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a b s t r a c t

The concept of integro-differential algebra has been introduced recently in the study of
boundary problems of differential equations. We generalize this concept to that of integro-
differential algebra with a weight, in analogy to the differential Rota–Baxter algebra.
We construct free commutative integro-differential algebras with weight generated by
a differential algebra. This gives in particular an explicit construction of the integro-
differential algebra on one generator. Properties of the free objects are studied.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation and goal

Differential algebra [28,33] is the study of differentiation and nonlinear differential equations by purely algebraic means,
without using an underlying topology. It has been largely successful in many important areas like uncoupling of nonlinear
systems, classification of singular components, and detection of hidden equations. There are various implementations
that offer the main algorithms needed for such tasks, for instance the DifferentialAlgebra package in the MapleTM
system [10].

In view of applications, there is one crucial component that does not fit well in differential algebra—the treatment of
initial or boundary conditions. The problem is that the elements of a differential algebra or field are abstractions that cannot
be evaluated at a specific point. For bridging this gap (first in a specific context of two-point boundary problems), a new
framework was set up in [34] with the following features:

• Differential algebras are enhanced by two evaluations (multiplicative functionals to the ground field) and two integral
operators (Rota–Baxter operators), leading to the notion of analytic algebra.

• The usual ring of differential operators is generalized to a ring of integro-differential operators.
• Boundary problems are formulated in terms of the operator ring (differential equations as usual, boundary conditions in

terms of the evaluations).
• The Green’s operator of a boundary problem is computed as an element of the operator ring.

The algebraic framework of boundary problems was subsequently refined and extended by a multiplicative structure with
results on the corresponding factorizations along a given factorization of the differential operator [35,38]. The factorization
approach to boundary problems was applied in [2,3] to find closed-form and asymptotic expressions for ruin probabilities
and associated quantities in risk theory.
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Moreover, it was realized that the algebraic theory of boundary problems is intimately related to the theory of Rota–
Baxter algebras, which can be regarded as an algebraic study of both the integral and summation operators, even though
it originated from the probability study of G. Baxter [7] in 1960. Rota–Baxter algebras have found extensive applications in
mathematics and physics, including quantum field theory and the classical Yang–Baxter equation [4,14,15,18,19,25]. In a
nutshell, the relation with Rota–Baxter algebras is this: In the differential algebra C∞(R), every point evaluation φ gives rise
to a unique Rota–Baxter operator (1−φ)◦


, where


is any fixed integral operator, say f →

 x
0f (ξ) dξ . See also Theorem2.5

below for a more general relation between evaluations and integral operators. We refer to [5,6] for an extensive study on
algebraic properties of integro-differential operators with polynomial coefficients and a single evaluation (corresponding to
initial value problems).

The algebraic approach to boundary problems is currently developed for linear ordinary differential equations although
some effort is under way to cover certain classes of linear partial differential equations [37]. Various parts of the theory have
been implemented, first as external Mathematica R⃝-Theorema reasoner [34], then as internal Theorema code [37,38], and
recently in a MapleTM package with new features for singular boundary problems [29].

1.2. Main results and outline of the paper

Our main purpose in this paper is to explicitly construct free objects in the category of λ-integro-differential algebras,
which is at the heart of the algebraic framework of boundary problems described above. The existence of such free objects
is known from universal algebra via equivalence classes of terms modulo the identities they satisfy [9,12,30] and from
category theory via adjoint functors andmonads; see [31, Chapter VI] and the references therein. But to construct free objects
explicitly in terms of normal forms is often a non-trivial task. In the case of λ-integro-differential algebras, we make use of
the construction of free objects in a structure closely related to the λ-integro-differential algebra, namely the differential
Rota–Baxter algebra. A Rota–Baxter algebra is an algebraic abstraction of a reformulation of the integral by parts formula
where only the integral operator appears. Free commutative Rota–Baxter algebras were obtained in [21,22] in terms of
shuffles and the more general mixable shuffles of tensor powers.

More recently the concept of a differential Rota–Baxter algebrawas introduced [23] by putting a differential operator and
a Rota–Baxter operator of the same weight together such that one is the one side inverse of the other as in the Fundamental
Theorem of Calculus. One advantage of this relatively independent combination of the two operators in a differential Rota–
Baxter algebra is that the free objects can be constructed quite easily by building the free Rota–Baxter algebra on top of the
free differential algebra. Since the axiom of an integro-differential algebra requires more intertwined relationship between
the differential and Rota–Baxter operators, a free integro-differential algebra is a quotient of a free differential Rota–Baxter
algebra. With this as the starting point of our construction of free integro-differential algebras, our strategy is to find an
explicitly defined linear basis for this quotient from the known basis of the free differential Rota–Baxter algebra by tensor
powers. For this purpose we use regular differential algebras as our basic building block for the tensor powers.

In Section 2, we first introduce the concept of an integro-differential algebra of weight λ and study their various
characterizations, especially those in connection with differential Rota–Baxter algebras. In Section 3, we start with recalling
free commutative Rota–Baxter algebras of weight λ and then free commutative differential Rota–Baxter algebras of weight
λ and derive the existence of free commutative integro-differential algebras. The explicit construction of free objects in the
category of λ-integro-differential algebras is carried out in Section 4 (Theorem 4.6) with a preparation on regular differential
algebras and a detailed discussion on the regularity of the differential algebras of differential polynomials and rational
functions.

2. Integro-differential algebras of weight λ

We first introduce the concepts and basic properties related to λ-integro-differential algebras.

2.1. Definitions and preliminary examples

We recall the concepts of a derivation with weight, a Rota–Baxter operator with weight and a differential Rota–Baxter
algebra with weight, before introducing our definition of an integro-differential algebra with weight.

Definition 2.1. Let k be a unitary commutative ring. Let λ ∈ k be fixed.

(a) A differential k-algebra ofweight λ (also called a λ-differential k-algebra) is a unitary associative k-algebra R together
with a linear operator d : R → R such that

d(xy) = d(x)y + xd(y) + λd(x)d(y) for all x, y ∈ R, (1)

and

d(1) = 0. (2)

Such an operator is called a derivation of weight λ or a λ-derivation.
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(b) A Rota–Baxter k-algebra of weight λ is an associative k-algebra R together with a linear operator P : R → R such that

P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy) for all x, y ∈ R. (3)

Such an operator is called a Rota–Baxter operator of weight λ or a λ-Rota–Baxter operator.
(c) A differential Rota–Baxter k-algebra of weight λ (also called a λ-differential Rota–Baxter k-algebra) is a differential

k-algebra (R, d) of weight λ and a Rota–Baxter operator P of weight λ such that

d ◦ P = idR.

(d) An integro-differential k-algebra ofweightλ (also called aλ-integro-differential k-algebra) is a differentialk-algebra
(R,D) of weight λ with a linear operator Π : R → R such that

D ◦ Π = idR (4)

and

Π(D(x))Π(D(y)) = Π(D(x))y + xΠ(D(y)) − Π(D(xy)) for all x, y ∈ R. (5)

When there is no danger of confusion, we will suppress λ and k from the notations. We will also denote the set of non-
negative integers by N.

Note that we require that a derivation d satisfies d(1) = 0. This follows from Eq. (1) automatically when λ = 0, but is
a non-trivial restriction when λ ≠ 0. In the next section, we give equivalent characterizations of the hybrid Rota–Baxter
axiom (5) and discuss its relation to the Rota–Baxter axiom (3) as well as consequences of the section axiom (4). Note that
the hybrid Rota–Baxter axiom does not contain a term with the weight λ.

We next give some simple examples of differential Rota–Baxter algebras and integro-differential algebras. Aswe shall see
below (Lemma 2.3), the latter are a special case of the former. Further examples will be given in later sections. In particular,
the algebras ofλ-Hurwitz series are integro-differential algebras (Proposition 3.2). By Theorem4.6, every regular differential
algebra naturally gives rise to the corresponding free integro-differential algebra.

Example 2.2. (a) By the First Fundamental Theorem of Calculus

d
dx

  x

a
f (t)dt


= f (x)

and the conventional integration-by-parts formula x

a
f (t)g ′(t)dt = f (t)g(t) − f (a)g(a) −

 x

a
f ′(t)g(t)dt, (6)

(C∞(R), d/dx,
 x
a ) is an integro-differential algebra ofweight 0. Aswe shall see later in Theorem2.5, integration by parts

is in fact equivalent to the hybrid Rota–Baxter axiom (5).
(b) The following example from [23] of a differential Rota–Baxter algebra is also an integro-differential algebra. Let λ ∈ R,

λ ≠ 0. Let R = C∞(R) denote theR-algebra of smooth functions f : R → R, and consider the usual ‘‘difference quotient’’
operator Dλ on R defined by

(Dλ(f ))(x) = (f (x + λ) − f (x))/λ. (7)

Then Dλ is a λ-derivation on R. When λ = 1, we obtain the usual difference operator on functions. Further, the usual
derivation is D0 := limλ→0Dλ. Now let R be an R-subalgebra of C∞(R) that is closed under the operators

Π0(f )(x) = −


∞

x
f (t)dt, Πλ(f )(x) = −λ


n≥0

f (x + nλ).

For example, R can be taken to be the R-subalgebra generated by e−x: R =


k≥1 Re−kx. Then Πλ is a Rota–Baxter
operator of weight λ and, for the Dλ in Eq. (7),

Dλ ◦ Πλ = idR for all x, y ∈ R, 0 ≠ λ ∈ R,

reducing to the fundamental theorem D0 ◦ Π0 = idR when λ goes to 0. We note the close relations of (R,Dλ, Πλ) to the
time scale calculus [1] and the quantum calculus [27].

The fact that (R,Dλ, Πλ) is actually an integro-differential algebra follows from Theorem 2.5(g) since the kernel of
Dλ is just the constant functions (in the case λ ≠ 0 one uses that R =


k≥1 Re−kx does not contain periodic functions).

(c) Here is one example of a differential Rota–Baxter algebra that is not an integro-differential algebra [35, Ex. 3]. Let k be a
field of characteristic zero, A = k[y]/(y4), and (A[x], d), where d is the usual derivation with d(xk) = k xk−1. We define
a k-linear map P on A[x] by

P(f ) = Π(f ) + f (0, 0) y2,
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where Π is the usual integral with Π(xk) = xk+1/(k + 1). Since the second term vanishes under d, we see immediately
that d ◦ P = idA[x]. For verifying the Rota–Baxter axiom (3) with weight zero, we compute

P(f )P(g) = Π(f )Π(g) + g(0, 0) y2 Π(f ) + f (0, 0) y2Π(g) + f (0, 0)g(0, 0) y4,
P(fP(g)) = Π(f (Π(g) + g(0, 0) y2)) = Π(f Π(g)) + g(0, 0) y2 Π(f ),
P(P(f )g) = Π((Π(f ) + f (0, 0) y2) g) = Π(Π(f )g) + f (0, 0) y2 Π(g).

Since y4 ≡ 0 and the usual integral Π fulfills the Rota–Baxter axiom (3), this implies immediately that P does also.
However, it does not fulfill the hybrid Rota–Baxter (5) since for example

P(d(x))P(d(y)) = P(1)P(0) = 0

but we obtain

P(d(x))y + xP(d(y)) − P(d(xy)) = P(1)y + xP(0) − P(y) = (x + y2)y − xy = y3.

for the right-hand side.

2.2. Basic properties of integro-differential algebras with weight

We first show that an integro-differential algebra with weight is a differential Rota–Baxter algebra of the same weight.
We then give several equivalent conditions for integro-differential algebras.

Lemma 2.3. Let (R,D) be a differential algebra of weight λ with a linear operator Π : R → R such that D ◦ Π = idR. Denote
J = Π ◦ D.

(a) The triple (R,D, Π) is a differential Rota–Baxter algebra of weight λ if and only if

Π(x)Π(y) = J(Π(x)Π(y)) for all x, y ∈ R, (8)

and if and only if

J(x)J(y) = J(J(x)J(y)) for all x, y ∈ R. (9)

(b) Every integro-differential algebra is a differential Rota–Baxter algebra.

Note that Eq. (8) does not contain a term with λ. Also note Eq. (9) involves only the initialization J and shows in particular
that im J is a subalgebra.

Proof. (a) Using Eq. (1), we see that

D(Π(x)Π(y)) = xΠ(y) + Π(x)y + λxy.

Hence the Rota–Baxter axiom

Π(x)Π(y) = Π(xΠ(y)) + Π(Π(x)y) + λΠ(xy)

is equivalent to Eq. (8). Moreover, substituting D(x) for x and D(y) for y in Eq. (8), we get the identity (9). Since D is onto by
D ◦ Π = idR, we also obtain Eq. (8) from Eq. (9).
(b) Since J ◦ Π = Π ◦ (D ◦ Π) = Π ◦ idR = Π , we obtain Eq. (8) from the hybrid Rota–Baxter axiom (5) by substituting
Π(x) for x and Π(y) for y. �

Wenow give several equivalent conditions for an integro-differential algebra by startingwith a result on complementary
projectors on algebras.

Lemma 2.4. Let E and J be projectors on a unitaryk-algebra R such that E+J = idR. Then the following statements are equivalent:

(a) E is an algebra homomorphism,
(b) J is a derivation of weight −1,
(c) ker E = im J is an ideal and im E = ker J is a unitary subalgebra.

Proof. ((a) ⇔ (b)) It can be checked directly that E(xy) = E(x)E(y) if and only if J(xy) = J(x)y + xJ(y) − J(x)J(y). Further it
follows from E + J = idR that E(1) = 1 if and only if J(1) = 0.
((a) ⇒ (c)) is clear once we see that the assumption of the lemma implies ker E = im J and im E = ker J .
((c) ⇒ (a)) Let x, y ∈ R. Since R = im E ⊕ ker E, we have x = x1 + x2 and y = y1 + y2 with x1 = E(x), y1 = E(y) ∈ im E and
x2, y2 ∈ ker E. Then E(x1y1) = x1y1 since im E is by assumption a subalgebra. Thus

E(xy) = E(x1y1) + E(x1y2) + E(x2y1) + E(x2y2) = x1y1 = E(x)E(y),

where the last three summands vanish assuming that ker E is an ideal. Moreover, 1 ∈ im E implies E(1) = 1. �
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We have the following characterizations of integro-differential algebras.

Theorem 2.5. Let (R,D) be a differential algebra of weight λ with a linear operator Π on R such that D ◦ Π = idR. Denote
J = Π ◦ D, called the initialization, and E = idR − J , called the evaluation. Then the following statements are equivalent:

(a) (R,D, Π) is an integro-differential algebra;
(b) E(xy) = E(x)E(y) for all x, y ∈ R;
(c) ker E = im J is an ideal;
(d) J(xJ(y)) = xJ(y) and J(J(x)y) = J(x)y for all x, y ∈ R;
(e) J(xΠ(y)) = xΠ(y) and J(Π(x)y) = Π(x)y for all x, y ∈ R;
(f) xΠ(y) = Π(D(x)Π(y)) + Π(xy) + λΠ(D(x)y) and Π(x)y = Π(Π(x)D(y)) + Π(xy) + λΠ(xD(y)) for all x, y ∈ R;
(g) (R,D, Π) is a differential Rota–Baxter algebra and Π(E(x)y) = E(x)Π(y) and Π(xE(y)) = Π(x)E(y) for all x, y ∈ R;
(h) (R,D, Π) is a differential Rota–Baxter algebra and J(E(x)J(y)) = E(x)J(y) and J(J(x)E(y)) = J(x)E(y) for all x, y ∈ R.

Remark 2.6. (I) Items (d) and (e) can be regarded as the invariance formulation of the hybrid Rota–Baxter axiom.
(II) Item (f) can be seen as a ‘‘weighted’’ noncommutative version of integration by parts: One obtains it in case of weight

zero by substituting

g for g in the usual formula (6). Thismotivates also the name integro-differential algebra. Clearly,

in the commutative case the respective left and right versions are equivalent.
(III) Since im E = kerD, the identities in Items (g) and (h) can be interpreted as left/right linearity of respectively Π and J

over the constants of the derivation D, restricted to im J in the case of (h). Note again that (g) and (h) do not contain a
term with λ.

Proof. We first note that under the assumption, we have J2 = Π ◦ (D ◦ Π) ◦ D = Π ◦ idR ◦ D = J and so the initialization J
and evaluation E are projectors. Therefore

kerD = ker J = im E and imΠ = im J = ker E, (10)

and

R = kerD ⊕ imΠ

is a direct sum decomposition.
((a) ⇔ (b)). It follows from Lemma 2.4 since the hybrid Rota–Baxter axiom (5) can be rewritten as

J(x)J(y) = J(x)y + xJ(y) − J(xy) for all x, y ∈ R. (11)

((b) ⇔ (c)). It follows from Lemma 2.4, since kerD = ker J = im E is a unitary subalgebra by Eqs. (1) and (2).
((a) ⇒ (e)). We obtain (e) by substituting in Eq. (11) respectively Π(y) for y and Π(x) for x.
((e) ⇔ (d)). Substituting respectively D(y) for y and D(x) for x in (e) gives (d). Conversely, substituting respectively Π(y) for
y and Π(x) for x in (d) gives (e).
((e) ⇔ (f)). It follows from Eq. (1).
((a) ⇒ (g)). By Lemma 2.3, (R,D, Π) is a differential Rota–Baxter algebra. Furthermore, using Eq. (1) and D ◦ E = 0, we see
that

D(E(x)Π(y)) = E(x)y and D(Π(x)E(y)) = xE(y)

and so

J(E(x)Π(y)) = Π(E(x)y) and J(Π(x)E(y)) = Π(xE(y)).

Since we have proved (e) from (a), we can respectively substitute E(x) for x and E(y) for y in (e) to get (g).
((g) ⇔ (h)). Further, from Π(E(x)y) = E(x)Π(y) we obtain

J(E(x)J(y)) = Π(D(E(x)J(y))) = Π(E(x)D(y)) = E(x)J(y),

Conversely, from J(E(x)J(y)) = E(x)J(y) we obtain

Π(E(x)y) = Π(D(E(x)Π(y))) = J(E(x)Π(y)) = J(E(x)J(Π(y))) = E(x)Π(y)

using Π = J ◦ Π and D(E(x)Π(y)) = E(x)y. This proves the equivalence of the first equations in (g) and (h); the same proof
gives the equivalence of the second equations.
((d) ⇒ (c)). This is clear since the identities imply that im J is an ideal.
((h) ⇒ (e)). Note that J(E(x)J(y)) = E(x)J(y) gives

J(xJ(y)) − J(J(x)J(y)) = xJ(y) − J(x)J(y)

and hence J(xJ(y)) = xJ(y) with the Rota–Baxter axiom in the form of Eq. (9). The identity J(J(x)y) = J(x)y follows
analogously. �
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3. Free commutative integro-differential algebras

We first review the constructions of free commutative differential algebra with weight, free commutative Rota–Baxter
algebras and free commutative differential Rota–Baxter algebras. These constructions are then applied in Section 3.3 to
obtain free commutative integro-differential algebras and will be applied in Section 4 to give an explicit construction of free
commutative integro-differential algebras.

3.1. Free and cofree differential algebras of weight λ

We recall the construction [23] of free commutative differential algebras of weight λ.

Theorem 3.1. Let X be a set. Let

∆(X) = X × N = {x(n)
 x ∈ X, n ≥ 0}.

Let k{X} be the free commutative algebra k[∆X] on the set∆X. Define dX : k{X} → k{X} as follows. Letw = u1 · · · uk, ui ∈ ∆X,
1 ≤ i ≤ k, be a commutative word from the alphabet set ∆(X). If k = 1, so that w = x(n)

∈ ∆(X), define dX (w) = x(n+1). If
k > 1, recursively define

dX (w) = dX (u1)u2 · · · uk + u1dX (u2 · · · uk) + λdX (u1)dX (u2 · · · uk).

Further define dX (1) = 0 and then extend dX to k{X} by linearity. Then (k{X}, dX ) is the free commutative differential algebra of
weight λ on the set X.

The use of k{X} for free commutative differential algebras of weight λ is consistent with the notation of the usual free
commutative differential algebra (when λ = 0).

We also review the following construction from [23]. For any commutative k-algebra A, let AN denote the k-module of
all functions f : N → A. We define the λ-Hurwitz product on AN by defining, for any f , g ∈ AN, fg ∈ AN by

(fg)(n) =

n
k=0

n−k
j=0


n
k


n − k

j


λkf (n − j)g(k + j).

We denote the k-algebra AN with this product by DA, and call it the k-algebra of λ-Hurwitz series over A. It was shown
in [23] that DA is a differential Rota–Baxter algebra of weight λ with the operators

D : DA → DA, (D(f ))(n) = f (n + 1), n ≥ 0, f ∈ DA,

Π : DA → DA, (Π(f ))(n) = f (n − 1), n ≥ 1, (Π(f ))(0) = 0, f ∈ DA.

In fact, DA is the cofree differential algebra of weight λ on A. We similarly have

Proposition 3.2. The triple (DA,D, Π) is an integro-differential algebra of weight λ.

Proof. Since (DA,D, Π) is a differential Rota–Baxter algebra, we only need to show thatΠ(E(x)y) = E(x)Π(y) for x, y ∈ DA
by Theorem 2.5. But this is clear since im E = kerD = A and Π is A-linear. �

3.2. Free commutative Rota–Baxter algebras

We briefly recall the construction of free commutative Rota–Baxter algebras. Let A be a commutative k-algebra. Define

X(A) =


k∈N

A⊗(k+1)
= A ⊕ A⊗2

⊕ · · · , (12)

where and hereafter all the tensor products are taken over k unless otherwise stated. Let a = a0 ⊗ · · · ⊗ am ∈ A⊗(m+1) and
b = b0 ⊗ · · · ⊗ bn ∈ A⊗(n+1). Ifm = 0 or n = 0, define

a � b =


(a0b0) ⊗ b1 ⊗ · · · ⊗ bn, m = 0, n > 0,
(a0b0) ⊗ a1 ⊗ · · · ⊗ am, m > 0, n = 0,
a0b0, m = n = 0.

(13)

If m > 0 and n > 0, inductively (onm + n) define

a � b = (a0b0) ⊗


(a1 ⊗ a2 ⊗ · · · ⊗ am) � (1A ⊗ b1 ⊗ · · · ⊗ bn) + (1A ⊗ a1 ⊗ · · · ⊗ am) � (b1 ⊗ · · · ⊗ bn)

+ λ (a1 ⊗ · · · ⊗ am) � (b1 ⊗ · · · ⊗ bn)

. (14)

Extending by additivity, we obtain a k-bilinear map

� : X(A) × X(A) → X(A).
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Alternatively,

a � b = (a0b0) ⊗ (a Xλ b),

where ā = a1 ⊗ · · · ⊗ am, b̄ = b1 ⊗ · · · ⊗ bn and Xλ is the mixable shuffle (quasi-shuffle) product of weight λ [19,21,26],
which specializes to the shuffle product X when λ = 0.

Define a k-linear endomorphism PA on X(A) by assigning

PA(a0 ⊗ a1 ⊗ · · · ⊗ an) = 1A ⊗ a0 ⊗ a1 ⊗ · · · ⊗ an,

for all a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗(n+1) and extending by additivity. Let jA : A → X(A) be the canonical inclusion map.

Theorem 3.3 ([21,22]). The pair (X(A), PA), together with the natural embedding jA : A → X(A), is a free commutative
Rota–Baxter k-algebra on A of weight λ. In other words, for any Rota–Baxter k-algebra (R, P) and any k-algebra map ϕ : A → R,
there exists a unique Rota–Baxter k-algebra homomorphism ϕ̃ : (X(A), PA) → (R, P) such that ϕ = ϕ̃ ◦ jA as k-algebra
homomorphisms.

Since � is compatible with the multiplication in A, we will suppress the symbol � and simply denote xy for x� y inX(A),
unless there is a danger of confusion.

Let (A, d) be a commutative differential k-algebra of weight λ. Define an operator dA on X(A) by assigning

dA(a0 ⊗ a1 ⊗ · · · ⊗ an) = d(a0) ⊗ a1 ⊗ · · · ⊗ an + a0a1 ⊗ a2 ⊗ · · · ⊗ an + λd(a0)a1 ⊗ a2 ⊗ · · · ⊗ an (15)

for a0 ⊗ · · ·⊗ an ∈ A⊗(n+1) and then extending by k-linearity. Here we use the convention that dA(a0) = d(a0) when n = 0.

Theorem 3.4 ([23]). Let (A, d) be a commutative differential k-algebra of weight λ. Let jA : A → X(A) be the k-algebra
embedding (in fact a morphism of differential k-algebras of weight λ). The quadruple (X(A), dA, PA, jA) is a free commutative
differential Rota–Baxter k-algebra of weight λ on (A, d).

3.3. The existence of free commutative integro-differential algebras

The free objects in the category of commutative integro-differential algebras of weight λ are defined in a similar fashion
as for the category of commutative differential Rota–Baxter algebras.

Definition 3.5. Let (A, d) be a λ-differential algebra over k. A free integro-differential algebra of weight λ on A is an
integro-differential algebra (ID(A),DA, ΠA) of weight λ together with a differential algebra homomorphism iA : (A, d) →

(ID(A), dA) such that, for any integro-differential algebra (R,D, Π) of weight λ and a differential algebra homomorphism
f : (A, d) → (R,D), there is a unique integro-differential algebra homomorphism f̄ : ID(A) → R such that f̄ ◦ iA = f .

As in Theorem 3.4, let (X(A), dA, PA) be the free commutative differential Rota–Baxter algebra generated by the
differential algebra (A, d). Then by Theorem 2.5, we have

Theorem 3.6. Let (A, d) be a commutative differential k-algebra of weight λ. Let IID be the differential Rota–Baxter ideal ofX(A)
generated by the set

{J

E(x)J(y)


− E(x)J(y)

x, y ∈ X(A)},

where J and E denote the projectors PA ◦ dA and idA − PA ◦ dA, respectively. Let δA (resp. ΠA) denote dA (resp. PA) modulo IID. Then
the quotient differential Rota–Baxter algebra (X(A)/IID, δA, ΠA), together with the natural map iA : A → X(a) → X(A)/IID,
is the free integro-differential algebra of weight λ on A.

Proof. Let a λ-integro-differential algebra (R,D, Π) be given. Then by Theorem 2.5, (R,D, Π) is also a λ-differential Rota–
Baxter algebra. Thus by Theorem 3.4, there is a unique homomorphism f̃ : X(A) → R such that the left triangle of the
following diagram commutes.

(X(A), dA, PA)
π

))RRRRRRRRRRRRR

f̃

��

(A, d)

jA
88qqqqqqqqqqq

f

&&MMMMMMMMMMM (X(A)/IID, δA, ΠA)

f̄

uulllllllllllll

(R,D, Π)

Since (R,D, Π) is a λ-integro-differential algebra, f̃ factors throughX(A)/IID and induces the λ-integro-differential algebra
homomorphism f̄ such that the right triangle commutes. Since iA = π ◦ jA, we have f̄ ◦ iA = f as needed.
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Suppose f̄1 : X(A)/IID → R is also aλ-integro-differential algebra homomorphism such that f̄1◦iA = f . Define f̃1 = f̄1◦π .
Then f̃1 ◦ jA = f . Thus by the universal property of X(A), we have f̃1 = f̃ . Since π is surjective, we must have f̄1 = f̄ . This
completes the proof. �

4. Construction of free commutative integro-differential algebras

As mentioned in Section 1, in integro-differential algebras the relation between d and Π is more intimate than in
differential Rota–Baxter algebras. This makes the construction of their free objects more complex. Having ensured their
existence in (Section 3.3), we introduce a vast class of differential algebras for which our construction applies (Section 4.1).
Next we present the details of the construction and some basic properties (Section 4.2), leading on to the proof that it yields
the desired free object (Section 4.3). The construction applies in particular to rings of differential polynomials k{u}, yielding
the free object over one generator, and to the ring of rational functions (Section 4.4).

4.1. Regular differential algebras

A free commutative integro-differential algebra can be regarded as a universal way of constructing an integro-differential
algebra from a differential algebra. The easiest way of obtaining an integro-differential algebra from a differential algebra
occurswhen (A, d) already has an integral operatorΠ . Thismeans in particular that d◦Π = idA so that the derivation dmust
be surjective. But often this will not be the case, for example when A = k{u} is the ring of differential polynomials (where u
is clearly not in the image of d). But even if we cannot define an antiderivative (meaning a right inverse for d) on all of A, we
may still be able to define one on d(A) using an appropriate quasi-antiderivative Q . This means we require d(Q (y)) = y
for y ∈ d(A) or equivalently d(Q (d(x))) = d(x) for x ∈ A. For a general operator d, an operator Q with this property
is called an inner inverse of d. It exists for many important differential algebras, in particular for differential polynomials
(Proposition 4.10) and rational function (Proposition 4.12).

Before coming back to differential algebras, we recall some properties of generalized inverses for linear maps on k-
modules; for further details and references see [32, Section 8.1.].

Definition 4.1. Let L : M → N be a linear map between k-modules.

(a) If a linear map L̄ : N → M satisfies L ◦ L̄ ◦ L = L, then L̄ is called an inner inverse of L.
(b) If L has an inner inverse, then L is called regular.
(c) If a linear map L̄ : N → M satisfies L̄ ◦ L ◦ L̄ = L̄, then L̄ is called an outer inverse of L.
(d) If L̄ is an inner inverse and outer inverse of L, then L̄ is called a quasi-inverse or generalized inverse of L.

Proposition 4.2. Let L : M → N be a linear map between k-modules.

(a) If L has an inner inverse L̄ : N → M, then S = L ◦ L̄ : N → N is a projector onto im L and E = idM − L̄ ◦ L : M → M is a
projector onto ker L.

(b) Given projectors S : N → N onto im L and E : M → M onto ker L, there is a unique quasi-inverse L̄ of L such that im L̄ = ker E
and ker L̄ = ker S. Thus a regular map has a quasi-inverse.

Proof. (a) This statement is immediate.
(b) If L is regular, then by Item (a), there are submodules ker E ⊆ M and ker S ⊆ N such that

M = ker L ⊕ ker E, N = im L ⊕ ker S.

Thus L induces a bijection L : ker E → im L. Define L̄ : N → M to be the inverse of this bijection on im L and to be zero on
ker S, then we check directly that L̄ is a quasi-inverse of L and the unique one such that im L̄ = ker E and ker L̄ = ker S. See
also [32, Theorem 8.1.]. �

For a quasi-inverse L̄ of Lwe note the direct sums

M = im L̄ ⊕ ker L and N = im L ⊕ ker L̄.

Moreover, let

J = idM − E and T = idN − S,

then we have the relations

ME := im E = ker L = ker J, MJ := im J = im L̄ = ker E

NS := im S = im L = ker T , NT := im T = ker L̄ = ker S

for the corresponding projectors.
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The intuitive roles of the projectors E and J are similar as in Section 2.2, except that the ‘‘evaluation’’ E is not necessarily
multiplicative and the image of the ‘‘initialization’’ J need not be an ideal. The projector S may be understood as extracting
the solvable part of N , in the sense of solving L(x) = y for x, as much as possible for a given y ∈ N .

Let us elaborate on this. Writing respectively yS = S(y) and yT = T (y) for the ‘‘solvable’’ and ‘‘transcendental’’ part of
y, the equation L(x) = yS is clearly solved by x∗

= L̄(yS) while L(x) = yT is only solvable in the trivial case yT = 0. So the
identity L(x∗) = y − T (y) may be understood in the sense that x∗ solves L(x) = y except for the transcendental part. We
illustrate this in the following example.

Example 4.3. Consider the field C(x) of complex rational functions with its usual derivation d. We take d to be the linear
map L : M → N where M = N = C(x). Any rational function can be represented by f /g with a monic denominator g =

(x − α1)
n1 · · · (x − αk)

nk having distinct roots αi ∈ C. By partial fraction decomposition, it can be written uniquely as

r +

k
i=1

ni
j=1

γij

(x − αi)j
,

where r ∈ C[x] and γij ∈ C. Then for the domain C(x) of d, we have the decomposition

C(x) = ker d ⊕ C(x)J

with ker d = C and

C(x)J =


r +

k
i=1

ni
j=1

γij

(x − αi)j

 r ∈ xC[x], αi ∈ C distinct, γij ∈ C


as the initialized space. For the range C(x) of d, we have the decomposition

C(x) = im d ⊕ C(x)T ,

with

im d =


r +

k
i=1

ni
j=2

γij

(x − αi)j

 r ∈ C[x], αi ∈ C distinct, γij ∈ C


and

C(x)T =


k

i=1

γi

x − αi

αi ∈ C distinct, γi ∈ C


as the transcendental space.

By Proposition 4.2 there exists a unique quasi-inverse Q : C(x) → C(x) of d corresponding to the above decompositions,
which we can describe explicitly. On im d we define Q by setting Q (xk) = xk+1/(k + 1) for k ≥ 0 and Q (1/(x − α)j) =

1/(1 − j)(x − α)j−1 for j > 1, and we extend it by zero on C(x)T . Analytically speaking, the quasi-antiderivative Q acts
as
 x

0 on the polynomials and as
 x

−∞
on the solvable rational functions: Since C(x) is not an integro-differential algebra, it

is not possible to use a single integral operator. The associated codomain projector S = d ◦ Q extracts the solvable part by
filtering out the residues 1/(x−α); their antiderivativeswould need logarithms,which are not available inC(x). The domain
projector E = idC(x) − Q ◦ d is almost like evaluation at 0 but is not multiplicative according to Theorem 2.5 since C(x)J
cannot be an ideal of the field C(x). In fact, one checks immediately that E(x ·1/x) = E(1) = 1 but E(x) · E(1/x) = 0 ·0 = 0.

See Proposition 4.12 for the case when d here is replaced by the difference operator or more generally the λ-difference
quotient operator dλ withλ ≠ 0 (Example 2.2).We refer to [11] for details on effectively computing the above decomposition
into solvable and transcendental part of rational functions in the context of symbolic integration algorithms. See also [13]
for necessary and sufficient conditions for the existence of telescopers in the differential, difference, and q-difference case
in terms of (generalizations of) residues.

We can now define what makes a differential algebra such as A = k{u} and A = C(x) adequate for the forthcoming
construction of the free integro-differential algebra.

Definition 4.4. Let (A, d) be a differential algebra of weight λ with derivation d : A → A.

(a) If λ = 0, then (A, d) is called regular if its derivation d is a regular map. Then a quasi-inverse of d is called a quasi-
antiderivative.

(b) If λ ≠ 0, then (A, d) is called regular if its derivation d is a regular map and the kernel of one of its quasi-inverses is a
nonunitary k-subalgebra of A. Such a quasi-inverse of d is called a quasi-antiderivative.

We observe that the class of regular differential algebras is fairly comprehensive in the zero weight case. It includes all
differential algebras over a field k since in that case every subspace is complemented, so all k-linear maps are regular. In
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particular, all differential fields (viewed as differential algebras over their field of constants) are regular. The example C(x)
is a case in point, but note that Example 4.3 provides an explicit quasi-antiderivative rather than plain existence.

The situation is more complex in the nonzero weight case due to the extra restriction on the derivation, which we need
in our construction of free integro-differential algebras. If k is a field, the ring of differential polynomials k{u} is regular
for any weight, and we will provide an explicit quasi-antiderivative that works also when k is a Q-algebra but not a field
(Proposition 4.10). Moreover, the field of complex rational functions C(x) with its usual difference operator is a regular
differential ring of weight one, and this can be extended to arbitrary nonzero weight (Proposition 4.12).

4.2. Construction of ID(A)∗

According to Theorem 3.6, the free integro-differential algebra ID(A) can be described by a suitable quotient. However,
for studying this object effectively, a more explicit construction is preferable. We will achieve this, for a regular differential
algebra A, by defining an integro-differential algebra ID(A)∗, and by showing in the next subsection that it satisfies the
relevant universal property. Hence we may take ID(A)∗ to be ID(A).

4.2.1. Definition of ID(A)∗ and the statement of Theorem 4.6
Let (A, d) be a regular differential algebra with a fixed quasi-antiderivative Q .
Denote

AJ = imQ and AT = kerQ .

Then we have the direct sums

A = AJ ⊕ ker d and A = im d ⊕ AT

with the corresponding projectors E = idA − Q ◦ d and S = d ◦ Q , respectively. As before, we write J = idA − E =

Q ◦ d and T = idA − S for the complementary projectors. Furthermore, we use the notation K := ker d ⊇ k in this
subsection.

We give now an explicit construction of ID(A)∗ via tensor products (all tensors are still over k). First let

XT (A) :=


k≥0

A ⊗ A⊗k
T = A ⊕ (A ⊗ AT ) ⊕ (A ⊗ A⊗2

T ) + · · ·

be the k-submodule of X(A) in Eq. (12). Under our assumption that AT is a subalgebra of A when λ ≠ 0, XT (A) is clearly
a k-subalgebra of X(A) under the multiplication in Eqs. (13) and (14). It is also closed under the derivation dA defined in
Eq. (15). Alternatively,

XT (A) = A ⊗ X+(AT )

is the tensor product algebra whereX+(AT ) :=


n≥0 A
⊗n
T is the mixable shuffle algebra [19,21,26] on the k-algebra AT . In

the case λ = 0, this is the plain shuffle algebra, where it is sufficient for AT to have the structure of a k-module. So a pure
tensor a of A ⊗ X+(AT ) is of the form

a = a ⊗ a ∈ A ⊗ A⊗n
T ⊆ A⊗(n+1). (16)

We then define the length of a to be n + 1.
Next let ε : A → Aε be an isomorphism of K -algebras, where

Aε := {ε(a) | a ∈ A}

denotes a replica of the K -algebra A, endowed with the zero derivation. We identify the image ε(K) ⊆ Aε with K so that
ε(c) = c for all c ∈ K . Finally let

ID(A)∗ := Aε ⊗K XT (A) = Aε ⊗K A ⊗ X+(AT ) (17)

denote the tensor product differential algebra of Aε and XT (A), namely the tensor product algebra where the derivation
(again denoted by dA) is defined by the Leibniz rule.

4.2.2. Definition of ΠA

Wewill define a linear operatorΠA on ID(A)∗. First require thatΠA is linear over Aε . Thuswe just need to defineΠA(a) for
a pure tensor a in A⊗ X+(AT ). We will accomplish this by induction on the length n of a. When n = 1, we have a = a ∈ A.
Then we have

a = d(Q (a)) + T (a) with T (a) ∈ AT (18)

and we define

ΠA(a) := Q (a) − ε(Q (a)) + 1 ⊗ T (a). (19)
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Assume ΠA(a) has been defined for a of length n ≥ 1 and consider the case when a has length n + 1. Then a = a ⊗ a where
a ∈ A, a ∈ A⊗n

T and we define

ΠA(a ⊗ a) := Q (a) ⊗ a − ΠA(Q (a)a) − λ ΠA(d(Q (a)) a) + 1 ⊗ T (a) ⊗ a, (20)

where the first and last terms aremanifestly inA⊗X+(AT )while themiddle terms are in ID(A)∗ by the inductionhypothesis.
Wewrite EA = idID(A)∗ −ΠA ◦dA for what will turn out to be the ‘‘evaluation’’ corresponding toΠA (see the discussion before
Example 4.3).

We display the following relationship between ΠA, PA and ε for later application.

Lemma 4.5. (a) For a ∈ A, we have EA(a) = ε(a).
(b) For a ∈ X+(AT ), we have ΠA(a) = PA(a) = 1 ⊗ a.

Proof. (a) Using the direct sum A = AJ ⊕ ker d, we distinguish two cases. If a ∈ ker d = K , then the left-hand side
is a − ΠA(dA(a)) = a − ΠA(0) = a; but the right-hand is a as well since ε : A → Aε is a K -algebra homomorphism.
Hence assume a ∈ AJ = im J . In that case a = J(a) = Q (d(a)) and hence T (d(a)) = d(a) − d(Q (d(a))) = 0.
So ΠA(dA(a)) = ΠA(d(a)) = a − ε(a) by Eq. (19).
(b) This is a special case of Eqs. (18) and (20) with Q (a) = 0 and T (a) = a since a ∈ AT . �

Theorem 4.6. Let (A, d,Q ) be a regular differential algebra of weight λ with quasi-antiderivative Q . Then the triple
(ID(A)∗, dA, ΠA), with the natural embedding

iA : A → ID(A)∗ = Aε ⊗K A ⊗ X+(AT )

to the second tensor factor, is the free commutative integro-differential algebra of weight λ generated by A.

The proof of Theorem 4.6 is given in Section 4.3.
Since AT ∼= A/ im d as k-modules, for different choices of Q , the corresponding AT are isomorphic as k-modules. Then for

λ = 0 the mixable shuffle (i.e., shuffle) algebras X+(AT ) are isomorphic k-algebras since in that case the algebra structure
of AT is not used; see e.g. Section 2.1 of [24]. When λ ≠ 0, for AT from different choices of Q , they are still isomorphic as
k-modules. But it is not clear that they are isomorphic as nonunitaryk-algebras. Nevertheless, the free commutative integro-
differential algebras derived by Theorem 4.6 are isomorphic due to the uniqueness of the free objects. See Remark 4.13 for
further discussions.

The following is a preliminary discussion on subalgebras as direct sum factors.

Lemma 4.7. Let T and S be projectors on a unitary k-algebra R such that T + S = idR. Then the following statements are
equivalent:

(a) im T = ker S is a subalgebra;
(b) T (T (x)T (y)) = T (x)T (y);
(c) S(xy) = S(S(x)y + xS(y) − S(x)S(y)).

Proof. ((a) ⇔ (b)) It is clear since T is a projector.
((a) ⇒ (c)) It follows from

S(T (x)T (y)) = S((x − S(x))(y − S(y)) = 0.

((c) ⇒ (a)) Clearly, the identity implies that ker S is a subalgebra. �

If S = d ◦ Q as above, we obtain from Lemma 4.7(c) an equivalent identity

Q (xy) = Q (d(Q (x))y + xd(Q (y)) − d(Q (x))d(Q (y)))

in terms of Q and d, since Q ◦ d ◦ Q = Q .

4.3. The proof of Theorem 4.6

We will verify that (ID(A)∗, dA, ΠA) is an integro-differential algebra in Section 4.3.1 and verify its universal property in
Section 4.3.2.

4.3.1. The integro-differential algebra structure on ID(A)∗

Since dA is clearly a derivation, by Theorem 2.5(b), we just need to check the two conditions

dA ◦ ΠA = idID(A)∗ , (21)
EA(xy) = EA(x)EA(y), x, y ∈ ID(A)∗. (22)
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Since Aε is in the kernel of dA and in the ring of constants for ΠA, we just need to verify the equations for pure tensors
x = a, y = b ∈ A ⊗ X+(AT ).

We check Eq. (21) by showing (dA ◦ ΠA)(a) = a for a ∈ A⊗X+(AT ) by induction on the length n ≥ 1 of a. When n = 1,
we have a = a ∈ A and obtain

dA(ΠA(a)) = dA(Q (a) − ε(Q (a)) + 1 ⊗ T (a)) = d(Q (a)) + T (a) = a

by Eq. (18). Under the induction hypothesis, we consider a = a ⊗ a with a ∈ A⊗n
T , n ≥ 1. Then we have

dA(ΠA(a ⊗ a)) = dA

Q (a) ⊗ a − ΠA(Q (a)a) − λ ΠA(d(Q (a)) a) + 1 ⊗ T (a) ⊗ a


= d(Q (a)) ⊗ a + Q (a)a + λ d(Q (a))a − Q (a)a − λ d(Q (a))a + T (a) ⊗ a

= d(Q (a)) ⊗ a + T (a) ⊗ a

= a ⊗ a

by Eq. (18) again.
We next verify Eq. (22). If the length of both x and y are one, then x and y are in A. Then by Lemma 4.5(a), we have

EA(xy) = ε(xy) = ε(x)ε(y) = EA(x)EA(y).

If at least one of x or y have length greater than one, then each pure tensor in the expansion of xy has length greater than
one. Then the equation holds by the following lemma.

Lemma 4.8. For any pure tensor a = a ⊗ a ∈ A ⊗ X+(AT ) of length greater than one we have EA(a) = 0.

Remark 4.9. Combining Lemma 4.5(a) and Lemma 4.8 we have im EA = Aε . Further, by Eq. (10), we have ker dA =

im EA = Aε .

Proof. For a given a = a ⊗ a of length greater than one, we compute

EA(a ⊗ a) = a ⊗ a − ΠA(dA(a ⊗ a)) (by definition of EA)
= a ⊗ a − ΠA(d(a) ⊗ a) − ΠA(aa) − ΠA(λd(a)a) (by definition of dA)
= a ⊗ a − Q (d(a)) ⊗ a + ΠA(Q (d(a))a) + λ ΠA(d(Q (d(a))) a) − 1 ⊗ T (d(a)) ⊗ a

− ΠA(aa) − ΠA(λd(a)a) (by definition of ΠA)

= a ⊗ a − Q (d(a)) ⊗ a + ΠA(Q (d(a))a) − ΠA(aa) (by d ◦ Q ◦ d = d and T (d(a)) = 0)
= E(a) ⊗ a − ΠA(E(a)a) (by definition of E = idA − Q ◦ d).

Since E(A) = K ⊆ Aε and ΠA is taken to be Aε-linear, from Lemma 4.5(b), we obtain

EA(a ⊗ a) = E(a)(1A ⊗ a − ΠA(a)) = 0. �

4.3.2. The universal property
We now verify the universal property of (ID(A)∗, dA, ΠA) as the free integro-differential algebra on (A, d): Let iA : A →

ID(A)∗ be the natural embedding of A into the second tensor factor of ID(A)∗ = Aε ⊗K A ⊗ X+(AT ). Then for any integro-
differential algebra (R,D, Π) and any differential algebra homomorphism f : (A, d) → (R,D), there is a unique integro-
differential algebra homomorphism f̄ : (ID(A)∗, dA, ΠA) → (R,D, Π) such that f̄ ◦ iA = f .
The existence of f̄ : Let a differential algebra homomorphism f : (A, d) → (R,D) be given. Note that f is in fact a K -algebra
homomorphism where the K -algebra structure on R is given by f : K → R. Since (R, Π) is a commutative Rota–Baxter
algebra, by the universal property of X(A) as the free commutative Rota–Baxter algebra on the commutative algebra A,
there is a homomorphism f̃ : (X(A), PA) → (R, Π) of commutative Rota–Baxter algebras such that f̃ ◦ jA = f where
jA : A → X(A) is the embedding into the first tensor factor. This means that f̃ is an A-algebra homomorphism and, in
particular, a K -algebra homomorphism. Thus f̃ restricts to a K -algebra homomorphism

f̃ : A ⊗ X+(AT ) → R.

Further, f also gives a K -algebra homomorphism

fε : Aε → R, ε(a) → f (a) − Π(D(f (a))).

Thus we get an algebra homomorphism on the tensor product over K :

f̄ := fε ⊗K f̃ : Aε ⊗K (A ⊗ X+(AT )) → R

that extends f̃ and fε . Further, we have f̄ ◦ jA = f .
It remains to check the equations

f̄ ◦ dA = D ◦ f̄ , f̄ ◦ ΠA = Π ◦ f̄ . (23)
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Since Aε is in the kernel of dA and in the ring of constants of ΠA, we only need to verify the equations when restricted to
A ⊗ X+(AT ).

Fix a ⊗ a = a(1 ⊗ a) ∈ A ⊗ X+(AT ). By Lemma 4.5(b), we have

Π(f̄ (a)) = Π(f̃ (a)) = f̃ (ΠA(a)) = f̄ (1 ⊗ a).

Thus we obtain

f̄ (dA(a ⊗ a)) = f̄ (d(a) ⊗ a) + f̄ (aa) + f̄ (λd(a)a)
= f (d(a))f̄ (1 ⊗ a) + f (a)f̄ (a) + λf (d(a))f̄ (a)
= D(f (a))f̄ (1 ⊗ a) + f (a)D(Π(f̄ (a))) + λD(f (a))D(Π(f̄ (a)))
= D(f (a))f̄ (1 ⊗ a) + f (a)D(f̄ (1 ⊗ a)) + λD(f (a))D(f̄ (1 ⊗ a))

= D(f (a)f̄ (1 ⊗ a))

= D(f̄ (a ⊗ a)).

This proves the first equation in Eq. (23). We next prove the second equation by induction on the length k ≥ 1 of
a := a ⊗ a ∈ A ⊗ X+(AT ). When k = 1, we have a = a ∈ A and

f̄ (ΠA(a)) = f̄ (Q (a) − ε(Q (a)) + 1 ⊗ T (a))
= f (Q (a)) − f (Q (a)) + Π(D(f (Q (a)))) + Π(f (T (a)))
= Π(f (d(Q (a)) + T (a)))
= Π(f (a)),

using Lemma 4.5(a) and (b). Assume now that the claim has been proved for k = n ≥ 1 and consider a = a ⊗ a with length
n + 1. Then we have

f̄ (ΠA(a ⊗ a)) = f̄ (Q (a) ⊗ a − ΠA(Q (a)a) − λ ΠA(d(Q (a))a) + 1 ⊗ T (a) ⊗ a)

= f̄ (Q (a))f̄ (ΠA(a)) − f̄ (ΠA(Q (a)a)) − λf̄ (ΠA(d(Q (a))a)) + f̄ (PA(T (a) ⊗ a)).

Here we have applied Lemma 4.5(b) in the last term. Applying the induction hypothesis to the first three terms and using
the fact that the restriction f̃ of f̄ to A ⊗ X+(AT ) is compatible with the Rota–Baxter operators in the last term, we obtain

f̄ (ΠA(a ⊗ a)) = f (Q (a))Π(f̄ (a)) − Π(f̄ (Q (a)a)) − λΠ(f̄ (d(Q (a))a)) + Π(f̄ (T (a) ⊗ a))

= Π

D(f (Q (a)))Π(f̄ (a))


+ Π


f (T (a))f̄ (PA(a))


,

where we have used integration by parts in Theorem 2.5(f) in the last step. On the other hand, we have

Π(f̄ (a ⊗ a)) = Π(f (a)f̄ (PA(a)))
= Π


f (d(Q (a)) + T (a))f̄ (PA(a))


= Π


D(f (Q (a)))Π(f̄ (a))


+ Π


f (T (a))f̄ (PA(a))


.

Thus we have completed the proof of the existence of the integro-differential algebra homomorphism f̄ .
The uniqueness of f̄ : Suppose f̄1 : ID(A)∗ → R is a homomorphism of integro-differential algebras such that f̄1 ◦ iA = f . For
1 ⊗ a1 ⊗ · · · ⊗ an ∈ X+(AT ), we have

f̄1(1 ⊗ a1 ⊗ · · · ⊗ an) = f̄1 (ΠA(a1ΠA(· · · ΠA(an) · · · )))

= Π(f (a1)Π(· · · Π(f (an)) · · · ))

= f̄ (ΠA(a1ΠA(· · · ΠA(an) · · · )))

= f̄ (1 ⊗ a1 ⊗ · · · ⊗ an).

Thus the restrictions of f̄ and f̄1 to A ⊗ X+(AT ) are the same. Further, by Lemma 4.5(a),

f̄1(ε(a)) = f (a) − f̄1(ΠA(dA(a))) = f (a) − Π(D(f (a)) = f̄ (ε(a)).

Hence the restrictions of f̄ and f̄1 to Aε are also the same. As these restrictions to A⊗X+(AT ) and Aε are K -homomorphisms,
by the universal property of the tensor product over K , f̄ and f̄1 agree on ID(A)∗ = Aε ⊗K A ⊗ X+(AT ). This proves the
uniqueness of f̄ and thus completes the proof of Theorem 4.6.

4.4. Examples of regular differential algebras

In this section we show that some common examples of differential algebras, namely the algebra of differential
polynomials and the algebra of rational functions, are regular where the weight can be taken arbitrary.
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4.4.1. Rings of differential polynomials
Our main goal in this subsection is to prove that (k{u}, d) is a regular differential algebra for any weight, and to give an

explicit quasi-antiderivative Q for d.
We start by introducing some definitions for classifying the elements of A = k{u}. Let ui, i ≥ 0, be the i-th derivation of

u. Then k{u} is the polynomial algebra on {ui | i ≥ 0}. For α = (α0, . . . , αk) ∈ Nk+1, we write uα
= uα0

0 · · · uαk
k . Furthermore,

we use the convention that uα
= 1 when α ∈ N0 is the degenerate tuple of length zero. Then all monomials of k{u} are

of the form uα , where α contains no trailing zero. The order of such a monomial u(α0,...,αk) ≠ 1 is defined to be k; the
order of u()

= 1 is set to −1. The order of a nonzero differential polynomial is defined as the maximum of the orders of
its monomials. The following classification of monomials is crucial [17,8]: A monomial uα of order k is called functional if
either k ≤ 0 or αk > 1. We write

AT = k{uα
| uα is functional}

for the corresponding submodule. Since the product of two functional monomials is again functional, AT is in fact a k-
subalgebra of A. Furthermore, we write AJ for the submodule generated by all monomials uα

≠ 1.

Proposition 4.10. For any λ ∈ k, the canonical derivation d : A → A of weight λ defined in Theorem 3.1 admits a quasi-
antiderivative Q with associated direct sums A = AT ⊕ im d and A = AJ ⊕ ker d.

Proof. The main work goes into showing the direct sum A = AT ⊕ im d. We first show AT ∩ im d = 0. Let x ∈ A. If x has
order −1, it is an element of k so that d(x) = 0. If x has order k ≥ 0, we distinguish the two cases of λ = 0 and λ ≠ 0. If
λ = 0, then we have d(x) = (∂x/∂uk) uk+1 + x̃, where all terms of x̃ have order at most k. Hence d(x) ∉ AT and therefore
we have AT ∩ im d = 0.

We now turn to the case when λ ≠ 0. By Eq. (1) and an inductive argument, we find that for a product w =


i∈I wi in
A, we have

d(w) =


∅≠J⊆I

λ|J|−1

i∈J

d(wi)

i∉J

wi.

Then for a given monomial uα
= u(α0,...,αk) =

k
i=0 u

αi
i of order kwe have

d(uα) =


0≤βi≤αi,

k
i=0 βi≥1

λβ0+···+βk−1
k

i=0


αi
βi


uαi−βi
i uβi

i+1

=


0≤βi≤αi,

k
i=0 βi≥1

λβ0+···+βk−1


k

i=0


αi
βi


uαi−βi+βi−1
i


uβk
k+1, (24)

with the convention β−1 = 0. Consider the reverse lexicographic order on monomials of order k + 1:

(β0, . . . , βk+1) < (γ0, . . . , γk+1) ⇔ ∃ 0 ≤ n ≤ k + 1 (βi = γi for n < i ≤ k + 1 and βn < γn).

The smallest monomial of order k+ 1 under this order in the sum in Eq. (24) is given by uα0
0 · · · uαk−1

k−1 uαk−1
k uk+1 when βk = 1

and β0 = · · · = βk−1 = 0, coming from uα0
0 · · · uαk−1

k−1 d(uαk
k ). Thus for two monomials of order k with uα < uβ under this

order, the least monomial of order k + 1 in d(uα) is smaller than the least monomial of order k + 1 in d(uβ). In particular,
for the least monomial uα of order k of our given element x of order k ≥ 0, the least monomial of order k + 1 in d(uα) is the
least monomial of order k+ 1 in d(x) and is given by uα0

0 · · · uαk−1
k−1 uαk−1

k uk+1. Since this monomial is not in AT , it follows that
d(x) is not in AT , showing that AT ∩ im d = 0.

Note that the previous argument shows in particular that d(x) ≠ 0 for x ∉ k. Thus we have

A = AJ ⊕ k.

We next show that every monomial uα in k{u} is in AT + im d. We prove this by induction on the order of uα . If the order
is−1 or 0, then uα

∈ AT by definition. Assuming the claim holds for differential monomials of order less than k > 0, consider
now a monomial uα of order k so that α = (α0, . . . , αk). If uα

∈ AT , we are done. If not, we must have αk = 1. Then we
distinguish the cases when λ = 0 and λ ≠ 0. If λ = 0, then

uα
= uα0

0 · · · uαk−1
k−1 uk

= uα0
0 · · · uαk−2

k−2
1

αk−1+1 d(uαk−1+1
k−1 )

= d(uα0
0 · · · uαk−2

k−2
1

αk−1+1 uαk−1+1
k−1 ) − d


uα0
0 · · · uαk−2

k−2

 1
αk−1+1 uαk−1+1

k−1 .

Now the first term in the result is in im d and the second term is in AT + im d by the induction hypothesis, allowing us to
complete the induction when λ = 0.
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Now consider the case when λ ≠ 0. Suppose the claim does not hold for some monomials uα
= u(α0,...,αk−1,1) of order k.

Among these monomials, there is one such that the exponent vector α = (α0, . . . , αk−1, 1) is minimal with respect to the
lexicographic order:

(α0, . . . , αk−1, 1) < (β0, . . . , βk−1, 1) ⇔ ∃ 0 ≤ n ≤ k − 1 (αi = βi for 1 ≤ i < n and αn < βn).

By Eq. (24), we have

d(uαk−1+1
k−1 ) =

αk−1+1
βk−1=1


αk−1 + 1

βk−1


λβk−1−1uαk−1+1−βk−1

k−1 uβk−1
k

= (αk−1 + 1)uαk−1
k−1 uk +

αk−1+1
βk−1=2


αk−1 + 1

βk−1


λβk−1−1uαk−1+1−βk−1

k−1 uβk−1
k .

So

uαk−1
k−1 uk =

1
αk−1+1d(u

αk−1+1
k−1 ) −

αk−1+1
βk−1=2

λβk−1−1

αk−1+1


αk−1 + 1

βk−1


uαk−1+1−βk−1
k−1 uβk−1

k .

Thus

uα
= uα0

0 · · · uαk−1
k−1 uk

= uα0
0 · · · uαk−2

k−2
1

αk−1+1d(u
αk−1+1
k−1 ) −

αk−1+1
βk−1=2

λβk−1−1

αk−1+1


αk−1 + 1

βk−1


uα0
0 · · · uαk−2

k−2 uαk−1+1−βk−1
k−1 uβk−1

k .

The monomials in the sum are in AT . For the first term, by Eq. (1), we have

uα0
0 · · · uαk−2

k−2
1

αk−1+1 d(uαk−1+1
k−1 )

= d

uα0
0 · · · uαk−2

k−2
1

αk−1+1 uαk−1+1
k−1


− d(uα0

0 · · · uαk−2
k−2 ) 1

αk−1+1 uαk−1+1
k−1

− λ d(uα0
0 · · · uαk−2

k−2 )d


1
αk−1+1 uαk−1+1

k−1


.

As in the case of λ = 0, the first term in the result is in im d and the second term has the desired decomposition by the
induction hypothesis. Applying Eq. (24) to both derivations in the third term, we see that the term is a linear combination
of monomials of the form uγ

= u(γ0,...,γk) where

γ = (α0 − β0, α1 − β1 + β0, . . . , αk−2 − βk−2 + βk−3, αk−1 + 1 − βk−1 + βk−2, βk−1)

for some 0 ≤ βi ≤ αi, 0 ≤ i ≤ k − 2 with
k−2

i=0 βi ≥ 1 and βk−1 ≥ 1. If such a monomials has βk−1 ≥ 2, then the
monomial is already in AT . If such a monomial has βk−1 = 1, then it has order k and has lexicographic order less than uα

since
k−2

i=0 βi ≥ 1. By the minimality of uα , this monomial is in AT + im d. Hence uα is in AT + im d. This is a contradiction,
allowing us to completes the induction when λ ≠ 0.

With the two direct sum decompositions, the quasi-antiderivative Q is obtained by Proposition 4.2. �

We can thus conclude that k{u} is indeed a regular differential algebra, as claimed earlier. Hence the construc-
tion ID(k{u})∗ developed in Section 4.2 does yield the free integro-differential algebra over the single generator u.

Proposition 4.11. Let k be a commutative Q-algebra. Then the free integro-differential algebra ID(k{u}) is a polynomial algebra.

Proof. We first take the coefficient ring to be Q. Since ID(Q{u}) is isomorphic to ID(Q{u})∗, which is given by Eq. (17)
with A = Q{u}, it suffices to ensure thatX+(AT ) is a polynomial algebra. Now observe that AT = QF is the monoid algebra
generated over the set F of functional monomials. One checks immediately that the functional monomials F form a monoid
under multiplication. Hence Theorem 2.3 of [24] is applicable, and we see that the mixable shuffle algebra X+(AT ) =

MSQ,λ(F) is isomorphic to Q[Lyn(F)], where Lyn(F) denotes the set of Lyndon words over F . This proves the proposition
when k = Q. Then the conclusion follows for any commutative Q-algebra k since ID(k{u})∗ ∼= k ⊗Q ID(Q{u})∗. �

4.4.2. Rational functions
We show that the algebra of rational functions with derivation of any weight is regular.

Proposition 4.12. Let A = C(x). For any λ ∈ C let

dλ : A → A, f (x) →


f (x+λ)−f (x)

λ
, λ ≠ 0,

f ′(x), λ = 0,
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be the λ-derivation introduced in Example 2.2(b). Then dλ is regular. In particular the difference operator on C(x) is a regular
derivation of weight one.

Proof. We have considered the case of λ = 0 in Example 4.3. Modifying the notations there, any rational function can be
uniquely expressed as

r +

k
i=1

ni
j=1

γij

(x − αij)i
, (25)

where r ∈ C[x], αij ∈ C are distinct for any given i and γij ∈ C are nonzero. Let 0 ≠ λ ∈ C be given. We have the direct sum
of linear spaces

C[x] ⊕ R = C[x] ⊕


i≥1

Ri,

where R is the linear space from the fractions in Eq. (25), namely the linear space with basis 1/(x − α)i, α ∈ C, 1 ≤ i, and
Ri, for fixed i ≥ 1, is the linear subspace with basis 1/(x − α)i, α ∈ C.

We note that the λ-divided falling factorials


x
n


λ

:=
x(x − λ)(x − 2λ) · · · (x − (n + 1)λ)

n!
, n ≥ 0,

with the convention
x
0


λ

= 1, form a C-basis of C[x]. In fact,
x
n


λ

=
1
n!

n
k=0

s(n, k)λn−kxk, xn = n!
n

k=0

S(n, k)λn−k

x
n


λ

, n ≥ 0,

where s(n, k) and S(n, k) are Stirling numbers of the first and second kind, respectively; see [19,20] for example. By a direct
computation, we have

dλ


x
n


λ


=

x+λ

n


λ
−
x
n


λ

λ
=


x

n − 1


λ

.

Thus dλ(C[x]) = C[x] and hence C[x] ⊆ im dλ. We next note that R, as well as Rk, is also closed under the operator dλ since

λdλ


k

i=1

ni
j=1

γij

(x − αij)i


=

k
i=1

ni
j=1

γij

(x − (αij − λ))i
−

k
i=1

ni
j=1

γij

(x − αij)i
.

Further, for any n ≥ 0 and f (x) ∈ C(x), we have

λdλ


n

i=0

f (x + iλ)


= f (x + (n + 1)λ) − f (x),

and similarly for n < 0,

λdλ


−1
i=n

f (x + iλ)


= f (x) − f (x + nλ).

Thus for any n ∈ Z, we have

f (x) ≡ f (x + nλ) mod im dλ.

In particular,

1/(x − α)i ≡ 1/(x − (α − nλ))i mod im dλ

and hence

1/(x − α)i ≡ 1/(x − β)i mod im dλ,

for some β ∈ C with the real part Re(β) ∈ [0, |Re(λ)|). Consequently, any fraction in R is congruent modulo im dλ to an
element of

C(x)T :=


k

i=1

ni
j=1

γij

(x − αij)i
∈ R

 Re(αij) ∈ [0, |Re(λ)|)


.
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That is,

C(x) = im dλ + C(x)T .

On the other hand, suppose there is a nonzero function

f (x) =

k
i=1

ni
j=1

γij

(x − αij)i
∈ im dλ ∩ C(x)T .

Thus there is g(x) =
k

i=1
mi

j=1
γij

(x−βij)i
such that dλ(g(x)) = f (x). The range of i in f (x) and g(x) are the same since dλ(Ri) ⊆

Ri. Let f (x) =
k

i=1 fi(x) and g(x) =
k

i=1 gi(x) be the homogeneous decompositions of f and g . Then dλ(gi(x)) = fi(x),
1 ≤ i ≤ k. Fix 1 ≤ i ≤ k and take Re(λ) > 0 for now. List βi,1 < · · · < βi,mi according to their lexicographic order from the
pairs (a, b) ↔ a + i b ∈ C. Then we have

λdλ(gi(x)) =

mi
j=1

γij

(x − (βij − λ))i
−

mi
j=1

γij

(x − βij)i
.

The first fraction in the first sum, 1/(x − (βi,1 − λ))i, is not the same as any other fraction in the first sum since they are
translations by λ of distinct fractions in fi, and is not the same as any fraction in the second sum since Re(βi,1 − λ) <
Re(βi,1) ≤ Re(βij) for 1 ≤ j ≤ mi. Similarly the last fraction in the second sum, 1/(x − βi,mi)

i, is not the same as any other
terms in the sums. Thus they both have nonzero coefficients in dλ(gi(x)). But

Re(βi,mi) − Re(βi,1 − λ) = Re(βi,mi − (βi,1 − λ)) = Re(βi,mi − βi,1) + Re(λ) ≥ Re(λ).

Hence Re(βi,mi) and Re(βi,1 − λ) cannot both be in [0, Re(λ)). Thus dλ(gi) and hence dλ(g) cannot be in C(x)T . This is a
contradiction, showing that im dλ ∩ C(x)T = 0. When Re(λ) < 0, we get analogously im dλ ∩ C(x)T = 0. Thus we have
proved

C(x) = im dλ ⊕ C(x)T . (26)

Note that C(x)T is closed under multiplication, hence is a nonunitary subalgebra of C(x).
The above argument shows that dλ(g) is in C(x)T for g ∈ R only when g = 0. Thus ker dλ ∩ R = 0. Since dλ preserves

the decomposition C(x) = C[x] ⊕ R, we have ker dλ = ker(dλ)

C[x] = C. Thus we have the direct sum decomposition

C(x) = ker dλ ⊕ (xC[x] ⊕ R),

and hence dλ is injective on xC[x] ⊕ R with image im dλ. Therefore dλ is regular with quasi-antiderivative Q defined to be
the inverse of

dλ : xC[x] ⊕ R → im dλ

on im dλ and to be zero on its complement C(x)T ; see Proposition 4.2. �

Remark 4.13. We remark that the subalgebra of C(x) that is a complement of im dλ is not unique, thus giving different
quasi-antiderivatives. In fact, from the proof of Proposition 4.12 it is apparent that in the decomposition (26) one can replace
C(x)T by

C(x)T ,a =


k

i=1

ni
j=1

γij

(x − αij)i
∈ R

 Re(αi) ∈ [a, a + | Re(λ)|)


,

for any given a ∈ R. These two subalgebras are isomorphic since C(x)T ,a is isomorphic to the polynomial C-algebra with
generating set

1
x − α

α ∈ [a, a + | Re(λ)|)


.

Remark 4.14. In conclusion, we have given the first construction for the free integro-differential algebra ID(A)∗ over a given
regular differential algebra A. In several ways, this construction is similar to the integro-differential polynomials of [36,38].
This will be clear when one writes out the elements a0 ⊗ a1 ⊗ a2 ⊗ · · · of Eq. (16) in the form a0


a1

a2


· · · . But there are
also some important differences:

(a) The integro-differential polynomials are the polynomial algebra in the variety of integro-differential algebras of weight
zero, not the free algebra in this category. In fact, the polynomial algebra is always a free product of the coefficient
algebra and the free algebra by Theorem 4.31 of [30].

(b) The construction of [36] uses the language of term algebras and rewrite systems whereas in this paper we use a more
abstract approach through tensor products.
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(c) In the integro-differential polynomials, the starting point is a given integro-differential algebra (A,D, Π) instead of a
regular differential algebra as in the present paper. In the former case we can construct nested integrals over differential
polynomials with coefficients in A, whereas in the latter case we can only treat differential polynomials with trivial
coefficients (i.e., the derivation vanishes on them).

It would be interesting to apply the methods used in this paper to rederive and generalize the construction of the integro-
differential polynomials of [36]. This would also shed some light on the constructivemeaning of the free product mentioned
in Item (a) above. An important step in this direction might be generalizing Section 4.4.1 to differential polynomials with
nonzero derivation on the coefficient ring k. See [16] for a construction of the free integro-differential algebra on an arbitrary
set by the method of Gröbner–Shirshov bases.
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