 5 0 5

Figure 3.2: Scaling functions for, = —/15, =2 — v/3, —v/5 + 2/10 (first row)

anda = —/3, —1,0 (second row).
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3.3 Eight filter coefficients

We have the following parametrization of filter coefficients with at least thaeéshing
moments:

ia577a472a3+30a2755a715+(17a)w

ho

512 a®+1 ’
by _ 1 a®—9a"+30a’+2a® —23a+63+ (1+a)w
512 a?+1 ’
hy — 1 3a® —5a*—102a® + 186 a% — 261a + 35 + 3(1 — a)w
512 a?+1 ’
hy = 1 3a® —11a* —70a® + 358 a? — 229 a + 525 + 3(1 + a)w
512 a’+1 ’ (3.6)
ha — 1 3a®+11a* —70a® = 3584 — 2294 — 525 + 3(1 — a)w
512 a?+1 ’
hs — 1 3a® +5a* —102a® —186a% — 261a — 35 + 3(1 + a)w
512 a?+1 ’
he = La5+9a4+30a3—2a2—23a—63+(1—a)w
512 a’+1 ’
he — 1 a®+7a*—2d®-300*> —55a+ 15+ (1 + a)w
512 a’+1

with

w=/—ad + 36a° — 182 a* + 1540 a2 — 945,

a =m — 7 anda in the intervals
VB, ~Val or [Va,\/3l,
wherea denotes the smaller artithe larger real root of
zt — 3623 + 18222 — 1540 + 945,
with numerical approximations
Vva =0.8113601077... and \/B = 5.636256558 . .. .
The Daubechies wavelet satisfies one more sum rule
64 hg —27hy +8hg — hs + hs —8hg +27h7 = 0.
Substituting the parametrized filter coefficients (3.6) into this equationsavidg for
a, we get two real solution = —+/3, —/«, wherea denotes the smaller anglthe

larger real root of
ot — 2823 + 12622 — 1260 x + 1225
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or numerically
a = —4.989213573...,—1.029063869. .. .

The first parameter gives the Daubechies wavelet with extremal jhase. 195]
and the second the “least asymmetric” [11, p. 198]. The Daubeclzeslet with six
nonzero filter coefficients (3.5) has the first discrete moment

m=25—1/5+210,

so the corresponding parameter value for the parametrization (3.6) is

a=—-2-1/5+2v10= —5.365197664. .. .

See Figure 3.3 for plots of scaling functions for various parameteesalu

15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
0 2 4 6 0 2 4 6 0 2 4 6
15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
0 2 4 6 0 2 4 6 0 2 4 6
15 15 15
1 1 1
0.5 0.5 0.5
0 0 0
-0.5 -0.5 -0.5
4 6

o
N
IN
o

0 2

o
N}
IN
o

Figure 3.3: Scaling functions fou = —5.636256559, —5.365197664, —4.989213573
(first row),a = —3.009138721, —1.029063869, —0.8113601077 (second row), and =
0.8113601077, 2, 3 (third row).
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4  Regularity of scaling functions and wavelets

In this section, we discuss the regularity or smoothness of the scalinidua@and
wavelets corresponding to the parametrized filter coefficients from évéquis section.
The regularity of a function can be measured in different ways, wsidenhere the
Holder and Sobolev exponent.

We first recall the definitions. Far = n + §, wheren € N and0 < g < 1, the
setC* = C“(R) is defined as the set of all functiorfsthat aren times continuously
differentiable and such that th derivativef (™) is uniformly Holder continuousvith
exponents, that is,

| (z+h)— f™(z) < C|n|? forallz,heR

where(C is a constant. Fos > 0 the Sobolev spacé/®* = H*(R) consists of all
functionsf € L2(R) such thai(1 + |¢|?)*/2f(¢) € L2(R), wheref denotes the Fourier
transform off.

To measure the regularity or smoothness of a scaling fungtjame is interested
respectively in the (optimayobolev

Smax — sup{s : ¢ € HS}

andHolder exponent
Qmax = sup{a: ¢ € C}.

For a scaling function the délder exponent satisfies [44]
Qmax S [Smax - 1/27 Smax]- (41)

The regularity of scaling functions is also related to vanishing moments afdhe
responding wavelet. Villemoes [44] proved thatyife H™ with n € N, the filter
coefficients satisfy. + 1 sum rules or equivalently the corresponding wavelethag
vanishing moments. So in particularife C™, then the filter coefficients satisfy+ 1
sum rules, see also [11, pp. 153-156].

Eirola [14] and Villemoes [44] independently showed how the optimal Swbex-
ponent can be computed from the spectral radius of a matrix depeadittee filter
coefficients, see also Strang and Nguyen [42] for further details. ntbtfie optimal
Holder exponent is much more involved, see for example [9, 11, 1]3,b8¥ Rioul
[37] gave an algorithm to compute good lower bounds for tiéder exponent. The
algorithm produces monotonically increasing lower bounds with an inicigeasimber
of iterations, but the storage and computational costs approximatelyedfmurbeach
additional iteration.

In Figures 4.1, 4.2 and 4.3 you can see plots of the Sobolev expohtrd corre-
sponding scaling functions and wavelets depending on one parameiefouF filter
coefficients the Sobolev exponents range ffbhito 1 (parametrization (3.1)) and from
0to0 0.5 (parametrization (3.3)). The maximuhis attained for the Daubechies wavelet
since all other filter coefficients satisfy only one sum rule and hence tbbol&v expo-
nentis necessarily less than one. We obtain numerically the maximal S&xpenent
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1 0.5
0.9 0.4
0.8 0.3
& 3
=3 £
» »
0.7 0.2
0.6 0.1
0.5 0
-2 -15 -1 -0.5 0 -2 -15 -1 -0.5 0

Figure 4.1: Sobolev exponent for scaling functions with four filter coefficients from
equation (3.1) (left) and (3.3) (right).

Figure 4.2: Sobolev exponent for scaling functions with six filter coefficients from
equation (3.4).
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Figure 4.3: Sobolev exponent for scaling functions with eight filter coefficients from
equation (3.6).

for respectively six and eight filter coefficients
Smax = 1.4150, 1.7756,

at the parameter values for the Daubechies wavelets and the minimum is
Smax = 0.0399,0.1393

with parameter values
a = 3.077681946, 5.131603420.

For more than six filter coefficients it is possible to construct wavelets witiglzeh
Sobolev exponents than the Daubechies wavelets by omitting more thanromels,
see [27, 30, 45].

In Figures 4.4, 4.5 and 4.6 you can see plots of lower bounds forildeHexponent
of the corresponding scaling functions and wavelets depending orevameter, with
the bounds from equation (4.1). We uskdteration in the algorithm from [37].

Note that for most, and for eight filter coefficients for all, parameterstmeputed
lower bound is higher than the lower bousd.. — 1/2. The negative lower bound
in Figure 4.5 indicates that the corresponding scaling function is not eomiga We
obtain numerically the maximal lower bound for thélHer exponent for respectively
four, six and eight filter coefficients

agq = 0.5776,1.1386,1.6344
with parameters
a = —1.66260325442517, —3.28211108661493, —4.93905744197576

and filter coefficients
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Figure 4.4: Lower bound for Hblder exponent for scaling functions with four filter
coefficients from equation (3.1).

15

T
%2

I = = = Smax

o max(s, _ ~1/2,0)

L L L L L L L
-3 -2 -1 0 1 2 3

Figure 4.5: Lower bound for Hblder exponent for scaling functions with six filter
coefficients from equation (3.4).
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q24

16 s

- T T o max
~ max(smax—l/Z.O)

-5 -4 -3 -2 -1 1 2 3 4 5
a a

Figure 4.6: Lower bound for Hblder exponent for scaling functions with eight filter
coefficients from equation (3.6).

0. 31887001724554, 0.59678079636075,
0. 18112998275446, - 0. 09678079636075

0.21634225649014, 0.56180454136425, 0.35257937284659,
- 0. 08834519690163, - 0. 06892162933673, 0. 02654065553738

0. 15488273436983, 0.49644876596501, 0.45767418856225,
-0.00833281609981, - 0. 13761439998701, 0.01970151455156,
0. 02505747705493, - 0. 00781746441676.

Daubechies and Lagarias [13] obtained the optimalder exponents for the Dau-
bechies wavelets with a different method (four, six, and eight filterfuierfts)

amax = 0.5500,1.0878,1.6179,

where the last one is for the Daubechies wavelet with extremal phasee 8btained
in all cases wavelets that have a high&ldtr exponent than the Daubechies wavelets.

Daubechies addressed in [12] and [11, p. 242] the question of finganglets with
more regularity. For four filter coefficients she obtained the rational fibefficients
(3/5,6/5,2/5,—1/5), which corresponds te = —8/5 in (3.1), see also section 6.
With the methods from [13] she found that thélHer exponent of the corresponding
scaling function is at lea$t5864.

Lang and Heller [22] discussed the general optimization problem of nzaixign
the Holder exponent for a fixed number of filter coefficients. They foumbather
wavelets than the Daubechies wavelets for more than eight filter coefficlaut the
numerical method failed to find the more regular wavelets that we obtagiag the
explicit parametrizations of the filter coefficients. This might be due to tbetFeat
Lang and Heller used a general purpose optimization routine while we daelctly
apply the golden section search for finding the maximum of a univariatian.
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5 Least asymmetric filters

It is well known [11, p. 252] that if a compactly supported orthonormvalelet is
symmetric or antisymmetric around some axis, then it is the Haar waveletm8iry
of the scaling function is in turn equivalent to symmetry of the filter coeflitsigsee
Belogay and Wang [2] and also Daubechies [12]. Here we say thalttrebtiefficients
aresymmetric@aroundng € Z/2 if

hn = h2n0—n7

where we seh, = 0 for k < 0 andk > N. Symmetric filters are often calldohear
phase filterssince the filter coefficients are symmetric arounde Z/2 if and only if
the phase of th&equency response

h(€) = hne™

is a linear function of, that is, if
h(€) = ™% |h(&)]-

So we know that complete symmetry and orthogonality is not possible,rsdan
only try to find the least asymmetric filter coefficients out of a fixed familgr &x-
ample, Daubechies discussed in [11] and [12] how to choose the Basheetric out
of the finitely many wavelets with a maximal number of vanishing momentstter
possibility is to omit some vanishing moments and use the additional dedr&es-o
dom to find filters with partial symmetry. Several authors [1, 25, 40]utised the
use of Gbbner bases to find orthogonal filter coefficients with partial symmeteravh
several pairs of filters are equal. Zhao and Swamy [48] designet degsmetric
orthogonal wavelets with several vanishing moments via numerical ojtiioiz

An immediate application of our parametrized filter coefficients is to find simb
cally the least asymmetric filter coefficients using some criteria to meagomastry.
In the following, we discuss some examples, where we minimize the suiuefes
error as in [48].

We want to find six filter coefficients satisfying two sum rules such that they a
almost symmetric arounzi so that

ho =~ hy, hi=hz, heg=0.

Using Maple, we find the minimum of the sum of squares error is attained=aty,
wherea denotes the largest negative real root of

25 219 —30 2% —702 2% +652 &7 +5866 25 —3256 2° —13140 £ —1036 > +5797 22 —2730 £—5190

or numerically
a = —1.102986298 ... .

The filter coefficients are:
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- 0. 090589559870111, 0.504872307867382, 1.206925694336121,
0.516001958861136, - 0. 116336134466010, - 0. 020874266728517.

See Figure 5.1 for the corresponding scaling function, which has al@obxponent
smax = 1.0180 and a lower bound for the dider exponentio, = 0.5370.

Figure 5.1: Least asymmetric (arourg) scaling function with six filter coefficients
and two sum rules.

Now we consider eight filter coefficients. First we want to find filter coadfits that
are almost symmetric arourdg so that

ho =~ heg, hy~hs, hy=hsy hy=0.

The minimum of the sum of squares error is attained at a, wherea denotes the
largest negative real root of
11025 22*—21000 %% —901900 222 +1407480 22 +25484946 22° —23935800 2% —280989500 = **
—149785464 2174837190927 216 46460372400 2'° +4612440168 '+ —53422512976 2>
—69302308420 z'? 4344858640016 x'! —84085760856 0 —294800719088 2° +2435452393919 °
—1913025285928 2 —18887356576348 2°+10024351195096 2°+51733811048402 z*
—17259269191640 z° —57876449779820 2 +8466676099560 24-21625605062145
or numerically
a = —0.8395579286. .. .
The filter coefficients are:

-0.073484394510424, - 0. 071424517120364, 0.556147092523951,
1.154912201440016, 0.568048480655853, - 0. 135661369346454,
-0.050711178669381, 0.052173685026802.
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Figure 5.2: Least asymmetric (aroursdleft and2.5 right) scaling function with eight
filter coefficients and three sum rules.

See Figure 5.2 (left) for the corresponding scaling function, whichah@&ebolev ex-
ponents,,.x = 1.6569 and a lower bound for thedider exponentis, = 1.3080.
Finally, we want to design filters that are almost symmetric ar@umdso that

ho =~ hs, hi~hy, ha=h3, heg=0, hy=0.

This is related to the example considered in [1, 25], where the authosraoted using
Grobner bases eight orthogonal filters with two sum rules suchithat hs, hy = hy
andhs = hz. The minimum of the sum of squares error is attained at«, wherea
denotes the second largest negative real root of

2025 224 —9000 z%% —168020 x%%+823000 22! +4733434 220 —27869720 ='° —46538164 '8

4437384872 217 — 40684609 216 —3591330192 £ '° 43105046936 =% 420835868016 12

— 35438686580 12 —64147246896 =1 4233849168056 210 —48135550128 2:° —894126414729 z°

+1033511750456 27 4+2682874758716 x° —4634966862792 2° —4762513155302 z*

+10857513198280 2 +182957235580 x> —6268723929720 z+2258107786305

or numerically
a = —1.927469761 ... .

The filter coefficients are:

-0.114678365799638, 0.127976021526492, 0.977783792709255,
0. 990754350911186, 0.120334952341046, - 0. 133569326041206,
0. 016559620749336, 0.014838953603528.

See Figure 5.2 (right) for the corresponding scaling function, whichéh&obolev
exponent,,,, = 1.5026 and a lower bound for thedider exponentiy, = 1.0633.
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6 Rational filter coefficients

In this section, we address the existence of rational orthogonal filtéficderts. We
know from section 2 that filter coefficients are determined by quadratiateans for
orthonormality (2.1) and linear equations for normalization (2.2) amdsténg mo-
ments (2.5). Note that all these equations have integer coefficientsyanhnt to
find a rational solution. This leads to “Hilbert’s 10th Problem o@&r which asks
if there exists an algorithm for deciding the existence of rational points &ysgem
of polynomial equations with integer coefficients. The answer is not knand de-
spite centuries of effort, even for curves it is an open problem althouayhy results
and computational methods are known, see for example Poonerof34dh fintroduc-
tion and further references. Using our parametrizations, we cacedta question of
rational filter coefficients to finding rational points on curves and giveesanswers.

The case of four filter coefficients is not difficult. Daubechies [10]adsegave a
rational parametrization of all orthogonal filter coefficients

t(t—1) 1t _t+1 t(t+1)

e+1 T err P egr 241

with ¢ € R. Note that fort = —t we obtain the flipped filter coefficients. The interval
—1 <t <1 corresponds to the filter coefficients from (3.1) and —1,1 < ¢ to (3.3),
except for(1, 0,0, 1), which are approached for— oo andt — —cc.

The Daubechies wavelet correspondst te= —1/v/3. Computing the continued
fraction expansion of-1/+/3, we obtain the periodic expansion

ho =

b3 —

1

— 152, 1) = -1+

Sl
w
.

2+

24—
1+
2+

1
14---

with the first convergents

115 41 56 153 209

19" 267 717 977 2657 362

For further details on continued fractions see for example Khinchindd Bjhuth [20].
Takingt = —209/362, we get a good rational approximation

-1, —=1/2, =3/5, —4/7, —

1/174725 (119339, 206702, 55386, —31977)

for the Daubechies filters. Surprisingly, we obtain the filter coefficientesponding
to the most regular scaling function found by Daubechies for the secomeergent
t = —1/2, see section 4.

In parametrization (3.4) for six filter coefficients there appears onlgdjuare root

w=+\/—a*+ 14a2 + 15.
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So the question of the existence of rational filters reduces to finding a ahpomt
(a,b) € Q% on the (hyperelliptic) algebraic curve defined by the equation

y? = -2t +142% + 15 = — (2 + 1)(2? — 15). (6.1)
Proposition 6.1 There are no rational points on the curve defined by equgtoh).
Proof. Substitutingr = X/Z andy = Y/Z? in (6.1) and multiplying byZ*, we obtain
Y= —(X?+ 2% (X*-152%),

and we equivalently would have to find integer$, ¢ with « andc coprime satisfying
this equation. Suppose that we had integetsc satisfying

b = —(a® +c?)(a* — 156%). (6.2)

Then
b = (a® +c*)? (mod 2)
and hence
b=(a+c¢) (mod 2).

This implies that either
a=1l,¢=0 (mod2) or a=0,c=1 (mod?2)
or, sincea andc are coprime,
a=c=1 (mod 2).

In the first case, we get

(a*>+c*?=1 (mod 4).
But then by equation (6.2)

¥*=-1=3 (mod 4),

which is not possible since the only quadratic residues modutwat is, the integeré
for which
z?=d (mod 4)

has a solution, are
d=0,1 (mod 4).

In the second case, we get
(a*+c*)?* =4 (mod 16).
But then by equation (6.2)
b*=-4=12 (mod 16),
which is not possible since the only quadratic residues motiéye
d=0,1,4,9 (mod 16),

and the proposition is proved. 0



Filter coefficients and wavelets parametrized by moments 211

Corollary 6.2 There are no rational orthogonal filters with six nonzero filter coeffi-
cients and at least two sum rules.

In parametrization (3.6) for eight filter coefficients, we have the sejtzot

w=+/—a® + 36 a8 — 182a* + 1540 a2 — 945.
So we would have to find a rational point on the algebraic curve defindtetlsquation
y? = —2% +362° — 1822 + 1540 22 — 945.

This is a nonsingular curve with gengisHence by Falting’s theorem [15] it has only
finitely many rational points, and so there are at most finitely many ratattabgonal
filters with eight nonzero filter coefficients and at least three sum rutefarSve could
neither find rational points on this curve nor prove that there do not @myjst

Acknowledgements.| would like to thank Josef Schicho for his comments and help
with the proof of Proposition 6.1 and the reviewers for useful remarks
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