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1 Introduction

Rings of functional operators (e.g., rings of ordinary differential (OD) operators,
partial differential (PD) operators, differential time-delay operators, differential dif-
ference operators) were recently introduced in mathematical systems theory. Since
many control linear systems can be defined by means of a matrix with entries in
a skew polynomial ring, in an Ore algebra or in an Ore extension of functional
operators (i.e., classes of univariate or multivariate noncommutative polynomial
rings) [16, 39], the classical polynomial approach to linear systems theory can
be generalized yielding a module-theoretic approach to linear functional systems
[19, 33, 34, 41, 45, 47]. Symbolic computation techniques (e.g., Gröbner basis tech-
niques) and computer algebra systems can then be used to develop dedicated pack-
ages for algebraic systems theory [17, 29].

Algebras of ordinary integro-differential (ID) operators have recently been stud-
ied within an algebraic approach in [8, 9, 10, 11] and within an algorithmic approach
in [40, 42, 43, 22]. The goal of the latter works is to provide an algebraic and algo-
rithmic framework for studying boundary value problems and Green’s operators.

The ring of ID and time-delay/dilatation operators was introduced in [37] to de-
velop a purely algorithmic approach to standard Artstein’s transformation of linear
differential systems with delayed inputs. This work also advocates for the effective
study of the ring of ID time-delay/dilatation operators. The normal forms of ele-
ments of this noncommutative algebra will be studied in a future publication based
on the new effective techniques introduced in [22, 23]. In this paper, we focus on its
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subring of ID operators. We also note that effective computations over ID algebras
play an important role in parameter estimation problems as shown in [15].

Even though linear systems of ID equations play an important role in different
domains and applications (e.g., PID controllers), it does not seem that they have
been extensively studied by the mathematical systems community. For boundary
value systems, we refer to [20, 21] and the references therein. The first purpose of
this paper is to introduce concepts, techniques, and results developed in the above
recents works. In particular, we emphasize that the algebraic structure of the ring
of ID operators with polynomial coefficients is much more involved (e.g., zero di-
visors, non-Noetherianity) than the one of the ring of OD operators with polyno-
mial coefficients (the so-called Weyl algebra). The fundamental issue of computing
left/right kernel of a matrix of ID operators has to be solved towards developing a
system-theoretic approach to linear ID systems. For more details, see [16, 36].

The second goal of this paper is to study this problem for a single ID operator,
that is, computing its annihilator. Within a representation approach, we show that
this problem is related to the computation of polynomial solutions of ID operators,
a problem that is also studied in detail. To solve this problem, we introduce the
concept of a rational indicial equation for a linear operator acting on the polynomial
ring. This approach allows us to find again and generalize standard results on the
indicial equation classically used in the theory of linear OD equations [2, 3, 5].

This chapter is based on the conference paper [38]. It includes a self-contained
introduction to ordinary integro-differential operators with polynomial coefficients
with several evaluations including normal forms (Sections 2–4). All other sections
have been revised and extended.

2 The ring of Ordinary Integro-Differential Operators with
Polynomial Coefficients

Before discussing the ring of ID operators with polynomial coefficients, as an in-
troducing example, we first recall two standard constructions of the ring A of OD
operators with polynomial coefficients (also called the Weyl algebra and denoted by
A1(k), where k is a field). The first construction is as the subalgebra k〈t,∂ 〉 of all
linear maps on the polynomial ring k[t] and the second is by means of generators
and relations.

In what follows, let k denote a fixed field, which contains Q. Let endk(k[t]) denote
the k-algebra formed by all k-linear maps from the polynomial ring k[t] to itself. We
consider the k-subalgebra k〈t,∂ 〉 of endk(k[t]) generated by the following two k-
linear maps

t : tn 7−→ tn+1 and ∂ : tn 7−→ ntn−1

defined on the basis (tn)n∈N of k[t]. They respectively correspond to the multiplica-
tion operator and the derivation on the polynomial ring k[t], namely:



Polynomial Solutions and Annihilators of Integro-Differential Operators 3

t : k[t] −→ k[t]
p 7−→ t p,

and
∂ : k[t] −→ k[t]

p 7−→ d p
dt .

(1)

One immediately verifies that we have

∀ p ∈ k[t], (∂ ◦ t)(p) =
d(t p)

dt
= t

d p
dt

+ p = (t ◦∂ + id)(p),

where id (also denoted by 1) is the identity map on k[t]. It shows that the Leibniz
rule

∂ ◦ t = t ◦∂ + id

holds in the operator algebra k〈t,∂ 〉.
Using the Leibniz rule, we can define the Weyl algebra also by generators and

relations: Let k〈T,D〉 be the free associative k-algebra on the set {T,D}, that is, the
k-vector space with the basis formed by all words over {T,D} and the multiplication
of basis elements defined by concatenation. Let now

J = (DT −T D−1)⊆ k〈T,D〉

denote the two-sided ideal generated by DT −T D−1 and define the k-algebra:

A = k〈T,D〉/J.

By definition, the Leibniz rule

DT ≡ T D+1 mod J

holds in A. Using this identity, each element of d ∈ A can uniquely be written as a
finite sum

d ≡∑ai j T i D j mod J

with coefficients ai j ∈ k.
To see that the two constructions above are equivalent, one can use the fact that

A is a simple ring, that is, its only proper two-sided ideal is the zero ideal (see for
example, [18]). Hence every ring homomorphism is injective and so the k-algebra
homomorphism A−→ k〈t,∂ 〉 mapping

T + J 7−→ t and D+ J 7−→ ∂

is an isomorphism. In other words, each d ∈ A can be identified with the following
corresponding k-linear map

Ld : k[t] −→ k[t],
p 7−→ d(p),

where d(p) denotes the action of d on p.
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In the following, we use a similar approach to introduce and study the algebra
of ID operators with polynomial coefficients. ID operators with polynomial coeffi-
cients were studied in [8, 10] as a generalized Weyl algebra [7, 6]. See [40] for the
construction of ordinary ID operators with polynomial coefficients as a factor alge-
bra of a skew polynomial ring (see, e.g., [16, 31] and the references therein). For the
construction of the algebra of ID operators FΦ〈∂ ,

r
〉 defined over an ordinary ID

algebra F and endowed with a set of characters (that is, multiplicative linear func-
tionals) Φ , we refer to [42, 43]. This construction is based on a parametrized non-
commutative Gröbner basis; see Section 3 for the case of polynomial coefficients.
For a basis-free construction using a finite reduction system in tensor algebras, we
refer to [22]. In contrast to [8, 10], the last two approaches allows one to have more
than one point evaluation as described in Section 4, which is crucial for the study of
boundary problems.

Definition 1. The k-algebra of ordinary ID operators with polynomial coefficients
is defined as the k-subalgebra

k〈t,∂ ,
r
〉 ⊆ endk(k[t]),

with the operators t and ∂ defined as in (1) and
r

: k[t] −→ k[t]

tn 7−→ tn+1/(n+1),

defined on the basis (tn)n∈N of k[t].

The integral operator
r

corresponds to the usual integral starting at 0:
r

: k[t] −→ k[t]

p 7−→
∫ t

0 p(s)ds.

One can verify directly that the fundamental theorem of calculus

∂ ◦
r
= id

holds. Moreover, we see that
E= id−

r
◦∂

corresponds to the evaluation at 0:

E : k[t] −→ k[t]
p 7−→ p(0).

Hence, as soon as we have an integral, we also have one evaluation map to the
constants k “for free”, which allows us to define and study initial value problems
in terms of integro-differential operators. Note that the operator E naturally induces
the existence of zero divisors. For instance, we have:
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E◦ t = 0.

Based on the basic identities above, we can construct the algebra of integro-
differential operators with polynomial coefficients also by generators and relations.

Definition 2. We define the k-algebra

I= k〈T,D, I,E〉/J,

where J is the two-sided ideal of relations generated by the following elements:

DT −T D−1, DI−1, I D+E−1, E T. (2)

We note by T = T + J (resp., D = D+ J, I = I + J, E = E + J) the residue class of
T (resp., D, I, E) in I.

3 Normal Forms

Since we have now four defining identities for I (see (2)) instead of one as for
the Weyl algebra A, it is more involved to obtain the normal form of an element
of I, i.e., its unique expression as a noncommutative polynomial in the operators
T, D, I and E modulo the relations (2). In this section, we informally discuss the
construction of a noncommutative Gröbner basis for the defining ideal following
Buchberger’s algorithm. For background on noncommutative Gröbner bases, we re-
fer to [12, 32, 46, 13]. In the noncommutative case, note that Buchberger’s algorithm
does not terminate in general and the property of having a finite Gröbner basis is un-
decidable. However, in our case we can “guess” a parametrized Gröbner basis from
the corresponding S-polynomial computations.

See [42, 43] for further details on a parametrized Gröbner basis for the defining
relations for integro-differential operators over an ordinary ID algebra and the corre-
sponding normal forms. An analogous finite tensor reduction system and the related
S-polynomial computations using the package TenRes can be found in [22, 23].

We denote the S-polynomial between two polynomials of the form

U V −P and V W −Q,

with “leading terms” U V and V W by:

S(U V,V W ) = PW −U Q.

In the following, we consider a graded partial order with D > T and I > T . We
first compute the S-polynomial between the polynomials

DI−1 and I D+E−1

and obtain:
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S(DI, I D) = 1D−D(1−E) = DE.

So we need to add the polynomial
DE

to the generators of our ideal, which corresponds to the evaluation mapping to k.
The S-polynomial between I D+E−1 and the new polynomial gives:

S(I D,DE) = (1−E)E.

So we obtain
E2−E,

which corresponds to the evaluation acting as a projector onto k. Since

S(I D,DI) = (1−E) I− I 1 =−E I,

we also have to add the polynomial

E I

to our generators, which corresponds to the integral
∫ t

0 evaluated at 0 being 0.
The S-polynomial between

I D−1+E and DT −T D−1

is given by:

S(I D,DT ) = (1−E)T − I (T D+1) = T −E T − I T D− I.

Using the polynomial E T from the original generators, we see that we need to add
the polynomial:

I T D−T + I.

This gives rise to new S-polynomials with DT −T D− 1 and one sees inductively
that we need to add the family

∀ n≥ 1, I T n D−T n +nI T n−1

to our generators, corresponding to integration by parts. Computing the S-polynomials
with this family and DE, we then obtain

IE−T E,

and
∀ n≥ 1, I T n E−T n+1/(n+1)E

which corresponds to the k-linearity of the integral.
Finally, the S-polynomial between
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I T D−T + I and DI−1

is given by:
S(I T D,DI) = (T − I) I− I T.

So we obtain the polynomial
I2−T I + I T,

allowing to reduce an iterated integral to a sum of two single integrals. Again, this
identity gives rise to an infinite family

∀ n≥ 1, I T n I− (T n+1I + I T n+1)/(n+1)

of new generators.
Collecting all the identities above, one can verify that all parametrized S-polynomials

now reduce to zero and we have indeed a Gröbner basis for the defining identities
(compare with [42, Proposition 13] and [22, Theorem 5.1]).

Theorem 1. The generators

DT −T D−1, DI−1, I D+E−1, E T,

DE, E2−E, E I, IE−T E, I2−T I + I T,

and the parametrized generators

∀ n≥ 1,


I T n D−T n +nI T n−1,

I T n E−T n+1/(n+1)E,

I T n I− (T n+1 I + I T n+1)/(n+1),

form a noncommutative Gröbner basis for the ideal J of I (see Definition 2) with
respect to a graded partial order with D > T and I > T .

By the normal form corresponding to the Gröbner basis from Theorem 1, using
the notations of Definition 2, each d ∈ I can uniquely be written as a sum

d = d1 +d2 +d3,

where

d1 = ∑ai j T i D j
, d2 = ∑bi j T i I T j

, d3 = ∑ fi j T i E D j (3)

are respectively an OD operator, an integral operator, and a boundary operator,
with ai j, bi j, and fi j ∈ k, and d1, d2, and d3 contain only finitely nonzero summands.

To see that the definition of integro-differential operators via generators and rela-
tions and Definition 1 are equivalent, we can use the fact that I is “almost” a simple
ring. The only nonzero proper two-sided ideal is the ideal (E) generated by the
“evaluation” E. This was first proved by Bavula in [8]. Here we give an alternative
proof based on the normal forms and direct sum decomposition above, which also
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generalizes to the more general setting including several evaluations mentioned in
the next section.

Proposition 1. The only nonzero proper two-sided ideal of I is (E).

Proof. Let d ∈ I\(E) with d ≡ d1+d2+d3 as in (3) and d1+d2 6= 0 by assumption.
Using the identities

DT = T D+1, DI = 1, DE = 0,

we can find a k ∈ N such that
Dk d ∈ A\{0}

is a nonzero differential operator and the statement follows since A is a simple ring.
ut

Corollary 1. The k-algebra homomorphism χ : I−→ k〈t,∂ ,
r
〉 mapping

T 7−→ t, D 7−→ ∂ , E 7−→ E, I 7−→
r

is an isomorphism.

In other words, we can identify each d ∈ I with the corresponding k-linear map

Ld : k[t] −→ k[t],
p 7−→ d(p),

(4)

where d(p) denotes the action of d on p.
Finally, using (3), up to isomorphism, we have the following direct sum decom-

position
I= A⊕ k[t]

r
k[t]⊕ (E)

with the two-sided ideal (E) of boundary operators generated by E.

4 Several Evaluations

For treating boundary problems, we allow additional point evaluations (characters,
i.e., multiplicative linear forms) in our operator algebra. We denote the evaluation
at α ∈ k by

Eα : k[t] −→ k[t]
p 7−→ p(α).

The basic identities for evaluations at α , β ∈ k and the derivation ∂ are

Eα ◦ t = α Eα , Eβ ◦Eα = Eα , ∂ ◦Eα = 0.
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Definition 3. Let Φ be a subset of k with 0 ∈Φ . Identifying E0 with E= id−
r
◦∂ ,

we define the k-subalgebra k〈t,∂ ,
r
,(Eα)α∈Φ〉 of endk(k[t]) formed by the ordinary

ID operators with polynomial coefficients with characters (Eα)α∈Φ .

Clearly, if Φ = {0}, then k〈t,∂ ,
r
,(Eα)α∈Φ〉 = I. We now construct the algebra

of integro-differential operators with a set of characters (Eα)α∈Φ by generators and
relations.

Definition 4. We define the k-algebra

IΦ = k〈T,D, I,(Eα)α∈Φ〉/JΦ ,

where JΦ is the two-sided ideal generated by:

DT −T D−1, DI−1, I D+E0−1,

∀ α, β ∈Φ ,


Eα T −αEα ,

Eβ Eα −Eα ,

DEα .

(5)

We note by T = T + JΦ (resp., D = D+ JΦ , I = I + JΦ , Eα = Eα + JΦ for α ∈ Φ)
the residue class of T (resp., D, I, Eα ) in IΦ .

For obtaining a Gröbner basis for the ideal of relations JΦ , to the defining re-
lations (5) and the generators from Theorem 1, we have to add the following
parametrized generators:

∀ n≥ 0, α ∈Φ , I T n Eα −T n+1/(n+1)Eα .

By the corresponding normal forms, every ID operator d ∈ IΦ can be uniquely writ-
ten as a sum d = d1 +d2 +d3, with d1 and d2 as in (3) and a boundary operator of
the form

d3 = ∑
α∈Φ

(
∑ fi j T i Eα D j

+∑gi j T i Eα I T j
)
, (6)

where fi j and gi j ∈ k and d3 contains only finitely nonzero summands. Based on the
above decomposition, the proof of Proposition 1 can be generalized.

Proposition 2. The only nonzero proper two-sided ideal of IΦ is ({Eα}α∈Φ), simply
denoted by (E). Moreover, we have (E) = (E0).

The equality (E) = (E0) comes from the fact that 0 ∈ Φ and, with the notation
of (6), from the following identity:

d3 = ∑
α∈Φ

(
∑ fi j T i E0 Eα D j

+∑gi j T i E0 Eα I T j
)
∈ (E0).

Corollary 2. The k-algebra homomorphism

χ : IΦ −→ k〈t,∂ ,
r
,(Eα)α∈Φ〉
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mapping

T 7−→ t, D 7−→ ∂ , Eα 7−→ Eα , for α ∈Φ , I 7−→
r

is an isomorphism.

So we can identify again each d ∈ IΦ with the corresponding k-linear map Ld on
the polynomial ring k[t] as in (4). For the rest of the paper, we do this identification
and write ∂ ,

r
, t, Eα for both the linear operators on the polynomial ring k[t] and

the corresponding residue classes in IΦ . So the normal form for an ID operators

d = d1 +d2 +d3 ∈ IΦ

from equations (3) and (6) reads as

d1 = ∑ai j t i
∂

j, d2 = ∑bi j t i r t j, (7)

and
d3 = ∑

α∈Φ

(
∑ fi j t iEα ∂

j +∑gi j t iEα

r
t j) . (8)

Denoting by ({Eα}α∈Φ) the two-sided ideal of IΦ generated by the Eα ’s for α ∈Φ ,
we then have ({Eα}α∈Φ) = (E), where (E) denotes the two-sided ideal of IΦ gener-
ated by E, and, up to isomorphism, we have the following direct sum decomposition:

IΦ = A⊕ k[t]
r

k[t]⊕ (E).

In particular, the normal form tells us that the corresponding linear maps on the
polynomial ring are linearly independent. Since we will need it later, we state this
explicitly for the linear functionals in the normal form of boundary operators (8).

Lemma 1. The k-linear functionals Eα ∂ i and Eα

r
t i on k[t] for i ∈N and α ∈ k are

k-linearly independent.

5 Syzygies and Annihilators

In this section, we discuss some important algebraic properties of the algebra I con-
cerning finite generating sets of ideals. First, since the integral operator

r
is a right

but not a left inverse of the derivation ∂ , it is known that the algebra I is necessarily
non-Noetherian [24].

More explicitly, if
r i

=
r
· · ·

r
denotes the product of i integral operators and

r 0
= 1, using Theorem 1, one verifies that the following operators

ei j =
r iE∂

j : p ∈ k[t] 7−→ p( j)(0)
t i

i!

satisfy
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ei j elm =
r iE∂

j r l E∂
m = δ jl eim, (9)

where δ jl = 1 for j = l, and 0 otherwise; see also [24] or [28, Ex. 21.26]. In par-
ticular, I contains infinitely many orthogonal idempotents eii for all i ∈ N, i.e.,
eii e j j = δi j for all i, j ∈ N. Let us introduce the following operator:

ek = e00 + e11 + · · ·+ ekk ∈ I.

We note that the operator ek acts on a polynomial p by

ek(p) =
k

∑
i=0

p(i)(0)
t i

i!
,

which corresponds to the first k terms of the Taylor series of p at t = 0.
Using (9), we obtain:

∀ 0≤ i≤ k, eii = eii ek = ek eii,

which yields ei e j = e j ei = emin(i, j). In particular, we have ek−1 ek = ek ek−1 = ek−1,
which shows that Iek−1 ⊆ Iek and ek−1 I ⊆ ek I. Since ek is an idempotent of I, i.e.
e2

k = ek, if we have ek ∈ Iek−1, i.e. ek = ∑
k−1
i=0 di ei for certain di ∈ I, then we get

ek−1 = ek ek−1 =
k−1

∑
i=0

di ei ek−1 =
k−1

∑
i=0

di ei = ek,

which yields a contradiction since ek(tk) = 1 and ek−1(tk) = 0, and shows that
Iek−1 ( Iek for all k ∈ N. Similarly, we have ek−1 I ( ek I. Hence the increasing
sequence (Ik = Iek)k≥0 (resp., (Ik = ek I)k≥0) of principal left (resp., right) ideals of
I is not stationary, which proves I is not a left (resp., a right) Noetherian ring.

Even though I is non-Noetherian, Bavula proved the following fundamental re-
sult stating that I is a coherent ring.

Theorem 2 ([10]). The ring I is coherent, i.e., for every r≥ 1, and for all d1, . . . ,dr ∈
I, the left (resp., right) I-module

S =

{
(c1, . . . ,cr) ∈ I1×r |

r

∑
i=1

ci di = 0

}

(resp., S =
{
(c1, . . . ,cr)

T ∈ Ir×1 | ∑
r
i=1 ci ei = 0

}
) is finitely generated as a left

(resp., right) I-module.

Linear systems are usually described by means of finite matrices with entries in
a certain ring of functional operators D . As explained in [35], if D is a coherent
ring, an algebraic systems theory can be developed as if D were a Noetherian ring.
Hence, Theorem 2 shows that an algebraic systems theory can be developed over
I. In particular, basic module-theoretic operations of finitely presented left/right I-
modules, namely, left/right I-modules defined by matrices, are finitely presented,
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and thus, finitely generated. For more details, see, e.g., [28, 44]. It is shown in [11]
that Theorem 2 cannot be generalized for more than one differential operator, i.e., for
the algebra In of integro-partial differential operators with polynomial coefficients
defined by the operators xi, ∂i =

∂

∂xi
and

r xi for i = 1, . . . ,n and n > 1.
Based on normal forms for generalized Weyl algebras, it is shown in [8] that I

admits the involution θ defined by

θ(∂ ) =
r
, θ(

r
) = ∂ , θ(t) = t ∂

2 +∂ = (t ∂ +1)∂ , (10)

i.e., θ is a k-linear anti-automorphism, namely, it satisfies:

∀ d, e ∈ I, θ(d e) = θ(e)θ(d), θ
2(d) = d.

We note that ∂
r
= 1 and E= 1−

r
∂ yield:

θ(1) = θ(
r
)θ(∂ ) = ∂

r
= 1, θ(E) = θ(1)−θ(∂ )θ(

r
) = 1−

r
∂ = E.

With the notations (7) and (8), we get:

θ(d1) = ∑ai j θ(∂ ) j
θ(t)i = ∑ai j

r j
((t ∂ +1)∂ )i,

θ(d2) = ∑bi j θ(t) j
θ(

r
)θ(t)i = ∑bi j ((t ∂ +1)∂ ) j

∂ ((t ∂ +1)∂ )i,

θ(d3) = ∑
α∈Φ

(
∑ fi j θ(∂ ) j

θ(E)θ(t)i)= ∑
α∈Φ

(
∑ fi j

r jE((t ∂ +1)∂ )i
)

= ∑
α∈Φ

(
∑ fi j

t j

j!
E((t ∂ +1)∂ )i

)
.

In particular, we have θ((E))⊆ (E) and θ(k[t]
r

k[t])⊆ A. Finally, we note that:

θ(t ∂ ) =
r
(t ∂ +1)∂ = t ∂ .

As a consequence, many algebraic properties of left I-modules have a right ana-
logue and conversely. Finally, in [8, 9, 10], various algebraic properties of I and
important results are proven amongst them a classification of simple modules, an
analogue of Stafford’s theorem, and of the first conjecture of Dixmier.

The computation of syzygies, namely, left/right kernel of a matrix with entries
in I is a central task towards developing an algorithmic approach to linear systems
of ID equations with boundary conditions based on module theory and homological
algebra. See [16, 29, 36] and references therein. However, the the proof of Theo-
rem 2 given in [10] is non-constructive. As a first step for computing syzygies, we
discuss in the following how to find left/right annihilators of elements in I. As we
will see, this problem leads, in turn, to computing polynomial solutions of ordinary
ID equations with boundary conditions, which we discuss in Section 7.

The left annihilator of d ∈ I is defined by

annI(.d) := {e ∈ I | ed = 0},
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and, analogously, the right annihilator is defined by:

annI(d.) := {e ∈ I | d e = 0}.

The left annihilator can be interpreted as compatibility conditions of the inhomoge-
neous ID equation d y(t) = u(t). Indeed, for e ∈ annI(.d), we have:

eu(t) = ed y(t) = 0.

If d is not a zero divisor, then d y = u does not admit compatibility condition of the
form eu = 0, where e ∈ I.

Example 1. We first consider the following trivial example:
r t

0 y(s)ds = u(t).

The compatibility condition u(0) = 0 corresponds to the left annihilator E of
r

, i.e.,
E

r
= 0 in I. As a nontrivial example, we consider the inhomogeneous ID equation:

t2 ÿ(t)−2 t ẏ(t)+(t +2)y(t)− (3 t/5+2)
r t

0 y(s)ds+3/5
r t

0 sy(s)ds = u(t). (11)

The left annihilator of the following ID operator

d = t2
∂

2−2 t ∂ +(t +2)− (3 t/5+2)
r
+3/5

r
t ∈ I (12)

yields the compatibility conditions of (11). The compatibility conditions of d will
be given in Example 9.

The relation between annihilators and polynomial solutions of ordinary ID equa-
tions comes from the fact that we can identify an integro-differential operator d ∈ I
with the corresponding linear map Ld on the polynomial ring k[t]. Hence, we have
the equivalences:

d e = 0 ⇔ Ld e = Ld ◦Le = 0 ⇔ imLe ⊆ kerLd . (13)

Suppose that we want to compute the right annihilator of d and assume that Ld has
a finite dimensional kernel. Then the image of Le for an e ∈ annI(d.) has to be finite
dimensional and must be contained in kerLd . In other words, we have to compute
the polynomial solutions of Ld and then find generators for all ID operators e with
imLe ⊆ kerLd . After discussing some general properties of Fredholm and finite-
rank operators in the next section, we follow this strategy for ID operators including
several evaluations in Section 8.
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6 Fredholm and Finite-Rank Operators

Several properties of Fredholm operators can be studied in the purely algebraic
setting of linear maps on infinite-dimensional vector spaces. In [11], such properties
are used to investigate I. It turns out that Fredholm operators are also very useful for
an algorithmic approach to operator algebras. We review some algebraic properties
of Fredholm operators in this section.

Definition 5. A k-linear map f : V −→W between two k-vector spaces is called
Fredholm if it has finite dimensional kernel and cokernel, where coker f =W/ im f .
The index of a Fredholm operator f is defined by:

indk f = dimk(ker f )−dimk(coker f ).

We have the long exact sequence of k-vector spaces ([44])

0−→ ker f i−→V
f−→W

p−→ coker f −→ 0,

i.e., i is injective, ker f = im i, ker p = im f , and p is surjective, where p(w) is the
residue class of w∈W in coker f . Then, dimk(coker f ) gives the number of indepen-
dent k-linear compatibility conditions g(w) = 0 on w for the solvability of the inho-
mogeneous linear system f (v) = w (e.g., f is surjective if and only if coker f = 0),
while dimk(ker f ) measures the degrees of freedom in a solution (v+ u is solution
for all u ∈ ker f ).

Example 2. Viewing the basic operators 1, t, ∂ ,
r
∈ I as k-linear maps on V =W =

k[t], we get:
ker1 = ker t = ker

r
= 0, ker∂ = k,

im1 = im∂ = k[t], im t = im
r
= k[t] t.

Hence, they are also Fredholm with index:

indk 1 = 0, indk t = indk
r
=−1, indk ∂ = 1.

If V and W are two finite-dimensional k-vector spaces, then

dimk(coker f ) = dimk(W )−dimk(im f )

and the rank-nullity theorem yields dimk V = dimk(im f )+dimk(ker f ), hence

indk f = dimk V −dimk W, (14)

i.e., indk f depends only on the dimensions of V and W .
We also recall the index formula for Fredholm operators.

Proposition 3. Let V ′
f−→ V

g−→ V ′′ be k-linear maps between k-vector spaces. If
two of the maps f , g, and g◦ f are Fredholm, then so is the third, and:
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indk(g◦ f ) = indk g+ indk f . (15)

Proof. Considering the following commutative square

V ′
f
// V

g

��

V ′
g◦ f
// V ′′,

we obtain the following commutative exact diagram (see, e.g., [44]):

0

��

0

��

kerg

��

0 // ker f // V ′
f
// V

g

��

// coker f // 0

0 // ker(g◦ f ) // V ′
g◦ f

//

��

V ′′ //

��

coker(g◦ f ) // 0.

0 cokerg

��

0

A chase in the above commutative exact diagram shows that we have the following
long exact sequence of finite-dimensional k-vector spaces [44]:

0 // ker f // ker(g◦ f ) // kerg //

coker f // coker(g◦ f ) // cokerg // 0.

Using the Euler-Poincaré characteristic [44], we then get

dimk ker f −dimk ker(g◦ f )+dimk kerg
− dimk coker f +dimk coker(g◦ f )−dimk cokerg = 0,

which finally proves (15).

Definition 6. A k-linear map between two k-vector spaces is called finite-rank if its
image is finite-dimensional.
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Example 3. Let us consider E = 1−
r

∂ ∈ I. It has an infinite-dimensional kernel
kerkE = k[t] t, but its image imkE = k is one-dimensional. More generally, every
boundary operator d3 ∈ IΦ is obviously of finite rank since its image is contained in
the k-vector space of polynomials with degree less than or equal n, where n is the
maximal index i with a nonzero coefficient fi j or gi j in (8).

Clearly, composing a finite-rank map with a linear map from either side gives
again finite-rank map and Proposition 3 shows that the composition of two Fredholm
operators is a Fredholm operator.

Proposition 4. Let V be a k-vector space and A a k-subalgebra of endk(V ). Then,

FA = {a ∈A | a is Fredholm}

forms a monoid and
CA = {c ∈A | c is finite-rank}

is a two-sided ideal of A .

In particular, we have another interpretation of the only proper two-sided ideal
(E) of boundary operators as finite-rank operators. All other ID operators of IΦ \(E)
are Fredholm as we shall see in Proposition 6. More generally, the notion of (strong)
compact-Fredholm alternative for an arbitrary k-algebra A was introduced in [10].

7 Polynomial Solutions of Rational Indicial Maps and
Polynomial Index

Computing polynomial solutions of linear systems of OD is well-studied in sym-
bolic computation since it appears as a subproblem of many important algorithms.
See, for example, [14, 1, 4, 5, 2, 3]. In this section, we discuss an algebraic setting
and an algorithmic approach for the computation of polynomial solutions (kernel),
cokernel, and the “polynomial” index for a general class of linear operators includ-
ing ID operators.

For computing the kernel and cokernel of a k-linear map L : V −→V ′ on infinite-
dimensional k-vector spaces V and V ′, we can use the following simple consequence
of the snake lemma in homological algebra (see, e.g., [44]).

Lemma 2. Let L : V −→V ′ be a k-linear map and U ⊆V , U ′⊆V ′ k-subspaces such
that L(U)⊆U ′. Let

L′ = L|U : U −→U ′ and L : V/U −→V ′/U ′

be the induced k-linear map defined by L(π(v)) = π ′(L(v)) for all v ∈ V , where
π : V −→ V/U (resp., π ′ : V ′ −→ V ′/U ′) is the canonical projection onto V/U
(resp., V ′/U ′). Then, we have the following commutative exact diagram:
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0 // U

L′

��

// V

L
��

π // V/U

L
��

// 0

0 // U ′ // V ′ π ′ // V ′/U ′ // 0.

(16)

If L is an isomorphism, i.e., V/U ∼=V ′/U ′, then:

kerL′ = kerL, cokerL′ ∼= cokerL.

Moreover, if U and U ′ are two finite-dimensional k-vector spaces, then L is Fred-
holm and indk L = dimk U−dimk U ′.

Proof. Since L is an isomorphism, applying the standard the snake lemma (see, e.g.,
[44]) to the following commutative exact diagram of k-vector spaces

0

��

0

��

kerL′

��

kerL

��

0

��

0 // U

L′

��

// V

L
��

π // V/U

L
��

// 0

0 // U ′ //

��

V ′ π ′ //

��

V ′/U ′ //

��

0,

cokerL′

��

cokerL

��

0

0 0

we obtain the following long exact sequence of k-vector spaces

0−→ kerL′ −→ kerL−→ 0−→ cokerL′ −→ cokerL−→ 0,

and the statements about the kernel and cokernel follow. If U and U ′ are two finite-
dimensional k-vector spaces, then so are kerL′ = kerL and cokerL′ ∼= cokerL and
indk L = indk L′ = dimk U−dimk U ′ by (14). ut

Remark 1. In the language of homological algebra, the fact that L defines an isomor-
phism in Lemma 2 means that the following chain complex of k-vector spaces
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0 // U

L′
��

// V

L
��

// 0

0 // U ′ // V ′ // 0

is a quasi-isomorphism, namely the homologies of the horizontal complexes, i.e.,

V/U and V ′/U ′, are isomorphic. Hence, the complex 0 // V L // V ′ // 0
of infinite-dimensional k-vector spaces, whose homologies are kerL and cokerL, is

then reduced to the complex 0 // U L′ // U ′ // 0 of finite-dimensional
k-vector spaces, which homologies, kerL′ and cokerL′, are then isomorphic to kerL
and cokerL.

From an algorithmic point of view, we want to find finite-dimensional k-subspaces
U and U ′, and an algorithmic criterion for L being an isomorphism on the remaining
infinite-dimensional parts V/U and V ′/U ′.

The cokernel of a k-linear map f : V −→W between two finite-dimensional k-
vector spaces V and W can be characterized as follows. Choosing bases of V and W ,
there exists a matrix C ∈ km×n such that f (v) = C v for all v ∈ V ∼= kn. Computing
a basis of the finite-dimensional k-vector space kerCT and stacking the elements of
this basis into a matrix D ∈ kl×m, we get kerCT = imDT . Then, coker f ∼= imD and,
more precisely, if π : W −→ coker f is the canonical projection onto coker f , then
the k-linear map σ : coker f −→ imD defined by σ(π(w)) = Dw for all w ∈W , is
an isomorphism of k-vector spaces.

Let us now study when the k-linear map L : V/U −→V ′/U ′ is an isomorphism.
In what follows, we shall focus on the polynomial case, namely, V = V ′ = k[t]. To
do that, let us introduce the degree filtration of k[t], namely,

k[t] =
⋃
i∈N

k[t]≤i, k[t]≤i =
i⊕

j=0

kt j,

defined by the finite-dimensional k-vector spaces k[t]≤i formed by the polynomials
of k[t] of degree less than or equal to i (we set k[t]≤−1 = 0). Note that this filtration
is induced by any basis {pi}i∈N of k[t] with deg pi = i for all i ∈ N.

For motivating the following definition, we recall that we defined the multiplica-
tion operator, derivation, and integral operator in terms of their action on the basis
(tn)n∈N of k[t]; see Equation (1) and Definition 1. More generally, we can easily
check that the action of the summands of an ID operator in the normal form (7) is
respectively given by:

(t i ∂ j)(tn) =
n!

(n− j)!
tn− j+i, n≥ j,

(t i ∂ j)(tn) = 0, n < j,

(t i
r

t j)(tn) =
1

n+ j+1
t i+ j+n+1.
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So the action on a basis element tn for n large enough is given by a rational function
in the exponent n and a shift in the exponent.

Definition 7. A k-linear map L : k[t]−→ k[t] is called rational indicial if there exist
a nonzero rational function q∈ k(n), an integer s∈Z,s a bound M ∈N, and nonzero
constants cn ∈ k∗ such that

L(tn) = cn q(n) tn+s + lower degree terms,

for all n≥M ≥−s. Then, we call the pair

rsym(L) = (s, q)

its rational symbol.

Example 4. The rational symbols of the defining ID operators are:

rsym(1) = (0, 1), rsym(t) = (1, 1),

rsym(∂ ) = (−1, n), rsym(
r
) =

(
1,

1
n+1

)
.

Operators such as shift and dilation operators on k[t] are also rational indicial. For
instance, if a ∈ k \{0} and χa is the dilation operator defined by χa(tn) = (at)n for
all n≥ 0, then we get cn = an, q = 1, s = 0, and M = 0.

Example 5. The sum of a rational indicial map and a finite-rank map is also rational
indicial with the same symbol for a large enough bound M. For instance, if we
consider L1 = 1+ t3E0, then we have L1(1) = t3 + 1 and L1(tn) = tn for n ≥ 1,
which shows that M = 1, s = 0, q = 1, and cn = 1 (compare with L0 = 1 which is
such that M = 0, s = 0, cn = 1, and q = 1). Finally, if we consider L2 = 1+ t3E0 ∂ 2,
then we have L2(1) = 1, L2(t) = t, L2(t2) = 2 t3 + t2, and L2(tn) = tn for n ≥ 3,
which shows that M = 3, s = 0, q = 1, and cn = 1.

Let us now state a result for the computation of the kernel and cokernel of rational
indicial maps (compare with Lemma 6.5. of [10]).

Proposition 5. Let L : k[t]−→ k[t] be a k-linear map. Let

−1≤ N,−(N +1)≤ s, U = k[t]≤N , U ′ = k[t]≤N+s

be such that L(U)⊆U ′. Let L′ = L|U : U −→U ′ be the induced map. If degL(tn) =
n+ s for all n≥ N +1, then:

kerL′ = kerL, cokerL′ ∼= cokerL.

Moreover, L is a Fredholm operator with indk L =−s.

Proof. Let V =V ′ = k[t] and π : V −→V/U (resp., π ′ : V ′ −→V ′/U ′) be the canon-
ical projection onto V/U (resp., V ′/U ′). Then, L(π(tn)) = π ′(L(tn)) for all n ∈ N.
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Let us note Tn = π(tn) and Sn = π ′(tn) for all n≥ 0. Then, we get:

V/U = k[t]/k[t]≤N =
⊕

i≥N+1

k Ti, V ′/U ′ = k[t]/k[t]≤N+s =
⊕

i≥N+s+1

k Si.

Moreover, if p = ∑
N+r
i=N+1 pi t i ∈ k[t], where pi ∈ k, then we have

L(p) =
N+r

∑
i=N+1

pi L(t i) =
N+r

∑
i=N+1

pi (ci q(i) t i+s + . . .) =
N+r

∑
i=N+1

pi ci q(i) t i+s + . . . ,

where . . . denotes lower degree terms. Note that we have π(p) = ∑
N+r
i=N+1 pi Ti and

π ′(L(p)) = ∑
N+r
i=N+1 pi ci q(i)Si+s + . . ., which shows that L corresponds to the fol-

lowing linear operator:

L : V/U =
⊕

i≥N+1 k Ti −→ V ′/U ′ =
⊕

i≥N+s+1 k Si

∑
N+r
i=N+1 pi Ti 7−→ ∑

N+r
i=N+1 pi ci q(i)Si+s + . . .

Considering the coefficients of the elements of V/U (resp., V ′/U ′) in the basis
{Ti}i≥N+1 (resp., {S j} j≥N+s+1), up to isomorphism of k-vector spaces, we obtain:

L :
⊕

i≥N+1 k −→
⊕

i≥N+s+1 k
(pN+1, pN+2, . . . , pN+r,0, . . .) 7−→ (pN+1 cN+1 q(N +1)+ . . . ,

. . . , pN+r cN+r q(N + r)+ . . . ,0, . . .).

We note that L is defined by an upper triangular infinite matrix which determinant
is ∏

N+r
i=N+1 ci q(i) 6= 0. Hence, the linear operator L is invertible, and thus defines an

isomorphism of k-vector spaces, i.e. V/U ∼=V ′/U ′.
Finally, the result follows from Lemma 2 after noting that:

dimk U−dimk U ′ = N +1− (N +1+ s) =−s.

ut

Example 6. Let us consider the Fredholm operator L = t
r
+

r
t. Then, we get

L(tn)=
( 1

n+1 +
1

n+2

)
tn+2 for all n≥ 0, which shows that rsym(L)=

(
2, 2n+3

(n+1)(n+2)

)
.

Hence, if we consider N = 0, s = 2, V =V ′ = k[t], U = k, U ′ = k[t]≤2, and L′ = L|U ,
i.e., L′(u) = 3ut2/2 for all u∈ k, then kerL′ = 0 and cokerL′ = k[t]≤2/(t2)∼= k+kt.
Let us note Ti = π(t i) and Si = π ′(t i) for all i ∈N. If p = ∑

r
i=0 pi t i ∈ k[t], then using

that q(i) 6= 0 for all i ∈ N, we obtain the following isomorphism of k-vector spaces

L : V/U = k[t]/k =
⊕

i≥1 k Ti −→ V ′/U ′ = k[t]/k[t]≤2 =
⊕

i≥3 k Si

π(p) = ∑
r
i≥1 pi Ti 7−→ π ′(L(p)) = ∑

r
i≥1 pi q(i)Si+2,

which, up to isomorphism, corresponds to the isomorphism of k-vector spaces:
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(p1, . . . , pr,0, . . .) 7−→ (p1 q(1), . . . , pr q(r),0, . . .).

By Proposition 5, we obtain kerL = kerL′ = 0 and cokerL∼= cokerL′ ∼= k+ kt.
Similarly, we let the reader compute the polynomial solutions of L = 2

3 t
r
−

r
t.

Given a rational indicial operator with rational symbol (s, q) and bound M, we
obtain a bound N for Proposition 5 by computing the largest nonnegative integer
root l of q and taking N = max(l,M). Hence computing the kernel and cokernel of
L : k[t]−→ k[t] reduces to the same problem for the k-linear map L′= L|U : U −→U ′

between two finite-dimensional k-vector spaces, which can be solved using basic
linear algebra techniques. We have implemented in Maple the computation of ker-
nel and cokernel of rational indicial maps.

Corollary 3. A rational indicial operator with rational symbol (s, q) is Fredholm
with index −s and its kernel and cokernel can be effectively computed.

We can explicitly compute the rational symbol (s, q) for d 6∈ (E) from its nor-
mal form. For computing the index of OD equations with analytic coefficients, we
have the Komatsu-Malgrange index theorem [25, 30]. The following proposition is
a purely algebraic version of an index theorem. Compare with [10, Proposition 6.1].

Proposition 6. Let d = ∑ai j t i ∂ j +∑bi j t i
r

t j + d3 ∈ IΦ be an ID operator, where
d3 ∈ (E), such that d 6∈ (E). Then, the k-linear map

Ld : k[t] −→ k[t],
p 7−→ d(p),

is rational indicial with rational symbol (s,q) given by

s =− indk d = max({i− j | ai j 6= 0}∪{i+ j+1 | bi j 6= 0}),

and:
q(n) = ∑

i− j=s
ai j

n!
(n− j)!

+ ∑
i+ j+1=s

bi j
1

n+ j+1
.

8 Polynomial Solutions and Annihilators

In his proof of Theorem 2, stating that I is a coherent ring, Bavula [10] uses that
the left and right annihilators are finitely generated I-modules, for which a non-
constructive argument is given.

Theorem 3 ([10]). Let d ∈ I. Then, the left (resp., right) annihilator annI(.d) (resp.,
annI(d.)) of d is a finitely generated left (resp., right) I-module.

In this section, we generalize this result to right annihilators of Fredholm oper-
ators d ∈ IΦ with several evaluations using a constructive approach. As outlined at
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the end of Section 5, our approach is based on the fact that we can identify integro-
differential operators with the corresponding linear map on the polynomial ring (see
Corollary 2). To characterize the right annihilator annIΦ

(d.), we use the equiva-
lences (13). If d is Fredholm, i.e., d ∈ IΦ \ (E), then kerLd is a finite-dimensional k-
vector space, and thus, e has to be finite-rank and hence must be a boundary operator
e ∈ (E). Thus, we have to compute polynomial solutions of the Fredholm operator
d, i.e., kerLd , and then find generators for all the e’s satisfying imLe ⊆ kerLd .

We first describe the image of a finite-rank operator Le for a boundary operator
e ∈ (E). By (8), e is a finite k[t]-linear combination of terms of the form Eα ∂ i and
Eα

r
t i with α ∈Φ , namely

e = ∑
α∈Φ

(
l

∑
i=0

pα,iEα ∂
i +

m

∑
i=0

qα,iEα

r
t i

)
, (17)

where pα,i, qα,i ∈ k[t]. With Lemma 1, we can now apply the following general fact
for linear functionals on arbitrary vector spaces; see, e.g., [27, pp. 71–72].

Lemma 3. Let V be a k-vector space and λ1, . . . ,λn ∈V ∗ k-linear functionals. Then,
the λi are k-linearly independent iff there exist v1, . . . ,vn ∈V such that:

∀ i, j = 1, . . . ,n, λi(v j) = δi j.

Proposition 7. Let e ∈ (E) be as in (17). Then, we have:

imLe = ∑
α∈Φ

l

∑
i=0

k pα,i + ∑
α∈Φ

m

∑
i=0

k qα,i.

Proof. The inclusion ⊆ is obvious since Eα ∂ i and Eα

r
t i are functionals. Let Eα ∂ i

or Eα

r
t i be a linear functional corresponding to a nonzero summand in (17).

Since these linear functional forms are k-linearly independent by Lemma 1, using
Lemma 3 with V = k[t], there exists a polynomial p ∈ k[t] such that (Eα ∂ i)(p) = 1
(resp., (Eα

r
t i)(p) = 1) and (Eβ ∂ j)(p) = 0 (resp., (Eβ

r
t j)(p) = 0) for all other

functionals corresponding to nonzero summands of (17). Then, we get Le(p) =
e(p) = pα,i or Le(p) = e(p) = qα,i, which proves the reverse inclusion. ut

Theorem 4. Let Φ be a subset of k with 0 ∈Φ . Let d ∈ IΦ be Fredholm with

kerLd =
n

∑
i=1

k ri,

where ri ∈ k[t]. Then, we have:

annIΦ
(d.) =

n

∑
i=1

(riE)IΦ .

In particular, annIΦ
(d.) is a finitely generated right IΦ -module.
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Proof. Since imLriE = k ri ⊆ kerLd , the inclusion ⊇ follows by (13). Conversely,
let e ∈ IΦ as in (17) with d e = 0. Then, by (13) and Proposition 7, we have:

imLe = ∑
α∈Φ

l

∑
i=0

k pα,i + ∑
α∈Φ

m

∑
i=0

k qα,i ⊆ kerLd =
n

∑
i=1

k ri.

Hence, every nonzero pα,i and qα,i can be written as a k-linear combination of the
ri’s, i.e., pα,i = ∑

n
j=1 uα,i, j r j and qα,i = ∑

n
j=1 vα,i, j r j for certain uα,i, j, vα,i, j ∈ k.

Using (17) and EEα = Eα , we then get

e = ∑
α∈Φ

n

∑
j=1

(
l

∑
i=0

uα,i, j r jEα ∂
i +

m

∑
i=0

vα,i, j r jEα

r
t i

)

= ∑
α∈Φ

n

∑
j=1

(
l

∑
i=0

uα,i, j r jEEα ∂
i +

m

∑
i=0

vα,i, j r jEEα

r
t i

)

=
n

∑
j=1

r jE

(
∑

α∈Φ

l

∑
i=0

vα,i, jEα ∂
i + ∑

α∈Φ

m

∑
i=0

uα,i, jEα

r
t i

)
∈

n

∑
j=1

(r jE)IΦ ,

which proves the reverse inclusion ⊆ and thus the result.
ut

Example 7. If d = ∂ 2, then we have kerLd = k+kt, which shows that annIΦ
(∂ 2.) =

EIΦ + tEIΦ . We can check again that ∂ 2 (tE) = (t ∂ 2 +2∂ )E= 0.

Lemma 4 (Corollary 3.2 of [10]). If d ∈ I is Fredholm, then so is θ(d).

Proof. Let d ∈ I be Fredholm, i.e., d ∈ I \ (E). Suppose that θ(d) ∈ (E). At the
end of Section 5, we show that θ((E))⊂ (E). Thus, d = θ(θ(d)) ∈ (E), which is a
contradiction and proves that θ(d) ∈ I\ (E), i.e., θ(d) is Fredohlm.

The following corollary of Theorem 4 gives a way to compute a set of generators
of the left annihilator annI(.d).

Corollary 4. Let Φ be a subset of k with 0 ∈ Φ . Let d ∈ IΦ be Fredholm with
kerLθ(d) = ∑

n
i=1 k ri, where ri ∈ k[t]. Then, we have

annIΦ
(.d) =

n

∑
i=1

IΦ Eri((t ∂ +1)∂ ) =
n

∑
i=1

IΦ E r̂i(∂ ),

where the polynomial r̂i is defined by substituting t i by i!∂ i into ri.

Proof. By Theorem 4, we have annIΦ
(θ(d).) = ∑

n
i=1 (riE)IΦ . Applying θ to riE,

we get θ(riE) = θ(E)θ(ri) = Eri((t ∂ +1)∂ ). We have θ(riE)d = θ(θ(d)riE) =
θ(0) = 0, which proves the inclusion ⊇. Conversely, if e ∈ annIΦ

(.d), i.e., ed = 0,
then θ(d)θ(e) = 0, and thus θ(e) = ∑

n
i=1 riEdi for certain di ∈ IΦ , which yields

e = θ 2(e) = ∑
n
i=1 θ(di)Eθ(ri), which proves the inclusion ⊆ and the first equal-

ity. Finally, we note that Eθ(t) j = E((t ∂ + 1)∂ ) j = j!E∂ j for j ∈ N, and thus
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E ∑
r
j=0 s j θ(t) j = E ∑

r
j=0 s j j!∂ j, where s j ∈ k, which proves the second equality.

ut

Example 8. If d′=
r 2, then θ(d′)= ∂ 2 and using Example 7, we obtain annIΦ

(∂ 2.)=

EIΦ +tEIΦ , which shows that annIΦ
(
r 2

.) = IΦ E+IΦ E(t ∂ +1)∂ = IΦ E+IΦ E∂ .
We can check again that E(t ∂ +1)∂

r 2
= E(t ∂ +1)

r
= E(t +

r
) = 0. Finally, ac-

cording to the comments above Example 1, we obtain that the compatibility condi-
tions of the inhomogeneous equation

∫ t
0
(∫

τ

0 y(x)dx
)

dτ = u(t), where u is a fixed
enough regular function, are generated by u(0)= 0 and (t ü(t)+ u̇(t))(0)= u̇(0)= 0.

Similarly, we let the reader check that we have annIΦ
(.(t ∂ −1)∂ 2) = E∂ .

All necessary steps for computing right and left annihilators have been imple-
mented based on the Maple package IntDiffOp [26] for ID operators and boundary
problems.

Example 9. Let us compute the compatibility conditions of (11). Note that

rsym(θ(d)) = (0,n2−3n+2),

where:
θ(d) = (t2 + t−3/5)∂

2− (2 t +1)∂ +2.

The largest nonnegative integer root of q is 2. With this bound N for Proposition 5,
we get for the following kernel:

kerLθ(d) = k (t2 +3/5)+ k (t +1/2).

By Theorem 4, we obtain:

annI(θ(d).) = ((t2 +3/5)E)I+((t +1/2)E)I.

Computing the involution of these generators yield the left annihilator

annI(.d) = I(2E∂
2 +3/5E)+ I(E∂ +1/2E)

for (11), which correspond to the following compatibility conditions:

2 ü(0)+3/5u(0) = 0, u̇(0)+1/2u(0) = 0.
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Scientific Computing: Progress and Prospects, pp. 273–331. SpringerWienNew York, Vienna
(2012)

44. Rotman, J.: An introduction to homological algebra, second edn. Springer, New York (2009)
45. Seiler, W.M., Zerz, E.: Algebraic theory of linear systems: a survey. In: Surveys in differential-

algebraic equations. II, Differ.-Algebr. Equ. Forum, pp. 287–333. Springer, Cham (2015)
46. Ufnarovski, V.: Introduction to noncommutative Gröbner bases theory. In: Gröbner bases and
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