
On the Integration of Differential Fractions

François Boulier
Université Lille 1

Villeneuve d’Ascq, France
Francois.Boulier@univ-lille1.fr

François Lemaire
∗

Université Lille 1
Villeneuve d’Ascq, France

Francois.Lemaire@lifl.fr

Georg Regensburger
RICAM

Linz, Austria
Georg.Regensburger@oeaw.ac.at

Markus Rosenkranz
†

University of Kent
Canterbury, United Kingdom

M.Rosenkranz@kent.ac.uk

ABSTRACT
In this paper, we provide a differential algebra algorithm for
integrating fractions of differential polynomials. It is not
restricted to differential fractions that are the derivatives
of other differential fractions. The algorithm leads to new
techniques for representing differential fractions, which may
help converting differential equations to integral equations
(as for example used in parameter estimation).

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation—simplification of expres-
sions; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—algebraic algorithms

Keywords
Differential algebra, differential fractions, integration

1. INTRODUCTION
In this paper we present an algorithm that solves the fol-

lowing problem in differential algebra: Given a differential
fraction F , i.e., a fraction P/Q where P and Q are differ-
ential polynomials, and a derivation δ, compute a finite se-
quence F1, F2, F3, . . . , Ft of differential fractions such that

F = F1 + δ F2 + δ2 F3 + · · ·+ δt Ft , (1)

the differential fractions δ` F` have rank less than or equal
to F (the result is thus ranking dependent) and the δ` differ-
ential operators are as much “factored out” as possible. In

∗The first two authors acknowledge partial support by the
French ANR-10-BLAN-0109 LEDA project.
†The fourth author acknowledges partial support by the EP-
SRC First Grant EP/I037474/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

particular, if there exists some differential fraction G such
that F = δ G, then F1 = 0: the algorithm recognizes first
integrals.

This work originated from our attempts to generalize the
construction of integro-differential polynomials [14] to the
case of several independent and dependent variables. The
results presented here constitute the most important step
in this construction: the decomposition of an arbitrary dif-
ferential polynomial—or differential fraction—into a total
derivative and a remainder (see Example 1 with iterated

= false). For ordinary differential polynomials, such a de-
composition is described in [1]. See also [8, 2] and the recent
dissertation [12] for further references.1

If the remainder is zero, the given differential fraction F is
recognized to be the total derivative of another differential
fraction G, so the latter appears as a first integral of F .
Algorithms for determining such first integrals are known
(see [15, 16]), and one such algorithm is implemented in
Maple via the function DEtools[firint].

Handling differential fractions rather than polynomials
may be very important for the range of application of Al-
gorithms 3 and 4 since differential equations may be much
easier to integrate when multiplied, or divided, by an inte-
grating factor. Beyond its theoretical interest, the algorithm
presented in this paper may also be useful in practice:

1. Sometimes (though not always), a differential fraction
is shorter in the representation (1) than in expanded
form. Thus our algorithm provides new facilities for
representing differential equations.

2. The representation (1) may also be more convenient
than the expanded form if one wants to convert dif-
ferential equations to integral equations. This may be
a very important feature for the problem of estimat-
ing parameters of dynamical systems from their input-
output behaviour (see Example 5).

The paper is organized as follows: In Section 2, we re-
view some standard definitions for differential polynomials
and generalize them to differential fractions. In Section 3,
the main result of this paper is stated and proved (Algo-
rithm 3 and Proposition 6). In Section 4, we describe an
implementation along with a few worked-out examples.

1The authors would like to thank the reviewers for pointing
out these references.

2. BASICS OF DIFFERENTIAL ALGEBRA
This paper is concerned with differential fractions, i.e.,

fractions of differential polynomials. A key problem with
such fractions is to reduce them, which requires computing
the gcd of multivariate polynomials, which is possible when-
ever the base field is computable.

The reference books are [13] and [11]. A differential ring R
is a ring endowed with finitely many, say m, derivations
δ1, . . . , δm, i.e., unary operations satisfying the following ax-
ioms, for all a, b ∈ R:

δ(a+ b) = δ(a) + δ(b) , δ(a b) = δ(a) b+ a δ(b) ,

and which commute pairwise. To each derivation δi an in-
dependent variable xi is associated such that δi xj = 1 if
i = j and 0 otherwise. The set of independent variables is
denoted by X = {x1, . . . , xm}. The derivations generate a
commutative monoid w.r.t. composition denoted by

Θ = {δa1
1 · · · δ

am
m | a1, . . . , am ∈ N} ,

where N stands for the nonnegative integers. The elements
of Θ are called derivation operators. If θ = δa1

1 · · · δam
m is

a derivation operator then ord(θ) = a1 + · · · + am denotes
its order, with ai being the order of θ w.r.t. derivation δi
(or xi).

In order to form differential polynomials, one introduces a
set U = {u1, . . . , un} of n differential indeterminates. The
monoid Θ acts on U , giving the infinite set ΘU of deriva-
tives. For readability, we often index derivations by letters
like δx and δy, denoting also the corresponding derivatives
by these subscripts, so uxy denotes δx δy u.

For applications, it is crucial that one can also handle
parametric differential equations. Parameters are nothing
but symbolic constants, i.e., symbols whose derivatives are
zero. Let C denote the set of constants.

The differential fractions considered in this paper are ra-
tios of differential polynomials taken from the differential
ring R = Z[X ∪ C]{U } = Z[X ∪ C ∪ ΘU]. A differen-
tial fraction is said to be reduced if its numerator and de-
nominator do not have any common factor. A differential
polynomial (respectively a differential fraction) is said to be
numeric if it is an element of Z (resp. of Q). It is said to be a
coefficient if it is an element of Z[X ∪C] (resp. of Q(X ∪C)).
The elements of X ∪ C ∪ΘU are called variables.

A ranking is a total ordering on ΘU that satisfies the two
following axioms:

1. v ≤ θv for every v ∈ ΘU and θ ∈ Θ,

2. v < w ⇒ θv < θw for every v, w ∈ ΘU and θ ∈ Θ.

Rankings are well-orderings, i.e., every strictly decreasing
sequence of elements of ΘU is finite [11, §I.8]. Rankings
such that ord(θ) < ord(φ)⇒ θu < φv for every θ, φ ∈ Θ and
u, v ∈ U are called orderly. In this paper, it is convenient
to extend rankings to the sets X and C . For all rankings,
we will assume that any element of X ∪ C is less than any
element of ΘU ; see Remark 5 for a brief discussion why we
make this assumption.

Fix a ranking and consider some non-numeric differential
polynomial P . The highest variable v w.r.t. the ranking such
that deg(P, v) > 0 is called the leading variable or leading
derivative (though it may not be a derivative) of P . It is

denoted by ld(P). The monomial vdeg(P,v) is called the rank
of P . The leading coefficient of P w.r.t. v is called the

initial of P . The differential polynomial ∂P/∂v is called
the separant of P . More generally, if w is any variable, the
differential polynomial ∂P/∂w is called the separant of P
w.r.t. w and is denoted by separant(P,w).

2.1 Extension to differential fractions
In this section, some of the definitions introduced above

are reformulated, to cover the case of differential fractions.
For differential polynomials, these new definitions agree with
the ones given before.

Remark 1. This section deals with differential fractions
F = P/Q. However, the definitions stated below do not
require F to be reduced, i.e., P and Q to be relatively prime.

Definition 1. Let F be a non-numeric differential fraction.
The leading variable or leading derivative of F is defined as
the highest variable v such that ∂F/∂v 6= 0. It is denoted
by ld(F).

Proposition 1. Let F = P/Q be a non-numeric differ-
ential fraction. If P and Q have distinct leading derivatives
or, if P or Q is numeric, then ld(F) is the highest variable v
such that deg(P, v) > 0 or deg(Q, v) > 0.

Proof. First observe ∂F/∂w = 0 for any w > v. It is
thus sufficient to show that ∂F/∂v 6= 0. Indeed, since v does
not occur in both the numerator and the denominator of F ,
we have ∂F/∂v = (∂P/∂v)/Q or ∂F/∂v = −P (∂Q/∂v)/Q2.
In each case, the corresponding fraction is nonzero.

Definition 2. The separant of a non-numeric differential
fraction F is defined as ∂F/∂v, where v = ld(F).

Definition 3. Let F = P/Q be a non-numeric differential
fraction and write v = ld(F). The degree of F is defined as
deg(F) = deg(P, v)− deg(Q, v). The rank of F is defined as
the pair (v,deg(F)).

Definition 4. A rank (v, d) is said to be lower than a rank
(w, e) if v < w or if v = w and d < e.

The above definitions are a bit more complicated than in
the polynomial case, because of differential fractions of de-
gree 0. In particular, we wish to distinguish ranks (v, 0) and
(w, 0), which allows us to state the following proposition.

Proposition 2. If F is a non-numeric differential frac-
tion, then the separant of F is either numeric or has lower
rank than F .

Proof. Assume the separant non-numeric. If its leading
derivative is different from the leading derivative v of F , then
it is lower than v and the Proposition is clear. Otherwise, the
degree in v of the separant is less than or equal to deg(P, v)−
deg(Q, v)− 1 and the Proposition is proved.

Recall that if a polynomial P does not depend on a vari-
able v, then lcoeff(P, v) = P .

Definition 5. The initial of a non-numeric differential frac-
tion F = P/Q is defined as lcoeff(P, v)/lcoeff(Q, v), where
v = ld(F).

Proposition 3. Let F be a differential fraction which is
not a coefficient, v = ld(F) and δ be a derivation. Then the
leading derivative of δ F is δ v, this derivative occurs in the
numerator of δ F only, with degree 1, and the initial of δ F
is the separant of F .

Proof. The first claim comes from the axioms of rank-
ings. The two other ones are clear.

3. MAIN RESULT
In this section, we write numer(F) and denom(F) for the

numerator and denominator of a differential fraction F , both
viewed as differential polynomials of the ring R. Our result
is Algorithm 3. It relies on two sub-algorithms (Algorithms 1
and 2), which are purely algebraic (i.e., they do not make use
of derivations, in the sense of the differential algebra). These
two sub-algorithms are related to the integration problem of
rational fractions. They are either known or very close to
known methods, such as those described in [7]. We state
them in this paper, because our current implementation is
actually based on them, the paper becomes self-contained,
and the tools required by Algorithm 3 appear clearly.

Remark 2. In the three presented algorithms, all differen-
tial fractions are supposed to be reduced.

Algorithm 1 The prepareForIntegration algorithm

Require: F is a reduced differential fraction, v is a variable
Ensure: Three polynomials contF , N , B satisfying Prop. 4
1: if denom(F) is numeric then
2: contF , N, B := denom(F), numer(F), 1
3: else
4: contF := the gcd of all coeffs of denom(F) w.r.t. v

{ all gcd are of multivariate polynomials }
5: P0 := numer(F)
6: Q0 := denom(F)/contF { all divisions are exact }
7: A0 := gcd(Q0, separant(Q0, v))
8: B0 := Q0/A0

9: C0 := gcd(A0, B0)
10: D0 := B0/C0

11: A1 := gcd(A0, separant(A0, v))
12: N, B := P0 ·D0 ·A1, D0 ·A0

13: end if
14: return contF , N, B

Proposition 4 (Specification of Algorithm 1).
Let F = P0/(contF Q0) be a differential fraction (P0 and

Q0 being relatively prime, Q0 primitive w.r.t. v, and contF
denoting the content of denom(F) w.r.t. v). Then the poly-
nomials returned by Algorithm 1 satisfy

F =
N

contF B2
, B = F1 F2 F

2
3 · · ·Fn−1

n ,

where Q0 = F1 F
2
2 F

3
3 · · ·Fn

n is the squarefree factorization
of Q0 w.r.t. v.

Proof. The case of F being a polynomial is clear. As-
sume F has a non-numeric denominator. We have A0 =
F2 F

2
3 · · ·Fn−1

n at Line 8, B0 = F1 F2 F3 · · ·Fn at Line 9,
C0 = F2 F3 · · ·Fn at Line 10, D0 = F1 at Line 11, A1 =
F3 F

2
4 · · ·Fn−2

n at Line 12, N = P0 F1 F3 F
2
4 · · ·Fn−2

n and
B = F1 F2 F

2
3 · · ·Fn−1

n .

The following Lemma, which is easy to see, establishes the
relationship between a well-known fact on the integration of
rational fractions and Algorithm 1.

Lemma 1. With the same notations as in Proposition 4,
if there exists a reduced differential fraction R such that F =
separant(R, v), then F1 = 1 and the denominator of R is
contRB, where contR has degree 0 in v.

Algorithm 2 The integrateWithRemainder algorithm

Require: F0 is a differential fraction, v is a variable
Ensure: Two differential fractions R and W such that

1. F0 = separant(R, v) +W

2. W is zero iff there exists R s.t. F0 = separant(R, v)

1: R, W := 0, 0
2: F := F0

3: while F 6= 0 do
4: { invariant: F0 = F + separant(R, v) +W }
5: contF , N, B := prepareForIntegration(F, v)
6: if deg(B, v) = 0 then
7: P := the primitive of F w.r.t. v, with a 0 int. cst.

{ this amounts to integrate a polynomial }
8: R := R+ P
9: F := 0

10: else
11: { look for A such that

separant(A/(contRB), v) = N/(contF B
2) }

12: cB , cN := lcoeff(B, v), lcoeff(N, v)
13: dB , dN , d̄A := deg(B, v), deg(N, v), dN − dB + 1
14: if dN = 2 dB − 1 or d̄A < 0 then
15: H := cN vdN

16: W := W +H/(contF B
2)

17: F := F −H/(contF B
2)

18: else
19: R2 := cN vd̄A/((d̄A − dB) contF cB B)
20: R := R+R2

21: F := F − separant(R2, v)
22: end if
23: end if
24: end while
25: return R, W

Remark 3. Algorithm 2 relies on Algorithm 1 for com-
puting contF , N and B. However, it does not need N . It
only needs its leading coefficient cN and its degree dN . Our
formulation improves the readability of our algorithm.

Proposition 5. Algorithm 2 is correct.

Proof. First suppose Algorithm 2 terminates.
The loop invariant stated in the algorithm is clear, since

it is satisfied at the beginning of the first loop and main-
tained in each of the three cases considered by the algorithm.
Combined with the loop condition, this implies that the first
ensured condition is satisfied at the end of the algorithm.

Let us now show that the second ensured condition is sat-
isfied. We assume that

∃R s.t. F = separant(R, v) . (2)

We prove that Lines 15–17 are not performed. This is suf-
ficient to prove the second ensured condition since, if Lines
15–17 are not performed and (2) holds then, after one iter-
ation, F is modified either at Line 9 or 21. In both cases,
the new value of F satisfies (2) again.

Assume (2) holds. By Lemma 1, the denominator of R
is contRB. Let A = cA v

dA + qA be its numerator and
B = cB v

dB +qB (we only need to consider the case dB > 0).
One can assume that dA 6= dB . Indeed, if dA = dB , one
can take R̄ = (A − cA/cB B)/B since separant(R̄, v) =

separant(R, v) = F and deg(A − cA/cB B) < dB . Dif-
ferentiating the fraction A/(contRB) w.r.t. v and identi-
fying with F = N/(contF B

2) (Proposition 4), we see that
N = (dA−dB) cA cB contF /contR v

dA+dB−1 + · · · where the
dots hide terms of degree, in v, less than dA + dB − 1. Since
dA 6= dB , the degree of N satisfies dN = dA + dB − 1, thus
dN 6= 2 dB − 1. Moreover, the variable d̄A is equal to dA
since dN − dB + 1 = dA. Summarizing, dN 6= 2 dB − 1 and
d̄A ≥ 0, so Lines 15–17 are not performed.

Termination of Algorithm 2 follows from the fact that the
degrees of N and B, in v, decrease (strictly, in the case
of N). Indeed, at each iteration, one of the Lines 9, 17 or 21
is performed. If Line 9 is performed, then the algorithm
stops immediately. The key observation is that, at Line 21,
the fraction R2 is chosen such that

∂ R2

∂ v
=
cN vdN + · · ·

contF B2
,

where the dots hide terms of degree, in v, less than dN .
Thus, if Line 17 or 21 is performed, the algorithm subtracts
from F a fraction which admits contF B

2 as a denominator
and the degree of N decreases strictly. If the numerator
of the new fraction has a common factor with B, this can
only decrease the degrees of both the numerator and the
denominator.

Proposition 6. Algorithm 3 is correct.

Proof. Termination is guaranteed, essentially, by the fact
that rankings are well-orderings. Here are a few more de-
tails. The algorithm considers eight cases. In Cases 1, 2, 3
and 7, F is assigned 0. In Cases 4 and 8, the new value of F
has lower leading derivative than the old one. In Case 5, the
new value of F has lower rank than the old one. In Case 6,
the rank of F does not necessarily change (if it does, it de-
creases) but, at the next iteration, another case than 6 will
be entered.

The loop invariant stated in the algorithm is clear, since
it is satisfied at the beginning of the loop and maintained in
each of the eight cases. Combined with the loop condition,
it implies that, at the end of the algorithm, the first ensured
condition is satisfied.

Let us now address the second ensured condition. The im-
plication from left to right is clear, so we must show that W
is zero if F0 is a total derivative. Since derivations commute
with sums, it suffices to prove that W remains zero in each
pass through the main loop as long as F is a total deriva-
tive. Hence assume F = δxG for a differential fraction G.
If G is a coefficient, so is F , which is handled by Case 1;
the ensured condition is then guaranteed by the properties
of Algorithm 2 (Proposition 5). Now assume G is not a co-
efficient and let v ∈ ΘU be its leading derivative. By the
axioms of rankings, the variable vx = δx v is the leading
derivative of F , it has positive order w.r.t. x, degree 1, and
we have

F =
∂G

∂v
vx + · · · ,

where the dots hide terms that do not depend on vx. The
initial of F is thus the separant of G, and it depends on
variables less than or equal to v. Writing F = P/Q, it is
clear that vx occurs only in P and so must coincide with vN .
Hence Cases 2–5 are excluded, and we have F2 = ∂G/∂v.
Since the latter cannot involve variables greater than v, also

Algorithm 3 The integrate algorithm

Require: F0 is a differential fraction, x is an independent
variable

Ensure: Two differential fractions R and W such that

1. F0 = δxR+W , where δx is the derivation w.r.t. x

2. W is zero iff there exists R such that F0 = δxR

3. Unless F0 is a coefficient, δxR and W have ranks
lower than or equal to F0

1: R, W := 0, 0
2: F := F0

3: while F 6= 0 do
4: { Invariant: F0 = F + δxR+W }
5: if F is a coefficient then
6: R2, W2 := integrateWithRemainder(F, x)
7: R := R+R2 { Case 1 }
8: W := W +W2

9: F := 0
10: else if numer(F) is a coefficient then
11: W := W + F { Case 2 }
12: F := 0
13: else
14: denote vN the leading derivative of numer(F)
15: denote vB the one of denom(F) (if not a coefficient)
16: if denom(F) is not a coefficient and vN ≤ vB then
17: W := W + F { Case 3 }
18: F := 0
19: else if vN has order zero w.r.t. x then
20: view numer(F) as a sum of monomials mi

21: denote H the sum of the mi s.t. deg(mi, vN) > 0
22: W := W +H/denom(F) { Case 4 }
23: F := F −H/denom(F)
24: else if deg(numer(F), vN) ≥ 2 then
25: view numer(F) as a sum of monomials mi

26: denote H the sum of the mi s.t. deg(mi, vN) ≥ 2
27: W := W +H/denom(F) { Case 5 }
28: F := F −H/denom(F)
29: else
30: { we have: deg(numer(F), vN) = 1 }
31: let v be such that δx v = vN
32: F2 := lcoeff(numer(F), vN)/denom(F)

{recall F2 is supposed to be reduced}
33: if ∃w > v such that deg(numer(F2), w) > 0

then
34: view numer(F2) as a sum of monomials mi

35: denote H the sum of the mi such that
for some w > v, we have deg(mi, w) > 0

36: W := W + (H/denom(F2)) · vN { Case 6 }
37: F := F − (H/denom(F2)) · vN
38: else if ∃w > v s.t. deg(denom(F2), w) > 0 then
39: W := W + F { Case 7 }
40: F := 0
41: else
42: R2, W2 := integrateWithRemainder(F2, v)
43: W := W +W2 · vN { Case 8 }
44: R := R+R2

45: F := F − δxR2 −W2 · vN
46: end if
47: end if
48: end if
49: end while
50: return W, R

Cases 6 and 7 are excluded. The remaining Case 8 is again
handled by the properties of Algorithm 2 (Proposition 5).

Let us address the third ensured condition. Assume this
condition is satisfied by R and W at the beginning of some
loop. In Case 1, unless F0 is a coefficient, R2 and W2 are
assigned coefficients and have thus lower rank than F0. The
third condition is thus satisfied again. Cases 2–7 are clear.
In Case 8, we show that the contribution δxR2 to the new
value of F does not increase the rank of F . Recall that vN ,
which is the leading derivative of numer(F), is also the lead-
ing derivative of F (by virtue of Case 3). Moreover, there
exists a derivative v such that δx v = vN . An increase of the
rank of F could only happen if F2 involved derivatives w
such that δx w > vN and hence w > v by the axioms of rank-
ings. This situation is however impossible, due to Cases 6
and 7. Thus the third ensured condition is satisfied, and the
Proposition is proved.

Remark 4. The second ensured condition of Algorithm 3
could be made stronger. Indeed, the algorithm does not
only ensure that W is zero whenever it is possible, it also
makes W as small as possible, storing in this variable at
each iteration, a “small part” of F that cannot be integrated
(Cases 5 and 6).

In the next section, we use an “iterated” version of Algo-
rithm 3, stated in Algorithm 4.

Algorithm 4 The integrate algorithm (iterated version)

Require: F0 is a differential fraction which is not a coeffi-
cient, x is an independent variable

Ensure: A possibly empty list [W0, W1, . . . , Wt] of differ-
ential fractions such that

1. Wt is nonzero

2. F0 = W0 + δxW1 + · · ·+ δtxWt

3. W0, W1, . . . , Wi are zero if, and only if there ex-
ists R such that F0 = δi+1

x R

4. The differential fractions W0, δxW1, . . . , δ
t
xWt

have ranks lower than or equal to F0

1: L := the empty list
2: R := F0

3: while R is not a coefficient do
4: W, R := integrate(R, x)
5: append W at the end of L
6: end while
7: if R 6= 0 then
8: append R at the end of L
9: end if

10: return L

Proposition 7. Algorithm 4 is correct.

Proof. The first ensured condition is clear from the code.
The other ones follow the specifications of Algorithm 3.
The number of iterations, t, is bounded by the total order
of F0.

4. IMPLEMENTATION AND EXAMPLES
A first version of Algorithm 3 was implemented in Maple.

More recently, this algorithm was implemented in C, within
the BLAD libraries, version 3.10. See [3, bap library, file
bap_rat_bilge_mpz.c]. The following computations were
performed by the C version, through a testing version2 of
the Maple DifferentialAlgebra package [5].

Example 1. The first example shows that Algorithm 3
permits to decide if a differential fraction F is the derivative
of some other differential fraction G. Observe that this test
was already implemented in Maple, by the DEtools[firint]
function.

The variable Ring receives a description of the differential
ranking. The variable G receives a differential fraction, F
receives its derivative w.r.t. x.

> with (DifferentialAlgebra):
> with (Tools):
> integrate := DifferentialAlgebra0:-Integrate:
> Ring := DifferentialRing

(derivations = [x,y],
blocks = [[u,v],w]);
Ring := differential_ring

> G := u[x]^2 + w[y]/w^2 + w[x,x,y];

2 w[y]
G := u[x] + ---- + w[x, x, y]

2
w

> F := Differentiate (G, x, Ring);
4 4

F := (2 u[x, x] u[x] w + w[x, x, x, y] w

2 / 4
+ w[x, y] w - 2 w[x] w[y] w) / w

/

Algorithm 3, implemented here using the name integrate,
is applied to F and x. It returns the list [W, R]. We get
W = 0, indicating that F = δxR.

> L := integrate (F, x, Ring, iterated=false);
2 2 2

u[x] w + w[y] + w[x, x, y] w
L := [0, -------------------------------]

2
w

> normal (L[2] - G);
0

If the optional parameter iterated is left to its default value
(true), Algorithm 4 is called.

> L := integrate (F, x, Ring);
2 2

u[x] w + w[y]
L := [0, ---------------, 0, w[y]]

2
w

Example 2. This variant of the previous example shows
the differences between DEtools[firint] and Algorithm 3.
Since DEtools[firint] does not handle PDE, we switch to
ODE and to the standard Maple diff notation.

2This testing version, called DifferentialAlgebra0, is
available at [4].

> Ring := DifferentialRing
(derivations = [x],
blocks = [[u,v],w]);
Ring := differential_ring

> G := diff (u(x),x)^2 + v(x)/w(x)^2 + diff(v(x),x,x);
/ 2 \

/d \2 v(x) |d |
G := |-- u(x)| + ----- + |--- v(x)|

\dx / 2 | 2 |
w(x) \dx /

> F := diff(G,x):

> DEtools[firint](F, u(x));
/ 2 \

/d \2 v(x) |d |
|-- u(x)| + ----- + |--- v(x)| + _C1 = 0
\dx / 2 | 2 |

w(x) \dx /

Both methods recognize that F is a total derivative.

> integrate (F, x, Ring, notation=diff,
iterated=false);

/ 2 \
|d | 2 /d \2 2
|--- v(x)| w(x) + |-- u(x)| w(x) + v(x)
| 2 | \dx /
\dx /

[0, --]
2

w(x)

However, if one adds a term u(x) to F , one gets a differential
fraction which is not a total derivative (which is not exact,
in DEtools[firint] terminology). Our algorithm produces
a decomposition while DEtools[firint] gives up (which is
its expected behaviour).

> DEtools[firint](F+u(x), u(x));
Error, (in ODEtools/firint) the given ODE is not exact
> integrate (F+u(x), x, Ring, notation=diff,

iterated=false);
/ 2 \
|d | 2 /d \2 2
|--- v(x)| w(x) + |-- u(x)| w(x) + v(x)
| 2 | \dx /
\dx /

[u(x), --]
2

w(x)

Example 3. The following example illustrates Algorithm 4
on differential polynomials. This very simple example shows
that the result of Algorithm 3 is ranking dependent. Any
derivative of u is greater than any derivative of w. Thus we
get

ux wx = δx(uwx)− uwxx .

> integrate (u[x]*w[x], x, Ring);

[-u w[x, x], u w[x]]

However, the ranking between u and v is orderly, so that
vxx > ux. For this reason, Algorithm 3 behaves differently.

> integrate (u[x]*v[x], x, Ring);

[u[x] v[x]]

Example 4. The following example shows that Algorithm 3
does not commute with sums. The issue is related to the ex-
istence of simple factors in the squarefree decompositions of

denominators. For readability, results are displayed in fac-
tored form.

> F1 := u[x]/(u+1) - u[x]/(u+2)^2;
u[x] u[x]

F1 := ----- - --------
u + 1 2

(u + 2)

> F2 := -u[x]/(u+1) + u[x]/(u+3)^2;
u[x] u[x]

F2 := - ----- + --------
u + 1 2

(u + 3)

> F3 := F1+F2;
u[x] u[x]

F3 := - -------- + --------
2 2

(u + 2) (u + 3)

> L1 := factor (
integrate (F1, x, Ring, iterated=false));

3
u[x] (u + 2) 4 u + 3

L1 := [-----------------, - ---------------]
2 2 (u + 2) (u + 1)

(u + 2) (u + 1)

> L2 := factor (
integrate (F2, x, Ring, iterated=false));

3
u[x] u 12 u + 13

L2 := [- -----------------, -----------------]
2 2 2 (u + 3) (u + 1)

(u + 3) (u + 1)

> L3 := factor (
integrate (F3, x, Ring, iterated=false));

1
L3 := [0, ---------------]

(u + 3) (u + 2)

> L12 := factor (L1+L2);
4 3 2

u[x] (2 u + 5 u + 2 u + 12 u + 18)
L12 := [-------------------------------------,

2 2 2
(u + 3) (u + 1) (u + 2)

2
4 u + 7 u + 8

-------------------------]
2 (u + 3) (u + 1) (u + 2)

Though L12 6= L3, it is possible to recover L3 from L12 by
applying Algorithm 3 once more.

> L := factor (
integrate (L12[1], x, Ring, iterated=false));

2
4 u + 5 u + 6

L := [0, - -------------------------]
2 (u + 3) (u + 1) (u + 2)

> factor (L3 - (L + [0, L12[2]]));

[0, 0]

Example 5. This example, inspired from [9], illustrates
the usefulness of Algorithm 4 for simplifying equations pro-
duced by differential elimination methods. It features a com-
partmental model with two compartments, 1 and 2, with a

same unit volume. There are two state variables x1 and x2

(one per compartment). State variable xi represents the con-
centration of some drug in compartment i. The exchanges
between the two compartments are supposed to follow lin-
ear laws (depending on parameters k1 and k2). The drug
is supposed to exit from the model, from compartment 1,
following a Michaelis-Menten type law (depending on pa-
rameters Ve, ke). The output of the system, denoted y, is
the state variable x1.

> Ring := DifferentialRing (
derivations = [t],
blocks = [y,[x1,x2],[k1(),k2(),ke(),Ve()]]);

Ring := differential_ring

> S := [x1[t] = -k1*x1 + k2*x2 - (Ve*x1)/(ke+x1),
x2[t] = k1*x1 - k2*x2,

y = x1];

Ve x1
S := [x1[t] = -k1 x1 + k2 x2 - -------,

ke + x1

x2[t] = k1 x1 - k2 x2, y = x1]

By means of differential elimination [6], one computes the
so-called input-output equation of the system (though there
is no input).

> ideal := RosenfeldGroebner
(S, Ring,
basefield =

field (generators = [k1,k2,ke,Ve]));

ideal := [regular_differential_chain]

> io_ideal := RosenfeldGroebner
(ideal[1],
blocks = [[x1,x2],y,[k1(),k2(),ke(),Ve()]]):

> io_eq := Equations
(io_ideal, leader = derivative(y))[1];

2 2
io_eq := y[t, t] y + 2 y[t, t] y ke + y[t, t] ke

2 2
+ y[t] y k1 + y[t] y k2 + 2 y[t] y k1 ke

2 2
+ 2 y[t] y k2 ke + y[t] k1 ke + y[t] k2 ke

2
+ y[t] ke Ve + y k2 Ve + y k2 ke Ve

Using Algorithm 3, we obtain

> integrate (io_eq / Initial (io_eq, Ring), t, Ring);

2 2 2 2
y k2 Ve y k1 + y k2 - k1 ke - k2 ke - ke Ve
[-------, ---------------------------------------, y]
y + ke y + ke

This list can be translated into the following equation, whose
structure is now much clearer:

y(t) k2 Ve

y(t) + ke
+

d

dt

(y(t)2 − k2
e) (k1 + k2)− ke Ve

y(t) + ke
+

d2

dt2
y(t) .

This example also shows that integrating differential frac-
tions (as we did above), may yield better formulas than in-
tegrating differential polynomials. Indeed:

> integrate (io_eq, t, Ring);

2 2 2
[-2 y[t] y - 2 y[t] ke + y k2 Ve + y k2 ke Ve,

3 3
y k1 y k2 2 2 2
----- + ----- + y k1 ke + y k2 ke + y k1 ke
3 3

2 3 2 2
+ y k2 ke + y ke Ve, 1/3 y + y ke + y ke]

While the fractional equation is simpler than that from an
intuitive point of view, it would be interesting to investi-
gate also their numerical properties from a more systematic
viewpoint. In the case of differential-algebraic equations,
the usual elimination methods are known to produce typ-
ically very lengthy polynomial differential equations whose
numerical treatment may be more costly than that of the
corresponding fractional differential equation.

Remark 5. The four parameters were placed at the bot-
tom of the ranking, following the assumptions stated in
Section 2. However, the DifferentialAlgebra package,
which handles parameters as differential indeterminates con-
strained by implicit equations (their derivatives are zero),
does not require parameters to lie at the bottom of rank-
ings. With such rankings, the second ensured condition of
Algorithm 3 would not hold anymore.

5. CONCLUSION
The algorithm presented in this paper may be extended

in many different ways: to handle more complicated differ-
ential operators such as δx + δy, possibly with differential
polynomials for coefficients, for instance. Some prototypes
are currently under study.

In this paper, we have not addressed the interest of the
third ensured condition of Algorithm 3. This topic will be
covered in a further paper. It is related to the issue of char-
acterizing the differential fractions which are returned “as
is” by our method.

As mentioned in the Introduction, the decomposition of
a differential polynomial or a differential fraction into a to-
tal derivative and a remainder is crucial for constructing
the ring of integro-differential polynomials. Formalizing this
idea in the general category of commutative integro-differen-
tial algebras over rings leads to the notion of quasi-antide-
rivative [10]. For ordinary differential polynomials in one
indeterminate and for univariate rational functions, a quasi-
antiderivative is exhibited in [10] but the case of partial dif-
ferential polynomials or differential fractions remains open.
While Algorithm 3 comes close to providing such a quasi-
antiderivative, it falls short of being linear (Example 4).
This question will be addressed in a future paper. It would
allow us to make progress towards our original goal: defining
and computing Gröbner bases for ideals of integro-differential
polynomials of various kinds.

6. ACKNOWLEDGMENTS
The authors thank the referees for their detailed com-

ments, suggestions, and references.

7. REFERENCES
[1] A. H. Bilge. A REDUCE program for the integration

of differential polynomials. Computer Physics
Communications, 71:263–268, 1992.

[2] G. W. Bluman and S. C. Anco. Symmetry and
Integration Methods for Differential Equations.
Springer Verlag, New York, 2002.

[3] F. Boulier. The BLAD libraries.
http://www.lifl.fr/~boulier/BLAD, 2004.

[4] F. Boulier. The BMI library.
http://www.lifl.fr/~boulier/BMI, 2010.

[5] F. Boulier and E. Cheb-Terrab. Help Pages of the
DifferentialAlgebra Package. In MAPLE 14, 2010.

[6] F. Boulier, F. Lemaire, and M. Moreno Maza.
Computing differential characteristic sets by change of
ordering. Journal of Symbolic Computation,
45(1):124–149, 2010.

[7] M. Bronstein. Symbolic Integration I. Springer Verlag,
Berlin, Heidelberg, New York, 1997.

[8] G. H. Campbell. Symbolic integration of expressions
involving unspecified functions. SIGSAM Bulletin,
22(1):25–27, 1988.

[9] L. Denis-Vidal, G. Joly-Blanchard, and C. Noiret.
System identifiability (symbolic computation) and
parameter estimation (numerical computation). In
Numerical Algorithms, volume 34, pages 282–292,
2003.

[10] L. Guo, G. Regensburger, and M. Rosenkranz. On
integro-differential algebras. Preprint available at
http://arxiv.org/abs/1212.0266., 2012.

[11] E. R. Kolchin. Differential Algebra and Algebraic
Groups. Academic Press, New York, 1973.

[12] C. G. Raab. Definite Integration in Differential Fields.
PhD thesis, University of Linz, 2012.

[13] J. F. Ritt. Differential Algebra, volume 33 of American
Mathematical Society Colloquium Publications.
American Mathematical Society, New York, 1950.

[14] M. Rosenkranz and G. Regensburger.
Integro-differential polynomials and operators. In
ISSAC’08: Proceedings of the twenty-first
international symposium on Symbolic and algebraic
computation, pages 261–268, New York, NY, USA,
2008. ACM.

[15] F. Schwarz. An algorithm for determining polynomial
first integrals of autonomous systems of ordinary
differential equations. Journal of Symbolic
Computation, 1(2):229–233, 1985.

[16] W. Y. Sit. On Goldman’s algorithm for solving
first-order multinomial autonomous systems. In
Proceedings of the 6th International Conference, on
Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes, AAECC-6, pages 386–395,
London, UK, 1989. Springer-Verlag.

