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Abstract

Typically, operator identities are proven by a formal computation using known identities. In
principle, one has to make sure that every step of such a computation respects the restrictions
imposed by the domains and codomains of the operators involved. In this thesis, we present
a recently developed framework that allows us to prove operator identities in a fully algebraic
fashion without having to inspect every part of the computation. To this end, we model operator
identities by noncommutative polynomials and encode their domains and codomains in a labelled
quiver. It turns out that, if the polynomial f associated to a claimed operator identity as well
as all polynomials in the set F corresponding to assumed identities are compatible with such
a quiver, proving the claim reduces to showing that f is contained in the ideal generated by
F . The compatibility condition on f and the polynomials in F ensures that these polynomials
respect the restrictions imposed by the domains and codomains of the operators involved and,
provided that the ideal membership can be verified, in fact implies the claimed identity for all
settings in which it can be phrased. To show ideal membership, the theory of Gröbner bases
can be utilised. In contrast to the commutative case, where Gröbner bases can be used to
decide this problem, ideal membership in the noncommutative case is undecidable in general.
Nevertheless, there exist generalisations of Buchberger’s algorithm and of Faugère’s F4 algorithm
to the noncommutative setting, that often allow us to verify ideal membership in practice.

To be able to state these algorithms, we recall the main results of the theory of noncom-
mutative Gröbner bases. To this end, we adopt the point of view of Bergman and consider
polynomial reduction as a linear map. We also discuss several optimisation strategies to im-
prove the performance of these algorithms in practice, such as deletion criteria and redundant
generator reduction. Additionally, we extend both algorithms to keep track of cofactors during
the computation. Provided that we can verify the membership of a given polynomial in an ideal,
this enables us to produce a certificate for this ideal membership, which can then be checked
independently. Finally, we introduce the software package OperatorGB, which is available for
Mathematica and SageMath and, besides automated compatibility checks, implements certi-
fied ideal membership of noncommutative polynomials via (partial) Gröbner bases computations.
We also provide insight into some implementation details of this package and compare it to other
packages that provide functionality for noncommutative Gröbner bases computations.
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Zusammenfassung

Operatoridentitäten werden üblicherweise ausgehend von bekannten Identitäten mit Hilfe einer
formalen Rechnung bewiesen. Theoretisch muss dabei sichergestellt werden, dass in jedem
Schritt dieser Rechnung Einschränkungen, die sich durch die Definitions- und Wertebereiche
der involvierten Operatoren ergeben, berücksichtigt werden. In dieser Arbeit wird eine kürzlich
entwickelte Theorie vorgestellt, die es erlaubt, Operatoridentitäten rein algebraisch zu beweisen,
ohne dabei jeden Teil der Rechnung inspizieren zu müssen. Dazu werden Operatoridentitäten mit
Hilfe von nichtkommutativen Polynomen modelliert und die Definitions- und Wertebereiche der
auftretenden Operatoren in Form eines gerichteten Multigraphen kodiert. Vorausgesetzt, dass
das Polynom f , welches einer zu beweisenden Operatoridentität entspricht, sowie die Polynome
der Menge F , welche den übersetzten Annahmen entsprechen, mit solch einem Graphen kompa-
tibel sind, reduziert sich damit der Beweis der entsprechenden Aussage über Operatoren auf das
Verifizieren, dass f in dem von F erzeugten Ideal enthalten ist. Die Kompatibilitätsanforderung
an f und die Polynome in F stellt sicher, dass diese Polynome den Restriktionen entsprechen, die
sich durch die Definitions- und Wertebereiche der involvierten Operatoren ergeben und beweist,
wenn zusätzlich die Idealzugehörigkeit verifiziert werden kann, die behauptete Operatoridentität
sogar für alle Situationen, in denen solch eine Aussage formuliert werden kann. Um Idealzuge-
hörigkeit zu beweisen, kann die Theorie der Gröbnerbasen verwendet werden. Im Gegensatz zum
kommutativen Fall, wo dieses Problem mit Hilfe von Gröbnerbasen entschieden werden kann, ist
das Idealzugehörigkeitsproblem im Kontext von nichtkommutativen Polynomen im Allgemeinen
unentscheidbar. Trotzdem gibt es Verallgemeinerungen des Buchberger Algorithmus sowie von
Faugères F4 Algorithmus für den nichtkommutativen Fall, welche es in der Praxis oft erlauben
Idealzugehörigkeit zu verifizieren.

Um diese Algorithmen formulieren zu können, werden die wichtigsten Resultate der The-
orie nichtkommutativer Gröbnerbasen wiedergegeben. Dazu wird die Sichtweise von Bergman
übernommen und polynomielle Reduktion als lineare Abbildung betrachtet. Weiters werden
verschiedene Optimierungsstrategien diskutiert, welche die Laufzeit dieser Algorithmen in der
Praxis verringern sollen. Außerdem werden beide Algorithmen so erweitert, dass während der
Berechnung auch Kofaktoren mitprotokolliert werden können. Dies erlaubt es, vorausgesetzt,
dass die Zugehörigkeit eines gegebenen Polynoms in einem Ideal gezeigt werden kann, ein Zer-
tifikat für diese Idealzugehörigkeit zu produzieren, welches dann unabhängig überprüft werden
kann. Abschließend wird das Softwarepaket OperatorGB vorgestellt, welches für Mathematica
sowie SageMath verfügbar ist und neben automatisierten Kompatibilitätstests Funktionalität
bietet, um Zertifikate für Idealzugehörigkeit nichtkommutativer Polynome mittels (partieller)
Gröbnerbasen zu berechnen. Es werden auch Einblicke in einige Details der Implementierung
der Software gegeben und das Paket wird mit anderen Paketen verglichen, welche ebenfalls
Funktionalität zur Berechnung nichtkommutativer Gröbnerbasen bieten.
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Chapter 1

Introduction

Linear operators appear in many different areas of mathematics, either in form of matrices over
finite-dimensional spaces or as operators over infinite-dimensional spaces. Often, one wants to
use known properties of certain operators to infer new properties. Typically, these properties
are expressible in terms of identities consisting of the operators involved and the arithmetic
operations addition, composition and scaling. Then, proving that a claimed identity holds is
usually done by a formal computation using the assumed identities. During such a computation
one has to assure that all appearing expressions respect the restrictions imposed by the domains
and codomains of the operators involved (respectively, respect the formats of the corresponding
matrices). In other words, all intermediate sums and products must be valid operators (respec-
tively matrices). Making sure that this is indeed the case can be quite tedious, especially when
the computations involve many steps. So, additional properties, which only hold for a certain
class of linear operators, are often used in order to keep the computations short. Examples of
such properties are the existence of a finite rank or determinantal properties, which are useful
to argue about matrices but do not necessarily carry over to operators over infinite-dimensional
vector spaces. Hence, a proof using such particular properties is then only valid for a certain
class of linear operators and an analogous statement for a larger class of operators requires a
new proof.

In this thesis, we present the algebraic framework developed in [RRH19], which allows us to
state a simple procedure, that on the one hand overcomes the problem of constant compatibility
checks and on the other hand produces universally valid proofs. In particular, this framework
enables us to ignore compatibility checks during the computation as long as the identities that we
start with as well as the claimed identities only consist of valid operator expressions. Moreover,
it ensures that, by a single formal computation, we can prove the claimed identities for all
situations in which the assumptions and claims can be formulated (e.g., matrices of different
sizes, bounded linear operators on Hilbert spaces, etc.). To this end, we model operator identities
by noncommutative polynomials in some set X. Each indeterminate in X corresponds to a
basic operator and composition of operators translates into multiplication of polynomials, where
indeterminates still commute with coefficients but not with each other. Note that we have to
use noncommutative polynomials as the composition of linear operators is also noncommutative
in general. Additionally, the domains and codomains of the operators are encoded in a directed
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multigraph Q, where edges have labels in X. The vertices of Q correspond to functional spaces
and its edges correspond to basic operators between these spaces. We refer to such a graph as
a labelled quiver. Each path in Q induces a monomial that corresponds to a valid operator.
Consequently, polynomials whose monomials all share paths in Q with the same start and end
can be translated into linear operators and are called compatible with Q. If the possibilities for
start and end of corresponding paths are uniform for all its monomials, a polynomial is said to
be uniformly compatible.

The algebraic framework presented, requires the polynomial f associated to a claimed iden-
tity to be compatible with the quiver Q encoding the domains and codomains of the operators
involved and the polynomials in the set F , which correspond to the assumed identities, to be
uniformly compatible with Q. If this is the case, proving that the claimed operator identity
follows from the assumptions reduces to showing that f is contained in the ideal generated by
F . Once this is shown, the claimed identity holds for all settings into which the polynomial f
and the polynomials in F can be translated, using what is called a consistent representation
of Q.

To verify ideal membership of noncommutative polynomials, we can utilise the theory of
Gröbner bases. For commutative polynomials over a field, the notion of Gröbner bases was
first introduced by Buchberger in 1965 [Buc65]. About a decade later, Bergman provided the
main theoretical results to adapt these concepts to the noncommutative case [Ber78] by using
the abstract concept of reduction systems, where he considers polynomial reduction as a linear
map. In the commutative case, Gröbner bases allow us to decide ideal membership and can be
computed for example by an algorithm proposed by Buchberger, now known as Buchberger’s
algorithm [Buc65], or by Faugère’s F4 algorithm [Fau99].

Both of these algorithms have been generalised to the setting of noncommutative polyno-
mials. However, in contrast to the commutative case, the noncommutative polynomial ring (in
more than one variable) is not Noetherian, which renders the ideal membership problem of non-
commutative polynomials undecidable in general. This is also why Gröbner bases computations
in this ring need not terminate and we have to content ourselves with enumeration procedures.
Nevertheless, in practice, we can often use the noncommutative analogues of the Buchberger
algorithm and of the F4 algorithm to certify ideal membership. In this case, we can also obtain
an explicit representation of the polynomial in question in terms of the generators of the ideal.
This representation, which we call a cofactor representation, then serves as a certificate for the
ideal membership and can be checked independently.

In the package OperatorGB [HRR19], we have implemented routines to efficiently certify ideal
membership of noncommutative polynomials based on cofactor representations computed via the
noncommutative analogues of the Buchberger algorithm and of the F4 algorithm. We note that
at the time of writing this thesis, this is the only publicly available package that provides this
functionality for arbitrary finitely generated ideals of noncommutative polynomials. Versions of
the package for Mathematica and SageMath along with documentation and examples can
be obtained at

http://gregensburger.com/softw/OperatorGB.

In particular, we also provide example files for most of the computations done in this thesis.
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Furthermore, the package can also check compatibility of polynomials with quivers and almost
fully automatically certify operator identities.

The goal of this thesis is to provide a self-contained reference work for the user of the software
that contains all theoretical results needed to fully understand what the different methods of
the package do as well as details about the implementation and a comparison of the package
to similar software. Aside from the software package, the main contribution of this thesis to
the topic of noncommutative Gröbner bases is a detailed discussion on how to trace cofactors
in the noncommutative versions of the Buchberger algorithm and of the F4 algorithm and on
how to use these cofactors to efficiently certify ideal membership. Additionally, we propose
simple criteria to efficiently apply the chain criterion during noncommutative Gröbner bases
computations. It is also worth mentioning that we present the theory of Gröbner bases adopting
the point of view of Bergman and consider polynomial reduction as a linear map.

To keep this thesis self-contained, we recall the most important notions that are relevant for
the subsequent chapters in Chapter 2, including the free monoid, the noncommutative polyno-
mial ring and (two-sided) ideals. We also introduce the notion of cofactor representations.

Following upon that, we discuss Gröbner bases of noncommutative polynomial ideals over
a field K in Chapter 3. To this end, we first have to impose an ordering on monomials. In
Section 3.1, we give an overview over several such monomial orderings. For the convenience
of the reader, we also recall some basic terminology from the field of abstract rewriting, which
then helps us to define a reduction relation on polynomials. Using this reduction relation,
we define Gröbner bases in the noncommutative polynomial ring and give several equivalent
characterisations. Furthermore, we also discuss the notion of reduced Gröbner bases.

In Chapter 4, we dedicate ourselves to the computation of Gröbner bases in the noncommu-
tative polynomial ring. In particular, we start by describing an interreduction procedure that
enables us to detect and delete redundant generators of a finite system of generators of an ideal.
After that, we state Bergman’s famous Diamond Lemma [Ber78], which provides an algorithmic
test to determine whether a given set of noncommutative polynomials is a Gröbner basis. As
already mentioned, the ring of noncommutative polynomials is not Noetherian. Due to this
fact, some ideals have infinite Gröbner bases, and consequently, we cannot expect to obtain
terminating algorithms for computing Gröbner bases in this ring. Nevertheless, we shall present
versions of the Buchberger algorithm and of the F4 algorithm to enumerate noncommutative
Gröbner bases. Additionally, we extend both algorithms to keep track of cofactors during the
computation. Provided that we can verify the membership of a given polynomial in an ideal,
this enables us to produce a certificate for this ideal membership. At the end of Chapter 4, we
present some basic optimisation strategies for Gröbner basis computations including deletion
criteria as well as strategies to remove redundant generators of a Gröbner basis. Furthermore,
we also discuss an algorithm proposed by Faugère and Lachartre [FL10] to efficiently compute
the reduced row echelon form of matrices appearing during the execution of F4.

In Chapter 5, we summarise the algebraic framework developed in [RRH19], together with
a simple three step procedure for proving operator identities in a fully algebraic fashion. We
then illustratively apply this procedure to prove the uniqueness of the Moore-Penrose inverse of
a matrix.

Chapter 6 is dedicated to the OperatorGB package. After discussing the main functionality
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provided by the package and its usage, we give some insights concerning the design choices
made when implementing the package and explain some optimisations, which helped to obtain
reasonably efficient implementations of the algorithms. Finally, we compare our implementations
to other well-known packages that provide functionality for computing noncommutative Gröbner
bases.
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Chapter 2

Noncommutative polynomials

To keep this thesis self-contained, we recall some important notions in this chapter, which are
relevant for the remainder of this work. In particular, we define the noncommutative polynomial
ring, which is the main algebraic structure we will be working with throughout this thesis, and
its elements, the noncommutative polynomials. To this end, we first define the notion of the free
monoid and then, based upon that, so-called monoid rings.

Definition 2.1. Let X be a set. A word w over X is a finite sequence of the form w = x1 . . . xm

where m ∈ N and x1, . . . , xm ∈ X. The quantity m is called the length of w and abbreviated by
|w|. If |w| = 0, w is called the empty word and denoted by w = 1. The set of all words over X is
denoted by ⟨X⟩. We define a multiplication on ⟨X⟩ as follows: for two words w, w′ ∈ ⟨X⟩ with
w = x1 . . . xm and w′ = x′

1 . . . x′
n, the product ww′ is given by the concatenation of w and w′,

i.e. ww′ = x1 . . . xmx′
1 . . . x′

n. Equipped with this multiplication, the set ⟨X⟩ becomes a monoid;
the so-called free monoid generated by X.

Remark. If |X| = 1, i.e. X = {x}, then ⟨X⟩ = {xi | i ≥ 0} consists of all nonnegative powers of
x and since xixj = xi+j = xj+i = xjxi for all i, j ≥ 0, we end up with a commutative monoid.
If |X| > 1, then ⟨X⟩ is not commutative anymore.

If the elements of X are explicitly given, say X = {x1, . . . , xn}, we typically omit the set
parentheses in ⟨{x1, . . . , xn}⟩ and simply write ⟨x1, . . . , xn⟩.

Example 2.2. Let X = {x, y, z}. Then, the elements of ⟨X⟩ are of the form

1, x, y, z, xx, yy, zz, xy, yx, xz, zx, yz, zy, xxx, . . .

We also need the concept of divisibility in ⟨X⟩. So, we define what it means for a word w to
be divisible by another word w′.

Definition 2.3. Let X be a set and w, w′ ∈ ⟨X⟩. We say that w′ divides w or w′ is a subword
of w if there exist a, b ∈ ⟨X⟩ such that aw′b = w. In this case, we write w′ | w.

Example 2.4. Let X = {x, y, z} and w = xyxz, w′ = yx ∈ ⟨X⟩. Then, w′ is a subword of w
since aw′b = w with a = x and b = z. Also w′′ = xz ∈ ⟨X⟩ is a subword of w. Here, the right
factor b equals the empy word, i.e. b = 1.
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Remark. Note that, unlike to the commutative case, a word w′ can divide a word w in several
ways. This means that the factors a and b are not necessarily unique. For example, consider the
words w = xyxyx and w′ = xy in ⟨x, y⟩. Then, clearly w′ | w, but we have w′xyx = xyw′x = w.

The words in the free monoid ⟨X⟩ serve as the monomials in the noncommutative polynomial
ring. What remains now, is that we have to construct a ring around the word monoid and another
commutative ring. This can be done by considering the so-called monoid ring, which can be
defined for an arbitrary monoid M . Note that by a ring we always mean a ring with unity.
Definition 2.5. Let R be a commutative ring and M be a monoid. Consider the set

RM := {
∑

m∈M

cmm | cm ∈ R such that cm = 0 for almost all m}.

This set, together with an addition defined by∑
m∈M

cmm +
∑

m∈M

c′
mm :=

∑
m∈M

(cm + c′
m)m

and a multiplication defined by∑
k∈M

ckk ·
∑
l∈M

cll :=
∑

m∈M

( ∑
kl=m

ckcl

)
m,

becomes a ring, which is called the monoid ring of M over R.
Now, we can put these pieces together to define the main algebraic structure we will be

working with throughout this thesis, the noncommutative polynomial ring, together with its
elements, the noncommutative polynomials. To this end, we fix an arbitrary commutative ring R
and a nonempty set X for the rest of this chapter.
Definition 2.6. We refer to the monoid ring of ⟨X⟩ over R, denoted by R⟨X⟩, as the ring of
noncommutative polynomials in the indeterminates X with coefficients in R. In other contexts
R⟨X⟩ is also called the free (associative) algebra or the free monoid ring generated by X over R.
Remark. If X = {x}, we have already seen that ⟨X⟩ is a commutative monoid consisting of all
nonnegative powers of x. In this case, R⟨X⟩ becomes the usual univariate polynomial ring R[x].
If |X| > 1, then R⟨X⟩ and R[X] do not coincide anymore.
Definition 2.7. An element f =

∑
m∈⟨X⟩ cmm ∈ R⟨X⟩ is called a (noncommutative) polynomial.

The element cm ∈ R is called the coefficient of f in m and denoted by coeff(f, m). The set
supp(f) := {m ∈ ⟨X⟩ | cm ̸= 0} is called the support of f . Furthermore, we often refer to
m ∈ ⟨X⟩ in this context as a monomial rather than as a word.
Remark. Note that indeterminates commute with coefficients in R⟨X⟩ but not with each other.
Example 2.8. Let R = Z and X = {x, y}. We consider R⟨X⟩ = Z⟨x, y⟩. For f1 = xy + x,
f2 = xy − 2y ∈ Z⟨x, y⟩ we can compute

f1 + f2 = 2xy + x− 2y,

f1f2 = (xy + x)(xy − 2y) = xyxy + xxy − 2xyy − 2xy,

f2f1 = (xy − 2y)(xy + x) = xyxy + xyx− 2yxy − 2yx.

Note that f1f2 ̸= f2f1.
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Often, we want to talk about all monomials appearing in a set of polynomials. To this end,
it is convenient to extend the definition of the support from single polynomials to subsets of
R⟨X⟩.

Definition 2.9. Let F ⊆ R⟨X⟩. We denote the set of all monomials appearing in any f ∈ F
by supp(F ), i.e. supp(F ) :=

⋃
f∈F supp(f).

Later, we will be dealing with sets of polynomials encoding certain identities and usually
we are not only interested in the identities at hand but also in all their consequences. We can
translate this into our setting of polynomials by considering (two-sided) ideals of R⟨X⟩.

Definition 2.10. Let (R′, +, ·) be a (not necessarily commutative) ring. A subset I ⊆ R′ is
called a (two-sided) ideal of R′ if it satisfies the following two conditions.

1. (I, +) is a subgroup of (R′, +).

2. For all r, r′ ∈ R′ and all f ∈ I, also rfr′ ∈ I.

Example 2.11. Every ring R′ has two trivial ideals, namely {0} and R′ itself.

Usually, when we are given a set of polynomials F ⊆ R⟨X⟩, we are looking for the smallest
ideal of R⟨X⟩ (in terms of set inclusion) containing F . This ideal is called the ideal generated
by F and denoted by (F ). It is easy to see that (F ) is given by

(F ) = {
n∑

i=1
aifibi | fi ∈ F, ai, bi ∈ R⟨X⟩, n ∈ N}.

The set F is called a system of generators of (F ). An ideal I is said to be finitely generated if
there exists a finite system of generators F such that I = (F ). We agree upon the convention
to write (f1, . . . , fn) instead of ({f1, . . . , fn}) if the elements of F = {f1, . . . , fn} are explicitly
given.

Note that, if we consider the usual commutative polynomial ring R[X] in finitely many
variables over a Noetherian ring R, Hilbert’s basis theorem states that R[X] is Noetherian as
well. This means that every ascending chain of ideals in R[X] eventually becomes stationary, or
equivalently, that every ideal in R[X] is finitely generated. In the noncommutative case however,
Hilbert’s basis theorem fails if |X| > 1 (if |X| = 1 we have already seen that we end up with
the usual univariate polynomial ring). Hence, there exist ideals in R⟨X⟩ which are not finitely
generated. One prominent example is the following: let R be any Noetherian ring (or even a
field) and X = {x, y}. The ideal generated by the set {xyix | i ∈ N} ⊆ R⟨x, y⟩ has no finite
system of generators. This means that R⟨X⟩ is not Noetherian, which causes problems when
it comes to computing Gröbner bases in this ring. We discuss this in more detail in Chapter 3
and 4.

To end this chapter, we introduce the notion of cofactor representations.

Definition 2.12. Let F ⊆ R⟨X⟩. For an element f ∈ (F ), we call a representation of the form

f =
n∑

i=1
aifibi, (1)
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with fi ∈ F , ai, bi ∈ R⟨X⟩ and n ∈ N, a cofactor representation of f with respect to F . We
refer to the elements ai and bi as the cofactors of f with respect to the representation (1).

Note that in general the cofactors ai and bi from several summands with the same fi cannot
be collected on both sides of the fi simultaneously. However, collecting cofactors only on the
right hand side of summands with the same fi is possible if the left hand side cofactors are all
equal. For example, we can do the following simplification

k∑
j=1

aifibj = aifi

⎛⎝ k∑
j=1

bj

⎞⎠ .

In a similar fashion, we can collect the cofactors on the left hand side if the cofactors on the
right hand side of the summands are equal.
Remark. Given a cofactor representation of the form (1), we can expand the cofactors ai and bi

into monomials in ⟨X⟩. Hence, we can write every f ∈ (F ) as

f =
m∑

i=1
civifiwi,

with ci ∈ R, vi, wi ∈ ⟨X⟩ and fi ∈ F .

Example 2.13. Consider the ideal (f1, f2) ⊆ Z⟨x, y⟩ generated by f1 = yx−xy and f2 = xy−x
and let f = xyyx− xx ∈ (f1, f2). A cofactor representation of f is given by

f = xyf1 + xyf2 + f2x.

Note that the two summands xyf2 and f2x cannot be merged together. This example also shows
that a cofactor representation is not necessarily unique, since we also have

f = f2yx + f2x. (2)

This is why we usually speak of a cofactor representation of f instead of the cofactor representa-
tion of f . Note that in (2) we can collect the cofactors on the right hand side of the summands
to obtain f = f2(yx + x).

Given a polynomial f ∈ R⟨X⟩ and a set F ⊆ R⟨X⟩, one of the main goals of this thesis
is to derive procedures to determine whether f ∈ (F ) or f /∈ (F ). Although, in general, this
so-called ideal membership problem is undecidable in R⟨X⟩, in practice it turns out that we
are often able to at least give an affirmative answer to this question, i.e. to verify that indeed
f ∈ (F ). In this case, we can also compute a cofactor representation of f with respect to F . This
cofactor representation then serves as a certificate for the ideal membership and can be checked
independently. The main tool needed for these computations are (partial) Gröbner bases, which
we discuss in the next chapter. However, for sake of simplicity, we only consider Gröbner bases
in the noncommutative polynomial ring K⟨X⟩ over a field K. So, for the rest of this thesis, we
let K be an arbitrary field.
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Chapter 3

Gröbner bases in K⟨X⟩

In this chapter, we summarise the main results of the theory of Gröbner bases of ideals in
noncommutative polynomial rings over a field K. Historically, first the commutative case was
considered, where Buchberger was the first to characterise Gröbner bases as we know them
today. In his famous PhD thesis [Buc65], written in 1965, he also provides an algorithm, now
called Buchberger’s algorithm, for computing Gröbner bases in the commutative polynomial
ring.

The main theoretical results needed to adapt these concepts to the noncommutative case are
due to Bergman [Ber78], who uses the abstract concept of reduction systems to generalise the
ideas from the commutative setting, and were developed independent of Buchberger’s theory
about a decade later. Around the same time, also Bokut’ [Bok76] proved statements that are
essentially equivalent to the ones by Bergman. The first algorithmic approach to compute
noncommutative Gröbner bases was proposed by Mora [Mor86] a few years later. In 1994,
Mora also managed to unify the theory of Gröbner bases for commutative and noncommutative
polynomial rings via a generalisation of the Gaussian elimination algorithm [Mor94]. For recent
surveys on the theory of noncommutative Gröbner bases we refer to [Mor16, Nor01, Xiu12].

In this thesis, we define Gröbner bases via a certain reduction relation on polynomials. This
reduction relation replaces a “larger” term in a polynomial by “smaller” terms and a Gröbner
basis is a system of generators of a polynomial ideal for which this reduction relation has certain
properties. In particular, we follow Bergman’s approach and consider polynomial reduction as
a linear map. The advantage of this approach is that it can be generalised to other settings,
for example as done by Hossein Poor et al. [HRR18, Hos18], where, based on certain reduction
systems, an analogous procedure of Buchberger’s algorithm in tensor rings is presented. For a
generalisation of Gröbner bases using a rewriting theory approach, we refer to [GHM19].

Before we can define the reduction relation on polynomials, we first have to clarify what we
mean by “larger” and “smaller” terms of a polynomial. To this end, we recall the concept of a
monomial ordering on ⟨X⟩. This is done in Section 3.1, where we also give several examples of
such orderings. In Section 3.2.1, we recap some basic notions of abstract rewriting. Based upon
those, we state the reduction relation in Section 3.2.2 and discuss some of its properties. Using
this reduction relation, we can then define and characterise Gröbner bases in K⟨X⟩ in full detail
in Section 3.3.
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For the rest of this thesis, we assume that the set X of indeterminates is finite.

3.1 Monomial orderings
Recall that a binary relation ⪯ on a set S is a subset of S × S. We follow the usual convention
to write a ⪯ b instead of (a, b) ∈⪯.

Definition 3.1. A total ordering ⪯ on a set S is a binary relation on S that satisfies the
following properties for all a, b, c ∈ S.

1. If a ⪯ b and b ⪯ a, then a = b. (antisymmetry)

2. If a ⪯ b and b ⪯ c, then a ⪯ c. (transitivity)

3. a ⪯ b or b ⪯ a. (connexity)

Remark. The connexity property is sometimes also called completeness because it ensures that
every pair of elements in S is comparable under this relation. It also implies reflexivity, i.e.
a ⪯ a for all a ∈ S.

However, for our purpose, a total ordering is not sufficient because the properties of a total
ordering alone cannot guarantee that the reduction relation that we will define later will always
terminate. Informally speaking, we might end up in an infinite sequence of replacing larger
terms by smaller terms without ever reaching some kind of minimal term. We will soon see an
example of a total ordering where this can happen. So, what we are seeking for is a so-called
well-ordering. If we additionally require that the ordering respects the multiplication in ⟨X⟩,
then we obtain a monomial ordering.

Definition 3.2. Let ⪯ be a total ordering on ⟨X⟩. Then, ⪯ is called a monomial ordering or
an admissible ordering on ⟨X⟩ if it satisfies the following two conditions:

1. w ⪯ w′ implies awb ⪯ aw′b for all a, b, w, w′ ∈ ⟨X⟩. (compatibility with multiplication)

2. Every nonempty subset of ⟨X⟩ has a least element. (well-ordering)

Remark. The property of being a well-ordering is equivalent to the fact that every descending
chain w1 ⪰ w2 ⪰ . . . of words in ⟨X⟩ eventually becomes stationary. This is the crucial property
that will ensure that our reduction relation will always terminate.

We can also use the property of being a well-ordering together with the compatibility of a
monomial ordering with the multiplication in ⟨X⟩ to derive the following proposition.

Proposition 3.3. Let ⪯ be a monomial ordering on ⟨X⟩. Then, 1 is the least element of ⟨X⟩
with respect to ⪯.

Proof. Assume that there exists w ∈ ⟨X⟩ such that 1 ≻ w. Then, the first condition of Defini-
tion 3.2 yields wn = wn · 1 ≻ wn · w = wn+1 for all n ∈ N, which implies the existence of an
infinite strictly decreasing sequence 1 ≻ w ≻ w2 ≻ . . . , but this is a contradiction to ⪯ being a
well-ordering.
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The first ordering that we consider is the lexicographic ordering, which we denote by ⪯lex

and which is probably best known from how the words in a dictionary are ordered. This is why
it is sometimes also referred to as the dictionary ordering. We adapt this ordering to the free
monoid ⟨X⟩ as follows.

Definition 3.4. Let X = {x1, x2, . . . , xn}. We order the elements of X as follows: x1 ≺lex

x2 ≺lex · · · ≺lex xn. Then, we have w ⪯lex w′ for two monomials w = xi1 . . . xik
, w′ = xj1 . . . xjl

∈
⟨X⟩ if

1. there exists an index 1 ≤ s ≤ min{k, l} such that xim = xjm for all 1 ≤ m < s and
xis ≺lex xjs , or

2. xim = xjm for all 1 ≤ m ≤ min{k, l} and k ≤ l.

Remark. By reordering the elements in X = {x1, . . . , xn}, one can obtain different orderings.
Formally, this means that for a permutation π of {1, . . . , n}, we consider ⪯lex,π where the
indeterminates are ordered as xπ(1) ≺lex,π xπ(2) ≺lex,π · · · ≺lex,π xπ(n) and where we have
w ⪯lex,π w′ for two monomials w = xi1 . . . xik

, w′ = xj1 . . . xjl
∈ ⟨X⟩ if

1. there exists an index 1 ≤ s ≤ min{k, l} such that xim = xjm for all 1 ≤ m < s and
xπ(is) ≺lex xπ(js), or

2. xim = xjm for all 1 ≤ m ≤ min{k, l} and k ≤ l.

Then, the lexicographic ordering as defined above can be obtained as a special case by setting
π = id. To keep the notation uncluttered, we will only use the “usual” lexicographic ordering
⪯lex for all future definitions and examples in this thesis.

Example 3.5. Let X = {x, y, z} and order the indeterminates as x ≺lex y ≺lex z. Then,
we have xyx ≺lex xyz by the first condition of Definition 3.4 and xy ≺lex xyx by the second
condition of Definition 3.4.

The lexicographic ordering is a total ordering but it is not a monomial ordering since it is
not a well-ordering. This can easily be seen by taking X = {x, y} and letting x ≺lex y. Then,
y ≻lex xy ≻lex xxy ≻lex . . . is an infinite strictly decreasing chain in ⟨X⟩. Additionally, the
lexicographic ordering is also not compatible with the multiplication in ⟨X⟩. For example, we
have x ≺lex xx but xy ≻lex xxy. Hence, this ordering will not be useful for our polynomial
reduction relation.
Remark. In the commutative case, the lexicographic ordering is a monomial ordering, which can
be obtained from Definition 3.4 by writing commutative monomials xα1

1 . . . xαn
n in the form

xn . . . xn  
αn-times

xn−1 . . . xn−1  
αn−1-times

. . . x1 . . . x1  
α1-times

.

Although the lexicographic ordering on ⟨X⟩ is not a monomial ordering, it can be used
as a building block for other monomial orderings by considering so-called induced monomial
orderings.
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Definition 3.6. Let S be a semigroup equipped with a well-ordering ≤ that is compatible with
the multiplication in S and let φ : ⟨X⟩ → S be a semigroup homomorphism. Then, the induced
monomial ordering ⪯ on ⟨X⟩ is defined by w ⪯ w′ for w, w′ ∈ ⟨X⟩ if

1. φ(w) < φ(w′), or

2. φ(w) = φ(w′) and w ⪯lex w′.

For example, for S = N with the usual ordering and φ(w) = |w| for w ∈ ⟨X⟩, the induced
ordering first compares the monomials in ⟨X⟩ by their length and then uses the lexicographic
ordering as a tie-breaker for words of the same length. In this way, we obtain the degree
lexicographic ordering, which is also called the graded lexicographic ordering and which we will
abbreviate by ⪯deglex.

Example 3.7. Let X = {x, y, z} and order the indeterminates as x ≺lex y ≺lex z. Using
the lexicographic ordering, we had xy ≻lex xxy, which caused some problems. Now, we have
xy ≺deglex xxy, since φ(xy) = 2 < 3 = φ(xxy). We also have xxy ≺deglex xyx, since φ(xxy) =
3 = φ(xyx) and xxy ≺lex xyx.

Sometimes, we want to value the appearance of certain indeterminates in a monomial more
than the appearance of others. This leads to the following generalisation of the degree lexi-
cographic ordering, called the weighted degree lexicographic ordering or weighted graded lexico-
graphic ordering and abbreviated by ⪯wlex,ω. But before we can state this monomial ordering,
we first have to define the weighted degree of a word in ⟨X⟩.

Definition 3.8. Let X = {x1, . . . , xn} and let w = xi1 . . . xik
∈ ⟨X⟩. Furthermore, let ω =

(ω1, . . . , ωn) ∈ Rn
>0; we call ω a weight tuple of X. The weighted degree of w with respect to ω,

denoted by Wω(w), is given by

Wω(w) :=
k∑

j=1
ωij .

For a weight tuple ω of X the weighted degree lexicographic ordering ⪯wlex,ω is then the
ordering induced by φ(w) = Wω(w) for w ∈ ⟨X⟩. The degree lexicographic ordering can be
obtained as a special case of the weighted degree lexicographic ordering if we take ω = (1, . . . , 1).
Remark. Note that the weight tuple ω used in the weighted degree lexicographic ordering must
consist of strictly positive numbers. It is not sufficient to demand nonnegative numbers as the
following example shows. Let X = {x, y} and order the indeterminates as x ≺lex y. Furthermore,
let ω = (0, 1). Then, Wω(xny) = 1 for all n ≥ 0 and xn+1y ≺lex xny since x ≺lex y, which yields
that also xn+1y ≺wlex,ω xny for all n ≥ 0. Hence, we end up with the infinite strictly decreasing
chain y ≻wlex,ω xy ≻wlex,ω xxy ≻wlex,ω . . . of monomials in ⟨X⟩. This shows that the weighted
degree lexicographic ordering is not a well-ordering in this case and consequently also not a
monomial ordering.

Example 3.9. Let X = {x, y, z} and order the indeterminates as x ≺lex y ≺lex z. Additionally,
we also consider the weight tuple ω = (1, 2, 3) ∈ R3

>0. Then, we have xx ≺wlex,ω z, since
φ(xx) = 2 < 3 = φ(z). We also have xy ≺wlex,ω z, since φ(xy) = 3 = φ(z) and xy ≺lex z.
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The last monomial ordering that we consider in this thesis is the so-called multigraded lexi-
cographic ordering which we denote by ⪯mlex,S . To be able to introduce this ordering, we need
the notion of the length of a monomial with respect to a set S ⊆ X.

Definition 3.10. Let X = {x1, . . . , xn} and S ⊆ X. Furthermore, let w = xi1 . . . xik
∈ ⟨X⟩.

The length of w with respect to S, denoted by |w|S , is given by

|w|S := |{j | xij ∈ S, 1 ≤ j ≤ k}|.

Given a partition S = {S1, . . . , Sk} of X, we define φ(w) = (|w|S1 , . . . , |w|Sk
) for w ∈ ⟨X⟩.

This is a semigroup homomorphism from ⟨X⟩ to Nk, which induces the multigraded lexicographic
ordering ⪯mlex,S on ⟨X⟩. Note that for this purpose, we have to extend the usual ordering on
N to Nk by defining a ≤ b for a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Nk if ai = bi for all 1 ≤ i ≤ k
or if ai < bi for the smallest index 1 ≤ i ≤ k where ai and bi differ.
Remark. Typically, one partitions the set X into two parts, i.e S1 = S, S2 = X \ S. Such an
instance of the multigraded lexicographic ordering is a so-called elimination ordering because the
reduction relation that we will define later tends to remove (or eliminate) terms containing many
indeterminates from S2 and replace them by terms involving fewer or even no indeterminates
from S2. Also, note that if S = {X} we end up with the degree lexicographic ordering ⪯deglex.

Example 3.11. Let X = {x, y, z} and order the indeterminates as x ≺lex y ≺lex z. Additionally,
let S = {S1, S2} with S1 = {x} and S2 = {y, z}. Then, we have yzy ≺mlex,S x, since φ(yzy) =
(0, 3) < (1, 0) = φ(x). We also have xy ≺mlex,S xyy, since φ(xy) = (1, 1) < (1, 2) = φ(xyy).
Furthermore, xyy ≺mlex,S xyz, since φ(xyy) = (1, 2) = φ(xyz) and xyy ≺lex xyz.

Remark. Further monomial orderings can be obtained by combining the ones defined above.
For example, for a partition S = {S1, . . . , Sk} of X and weight tuples ωi of Si one can define
a weighted multigraded lexicographic ordering as the monomial ordering induced by φ(w) =
(Wω1(w), . . . , Wωk

(w)). It is also possible to use φ to map noncommutative monomials to com-
mutative monomials, which are then compared by a commutative monomial ordering.

Since many of the following definitions strongly depend on the monomial ordering used, we
fix an arbitrary monomial ordering ⪯ on ⟨X⟩ for the rest of this section. If we use a particular
ordering in an example, we denote it by the corresponding subscript.

We can now define what we mean by a “large” term of a polynomial.

Definition 3.12. Let f ∈ K⟨X⟩\{0} and let m = max⪯ supp(f). Then, m is called the leading
monomial of f , denoted by lm(f). The coefficient of f in m is called the leading coefficient of
f and abbreviated as lc(f). If lc(f) = 1, then f is said to be monic. Furthermore, we refer to
the product of the leading coefficient with the leading monomial as the leading term lt(f) of f ,
i.e. lt(f) := lc(f) · lm(f)

Remark. Note that the leading monomial/coefficient/term of the zero polynomial remain unde-
fined.

Example 3.13. The leading term strongly depends on the monomial order chosen. For example,
let K = Q, X = {x, y, z} and order the indeterminates as x ≺lex y ≺lex z. Furthermore, let
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f = z + xy − xxx ∈ Q⟨x, y, z⟩. If we use the lexicographic ordering, we get lt(f) = z. In this
case f is monic since the coefficient of f in z is 1. However, if we use the degree lexicographic
ordering, we have lt(f) = −xxx and f is not monic anymore since lc(f) = −1. If we use a
multigraded lexicographic ordering with S = {{y}, {x, z}}, we get lt(f) = xy.

Remark. So, to be precise we should only speak of a leading monomial/coefficient/term with
respect to a certain monomial ordering ⪯. In the following, we will omit this additional infor-
mation when it is clear from the context which monomial ordering is used.

In the following proposition, we list some basic facts about leading monomials which follow
basically directly from the definition.

Proposition 3.14. Let f, g ∈ K⟨X⟩ \ {0}.

1. If f + g ̸= 0, then lm(f + g) ⪯ max⪯{lm(f), lm(g)}. In particular, we have lm(f + g) =
max⪯{lm(f), lm(g)} if and only if lt(f) ̸= − lt(g).

2. We have lm(fg) = lm(f) lm(g) and lc(fg) = lc(f) lc(g). Therefore, also lt(fg) = lt(f) lt(g).

3. For all w, w′ ∈ ⟨X⟩, we have lm(wfw′) = w lm(f)w′ and lc(wfw′) = lc(f). Hence,
lt(wfw′) = w lt(f)w′.

The “smaller” terms of a polynomial are all its terms except the leading term. We call these
terms the tail of the polynomial.

Definition 3.15. Let f ∈ K⟨X⟩ \ {0}. The tail of f , denoted by tail(f), is defined as tail(f) :=
f − lt(f).

Remark. We agree upon the same convention as for the leading term to omit the information
with respect to which monomial ordering the tail is computed whenever it is clear from the
context which monomial ordering is used.

We often talk about sets of polynomials instead of single polynomials. This is why it is
convenient to extend the definitions of leading monomial/coefficient/term and tail to sets of
polynomials.

Definition 3.16. Let F ⊆ K⟨X⟩. We define the following sets.

1. lc(F ) := {lc(f) | f ∈ F \ {0}} ⊆ K,

2. lm(F ) := {lm(f) | f ∈ F \ {0}} ⊆ ⟨X⟩,

3. lt(F ) := {lt(f) | f ∈ F \ {0}} ⊆ K⟨X⟩, and

4. tail(F ) := {tail(f) | f ∈ F \ {0}} ⊆ K⟨X⟩.

Remark. If F is an ideal, then lc(F ) ∪ {0} is an ideal in K. All other sets fail to be ideals in
general.

A monomial ordering ⪯ allows us to introduce a strict partial ordering Î on polynomials.
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Definition 3.17. Let f, g ∈ K⟨X⟩. Then, f Î g if

1. f = 0 and g ̸= 0, or

2. f, g ̸= 0 and lm(f) ≺ lm(g), or

3. f, g ̸= 0 and lm(f) = lm(g) and tail(f) Î tail(g).

Remark. We note that the ordering Î coincides with the multiset order <mul as discussed
in [BN98, Section 2.5], when <mul is induced by ≺ and restricted to finite sets.

An important property of this ordering is that it is also well-ordering, i.e. there are no infinite
sequences f1 Ï f2 Ï . . . of elements f1, f2, . . . ∈ K⟨X⟩.

Proposition 3.18. The partial ordering Î is a well-ordering.

Proof. Assume that Î is not a well-ordering and choose an infinite sequence

f1 Ï f2 Ï . . .

of elements f1, f2, . . . ∈ K⟨X⟩ such that lm(f1) is minimal with respect to ⪯ among all f ∈ K⟨X⟩
starting an infinite sequence. Choosing this f1 is possible since ⪯ is a well-ordering. We note that
fi ̸= 0 for all i ∈ N because otherwise the sequence would be finite as 0 is minimal with respect
to Î. Hence, we can consider ti = lm(fi), which produces the following infinite descending chain
in ⟨X⟩

t1 ⪰ t2 ⪰ . . . .

Because ⪯ is a well-ordering, this sequence stabilises at some point n ∈ N, i.e. lm(fn) =
lm(fn+1) = . . . . But if the leading terms of all fi are equal for i ≥ n, we must have

tail(fn) Ï tail(fn+1) Ï . . . ,

which is still an infinite sequence. But we have lm(tail(fn)) ≺ lm(f1), which is a contradiction
to the minimality of lm(f1).

3.2 The reduction relation
To be able to define and characterise the reduction relation on polynomials that will eventually
lead to the definition of Gröbner bases, we require some basic notions and results from the field
of abstract rewriting. To keep this thesis self-contained, we give a short survey of these results
in Section 3.2.1. For further details we refer to [BN98, Section 2.1], which was also our main
reference for this section. In Section 3.2.2, we then define the reduction relation on polynomials,
discuss some of its properties and link it to the ideal membership problem.
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3.2.1 Abstract rewriting

Abstract rewriting describes the concept of manipulating some object (e.g. a term) by the
repeated application of simplification rules. From the mathematical point of view, this process
can be described by a binary relation → on a set A. As for orderings, we follow the convention
to write x→ y instead of (x, y) ∈ →.

Definition 3.19. Let A be a set and → ⊆ A × A be a binary relation on A. We call the pair
(A,→) an abstract reduction system. The relation → is called a reduction relation or simply a
reduction.

Remark. The term reduction comes from the fact that in many applications a certain quantity
is reduced with each application of a simplification rule.

The repeated application of such reductions can be described as the composition of relations.
Recall that the composition of two relations R ⊆ A×B and S ⊆ B × C is defined by

R ◦ S := {(x, z) ∈ A× C | ∃y ∈ B : (x, y) ∈ R ∧ (y, z) ∈ S}.

Based on this definition, we introduce some basic notions of the composition of a reduction
with itself. To this end, we fix an arbitrary abstract reduction system (A,→) for the rest of this
section.

Definition 3.20. We define the following notions.

0→ := {(x, x) | x ∈ A} (identity)
i+1→ := i→ ◦ → ((i + 1)-fold composition, i ≥ 0)

=→ := → ∪ 0→ (reflexive closure)
+→ :=

⋃
i>0

i→ (transitive closure)

∗→ := +→ ∪ =→ (reflexive transitive closure)
← := {(y, x) | x→ y} (inverse)
↔ := → ∪ ← (symmetric closure)
∗↔ := (↔)∗ (reflexive transitive symmetric closure)

Remark. Notations like ← or ↔ only make sense for arrow-like symbols. In case of an arbitrary
relation R ⊆ A×A one would probably write R−1 for the inverse relation for example. However,
we will only be dealing with arrow-like symbols in this thesis. So, we will not worry too much
about this.

The following definitions extend the notation from above.

Definition 3.21. Let x, y, z ∈ A. Then,

1. x is reducible if there exists a y such that x→ y.
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2. x is in normal form or irreducible if it is not reducible.

3. y is a normal form of x if x
∗→ y and y is in normal form.

4. x and y are joinable if there exists a z such that x
∗→ z

∗← y. In this case, we write x ↓ y.

To illustrate these notions we consider and slightly extend Example 2.1.2 from [BN98].

Example 3.22. Let A = N \ {1} and → = {(m, n) | m > n ∧ n | m}. Then,

1. m is in normal form if and only if m is prime.

2. p is a normal form of m if and only if p is a prime factor of m. Consequently, all elements
of A have a normal form, which however is not always unique. In fact, the only elements
that have a unique normal form are prime powers. If we let A = N, then every element of
A has the same unique normal form, namely 1. Hence, in this case, all elements of A are
joinable.

3. m ↓ n if and only if m and n are not relatively prime.

4. +→ =→ since > and | are already transitive.

5. ← = {(n, m) | ∃k ∈ N \ {1} : m = kn}. Considering this relation, no element has a normal
form.

6. ∗↔ = A×A.

Example 3.23. Let A = ⟨a, b⟩ and → = {(ubav, uabv) | u, v ∈ A}. Then,

1. w is in normal form if and only if w is sorted, i.e. of the form ambn for some m, n ≥ 0.

2. Every w has a unique normal form, the result of sorting w.

3. w1 ↓ w2 if and only if w1
∗↔ w2 if and only if w1 and w2 contain the same number of a’s

and b’s.

One important application of reduction systems and the one that we are interested in is
checking the equivalence of two elements x and y of A with respect to the reduction relation
→, i.e. to check whether x

∗↔ y holds. This problem is called the word problem. One approach
to solve it is to reduce x and y to normal forms x′ and y′, respectively, and then check whether
x′ and y′ are syntactically equal. However, as easy as this method sounds in theory, in practice
two problems may arise which make the word problem undecidable in general. First of all, not
every element of A needs to have a normal form as we could end up in an infinite sequence of
reductions. This can be seen when considering the inverse relation from Example 3.22. And
moreover, assuming that every element has a normal form, certain elements might still have
several different normal forms. As an example, consider the relation from Example 3.22. In
order to ensure existence and uniqueness of normal forms, we recall some important properties
of reductions.
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Definition 3.24. The reduction relation → is said to be

1. Church-Rosser if x
∗↔ y implies x ↓ y.

2. confluent if y1
∗← x

∗→ y2 implies y1 ↓ y2.

3. locally confluent if y1 ← x→ y2 implies y1 ↓ y2.

4. normalising if every element of A has a normal form.

5. terminating if there is no infinite descending chain a0 → a1 → . . . .

x

y1 y2
∗ ∗

confluence
=⇒

x

y1 y2

z

∗ ∗

∗ ∗

x

y1 y2
local

confluence
=⇒

x

y1 y2

z
∗ ∗

Figure 3.1: confluence and local confluence

Example 3.25. The reductions in Example 3.22 and 3.23 are both terminating but only the
second one is Church-Rosser and confluent. The inverse relation in Example 3.22 is not even
terminating.

So, to ensure the existence of normal forms for every element of A, the reduction relation
has to be normalising. To prove that a concrete reduction relation is normalising is usually a
nontrivial task. However, we can see that termination implies normalisation and in the case
of our polynomial reduction relation, termination will be fairly easy to prove. We refer to
Section 3.2.2 for more details. Concerning the uniqueness of normal forms, we gather some well
known facts, cf. [BN98, Theorem 2.1.5, Lemma 2.7.2]

Theorem 3.26. Let → be a reduction relation. Then, → is Church-Rosser if and only if →
is confluent. Furthermore, if → is terminating, then → is confluent if and only if → is locally
confluent.

Proof. See [Win96, Theorem 8.1.2].

Remark. The second part of Theorem 3.26 is called Newman’s lemma.
The following corollary is an immediate consequence of Theorem 3.26.

Corollary 3.27. Let → be confluent and x
∗↔ y. Then,

1. x
∗→ y if y is in normal form, and

2. x = y if both x and y are in normal form.

Hence, we see that the confluence of → implies that every element of A has at most one
normal form. Combining this fact with the property of normalisation we get that every element
of A has a unique normal form. In fact, the converse is also true.
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Proposition 3.28. The reduction relation → is normalising and confluent if and only if every
element of A has a unique normal form.

Proof. The left-to-right implication follows immediately from Corollary 3.27 and the definition
of normalising. For the other direction assume that every element of A has a unique normal form
under →. This obviously implies that → is normalising. To show confluence, let x, y1, y2 ∈ A
be such that y1

∗← x
∗→ y2. Since every element of A has a unique normal form, so do y1 and y2.

Denote these normal forms by n1 and n2, respectively. As x
∗→ y1 and x

∗→ y2 by assumption,
n1 and n2 are also normal forms of x. But x has to have a unique normal form, so n1 = n2.
This implies y1 ↓ y2.

In case of our polynomial reduction relation, we have already anticipated that proving nor-
malisation is easy. So, it remains to find confluent polynomial reduction systems in order to
ensure the existence of unique normal forms. This fact will lead to the definition of Gröbner
bases.

3.2.2 Polynomial reduction

We have finally gathered all tools to be able to discuss the central notion of the theory of Gröb-
ner bases, the (noncommutative) polynomial reduction relation. Following the nomenclature
in [Ber78], we first define a reduction system.

Definition 3.29. We call a pair r = (wr, fr) ∈ ⟨X⟩ × K⟨X⟩ a reduction rule. For every two
words a, b ∈ ⟨X⟩ such a reduction rule r induces a K-vector space endomorphism

ha,r,b : K⟨X⟩ → K⟨X⟩,

defined by mapping the basis element awrb ∈ ⟨X⟩ to afrb ∈ K⟨X⟩ and fixing all other basis
elements in ⟨X⟩. We refer to ha,r,b as a reduction. Furthermore, we call a set S of reduction
rules a reduction system.

In the following, we introduce some basic terminology for such a reduction system S. To
this end, we denote by r = (wr, fr) ∈ S a reduction rule, by a, b ∈ ⟨X⟩ two words and by
f, g ∈ K⟨X⟩ two polynomials.

We say that a reduction ha,r,b acts trivially on f if coeff(f, awrb) = 0, i.e. ha,r,b(f) = f .
Moreover, r reduces f to g if ha,r,b acts nontrivially on f and ha,r,b(f) = g for some a, b. By a
slight abuse of notation we call the words a and b cofactors (of the reduction). If r reduces f
to g using the cofactors a, b we write f →a,r,b g or simply f →r g if we do not care about the
particular cofactors.

A reduction system S induces a reduction relation →S on K⟨X⟩ by defining f →S g for
f, g ∈ K⟨X⟩ if there exists a reduction rule r ∈ S such that r reduces f to g. For a fixed
reduction system S, we say f can be reduced to g by S, denoted by f

∗→S g, if either f = g or
there exist r1, . . . , rn ∈ S and f1, . . . , fn−1 ∈ K⟨X⟩ such that

f →r1 f1 →r2 · · · →rn−1 fn−1 →rn g.

Remark. Note that the reduction sequence has to be finite.
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In terms of the terminology of Section 3.2.1 we can consider (K⟨X⟩,→S) as an abstract
reduction system induced by S. Furthermore, ∗→S corresponds to the reflexive transitive closure
of the reduction relation →S .

According to Definition 3.29, any pair (w, f) consisting of a monomial w ∈ ⟨X⟩ and a
polynomial f ∈ K⟨X⟩ can de used to define a reduction rule. This general setting is advantageous
in many situations, for example consider the concept of rewriting in [RRH19, CHRR20]. We,
however, are only interested in certain combinations of monomials w and polynomials f . To
make this precise, we introduce the notion of an induced reduction system.

Definition 3.30. Let F ⊆ K⟨X⟩ and let ⪯ be a monomial ordering on ⟨X⟩. Then,

SF,⪯ :=
{(

lm(f),− 1
lc(f) tail(f)

)
∈ ⟨X⟩ ×K⟨X⟩ | f ∈ F \ {0}

}
is called the by F and ⪯ induced reduction system. We denote the reduction relation induced
by SF,⪯ by →F,⪯.

Remark. When working with the reduction system SF,⪯ induced by a set of polynomials F ⊆
K⟨X⟩ and a monomial ordering ⪯, we identify a reduction rule r = (lm(f),− 1

lc(f) tail(f)) ∈ SF,⪯
with the polynomial f ∈ F and write ha,f,b(g) = g′ instead of ha,r,b(g) = g′ and g →a,f,b g′ instead
of g →a,r,b g′, respectively. Furthermore, whenever the monomial ordering ⪯ used is clear from
the context, we simply write SF instead of SF,⪯ and →F instead of →F,⪯.

An induced reduction system replaces the leading term of a polynomial by its tail, and
therefore, replaces a “larger” term by “smaller” terms. The following theorem tells us that
in this way we always obtain a terminating reduction relation. For the rest of this thesis, we
fix a monomial ordering ⪯ on ⟨X⟩ with respect to which all further reduction systems will be
computed unless explicitly stated otherwise.

Theorem 3.31. Let SF be the reduction system induced by some set F ⊆ K⟨X⟩. Then, →F is
terminating.

Proof. Assume that →F is not terminating and choose an infinite sequence

f1 →F f2 →F . . .

of elements f1, f2, . . . ∈ K⟨X⟩. Since a reduction step only introduces terms which are strictly
smaller than the term that is replaced, we obtain the following infinite sequence

f1 Ï f2 Ï . . .

in K⟨X⟩, which is a contradiction to Proposition 3.18.

In order to obtain a terminating reduction relation, the requirement in Definition 3.30 that
⪯ is a monomial ordering cannot be weakened as the following example shows.
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Example 3.32. Let K be an arbitrary field, X = {x, y} and sort the indeterminates as x ≺lex

y. Using the set F = {xiy − xi+1y | i ≥ 0} ⊆ K⟨x, y⟩ and ⪯lex, we construct a reduction
system SF,⪯lex

according to Definition 3.30 and show that the induced reduction relation is not
terminating. Recall that ⪯lex is a total ordering on ⟨X⟩ but not a monomial ordering. We have
already seen that xiy ≻lex xi+1y. So, following Definition 3.30, we compute

SF,⪯lex
= {(xiy, xi+1y) | i ≥ 0}.

Hence, the induced reduction relation →F,⪯lex
allows us to replace any term of the form xiy by

xi+1y for all i ≥ 0. Using this fact, we can construct the following infinite sequence

y →y−xy xy →xy−xxy xxy →xxy−xxxy . . . ,

which shows that →F,⪯lex
is not terminating.

From now on, we shall only work with reductions systems SF with are induced by a monomial
ordering. Consequently, termination of the reduction relation→F will always be guaranteed. In
the following, we also state some useful properties this reduction relation.

Proposition 3.33. Let F ⊆ K⟨X⟩, c ∈ K \ {0}, m, m′ ∈ ⟨X⟩ and g, g′, p ∈ K⟨X⟩.

1. If g →F g′, then cmgm′ →F cmg′m′.

2. If g →F g′, then g + p ↓F g′ + p.

Proof. 1. If g →F g′, then by definition there exist f ∈ F and a, b ∈ ⟨X⟩ such that ha,f,b(g) = g′.
But then, hma,f,bm′(cmgm′) = cmha,f,b(g)m′ = cmg′m′.

2. Let f ∈ F and a, b ∈ ⟨X⟩ be such that g →a,f,b g′. This means that ha,f,b(g) = g′.
Furthermore, it follows from the definition of an admissible reduction system that ha,f,b acts
trivially on g′. This yields

ha,f,b(g + p) = ha,f,b(g) + ha,f,b(p) = g′ + ha,f,b(p) = ha,f,b(g′) + ha,f,b(p) = ha,f,b(g′ + p),

where the first and last equality follow from the linearity of ha,f,b. This shows that g + p ↓F
g′ + p.

Having in mind that we are actually interested in certifying ideal membership, we will now
link the polynomial reduction relation with the ideal membership problem via the so-called ideal
congruence.

Definition 3.34. Let I ⊆ K⟨X⟩ be an ideal and f, g ∈ K⟨X⟩. We say f and g are congruent
modulo I, denoted by f ≡I g, if f − g ∈ I.

Remark. Note that f ∈ I if and only if f ≡I 0.
The following theorem establishes the crucial relation.

Theorem 3.35. Let F ⊆ K⟨X⟩. The reflexive transitive symmetric closure of →F equals the
ideal congruence modulo (F ), i.e. ∗↔F = ≡(F ).
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Proof. To prove the first inclusion “⊆” we note that both, ∗↔F and ≡(F ), are equivalence rela-
tions. Additionally, ∗↔F is the smallest equivalence relation containing →F . Hence, →F ⊆ ≡(F )
implies ∗↔F ⊆ ≡(F ). So, we show →F ⊆ ≡(F ). To this end, let g, g′ ∈ K⟨X⟩ be such that
g →F g′. This means that there exist f ∈ F and a, b ∈ ⟨X⟩ such that ha,f,b(g) = g′. Since, ha,f,b

acts trivially on g′, we get that ha,f,b(g) = ha,f,b(g′) and consequently ha,f,b(g − g′) = 0. But
this means that g − g′ = afb ∈ (F ), i.e. g ≡(F ) h.

For the second inclusion “⊇” let g, g′ ∈ K⟨X⟩ be such that g ≡(F ) g′, i.e. g = g′+
∑n

i=1 ciaifibi

with ci ∈ K, ai, bi ∈ ⟨X⟩ and fi ∈ F . We show that g
∗↔F g′ holds for the case n = 1.

The general statement for n ≥ 1 then follows by induction on n. It is clear that f1 →F 0.
Consequently, by Proposition 3.33.1. also c1a1f1b1 →F 0 holds. Then, Proposition 3.33.2 tells
us that g = g′ + c1a1f1b1 ↓F g′ + 0 = g′ and therefore g

∗↔F g′.

Hence, given a system of generators F ⊆ K⟨X⟩ of an ideal I and a polynomial f ∈ K⟨X⟩,
we can verify the ideal membership of f in I by checking whether f

∗→F 0 holds. Knowing that
according to Theorem 3.31 the reduction relation →F is terminating, this approach seems to be
very promising. However, by taking a look at the following example we notice a big problem.

Example 3.36. Let F = {f1, f2, f3} ⊆ Q⟨x, y⟩ with f1 = yx−xy−y, f2 = xy−x and f3 = xxy.
Furthermore, let f = xyx − x ∈ Q⟨x, y⟩. If we compute all leading monomials/coefficients and
tails with respect to ⪯deglex where we order the indeterminates as x ≺lex y, then SF is given by

SF = {(yx, xy + y), (xy, x), (xxy, 0)} .

The first reduction rule (yx, xy + y) tells us that we can replace any occurrence of the term yx
by the polynomial xy + y. We see that yx | xyx ∈ supp(f). So, we can apply this reduction rule
to reduce f using the cofactors x and 1 to obtain x(xy + y) − x = xxy + xy − x. Now, we see
that the second reduction rule is applicable. This reduces xxy + xy − x to xxy + x− x = xxy.
Finally, we can apply the third reduction rule to obtain 0. In short, this can be written as

f →x,f1,1 xxy + xy − x →1,f2,1 xxy →1,f3,1 0,

or even shorter as f
∗→F 0, which shows that f ∈ (F ). However, if we use the second reduction

rule (xy, x) instead of the third to reduce xxy in the last step, we obtain

xxy →x,f2,1 xx.

Since xx is irreducible under →F we have computed a different normal form of f which does
not help us in deciding whether f ∈ (F ).

This shows that we cannot guarantee that the normal forms are unique. This is due to the
fact that for an arbitrary set F ⊆ K⟨X⟩ the reduction relation →F is not necessarily confluent.
Such distinguished sets for which →F is confluent are called Gröbner bases of the ideal (F ).
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3.3 Characterisation of Gröbner bases
Definition 3.37. Let I ∈ K⟨X⟩ be an ideal and G ⊆ I \ {0} such that (G) = I. Then, G is
called a Gröbner basis of I if and only if →G is confluent.

Our characterisation of Gröbner bases is by far not the only one possible. In the following,
we list some equivalent definitions.

Theorem 3.38. Let I ⊆ K⟨X⟩ be an ideal and G ⊆ I \ {0} such that (G) = I. Then, the
following conditions are equivalent.

1. G is a Gröbner basis of I.

2. f
∗→G 0 for all f ∈ I.

3. lm(I) = {wlm(g)w′ | g ∈ G, w, w′ ∈ ⟨X⟩}.

4. (lm(I)) = (lm(G)).

5. Every f ∈ I \ {0} can be written as a bounded linear combination of elements in G, i.e.
there exist gi ∈ G and ai, bi ∈ K⟨X⟩ such that f =

∑n
i=1 aigibi with lm(aigibi) ⪯ lm(f) for

1 ≤ i ≤ n.

Proof. “1. ⇔ 2.”: To show 1. ⇒ 2. suppose that G is a Gröbner basis and let f ∈ I. Since
f ≡I 0, we have f

∗↔G 0 by Theorem 3.35. According to Theorem 3.26, G has the Church-Rosser
property. This implies f ↓G 0. Finally, Corollary 3.27 gives us f

∗→G 0, since 0 is irreducible.
Conversely, to prove 2.⇒ 1., we assume that f

∗→G 0 holds for all f ∈ I and let g, g1, g2 ∈ K⟨X⟩
be such that g1 G

∗← g
∗→G g2. Then, clearly g1

∗↔G g2 holds, and therefore, we have g1 ≡I g2 by
Theorem 3.26. Consequently, g1− g2 lies in I and so g1− g2

∗→G 0 by our assumption. To finish
the proof, we can use Proposition 3.33 to deduce

(g1 − g2) + g2 = g1 ↓G g2 = 0 + g2,

which shows that →G is confluent
“2. ⇔ 3.”: We denote J = {w lm(g)w′ | g ∈ G, w, w′ ∈ ⟨X⟩}. First, we show 2. ⇒ 3.. To

this end, assume that f
∗→G 0 holds for all f ∈ I. Since G ⊆ I, also wgw′ ∈ I for all g ∈ G

and w, w′ ∈ ⟨X⟩. Using Proposition 3.14.3, it follows that w lm(g)w′ = lm(wgw′) ∈ lm(I).
Hence, J ⊆ lm(I). For the other inclusion, let t ∈ lm(I). Then, there exists f ∈ I such that
lm(f) = t. By assumption, we can reduce f to 0. Since a reduction step only introduces terms
which are strictly smaller than the term that is replaced, it is not possible that the leading term
of f cancels after applying a reduction rule. Hence, there must exist a g ∈ G which reduces
the leading term of f . But this means that lm(g) | lm(f) = t and consequently t ∈ J . Now, to
show 3. ⇒ 2. suppose that lm(I) = J holds and assume that not all f ∈ I can be reduced to
0. Let f̃ ∈ I be such an f and such that lm(f̃) is minimal. By assumption, there exists g ∈ G
such that lm(g) | lm(f̃). Hence, we can use this g to reduce f̃ to h and by the properties of our
reduction relation we have lm(h) ≺ lm(f̃). Moreover, if f̃ cannot be reduced to 0, neither can
h. But this is a contradiction to the minimality of lm(f̃).
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“3. ⇔ 4.”: The implication 3. ⇒ 4. is clear. To prove 4. ⇒ 3. we again denote J =
{w lm(g)w′ | g ∈ G, w, w′ ∈ ⟨X⟩}. The inclusion J ⊆ lm(I) follows as above. For the other
inclusion, assume (lm(I)) = (lm(G)) and let t ∈ lm(I). By assumption, we can write t as a
linear combination of the elements in lm(G), i.e. there exist ci ∈ K, ui, vi ∈ ⟨X⟩ and gi ∈ G
such that

t =
n∑

i=1
civi lm(gi)wi.

But since t is a monomial, all summands in this linear combination except for one must cancel,
so that

t = vi0 lm(gi0)wi0 ,

for some 1 ≤ i0 ≤ n, which means that there exists g ∈ G such that lm(g) | t and consequently
t ∈ J .

“2.⇒ 5.”: Suppose f
∗→G 0 holds for all f ∈ I. Hence, for an arbitrary but fixed f ∈ I \ {0}

there exist ai, bi ∈ K⟨X⟩ and gi ∈ G such that

f →a1,g1,b1 · · · →an,gn,bn 0.

Writing out this reduction process yields

f = f − 0 =
n∑

i=1
aigibi.

The property that lm(aigibi) ⪯ lm(f) for 1 ≤ i ≤ n follows immediately from the definition of
→G.

“5. ⇒ 3.”: As before, we denote J = {w lm(g)w′ | g ∈ G, w, w′ ∈ ⟨X⟩} and note that
J ⊆ lm(I) follows as above. Now suppose that every f ∈ I \ {0} can be written as a bounded
linear combination of elements in G and let f ∈ I \ {0} be arbitrary. If we expand all cofactors
ai and bi in the linear combination, we can write f as

f =
m∑

i=1
civigiwi,

for some ci ∈ K and vi, wi ∈ ⟨X⟩. We must have lm(f) ∈ supp(vigiwi) for some 1 ≤ i ≤ n.
Since lm(vigiwi) ⪯ lm(f) by assumption, this implies lm(f) = lm(vigiwi) = vi lm(gi)wi ∈ J ,
where the last equality follows from Proposition 3.14.3.

From these characterisations we can see that a Gröbner basis of an ideal I is by no means
unique. In fact, if G ⊆ I is a Gröbner basis of I, then so is G ∪ {f} for every nonzero f ∈ I.
Furthermore, the set I \ {0} is always a Gröbner basis of I. Thus, we can deduce the following
corollary.

Corollary 3.39. Every ideal in K⟨X⟩ has a Gröbner basis.

Another consequence of Theorem 3.38 is a nice result about monomial ideals, i.e. ideals which
have a system of generators consisting only of monomials.

24



Corollary 3.40. Let S ⊆ ⟨X⟩ be a set of monomials generating an ideal (S) ⊆ K⟨X⟩. Then,
S is a Gröbner basis of (S).

Proof. S clearly satisfies condition 3 of Theorem 3.38. Hence, it is a Gröbner basis of (S).

Example 3.41. We reconsider Example 3.36 where we worked with F = {f1, f2, f3} ⊆ Q⟨x, y⟩
with f1 = yx−xy−y, f2 = xy−x and f3 = xxy. We claim that if we use ⪯deglex as a monomial
ordering where we ordered the indeterminates as x ≺lex y, then a Gröbner basis G of (F ) is
given by

G = {x, y}.

First, we show that indeed (G) = (F ), which follows from

x = −xf1 + f2x− (x + 1)f2 ∈ (F ),
y = −xf1y − f1xy + (2x− 1)f1 + (2x− y)f2 − 2f2x− (x + 1)f2y + (y − 1)f3 ∈ (F ).

Now, Corollary 3.40 tells us that G is indeed a Gröbner basis of (F ).

Although a Gröbner basis G of an ideal I ⊆ K⟨X⟩ is not unique in general, we can demand
certain additional properties from G in order to obtain a special and unique Gröbner basis of
I, the so-called reduced Gröbner basis of I. To be able to introduce this notion, we first have to
define an interreduced set of polynomials.

Definition 3.42. Let F ⊆ K⟨X⟩ \ {0}. We say that F is interreduced if every f ∈ F is in
normal form with respect to →F \{f}.

Definition 3.43. Let I ⊆ K⟨X⟩ be an ideal and let G be a Gröbner basis of I. Then, G is
called the reduced Gröbner basis of I if G is interreduced and all polynomials in G are monic.

Example 3.44. The Gröbner basis in Example 3.41 is the reduced Gröbner basis of (F ).

Proposition 3.45. Every ideal I ⊆ K⟨X⟩ has a unique reduced Gröbner basis.

In Section 4.1 we give a constructive proof of Proposition 3.45 for the special case that I has
a finite Gröbner basis. For a proof of the general case we refer to [Xiu12, Proposition 3.3.17].
As a first step towards our proof, we note that we can reduce the elements in a Gröbner basis
by each other without losing the property of being a Gröbner basis.

Proposition 3.46. Let I ⊆ K⟨X⟩ be an ideal and let G be a Gröbner basis of I. Furthermore,
let g ∈ G and g′ ∈ K⟨X⟩ be such that g →G\{g} g′. Then, (G \ {g}) ∪ {g′} is also a Gröbner
basis of I.

To prove this proposition, we first establish the fact that such an interreduction does not
change the generated ideal.

Lemma 3.47. Let F ∈ K⟨X⟩, f ∈ (F ) and f ′ ∈ K⟨X⟩ be such that f →F \{f} f ′. Then,
(F ) = ((F \ {f}) ∪ {f ′}).
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Proof. We denote F ′ = (F \ {f}) ∪ {f ′} and note that it suffices to prove that f ∈ (F ′) and
f ′ ∈ (F ). By Theorem 3.35, f →F \{f} f ′ implies f ≡F \{f} f ′, i.e. f = f ′ + g for some
g ∈ F \ {f}, which shows that f ∈ (F ′). Conversely, we can write f ′ = f − g ∈ (F ), which
completes the proof.

Proof of Proposition 3.46. We denote G′ = (G \ {g})∪{g′}. According to Lemma 3.47, we have
I = (G) = (G′). Hence, it remains to show that G′ is a Gröbner basis of I. We prove this by
showing that every element in I that can be reduced by g, can also be reduced by some element
in G′. Then, the statement follows from the confluence of →G. To this end, let g̃ ∈ G \ {g}
be such that g →g̃ g′. If g̃ reduces the leading term of g, then we must have lm(g̃) | lm(g). If
g̃ reduces some monomial in the tail of g, then the leading term of g remains unchanged, i.e.
lm(g′) = lm(g). In any case, we see that we can replace a reduction done by g either by g̃ or by
g′, which are both elements of G′.

In contrast to the commutative case, the ring K⟨X⟩ is not Noetherian if X contains more
than one element. Due to this fact, there are ideals of noncommutative polynomials which do
not have a finite Gröbner basis. To see that this can even be the case for principal ideals, we
consider the following example.

Example 3.48. Let K be any field and X = {x, y}. We consider (g) ⊆ K⟨X⟩ with g = xyx−xy.
We use ⪯deglex where we order the indeterminates as x ≺lex y. We observe that

xyyx− xyy = xyg − gyx + gy ∈ (g),

but xyyx − xyy cannot be reduced to zero by g. Hence, {g} cannot be a Gröbner basis of (g).
We claim that the reduced Gröbner basis of (g) is given by

G = {xyix− xyi | i ∈ N},

which implies that (g) cannot have a finite Gröbner basis. Because if (g) had a finite Gröbner
basis G′, then we could use G′ to compute the reduced Gröbner basis of (g) (see Corollary 4.2),
which would turn out to be finite; a contradiction to our claim and the uniqueness of the reduced
Gröbner basis.

We conclude this example by proving our claim. Obviously, G is interreduced and all its
elements are monic. Furthermore, for gi = xyix− xyi we have

gi+1 = xygi − g1yix + g1yi

and since g1 = g ∈ (g) this shows inductively that (G) = (g). Hence, it remains to check
that →G is confluent in order to prove that G is indeed the reduced Gröbner basis of (g). We
postpone this last step to Section 4.2.

Hence, even if we use Gröbner bases, which induce a terminating and confluent reduction
system, the ideal membership problem of noncommutative polynomials still remains undecidable
in general simply because we cannot guarantee that we are always able to compute a complete
(potentially infinite) Gröbner basis. However, there still exist procedures to enumerate Gröbner
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bases in K⟨X⟩. If such an enumeration is stopped after finitely many steps without obtaining
a Gröbner basis, we refer to the result as a partial Gröbner basis. In practice, such partial
Gröbner bases often suffice to confirm the ideal membership of a given polynomial f ∈ K⟨X⟩
by reducing it to zero. To this end, we discuss procedures to enumerate (partial) Gröbner bases
in the following chapter.
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Chapter 4

Gröbner bases computations in K⟨X⟩

After recalling the main results of the theory of Gröbner bases in the noncommutative setting
in the previous chapter, we now want to use the insights gained there to derive procedures to
actually compute (partial) Gröbner bases in K⟨X⟩. However, since there are ideals in K⟨X⟩
that do not have a finite Gröbner basis, we cannot expect any of these procedures to terminate
in general and have to content ourselves with enumeration procedures.

In the commutative case, Gröbner bases computations are either based on the classical
Buchberger algorithm [Buc65], which uses the commutative analogue of our polynomial re-
duction relation, or on Faugère’s F4 algorithm [Fau99], which relies on linear algebra to do
polynomial reduction. Both of these algorithms can be generalised to the setting of noncom-
mutative polynomials. For Buchberger’s algorithm this was first done in 1986 by Mora [Mor86]
and in case of Faugère’s F4 algorithm this was done by Xiu in 2012 [Xiu12]. Another ap-
proach to the computation of Gröbner bases in K⟨X⟩, only developed recently by La Scala and
Levandovskyy [LSL09, LSL13], is to embed the noncommutative polynomial ring in a larger
commutative ring, the so-called Letterplace ring, and execute the Gröbner bases computations
there, providing the possibility to reuse the routines for commutative structures.

In this thesis, we focus on the first two approaches, i.e. the generalisation of Buchberger’s
algorithm and Faugère’s F4 algorithm. But before discussing these algorithms, we first present
an interreduction procedure in Section 4.1 that enables us to detect and delete redundant gen-
erators of a finite system of generators of an ideal. Following upon that, we elaborate on
Bergman’s famous Diamond Lemma [Ber78], which generalises Buchberger’s criterion [Buc65]
to the noncommutative case and allows us to state the noncommutative version of the Buchberger
algorithm as an almost immediate consequence. This is done in Section 4.2. In Section 4.3, we
connect the reduction of a finite set of polynomials with a matrix normal form computation.
Using this relation, we can then state the F4 algorithm in K⟨X⟩. Following upon that, we
extend Buchberger’s algorithm as well as the F4 algorithm to keep track of cofactors during the
computation. Provided that we can verify the membership of a given polynomial f ∈ K⟨X⟩ in
an ideal I ⊆ K⟨X⟩, this enables us to produce a cofactor representation of f with respect to the
generators of I. To end this chapter, we present some basic optimisation strategies for Gröbner
bases computations in Section 4.5. In particular, we discuss deletion criteria, such as a noncom-
mutative version of the chain criterion, that allow us to delete unnecessary ambiguities during a
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Gröbner basis computation, as well as strategies to remove redundant generators of a (partial)
Gröbner basis. Furthermore, we also state the Faugère-Lachartre elimination algorithm [FL10],
which can be used to efficiently compute the reduced row echelon form of matrices appearing
during the execution of F4.

Throughout this chapter, we let K be a computable field. Also, recall that we assume
that the set of indeterminates X is finite and that we fixed a monomial ordering ⪯ on ⟨X⟩.
Furthermore, we note that the scope of programming instructions such as if, while, for, etc. in
our pseudocode is indicated by a uniform indentation of the affected statements, as also done
in Python for example.

4.1 Interreduction
Given a finite system of generators F ⊆ K⟨X⟩ of an ideal I, it is often useful to delete redundant
generators, which are just the multiple of another element in F or can be expressed as a linear
combination of other generators, as a preprocessing step in order to avoid unnecessary compu-
tations and costly zero reductions during a Gröbner basis computation. One way of detecting
and deleting such redundant generators is by transforming the initial set F into an interreduced
set F̃ , which generates the same ideal, i.e. (F ) = (F̃ ). This can be achieved by the following
algorithm.

Algorithm 1 Interreduce
Input: F = {f1, . . . , fn} ⊆ K⟨X⟩
Output: F̃ ⊆ K⟨X⟩ \ {0} such that F̃ is interreduced and (F ) = (F̃ )

1: F̃ = F ▷ make a copy so that we do not modify F
2: i = 1
3: while i ≤ n do
4: compute a normal form f̃ ′

i of f̃i ∈ F̃ w.r.t. to →F̃ \{f̃i}
5: if f̃ ′

i = 0 then
6: set f̃i = 0
7: i = i + 1
8: else if f̃ ′

i ̸= f̃i then
9: set f̃i = f̃ ′

i

10: i = 1
11: else
12: i = i + 1
13: return F̃ \ {0}

Theorem 4.1. Let F ⊆ K⟨X⟩ and let F̃ ⊆ K⟨X⟩ \ {0} be the result of applying Algorithm 1 to
F . Then, F̃ is interreduced and (F ) = (F̃ ).

Proof. First we prove the termination of Algorithm 1 by showing that the parameter i is set to 1
only finitely many times in step 10. Assume that this is not the case. Then, we must have f̃ ′

i ̸= 0
and f̃ ′

i ̸= fi infinitely often. More precisely, this must hold infinitely often for a particular value
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of i, say i0. We denote the computed normal forms by f̃
(j)
i0

for j ∈ N and f̃
(0)
i0

= f̃i0 = fi0 . Since
we obtain f̃

(j+1)
i0

as a normal form of f̃
(j)
i0

and since f̃
(j+1)
i0

̸= 0 and f̃
(j+1)
i0

̸= f̃
(j)
i0

by assumption,
this yields the infinite sequence f̃

(0)
i0

Ï f̃
(1)
i0

Ï . . . , which is a contradiction to Proposition 3.18.
Furthermore, the output F̃ of Algorithm 1 is interreduced, since we set i to 1 whenever we
replace an element f̃i by a nonzero normal form f̃ ′

i , and thereby, assure that in the end all
elements f̃ ∈ F̃ are in normal form with respect to →F̃ \{f}. Finally, the property (F ) = (F̃ )
follows from Lemma 3.47.

Note that for an arbitrary set F ⊆ K⟨X⟩, the output of Algorithm 1 when given F as input
is not necessarily unique. It depends on the (in general not unique) normal forms computed
during the execution of the algorithm. However, given a finite Gröbner basis G of an ideal
I ⊆ K⟨X⟩ as input, Algorithm 1 computes an interreduced Gröbner basis G′ of I, which is
essentially unique.

Corollary 4.2. Let I ⊆ K⟨X⟩ be an ideal and let G be a finite Gröbner basis of I. Furthermore,
let G̃ be the result of applying Algorithm 1 to G. Then, { g

lc(g) | g ∈ G̃} is the unique reduced
Gröbner basis of I.

Proof. We denote G′ = { g
lc(g) | g ∈ G̃}. It is clear that all elements of G′ are monic. Furthermore,

according to Theorem 4.1, G̃ and consequently also G′ are interreduced and we have (G) = (G̃) =
(G′). Proposition 3.46 tells us that given a Gröbner basis G as input, Algorithm 1 maintains the
Gröbner basis property at every step. In particular, this means that the output G̃ and therefore
also G′ are Gröbner bases of I.

To prove uniqueness, we let G1 and G2 be two finite Gröbner bases of I and we denote

G′
1 = { g

lc(g) | g ∈ Interreduce(G1)} and

G′
2 = { g

lc(g) | g ∈ Interreduce(G2)}.

We show that G′
1 = G′

2. In particular, we prove G′
1 ⊆ G′

2. The other inclusion will follow
from the symmetry of our argument. To this end, let g1 ∈ G′

1. Since G′
1 and G′

2 are both
Gröbner bases of I there exist g2, g′

2 ∈ G′
2 such that lm(g2) | lm(g1) | lm(g′

2) but because G′
2 is

interreduced this is only possible if g2 = g′
2. Consequently, we must have lm(g1) = lm(g2). If

g1 = g2 we are done. Otherwise, we know that we can reduce g1 − g2 to zero by G′
1. In fact,

since lm(g1− g2) ≺ lm(g1) we can reduce g1− g2 to zero by G′
1 \ {g1}. But since g1 is in normal

form with respect to G′
1 \{g1} this is only possible if g2 can be reduced to g1 by G′

1 \{g1}, which
yields g2 Ï g1. By considering G′

2 instead of G′
1 we get by the same argument that g1 Ï g2 but

both inequalities together lead to a contradiction. Hence, we must have g1 = g2 ∈ G′
2.

As a first application of Algorithm 1, we consider the following example.

Example 4.3. Let K = Q and X = {a, b, c, d}. We equip K⟨X⟩ with ⪯deglex where we
order the indeterminates as a ≺lex b ≺lex c ≺lex d and consider the set of polynomials F =
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{f1, f2, f3, f4, f5} ⊆ K⟨X⟩ with

f1 = aca− a, f2 = db− ac, f3 = bdb− b

f4 = ac− db, f5 = ba.

In the following, we apply Algorithm 1 to F . To this end, we copy F to F̃ and set i = 1.

i = 1: f̃1 = aca − a is irreducible with respect to →F̃ \{f̃1}. Consequently, we cannot do any
reductions and have to increase i by one.

i = 2: f̃2 = db− ac can be reduced to zero by f̃4 = ac− db. Hence, we set f̃2 = 0 and increase i
by one.

i = 3: f̃3 = bdb− b can be reduced to b by F̃ \ {f̃3}, which is a new nonzero normal form. So, we
set f̃3 = b and reset i to one.

i = 1: f̃1 = aca− a is still irreducible. Hence, we increase i by one.

i = 2: f̃2 is already zero. So, we have to increase i by one.

i = 3: f̃3 = b is irreducible. So, we increase i by one.

i = 4: f̃4 = ac− db can be reduced to ac by f̃3 = b. Hence, we set f̃4 = ac and reset i to one.

i = 1: f̃1 = aca− a can be reduced to a by f̃4 = ac. So, we set f̃1 = a and reset i to one.

i = 1: f̃1 = a is now irreducible. So, we increase i by one.

i = 2: f̃2 is already zero. So, we have to increase i by one.

i = 3: f̃3 = b is still irreducible. Hence, we increase i by one.

i = 4: f̃4 = ac can be reduced to zero by f̃1 = a. So, we set f̃4 = 0 and increase i by one.

i = 5: f̃5 = ba can be reduced to zero either by f̃1 = a or by f̃3 = b. Hence, we set f̃5 = 0 and
increase i by one.

Since now i > |F̃ |, the algorithm terminates and returns F̃ \ {0} = {a, b}.

4.2 Buchberger algorithm
The goal of this section is to describe a procedure for computing (partial) Gröbner bases in
K⟨X⟩. Therefore, we first of all have to be able to algorithmically decide whether a given set
G ⊆ K⟨X⟩ is a Gröbner basis. According to the definition, we would have to check whether
→G is confluent, however, in practice this is not possible since it would involve testing infinitely
many cases g1 G

∗← f
∗→G g2 whether g1 ↓G g2 holds. In the commutative case, Buchberger was

able to reduce the number of these checks to a finite amount. This is now known as Buchberger’s
criterion. In the noncommutative setting, Bergman’s Diamond Lemma does a similar job. To be
able to state the Diamond Lemma, we first define the notion of ambiguities as done in [Ber78].
Note that ambiguities correspond to compositions in [Bok76].
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Definition 4.4. Let G ⊆ K⟨X⟩ and let f, g ∈ G\{0} be such that lm(f) = AB and lm(g) = BC
for some words A, B, C ∈ ⟨X⟩ \ {1}. Then, we call the tuple

(ABC, A, C, f, g)

an overlap ambiguity of G. It is called resolvable, if the S-polynomial h1,f,C(ABC)−hA,g,1(ABC)
can be reduced to 0 by G, i.e.

h1,f,C(ABC)− hA,g,1(ABC) ∗→G 0.

Definition 4.5. Let G ⊆ K⟨X⟩ and let f, g ∈ G \ {0} be such that f ̸= g, lm(f) = ABC and
lm(g) = B for some words A, B, C ∈ ⟨X⟩. Then, we call the tuple

(ABC, A, C, f, g)

an inclusion ambiguity of G. It is called resolvable, if the S-polynomial h1,f,1(ABC)−hA,g,C(ABC)
can be reduced to 0 by G, i.e.

h1,f,1(ABC)− hA,g,C(ABC) ∗→G 0.

We denote the set of all ambiguities of G by ambG.

Remark. Note that a polynomial f ∈ G can have an overlap ambiguity with itself but it cannot
have an inclusion ambiguity with itself. Furthermore, two elements f, g ∈ G \ {0} can give rise
to several ambiguities but only finitely many.

Later, we need the notion of the degree of an ambiguity.

Definition 4.6. Let G ⊆ K⟨X⟩ and let a = (ABC, A, C, f, g) ∈ ambG be an ambiguity of two
polynomials f, g ∈ G \ {0}. We call |ABC| the degree of a.

For a set G ⊆ K⟨X⟩ and an ambiguity a = (ABC, A, C, f, g) ∈ ambG of two polynomials
f, g ∈ G \ {0}, we denote the S-polynomial corresponding to a by sp(a), i.e.

sp(a) := h1,f,C(ABC)− hA,g,1(ABC),

in case that a is an overlap ambiguity and

sp(a) := h1,f,1(ABC)− hA,g,C(ABC),

respectively, if a is an inclusion ambiguity. It is easy to see that sp(a) ∈ (G).

Proposition 4.7. Let G ⊆ K⟨X⟩ and a = (ABC, A, C, f, g) ∈ ambG. Then, sp(a) ∈ (G).

Proof. We prove the statement for the case that a is an inclusion ambiguity. The case for an
overlap ambiguity works analogously. By Theorem 3.35, we have ABC − h1,f,1(ABC) ∈ (G)
and ABC − hA,g,C(ABC) ∈ (G). Hence, also

sp(a) = h1,f,1(ABC)−hA,g,C(ABC) = −(ABC−h1,f,1(ABC)) + (ABC−hA,g,C(ABC)) ∈ (G).
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Example 4.8. Let K be an arbitrary field and X = {x, y}. We consider G = {g1, g2} ⊆ K⟨X⟩
with g1 = xyx − x and g2 = yx − xy. If we use ⪯deglex where we order the indeterminates as
x ≺lex y, then g1 and g2 have an inclusion ambiguity

a1 = (xyx, x, 1, g1, g2)

and an overlap ambiguity
a2 = (yxyx, y, yx, g2, g1).

Additionally, g1 has an overlap ambiguity with itself:

a3 = (xyxyx, xy, yx, g1, g1).

The ambiguity a3 is resolvable, since

sp(a3) = h1,f1,yx(xyxyx)− hxy,f1,1(xyxyx) = xyx− xyx = 0.

Also a2 is resolvable. Here we have

sp(a2) = h1,f2,yx(yxyx)−hy,f1,1(yxyx) = xyyx−yx →1,f2,1 xyyx−xy →xy,f2,1 xyxy−xy →1,f1,y 0.

The ambiguity a1, however, is not resolvable because

sp(a1) = h1,f1,1(xyx)− hx,f2,1(xyx) = x− xxy

is irreducible with respect to →G.

Later, we also need a weaker notion of resolvability. Hence, following [Ber78], we introduce
the notion of ⪯-resolvability.

Definition 4.9. Let G ⊆ K⟨X⟩ and let a = (ABC, A, C, f, g) ∈ ambG. We say that a is
⪯-resolvable if its S-polynomial is contained in the K-vector space IG,ABC generated by

{wg′w′ | g′ ∈ G, w, w′ ∈ ⟨X⟩ such that w lm(g′)w′ ≺ ABC}.

Remark. It is easy to see that resolvability implies ⪯-resolvability.
Given a set G ⊆ K⟨X⟩, the resolvability of an ambiguity (ABC, A, C, f, g) ∈ ambG implies

the (local) confluence condition on the two possible ways that the monomial ABC can be reduced
by f and g, respectively. It turns out that it is enough to only check all these cases to determine
whether →G is confluent, and consequently, whether G is a Gröbner basis. Also, if G is a
Gröbner basis, the notions of resolvability and ⪯-resolvability coincide.

Theorem 4.10. (Diamond Lemma)
Let G ⊆ K⟨X⟩. Then, the following conditions are equivalent.

1. All ambiguities of G are resolvable.

2. All ambiguities of G are ⪯-resolvable.

33



3. All elements of K⟨X⟩ have a unique normal form under →G.

4. G is a Gröbner basis of (G).

Proof. See [Ber78, Theorem 1.2]

Hence, according to Theorem 4.10 it suffices to check whether all ambiguities of a given set
G ⊆ K⟨X⟩ are resolvable to determine whether G is a Gröbner basis.

Example 4.11. Recall that in Example 3.48 we considered the principal ideal (g) ⊆ K⟨x, y⟩
with g = xyx − xy over an arbitrary field K. Furthermore, we used ⪯deglex where we ordered
the indeterminates as x ≺lex y. Our claim was that the reduced Gröbner basis of (g) is given by

G = {xyix− xyi | i ∈ N}

and we postponed the verification that G is indeed a Gröbner basis. Using the Diamond Lemma,
we can now finish this proof. To this end, we denote gi = xyix − xyi ∈ G and note that all
ambiguities of G are overlap ambiguities of the form

ai,j = (xyixyjx, xyi, yjx, gi, gj)

for gi, gj ∈ G. The corresponding S-polynomials are given by

sp(ai,j) = xyi+jx− xyixyj ,

which can be reduced to zero as follows

xyi+jx− xyixyj →1,gi,yj xyi+jx− xyi+j →1,gi+j ,1 0.

This shows that all ambiguities of G are resolvable, and consequently, that G is indeed a Gröbner
basis of (g).

In case that G is finite, the following algorithm enables us to decide algorithmically whether
G is a Gröbner basis.

Algorithm 2 CheckResolvability
Input: a finite set G ⊆ K⟨X⟩
Output: spol ⊆ K⟨X⟩ such that spol = ∅ if and only if G is a Gröbner basis of (G)

1: spol = ∅
2: foreach a ∈ ambG do
3: compute a normal form s′ of sp(a) w.r.t. to →G

4: if s′ ̸= 0 then
5: spol = spol ∪ {s′}
6: return spol

Proposition 4.12. Let G ⊆ K⟨X⟩ be finite and let spol ⊆ K⟨X⟩ be the result of applying
Algorithm 2 to G. Then, spol = ∅ if and only if G is a Gröbner basis of (G).
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Proof. First, we note that since G is finite, also the set ambG of all ambiguities of G is finite,
which implies the termination of Algorithm 2. So, we can proceed to prove the claim of Propo-
sition 4.12. If spol = ∅, then all ambiguities of G are resolvable. Hence, Theorem 4.10 yields
that G is a Gröbner basis of (G). Conversely, if G is a Gröbner basis of (G), then all elements of
(G) can be reduced to 0 by G according to Theorem 3.38. Since all S-polynomials are elements
of (G), the claim follows.

If we apply Algorithm 2 to a finite system of generators F ⊆ K⟨X⟩ of an ideal I, we usually
do not expect to obtain spol = ∅. Typically, there will be some ambiguities which are not
resolvable. By adding the reduced S-polynomials corresponding to these ambiguities to the set
F , we enlarge our reduction system and make these ambiguities resolvable. Of course, then
we have to check whether all ambiguities involving the newly added elements are resolvable.
If they are, then we have successfully computed a Gröbner basis of I. If not, then we simply
repeat this procedure. These instructions basically already describe Buchberger’s algorithm for
noncommutative polynomials.

Algorithm 3 Buchberger
Input: a finite set F ⊆ K⟨X⟩
Output if the algorithm terminates: G ⊆ K⟨X⟩ such that G is a Gröbner basis of (F )

1: G = F
2: spol = CheckResolvability(G)
3: while spol ̸= ∅ do
4: while spol ̸= ∅ do
5: select f ∈ spol
6: spol = spol \ {f}
7: compute a normal form f ′ of f w.r.t. to →G

8: if f ′ ̸= 0 then
9: G = G ∪ {f ′}

10: spol = CheckResolvability(G)
11: return G

Theorem 4.13. Let F ⊆ K⟨X⟩ be a finite set, denote G0 = F and for n ∈ N, let Gn be
the result of Algorithm 3 after n iterations of the outer while loop given F as input. Then,
G =

⋃
i≥0 Gn is a Gröbner basis of (F ). In this sense, Algorithm 3 enumerates a Gröbner basis

G of (F ).

Proof. To prove that G =
⋃

i≥0 Gn is a Gröbner basis of (F ), we first note that it follows from
Proposition 4.7 and Theorem 3.35 that all normal forms f ′, which are added to G during the
execution of Algorithm 3, are elements of (F ). Since also F ⊆ G, this implies (G) = (F ). Hence,
according to Theorem 4.10 it remains to show that all ambiguities of G are resolvable. To this
end, let a = (ABC, A, C, gi, gj) ∈ ambG be an ambiguity of two elements gi, gj ∈ G. Since
Gn ⊆ Gn+1 for all n ≥ 0, there exists N ≥ 0 such that gi, gj ∈ GN . If sp(a) can be reduced to
zero by GN we are done. Otherwise, we add the nonzero normal form of sp(a) to GN during the
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N -th iteration of Algorithm 3. Hence, in any way sp(a) can be reduced to zero by GN+1 ⊆ G
and therefore a is resolvable.

Given a finite set F ⊆ K⟨X⟩ as input, we can in fact show that Algorithm 3 always terminates
in case that the ideal (F ) admits a finite Gröbner basis.

Proposition 4.14. Let F ⊆ K⟨X⟩ be a finite set such that (F ) has a finite Gröbner basis.
Then, Algorithm 3 terminates when given F as input and returns a Gröbner basis of (F ).

Proof. Let G′ = {g1, . . . , gm} ⊆ K⟨X⟩ be a finite Gröbner basis of (F ). Furthermore, for n ≥ 0
let Gn be as in Theorem 4.13. Then, G̃ =

⋃
i≥0 Gn is also a Gröbner basis of (F ) according to

Theorem 4.13. Hence, condition 3 of Theorem 3.38 tells us that for every f ∈ (F ) there exist
g ∈ G′ and g̃ ∈ G̃ such that lm(g) | lm(f) and lm(g̃) | lm(f), respectively. So, in particular, there
exist g̃i ∈ G̃ such that lm(g̃i) | lm(gi) for 1 ≤ i ≤ m. Again by condition 3 of Theorem 3.38, this
shows that the set {g̃1, . . . , g̃m} ⊆ G̃ is already a Gröbner basis of (F ). Since g̃i ∈ Gni for some
ni ≥ 0, it follows that GN with N = max{n1, . . . , nm} is a Gröbner basis of (F ). But then,
CheckResolvability(GN ) = ∅ and hence the algorithm terminates and returns GN .

In the following, we collect some remarks on Algorithm 3. If (F ) has no finite Gröbner basis,
Algorithm 3 never terminates. Hence, in practice, we usually add some additional constraints
to guarantee termination. One way of doing this is by keeping track of the number of iterations
of the outer while loop and stopping the algorithm after a prescribed number of iterations.
Another way is to impose an upper limit on the degree of the ambiguities which are considered.
If during the execution of Algorithm 3 an ambiguity arises that has a larger degree than the
designated limit, this ambiguity is simply ignored. Both approaches ensure the termination of
the algorithm but in both cases we might only obtain a partial Gröbner basis of (F ). This might
even be the case if (F ) has a finite Gröbner basis but we stop the algorithm too early or impose
a degree limit which is too low.

One might also wonder why we compute a normal form of each f ∈ spol in step 7 of
Algorithm 3 although we have already reduced all elements in spol to normal form in the
CheckResolvability subroutine. This is mainly due to performance reasons. In fact, only doing
one of those two reductions would suffice for the algorithm to work correctly, however, in practice
both reduction steps provide certain advantages. Most of the reductions are done in the first
reduction step in the CheckResolvability subroutine and this step can be implemented in a very
efficient way (for example this can be done in parallel). Thus, by doing the main work there
we are able to save quite a lot of time. In comparison, the second reduction step, even if not
implemented efficiently, does not really contribute to the overall time needed simply because
only few reductions are executed in this step. However, it provides the advantage that we
might be able to reduce some elements in spol to zero which could not be reduced to zero in
CheckResolvability since the set G might have been enlarged in the meantime by some elements
in spol. This helps us to keep the set G as small as possible.

Also, note that Line 5 of Algorithm 3 is intentionally phrased in an ambiguous way. This
provides the opportunity to apply different strategies on how to choose f ∈ spol, which can
have a huge impact on the performance of the algorithm in practice. Often, applying a selection
strategy, which always chooses an S-polynomials with minimal leading monomial, works quite
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well. However, when working with different selection strategies, one usually has to take care
that a so-called fair selection strategy is used. Basically, this ensures that every S-polynomial,
that is generated at some point, eventually gets processed and reduced. For a more in-depth
discussion on fair selection strategies, we refer to [Mor16, Section 47.6.3]. Note that, in case of
Algorithm 3, every selection strategy is fair as new ambiguities are only generated when all old
ambiguities, and consequently, all old S-polynomials have been processed.

To end this section, we use Algorithm 3 to compute a Gröbner basis.

Example 4.15. Let K = Q and X = {x, y}. We consider K⟨X⟩ equipped with ⪯deglex where
we order the indeterminates as x ≺lex y and want to compute a Gröbner basis of the ideal
generated by F = {f1, f2, f3, f4} ⊆ K⟨X⟩, with

f1 = yyx + x, f2 = y + 1, f3 = xy − x, f4 = xyx + xx.

We start by setting G = F . According to Algorithm 3, we first have to execute the commands
in the CheckResolvability subroutine. So, we compute all ambiguities of G. It is not hard to see
that ambG consists of the overlap ambiguities

a13 = (yyxy, yy, y, f1, f3), a14 = (yyxyx, yy, yx, f1, f4), a31 = (xyyx, x, yx, f3, f1),
a43 = (xyxy, xy, y, f4, f3), a44 = (xyxyx, xy, yx, f4, f4)

and the inclusion ambiguities

a12 = (yyx, 1, yx, f1, f2), a′
12 = (yyx, y, x, f1, f2), a32 = (xy, x, 1, f3, f2),

a42 = (xyx, x, x, f4, f2), a′
43 = (xyx, 1, x, f4, f3).

Now, we have to do the first reduction, which is done in the CheckResolvability subroutine. In
particular, we have to compute the normal form of sp(a) with respect to G for each a ∈ ambG.
This yields

sp(a13) = −yyx− xy →1,f1,1 x− xy →1,f3,1 0,

sp(a14) = yyxx− xyx →1,f1,x −xyx− xx →1,f4,1 0,

sp(a31) = xyx + xx →x,f2,x 0,

sp(a43) = −xyx− xxy →x,f2,x −xxy + xx →xx,f2,1 2xx,

sp(a44) = xyxx− xxyx →x,f2,xx −xxx− xxyx →xx,f2,x 0,

sp(a12) = yx− x →1,f2,x 2x,

sp(a′
12) = yx− x →1,f2,x 2x,

sp(a32) = 2x,

sp(a42) = 0,

sp(a′
43) = −2xx.

The only nonzero normal forms that we obtain are 2x, 2xx and −2xx, and therefore, the Check-
Resolvability subroutine returns the set spol = {2x, 2xx,−2xx}. Since this set is nonempty, we

37



have to enter the while loops in Algorithm 3 and keep reducing the elements in spol individ-
ually. Now, the selection strategy comes into play and in this example, our selection strategy
is to always choose an S-polynomial with minimal leading monomial. So, we first process 2x,
which we also immediately remove from spol. Since 2x is already a normal form with respect to
→G, we have to add it to G. Hence, we obtain

G = {f1, f2, f3, f4, f5},

with f5 = 2x. Now, we are in the situation that several polynomials in spol = {2xx,−2xx}
have the same minimal leading monomial. In this case, we can choose one of them randomly.
We select 2xx and remove it from spol. Because we have added 2x to G in the previous step,
2xx can be reduced to zero by G. Hence, in this step we do not have to add anything to G.
Finally, we process −2xx, which can also be reduced to zero by G. So, again, nothing has to
be added to G. As spol is now empty, we go back into the CheckResolvability subroutine, and
compute all ambiguities of G. Of course, we do not have to recompute ambiguities that we have
already processed in a previous step. Hence, we only have to consider ambiguities which contain
at least one element of G that has been added during the last iteration. In this case, we obtain
the following four inclusion ambiguities

a15 = (yyx, yy, 1, f1, f5), a35 = (xy, 1, y, f3, f5), a45 = (xyx, 1, yx, f4, f5),
a′

45 = (xyx, xy, 1, f4, f5).

As before, we now have to reduce sp(a) by G for each a ∈ ambG. This yields

sp(a15) = −x →1,f5,1 0,

sp(a35) = x →1,f5,1 0,

sp(a45) = −xx →1,f5,1 0,

sp(a′
45) = −xx →1,f5,1 0.

We can see that all S-polynomials reduce to 0. Hence, CheckResolvability returns spol = ∅, and
therefore,

G = {f1, f2, f3, f4, 2x},

is a Gröbner basis of (f1, f2, f3, f4).

4.3 F4
In contrast to Buchberger’s algorithm where we reduce only one polynomial at a time, the main
idea of the F4 algorithm is to reduce several polynomials by a list of polynomials simultaneously.
This is done by representing polynomials in terms of a matrix and computing a reduced row
echelon form of this matrix, cf. [Fau99, Xiu12].

As a first step towards formulating this procedure in our setting of noncommutative poly-
nomials, we elaborate on the connection between a finite set of elements in K⟨X⟩ and a matrix
over K. To this end, we recall what the linear span of a set of polynomials is.
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Definition 4.16. Let P ⊆ K⟨X⟩ be a set of polynomials. The linear span of P over K, denoted
by spanK(P ), is the set of all K-linear combinations of elements in P , i.e.,

spanK(P ) := {
m∑

i=1
cipi | m ∈ N, ci ∈ K, pi ∈ P} ⊆ K⟨X⟩.

As done in [Xiu12, Definition 5.4.1], we relate polynomials and matrices via an isomorphism.

Definition 4.17. Let T = {t1, . . . , tm} ⊆ ⟨X⟩ be a set of monomials such that t1 ≻ · · · ≻ tm.
Furthermore, let Km be the vector space of dimension m over K equipped with the canonical
basis e1 . . . , em ∈ Km. We consider T as a subset of K⟨X⟩ and define an isomorphism

φT : Km → spanK(T )

given by φT (ei) = ti for i = 1, . . . , m.

For a fixed set T = {t1, . . . , tm} ⊆ ⟨X⟩, this isomorphism allows us to identify every finite
set of polynomials with support in T with a matrix, and conversely, every matrix with a finite
set of polynomials with support in T .

Definition 4.18. Let M ∈ Kn×m be a matrix and T = {t1, . . . , tm} ⊆ ⟨X⟩ be a set of mono-
mials. We call the set PM,T := {φT (r1), . . . , φT (rn)} ⊆ spanK(T ), where ri ∈ Km denotes the
i-th row of M , a polynomial form of M with respect to T .

Conversely, given a finite set of polynomials P = {p1, . . . , pn} ⊆ K⟨X⟩ we let T = supp(P ),
and we call the matrix MP ∈ Kn×m whose i-th row is given by φ−1

T (pi) a matrix form of P .

Example 4.19. In this example we work over Q⟨x, y, z⟩ equipped with ⪯deglex where we order
the indeterminates as x ≺lex y ≺lex z. First, we consider P = {p1, p2, p3} ⊆ Q⟨x, y, z⟩ with

p1 = xxyz + 2xyy + x, p2 = xyy − yz, p3 = yz − 2x.

The matrix form MP of P is given by

MP =

xxyz xyy yz x⎛⎝ ⎞⎠1 2 0 1 p1
0 1 −1 0 p2
0 0 1 −2 p3

.

Conversely, for T = {xxyz, xyy, yz, x}, the polynomial form PM,T of the matrix

M =

⎛⎜⎝ 1 0 0 5
0 1 0 −2
0 0 1 −2

⎞⎟⎠
is PM,T = {xxyz + 5x, xyy − 2x, yz − 2x}.

Recall that a matrix is in row echelon form if it satisfies the following conditions:
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• all nonzero rows are above any rows of all zeros,

• the leftmost nonzero entry of a nonzero row (this entry is called the pivot) is 1,

• and the pivot of a nonzero row is strictly to the right of the pivot of the row above it.

If additionally all entries above each pivot are 0, then the matrix is in reduced row echelon form.
We denote the unique reduced row echelon form of a matrix M ∈ Kn×m by RRef(M) and recall
that it can be computed via Gauss-Jordan elimination. The main step in this algorithm can
be described as follows. If M has two different rows ri and rj , such that the entry in rj in the
column of the pivot of ri is nonzero, we subtract a multiple of ri from rj in order to set this
entry of rj to zero and thereby obtain a new row r′

j . In terms of polynomials this operation
corresponds to a reduction of φT (rj) by φT (ri), i.e.

φT (rj) →1,φT (ri),1 φT (r′
j),

for an appropriate set T ⊆ ⟨X⟩.
Hence, we can relate the polynomials in a finite set P ⊆ K⟨X⟩ with the polynomials in

P̃ = PRRef(MP ),T ⊆ K⟨X⟩ with T = supp(P ), as follows. For every polynomial p ∈ P there
exists an element p̃ ∈ P̃ such that either p = cp̃ for some nonzero constant c ∈ K \ {0} or

p →1,φT (r1),1 . . . →1,φT (rk),1 cp̃,

where r1, . . . , rk ∈ Km denote some rows of the intermediate matrices obtained during the
computation of RRef(MP ). Note that the nonzero scaling factor c has to be added to account
for the fact that during Gauss-Jordan elimination we are also allowed to scale rows, which does
not correspond to a polynomial reduction but only a scaling of the corresponding polynomial.
Remark. If we start with a finite set of polynomials P ⊆ K⟨X⟩ and want work with a polynomial
form of RRef(MP ) with respect to T = supp(P ), we omit the subscript T in PRRef(MP ),T and
simply write PRRef(MP ).

Example 4.20. If we reconsider the matrices M and MP from from Example 4.19, we can see
that M is the reduced row echelon form of the matrix MP , i.e. M = RRef(MP ). Hence, each
polynomial in PRRef(MP ) = {xxyz + 5x, xyy− 2x, yz− 2x} can be obtained by an interreduction
of the polynomials in P = {p1, p2, p3}, where p1 = xxyz + 2xyy + x, p2 = xyy−yz, p3 = yz−2x.
In particular, we have

xxyz + 2xyy + x →1,p2,1 xxyz + 2yz + x →1,p3,1 xxyz + 5x,

xyy − yz →1,p3,1 xyy − 2x.

This already indicates that we can reduce a finite set of polynomials P ⊆ K⟨X⟩ by another
set G ⊆ K⟨X⟩ by computing a normal form of the matrix MP ∪G. However, as soon as this
matrix is set up we cannot add cofactors to the reduction as multiplying a row of MP ∪G by
a monomial is not allowed. Furthermore, if G is infinite we cannot even form MP ∪G. Hence,
we first have to pick the finitely many elements of G which are actually needed for a reduction
of the polynomials in P and multiply them by the corresponding cofactors. This is a purely
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combinatorial problem which does not require to do any actual reductions and can be achieved
as follows.

Algorithm 4 SymbolicPreprocessing
Input: a finite set P ⊆ K⟨X⟩ and G ⊆ K⟨X⟩
Output: G′ ⊆ {agb | a, b ∈ ⟨X⟩, g ∈ G}

1: G′ = ∅
2: T = supp(tail(P ))
3: done = lm(P )
4: while T ̸= ∅ do
5: select t ∈ T
6: T = T \ {t}
7: done = done ∪ {t}
8: if there exist g ∈ G, a, b ∈ ⟨X⟩ such that ha,g,b acts nontrivially on t then
9: G′ = G′ ∪ {agb}

10: T = T ∪ (supp(ha,g,b(t)) \ done)
11: return G′

Proposition 4.21. Let P ⊆ K⟨X⟩ be a finite set and G ⊆ K⟨X⟩. Then, Algorithm 4 terminates
given P and G as input.

Proof. We note that T = supp(tail(P )) is finite because P is finite. Hence, we can consider
m = max⪯ T and as ⪯ is a well-ordering, there are only finitely many terms m′ ∈ ⟨X⟩ such
that m′ ≺ m. Since we remove one element t ∈ T at every iteration of the while loop, we can
prove termination by showing that the terms added to T are strictly smaller than m and that
we never add a monomial to T that has already been processed. The first condition follows
from the fact that t ⪯ m for every t ∈ T and that supp(ha,g,b(t)) only contains terms which
are strictly smaller than t. Furthermore, since we add every term t ∈ T to the set done when
processing it and enlarge T by supp(ha,g,b(t)) \ done, we ensure that we only add terms that
have not yet been processed.

Example 4.22. In this example, we let K⟨X⟩ = Q⟨x, y⟩ and equip it with ⪯deglex where we
order the indeterminates as x ≺lex y. We want to apply Algorithm 4 to G = {f1, f2, f3, f4, f5} ⊆
Q⟨x, y⟩, with

f1 = yyx + x, f2 = y + 1, f3 = xy − x, f4 = xyx + xx, f5 = x

and

P = {yyxy + xy, yyxy − yyx, yyxyx + xyx, yyxyx + yyxx, xyyx− xyx,

xyyx + xx, xyxy + xxy, xyxy − xyx, xyxyx + xxyx, xyxyx + xyxx}.

To this end, we initialise G′ = ∅, done = lm(P ) and form the set T = supp(tail(P )), which is
given by

T = {xy, yyx, xyx, yyxx, xx, xxy, xxyx, xyxx}.
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The first term t ∈ T , that we process, is t = xy, which we remove from T and add to done.
Since lm(f3) = t, we can use f3 to reduce t and therefore add f3 to G′. Note that we could
have as well chosen f2 or f5. Then, we would had to add xf2 or f5y, respectively, to G′. But
as we have chosen f3, we now also have to add all monomials of f3, that have not already been
processed, to the set T . In this case, this is just x, so that we now have

T = T ∪ {x}.

After that, we proceed and process t = yyx. As lm(f1) = t, we add f1 to G′. Again, we have
to add all monomials of f1, which have not yet been processed, to T . This is only x, which is
already in T . Hence, in this case, the set T does not change. For t = xyx, we add f4 to G′, for
t = yyxx, we add f1x and for t = xx we add xf5. In all these cases, we have to add nothing
to T as all monomials appearing in the polynomials that we added to G′ are either in done or
already T . So, now we have

T = {xxy, xxyx, xyxx, x},
G′ = {f3, f1, f4, f1x, xf5},

done = lm(P ) ∪ {xy, yyx, xyx, yyxx, xx}.

Next, we pick t = xxy, which can be reduced by f3. Therefore, we add xf3 to G′ but have to
add nothing to T as all monomials in xf3 are already in done. For t = xxyx, t = xyxx and
t = x, respectively, we add f5xyx, xyxf5 and f5, respectively, to G′. As also in these cases, we
have to add nothing to T , this leaves us with

T = ∅,
G′ = {f3, f1, f4, f1x, f5x, xf3, f5xyx, xyxf5, f5},

done = lm(P ) ∪ {xy, yyx, xyx, yyxx, xx, xxy, xxyx, xyxx, x},

and the algorithm terminates.

Algorithm 4 collects the finitely many elements of G that can be used to reduce the polynomi-
als in P and multiplies them by the corresponding cofactors. Hence, a normal form computation
of MP ∪G′ , where G′ is the result of applying Algorihm 4 to P and G, corresponds to a reduction
of the elements in P by G. However, note that we initialise the set done with lm(P ). Hence, we
do not pick reductors for the leading terms of the elements in P and can therefore actually only
reduce the tails of the polynomials in P . Nevertheless, we shall see that we can use Algorithm 4
as a subroutine to check the resolvability of ambiguities, because, in this case, we can form the
set P in such a way that we do not have to reduce the leading term of any element in P . To
this end, we introduce the notion of the critical pair of an ambiguity.

Definition 4.23. Let G ⊆ K⟨X⟩ and let a = (ABC, A, C, f, g) ∈ ambG be an ambiguity of two
elements f, g ∈ G. If a is an overlap ambiguity, we call the pair

cp(a) := (ABC − h1,f,C(ABC), ABC − hA,g,1(ABC))
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the critical pair of a. If a is an inclusion ambiguity, we call the pair

cp(a) := (ABC − h1,f,1(ABC), ABC − hA,g,C(ABC))

the critical pair of a. We denote the set of all critical pairs of G by critG.

Since we need this term later, we extend the notion of the degree of an ambiguity to its
critical pair.

Definition 4.24. Let G ⊆ K⟨X⟩ and let a = (ABC, A, C, f, g) ∈ ambG be an ambiguity of two
elements f, g ∈ G. Then, the degree of cp(a) is given by the degree of a.

Remark. Let G ⊆ K⟨X⟩ and let a = (ABC, A, C, f, g) ∈ ambG be an ambiguity of two elements
f, g ∈ G. If f and g are monic, then cp(a) can be written as

cp(a) = (fC, Ag)

if a is an overlap ambiguity, respectively as

cp(a) = (f, AgC)

if a is an inclusion ambiguity.
Considering the critical pair cp(a) = (fa, ga) of an ambiguity a ∈ ambG we have sp(a) =

ga − fa and supp(sp(a)) ⊆ supp(tail(P )), where P = {fa, ga}. Having this fact in mind, we can
apply Algorithm 4 to P and G to find reductors g1, . . . , gm ∈ G for sp(a) and collect them in a
set G′. We can then set up the matrix

MP ∪G′ =

⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
1 ∗ · · · · · · · · · ∗ fa

1 ∗ · · · · · · · · · ∗ ga

∗ · · · · · · · · · ∗ g1
. . . ...

...
∗ · · · ∗ gm

and reduce it to reduced row echelon form. At some point during this computation, w.l.o.g.
as the first step, the first row gets subtracted from the second one and we get the following
intermediate matrix. ⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠
1 ∗ · · · · · · · · · ∗ fa

0 ∗ · · · · · · · · · ∗ ga − fa

∗ · · · · · · · · · ∗ g1
. . . ...

...
∗ · · · ∗ gm

So, we obtain a row corresponding to sp(a) and if we finish the reduction of MP ∪G′ , we end up
with a row corresponding to a normal form sp(a)′ of sp(a) with respect to G. Note that this is
achieved without having to reduce the leading term of any element in P . The only remaining
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task is to then find the row corresponding to sp(a)′ in RRef(MP ∪G′). But this is also not too
difficult, since sp(a)′ has to either be zero or, if it is nonzero, it has to introduce a new leading
monomial, i.e. a leading monomial that is not contained in lm(P ∪ G′). So, if RRef(MP ∪G′)
contains a zero row, we have that sp(a)′ = 0. Otherwise, sp(a)′ corresponds to the unique row
in RRef(MP ∪G′) that introduces a new leading monomial.

Surprisingly, we do not have to restrict ourselves to initialising the set P with just one critical
pair. In fact, we can start with as many critical pairs as we want. Hence, this procedure allows
us to compute normal forms of multiple S-polynomials simultaneously. The following algorithm
formalises the steps described above and builds the main ingredient of the F4 algorithm.

Algorithm 5 Reduction
Input: a finite set P ⊆ K⟨X⟩ and G ⊆ K⟨X⟩
Output: P̃ ⊆ K⟨X⟩ \ {0}

1: G′ = SymbolicPreprocessing(P, G)
2: P ′ = P ∪G′

3: P̃ = {p ∈ PRRef(MP ′ ) | p ̸= 0 and lm(p) /∈ lm(P ′)}
4: return P̃

In the following, we collect some crucial properties of the set P̃ returned by Algorithm 5.

Lemma 4.25. Let P ⊆ K⟨X⟩ be a finite set and G ⊆ K⟨X⟩. Furthermore, let P̃ = Reduction(P, G).
Then, lm(p) /∈ {a lm(g)b | a, b ∈ ⟨X⟩, g ∈ G} for all p ∈ P̃ .

Proof. Assume that there exists p ∈ P̃ such that lm(p) ∈ {a lm(g)b | a, b ∈ ⟨X⟩, g ∈ G}. So,
there exist a, b ∈ ⟨X⟩ and g ∈ G such that lm(p) = a lm(g)b = lm(agb). Since p ∈ P̃ , we
know that lm(p) /∈ lm(P ′) and, in particular, lm(p) /∈ lm(P ). Hence, lm(p) has been processed
at some point during the execution of SymbolicPreprocessing(P, G) and at this point agb must
have been added to G′ ⊆ P ′. But this contradicts the fact that lm(p) /∈ lm(P ′).

Lemma 4.26. Let P ⊆ K⟨X⟩ be a finite set and G ⊆ K⟨X⟩. Furthermore, let P̃ = Reduction(P, G)
and let P ′ be as obtained in Algorithm 5 during the computation of P̃ . Then, all elements in
spanK(P ′) can be reduced to zero by P ′ ∪ P̃ .

Proof. Assume that there exists an element in spanK(P ′) that cannot be reduced to zero by
P ′ ∪ P̃ . Let p ∈ spanK(P ′) be such an element and such that lm(p) is minimal among all
such elements. Then, clearly p ̸= 0. Since the rows of MP ′ and RRef(MP ′) generate the same
vector space over K, we also have spanK(P ′) = spanK(P ′′), where P ′′ = PRRef(MP ′ ). Hence,
we can write p as a K-linear combination of elements p1, . . . , pn ∈ P ′′ \ {0}. We note that
the leading monomials of the pi must all be different, since each pi corresponds to a row in
RRef(MP ′) and RRef(MP ′) cannot have several rows with pivots in the same column. This
implies that we must have lm(p) = lm(pi0) for some 1 ≤ i0 ≤ n. By the way we constructed
P̃ we then either have pi0 ∈ P̃ or lm(pi0) ∈ lm(P ′). In any case, there exists g ∈ P ′ ∪ P̃ such
that lm(g) = lm(pi0) = lm(p) and since P̃ ⊆ P ′′ ⊆ spanK(P ′′) = spanK(P ′) we know that
g ∈ spanK(P ′). Using this g to reduce p, we obtain p′ ∈ spanK(P ′) such that lm(p′) ≺ lm(p)
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and since p cannot be reduced to zero, neither can p′, which is a contradiction to the minimality
of p.

Using the previous observations, we can prove that Algorithm 5 can be compared to the
CheckResolvability routine in the Buchberger algorithm. The following result can be compared
to to Proposition 5.4.9 in [Xiu12], respectively to Lemma 2.2 in [Fau99].

Theorem 4.27. Let G ⊆ K⟨X⟩ and let C ⊆ critG be finite. Furthermore, let P =
⋃

(fa,ga)∈C{fa, ga}
be the set of all polynomials appearing in the critical pairs of C and let P̃ = Reduction(P, G).
Then, the ambiguities corresponding to the critical pairs in C are all resolvable with respect to
G ∪ P̃ , i.e.

sp(a) ∗→G∪P̃ 0,

for all a ∈ ambG such that cp(a) ∈ C.

Proof. Let a ∈ ambG be an ambiguity such that cp(a) = (fa, ga) ∈ C. Furthermore, let P ′ be as
obtained in Algorithm 5 during the computation of P̃ . Since fa, ga ∈ P ′ and sp(a) = ga−fa, we
have that sp(a) ∈ spanK(P ′). Hence, according to Lemma 4.26 we can reduce sp(a) to zero by
P ′ ∪ P̃ . Note that every element of a critical pair of G can be written as cwgw′ for some c ∈ K,
w, w′ ∈ ⟨X⟩ and g ∈ G. In particular, all elements of P are of this form and this clearly also
holds for the elements in G′ = SymbolicPreprocessing(P, G), which are added to P to obtain
P ′. Consequently, every reduction done by some p ∈ P ′ can also be done by some g ∈ G, which
means that sp(a) can be reduced to zero by G ∪ P̃ .

As a consequence of Theorem 4.27, we get an analogous statement to Proposition 4.12, which
allows us to decide when a given finite set G ⊆ K⟨X⟩ is a Gröbner basis of (G).

Corollary 4.28. Let G ⊆ K⟨X⟩ be finite and let P =
⋃

(fa,ga)∈critG
{fa, ga}. Furthermore, let

P̃ = Reduction(P, G). Then, P̃ = ∅ if and only if G is a Gröbner basis of (G).

Proof. We note that since G is finite, also P is finite. Hence, P̃ is well defined. If P̃ = ∅,
then Theorem 4.27 yields that all ambiguities of G are resolvable with respect to G ∪ P̃ = G.
Consequently, G is a Gröbner basis of (G) according to Theorem 4.10. Now, assume that P̃ ̸= ∅
and let p ∈ P̃ . Furthermore, let P ′ be as obtained in Algorithm 5 during the computation of P̃ .
Then, p ∈ spanK(P ′) ⊆ (G). By Lemma 4.25, we have lm(p) /∈ {a lm(g)b | a, b ∈ ⟨X⟩, g ∈ G}.
This implies that lm(p) cannot be reduced by G and since the leading term of a polynomial
cannot cancel after a reduction, this shows that p ∈ (G) cannot be reduced to zero by G, which
violates condition 2 of Theorem 3.38. Hence, G cannot be a Gröbner basis of (G).

Based upon Theorem 4.27 and Corollary 4.28, we can formulate the F4 algorithm to enu-
merate Gröbner bases in K⟨X⟩.
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Algorithm 6 F4
Input: a finite set F ⊆ K⟨X⟩
Output if the algorithm terminates: G ⊆ K⟨X⟩ such that G is a Gröbner basis of (F )

1: G = F
2: s = 0
3: while s ̸= |G| do
4: s = |G|
5: critPairs = critG

6: while critPairs ̸= ∅ do
7: select C ⊆ critPairs
8: critPairs = critPairs \ C
9: P =

⋃
(fa,ga)∈C{fa, ga}

10: P̃ = Reduction(P, G)
11: G = G ∪ P̃
12: return G

Theorem 4.29. Let F ⊆ K⟨X⟩ be a finite set, denote G0 = F and for n ∈ N, let Gn be
the result of Algorithm 6 after n iterations of the outer while loop given F as input. Then,
G =

⋃
i≥0 Gn is a Gröbner basis of (F ). In this sense, Algorithm 6 enumerates a Gröbner basis

G of (F ). Furthermore, if (F ) admits a finite Gröbner basis, then Algorithm 6 terminates and
returns a Gröbner basis of (F ).

Proof. To prove that G =
⋃

i≥0 Gn is a Gröbner basis of (F ), we first note that all elements in
P̃n, which are added to G during the n-th iteration of Algorithm 3, are elements of (F ). Since
also F ⊆ G, this implies (G) = (F ). Hence, according to Theorem 4.10 it remains to show
that all ambiguities of G are resolvable. To this end, let a = (ABC, A, C, gi, gj) ∈ ambG be an
ambiguity of two elements gi, gj ∈ G. Since Gn ⊆ Gn+1 for all n ≥ 0, there exists N ≥ 0 such
that gi, gj ∈ GN . If sp(a) can be reduced to zero by GN then we are done. Otherwise, sp(a) can
be reduced to zero by GN+1 = GN ∪ P̃N according to Theorem 4.27. Hence, in any way sp(a)
can be reduced to zero by GN+1 ⊆ G and therefore a is resolvable. The proof of termination if
(F ) admits a finite Gröbner basis proceeds exactly as the proof of Proposition 4.14.

To ensure the termination of Algorithm 6, we can add the same constraints as for the
Buchberger algorithm. We can also apply different strategies on how to select the subset C ⊆
critPairs in each step, which, as for Buchberger’s algorithm, can have a huge impact on the
performance of the algorithm in practice. Usually, the so-called normal selection strategy, where
always all critical pairs with minimal degree are selected, performs quite well. Furthermore, as
in the case of the Buchberger algorithm, we have phrased the F4 algorithm in such a way that
every selection strategy is a fair selection strategy. Also, note that if we always pick only one
critical pair in step 7 of Algorithm 6, we obtain the classical Buchberger algorithm as presented
in the previous section.

To end this section, we compute a Gröbner basis of the ideal considered in Example 4.15,
but now using the F4 algorithm instead of the Buchberger algorithm.
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Example 4.30. As in Example 4.15, we work over Q⟨x, y⟩ equipped with ⪯deglex where we order
the indeterminates as x ≺lex y and consider the ideal generated by F = {f1, f2, f3, f4} ⊆ Q⟨x, y⟩,
with

f1 = yyx + x, f2 = y + 1, f3 = xy − x, f4 = xyx + xx.

In this example, we use the F4 algorithm to compute a Gröbner basis of (F ).
We start by setting G = F . According to Algorithm 6, we first have to compute all critical

pairs of G. To this end, we first compute all ambiguities of G. Recall from Example 4.15, that
ambG consists of the overlap ambiguities

a13 = (yyxy, yy, y, f1, f3), a14 = (yyxyx, yy, yx, f1, f4), a31 = (xyyx, x, yx, f3, f1),
a43 = (xyxy, xy, y, f4, f3), a44 = (xyxyx, xy, yx, f4, f4)

and the inclusion ambiguities

a12 = (yyx, 1, yx, f1, f2), a′
12 = (yyx, y, x, f1, f2), a32 = (xy, x, 1, f3, f2),

a42 = (xyx, x, x, f4, f2), a′
43 = (xyx, 1, x, f4, f3).

The corresponding critical pairs are given by

cp(a13) = (yyxy + xy, yyxy − yyx), cp(a14) = (yyxyx + xyx, yyxyx + yyxx),
cp(a31) = (xyyx− xyx, xyyx + xx), cp(a43) = (xyxy + xxy, xyxy − xyx),
cp(a44) = (xyxyx + xxyx, xyxyx + xyxx), cp(a12) = (yyx + x, yyx + yx),
cp(a′

12) = (yyx + x, yyx + yx), cp(a32) = (xy − x, xy + x),
cp(a42) = (xyx + xx, xyx + xx), cp(a′

43) = (xyx + xx, xyx− xx).

In this example, we apply the normal selection strategy. Hence, we first have to select all critical
pairs of minimal degree 2, which is just one pair. So, the set P is given by

P = {xy − x, xy + x}.

Note that the symbolic preprocessing of P with respect to G yields the empty set, i.e.

G′ = ∅.

Now, we can form the matrix MP ′ with P ′ = P ∪G′ = P , which is given by

MP ′ =
xy x( )1 −1 xy − x
1 1 xy + x

,

and reduce it to reduced row echelon form

RRef(MP ′) =
(

1 0
0 1

)
.
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The polynomial form of this matrix is PRRef(MP ′ ) = {xy, x}, and since lm(xy) = xy ∈ lm(P ′)
but lm(x) = x /∈ lm(P ), we only have to add f5 = x to G. This means that we now have

G = {f1, f2, f3, f4, f5}.

Following the normal selection strategy, we next process all critical pairs of degree 3. Hence, P
is given by

P = {yyx + x, yyx + yx, xyx + xx, xyx− xx}.

During the symbolic preprocessing of P with respect to G, the following set of monomials has
to be considered

T = {x, yx, xx}.

The corresponding set of reductors is given by

G′ = {f5, f2x, f5x}.

As in the previous step, we form the matrix MP ′ with P ′ = P ∪ G′ and compute its reduced
row echelon form. This yields

MP ′ =

yyx xyx yx xx x⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 1 yyx + x
1 0 1 0 0 yyx + yx
0 1 0 1 0 xyx + xx
0 1 0 −1 0 xyx− xx
0 0 0 0 1 f5
0 0 1 0 1 f2x
0 0 0 1 0 f5x

−→ RRef(MP ′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

.

Since no row of RRef(MP ′) introduces a new leading monomial, we cannot add any new element
to G in this case. So, we continue by processing the remaining critical pairs. However, now we
slightly deviate from the normal selection strategy and instead of only selecting all critical pairs
of degree 4, we process all remaining critical pairs. Therefore, we obtain the following set P

P = {yyxy + xy, yyxy − yyx, yyxyx + xyx, yyxyx + yyxx, xyyx− xyx,

xyyx + xx, xyxy + xxy, xyxy − xyx, xyxyx + xxyx, xyxyx + xyxx}.

Note that we have already done the symbolic preprocessing of P with respect to G in Exam-
ple 4.22, where we obtained

G′ = {f3, f1, f4, f1x, f5x, xf3, f5xyx, xyxf5, f5}.
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Then, MP ′ with P ′ = P ∪G′ is given by

MP ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 −1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Its reduced row echelon form

RRef(MP ′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
does not introduce any new leading monomial. So, again, we cannot add any new element to G.
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As there are now no critical pairs left to process, we exit the inner while loop of Algorithm 6,
but because the size of G has changed compared to the beginning this iteration, we cannot exit
the whole algorithm. Instead, we have to recompute all critical pairs of G. In particular, we only
have to recompute critical pairs that have not already been processed in a previous step. Hence,
we only have to consider critical pairs which contain at least one element of G that has been
added during the last iteration. In this case, we obtain the following four inclusion ambiguities

a15 = (yyx, yy, 1, f1, f5), a35 = (xy, 1, y, f3, f5), a45 = (xyx, 1, yx, f4, f5),
a′

45 = (xyx, xy, 1, f4, f5),

and consequently, the following critical pairs

cp(a15) = (yyx + x, yyx), cp(a35) = (xy − x, xy),
cp(a45) = (xyx + xx, xyx), cp(a′

45) = (xyx + xx, xyx).

Again, we slightly deviate from the normal selection strategy and select all critical pairs at once.
This gives

P = {yyx + x, yyx, xy − x, xy, xyx + xx, xyx, xyx + xx, xyx).

It is easy to see that the symbolic preprocessing of P with respect to G yields

G′ = {f5, xf5}.

Therefore, we get the following matrix MP ′ with P ′ = P ∪G′ and its reduced row echelon form
RRef(MP ′).

MP ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1
1 0 0 0 0
0 0 1 0 −1
0 0 1 0 0
0 1 0 1 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→ RRef(MP ′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So, once more RRef(MP ′) does not introduce any new leading monomial, and hence, we cannot
add anything to G. Since now there are no critical pairs left to process and the size of G has
not changed during this iteration, we can terminate our computation knowing that

G = {f1, f2, f3, f4, f5}

is a Gröbner basis of (f1, f2, f3, f4).
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4.4 Cofactor representations
So far, we have seen that we can verify the ideal membership of a given polynomial f ∈ K⟨X⟩ in
an ideal (F ) generated by a finite set F ⊆ K⟨X⟩ by reducing f to zero. Typically, this is done
using a (partial) Gröbner basis G of (F ). While such a reduction to zero is indeed a valid proof
that f ∈ (F ), it is in practice often irreproducible. When we claim that f ∈ (F ) because we
were able to reduce f to zero by G, then the reader can either trust us that we did not make a
mistake during the computation of G and the reduction of f , or they can redo all computations,
which can be quite tedious. This is where the notion of cofactor representations comes into play.
If we can provide a cofactor representation of f with respect to F , then it is easily verifiable
that indeed f ∈ (F ) holds, simply by multiplying out the corresponding linear combination.
Fortunately, we can use the tools and techniques developed in the previous sections to obtain
such a cofactor representation. In fact, we basically only have to trace the cofactors during the
computation of the (partial) Gröbner basis G and during the reduction of f to zero. In the
following, we explain this in more detail.

Recall that if we can reduce f to f ′ ∈ K⟨X⟩ by some element g ∈ G using the cofactors
a, b ∈ ⟨X⟩, then the three polynomials are related as follows

f ′ = f − cagb,

where c = coeff(f, lm(agb))
lc(g) ∈ K is a particular constant that is not of special interest for us now.

Hence, a reduction of f to zero by G, i.e.

f →a1,g1,b1 . . . →an,gn,bn 0,

with ai, bi ∈ ⟨X⟩ and gi ∈ G for 1 ≤ i ≤ n, yields the equation

0 = f −
n∑

i=1
ciaigibi, (1)

where the ci ∈ K are again certain constants. So, to obtain a cofactor representation of f with
respect to G, we basically only have to keep track of the cofactors and reductors used during
the reduction of f . However, since usually not all gi appearing in this cofactor representation
are elements of F , it remains to rewrite the linear combination in terms of the generators in F .
To this end, if suffices to find cofactor representations of the gi with respect to F because if we
know that gi can be written as

gi =
ni∑

j=1
ci,jai,jfi,jbi,j ,

with ci,j ∈ K, ai,j , bi,j ∈ ⟨X⟩ and fi,j ∈ F for 1 ≤ j ≤ ni and 1 ≤ i ≤ n, then we can plug these
linear combinations into (1) to obtain

f =
n∑

i=1

ni∑
j=1

cici,jaiai,jfi,jbi,jbi,
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which is a cofactor representation of f with respect to F . After collecting equal cofactors of
several summands (if possible), we can write the equation above as

f =
m∑

i=1
ãifib̃i,

with ãi, b̃i ∈ K⟨X⟩ and fi ∈ F . Typically, we represent such a cofactor representation as a list of
triples {(ã1, f1, b̃1), . . . , (ãm, fm, b̃m)}. So, it only remains to find cofactor representations of the
elements in G with respect to F . This can be done by tracing the computation of the (partial)
Gröbner basis G and slightly differs depending on the algorithm used to compute G. We first
consider the Buchberger algorithm.

4.4.1 Cofactors in the Buchberger algorithm

Starting with a finite set F ⊆ K⟨X⟩ as input of the Buchberger algorithm, we have to keep track
of every computation done in the ideal (F ) during the execution of the algorithm, beginning
with the computation of the S-polynomials in the CheckResolvability subroutine. So, this is the
first algorithm that we have to extend in order to allow us to obtain cofactor representations.
As already stated before, we represent a cofactor representation as a list of triples.

Algorithm 7 ExtendedCheckResolvability
Input: a finite set G ⊆ K⟨X⟩ such that all elements of G are monic
Output: A set spol such that spol = ∅ if and only if G is a Gröbner basis of (G). If spol ̸= ∅, then

spol = {(s′
i, linearCombi) | 1 ≤ i ≤ n} such that linearCombi is a cofactor representation

of s′
i w.r.t. G.

1: spol = ∅
2: foreach a = (ABC, A, C, f, g) ∈ ambG do
3: linearComb = ∅
4: if a is an Overlap ambiguity then
5: linearComb = {(1, f, C), (−A, g, 1)}
6: else
7: linearComb = {(1, f, 1), (−A, g, C)}
8: s1 = sp(a)
9: compute a normal form s′ of s1 w.r.t. to →G, i.e.

s1 →a1,g1,b1 s2 →a2,g2,b2 . . . →am,gm,bm s′

10: if s′ ̸= 0 then
11: linearComb = linearComb ∪ {(−ciai, gi, bi) | ci = coeff(si, lm(aigibi)), 1 ≤ i ≤ m}
12: spol = spol ∪ {(s′, linearComb)}
13: return spol

Basically, Algorithm 7 serves the same purpose as Algorithm 2, namely to test whether G
is a Gröbner basis of (G) by checking the resolvability of all ambiguities of G and returning the
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normal forms of those S-polynomials that could not be reduced to zero. However, Algorithm 7
does not only return the reduced S-polynomials but also a cofactor representation with respect
to G for each element it returns. Also, note that we require the polynomials in G to be monic
so that we do not have to worry about leading coefficients, which would only make the involved
formulae more complicated.

Based upon Algorithm 7, we can extend the Buchberger algorithm.

Algorithm 8 ExtendedBuchberger
Input: a finite set F ⊆ K⟨X⟩ such that all elements of F are monic
Output if the algorithm terminates: G ⊆ K⟨X⟩ such that G is a Gröbner basis of (F ) and

a set cofactors such that for every gi ∈ G \ F there is a pair (gi, linearCombi) ∈ cofactors
and linearCombi is a cofactor representation of gi w.r.t. F .

1: G = F
2: cofactors = ∅
3: spol = ExtendedCheckResolvability(G)
4: while spol ̸= ∅ do
5: while spol ̸= ∅ do
6: select (f, linearComb) ∈ spol
7: spol = spol \ {(f, linearComb)}
8: f1 = f
9: compute a normal form f ′ of f1 w.r.t. to →G, i.e.

f1 →a1,g1,b1 f2 →a2,g2,b2 . . . →am,gm,bm f ′

10: if f ′ ̸= 0 then
11: linearComb =

linearComb ∪ {(−ciai, gi, bi) | ci = coeff(fi, lm(aigibi)), 1 ≤ i ≤ m}
12: if lc(f ′) ̸= 1 then
13: f ′ = 1

lc(f ′)f ′

14: linearComb = {( 1
lc(f ′)a, g, b) | (a, g, b) ∈ linearComb}

15: G = G ∪ {f ′}
16: cofactors = cofactors ∪ {(f ′, linearComb)}
17: spol = ExtendedCheckResolvability(G)
18: cofactors = Rewrite(cofactors)
19: return (G, cofactors)

Before explaining the subroutine Rewrite(cofactors), we make some remarks on Algorithm 8.
First of all, note that we again restrict ourselves to monic polynomials in order to avoid issues
with different leading coefficients. This is also why we make every polynomial f ′ monic before
adding it to G. But apart from this difference, the set G returned by Algorithm 8 is the same
set that the usual Buchberger algorithm would return. The new feature of this algorithm is that
a cofactor representation of every element gi ∈ G \ F that gets added to G is stored in the set
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cofactors in form of a pair (gi, linearCombi), where linearCombi is a set of triples forming a
cofactor representation of gi with respect to F , i.e. linearCombi = {(ai,j , fi,j , bi,j) | fi,j ∈ F, 1 ≤
j ≤ ni} and gi =

∑ni
j=1 ai,jfi,jbi,j .

Before calling Rewrite(cofactors) all cofactor representations saved in cofactors are with
respect to G. More precisely, we know that the cofactor representation of gi ∈ G \ F can only
contain elements that have been added to G before gi. To make this more precise, we write G as
G = {f1, . . . , fm, g1, . . . , gn}, where the fi ∈ F are in an arbitrary but fixed order and the gi ∈
G \ F are labelled chronologically according to the moment they have been added to G. Then,
the cofactor representation of gi is with respect to F ∪ {g1, . . . , gi−1}. So, we can incrementally
rewrite the cofactor representation of gi using the already rewritten cofactor representations of
{g1, . . . , gi−1}. This basically already describes the functionality of Rewrite(cofactors).

Algorithm 9 Rewrite
Input: a set of pairs cofactors = {(gi, linearCombi) | 1 ≤ i ≤ n} as obtained in Algorithm 8,

where the gi are labelled chronologically according to the moment they have been added to
cofactors

Output: a set of pairs newCofactors = {(gi, newLinearCombi) | 1 ≤ i ≤ n} containing
rewritten cofactor representations

1: newCofactors = ∅
2: for i = 1, . . . , n do
3: newLinearComb = ∅
4: foreach (ai,j , gi,j , bi,j) ∈ linearCombi do
5: if there exists 1 ≤ k < i such that gi,j = gk then
6: newLinearComb = newLinearComb ∪ {(ai,ja, g, bbi,j) | (a, g, b) ∈ linearCombk}
7: else
8: newLinearComb = newLinearComb ∪ {(ai,j , gi,j , bi,j)}
9: newCofactors = newCofactors ∪ {(gi, newLinearComb)}

10: return newCofactors

4.4.2 Cofactors in the F4 algorithm

As in the case of Buchberger’s algorithm, also during the execution of the F4 algorithm, we have
to keep track of every computation done in the ideal (F ) when given a finite set F ⊆ K⟨X⟩
as input. In this case, this starts when the critical pairs are formed. Hence, we introduce the
following procedure that allows us to trace these computations.
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Algorithm 10 ExtendedCritPairs
Input: a finite set G ⊆ K⟨X⟩ such that all elements in G are monic
Output: a set critPairs

1: critPairs = ∅
2: foreach a = (ABC, A, C, f, g) ∈ ambG do
3: (fa, ga) = cp(a)
4: if a is an Overlap ambiguity then
5: critPairs = critPairs ∪ {(fa, ga, (1, f, C), (A, g, 1))}
6: else
7: critPairs = critPairs ∪ {(fa, ga, (1, f, 1), (A, g, C))}
8: return critPairs

Remark. For reason as in the previous section, we restrict ourselves to monic polynomials.
So, basically we only extend each critical pair by cofactor representations of the two critical

polynomials. The next algorithm that we have to adapt is the SymbolicPreprocessing subroutine,
where we now return the triple (a, g, b) instead of the reductor g ∈ G already multiplied by the
corresponding cofactors a, b ∈ ⟨X⟩. Everything else remains as in Algorithm 4.

Algorithm 11 ExtendedSymbolicPreprocessing
Input: a finite set P ⊆ K⟨X⟩ and G ⊆ K⟨X⟩
Output: G′ ⊆ {(a, g, b) | a, b ∈ ⟨X⟩, g ∈ G}

1: G′ = ∅
2: T = supp(tail(P ))
3: done = lm(P )
4: while T ̸= ∅ do
5: select t ∈ T
6: T = T \ {t}
7: done = done ∪ {t}
8: if there exist g ∈ G, a, b ∈ ⟨X⟩ such that ha,g,b acts nontrivially on t then
9: G′ = G′ ∪ {(a, g, b)}

10: T = T ∪ (supp(ha,g,b(t)) \ done)
11: return G′

Of course, we then also have to adapt the Reduction algorithm accordingly. To this end, we
denote the i-th row of a matrix M by Mi and the j-th entry in the i-th row by Mi,j .
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Algorithm 12 ExtendedReduction
Input: a set of pairs {(pi, triplei) | 1 ≤ i ≤ n} with pi ∈ K⟨X⟩ and triplei = (ai, gi, bi) ∈
⟨X⟩ ×G× ⟨X⟩ such that aigibi = pi and G ⊆ K⟨X⟩

Output: a set P̃ such that either P̃ = ∅ or P̃ = {(p̃i, linearCombi) | 1 ≤ i ≤ k}, where
linearCombi is a cofactor representation of p̃i w.r.t. G

1: P = {p1, . . . , pn}
2: G′ = ExtendedSymbolicPreprocessing(P, G)
3: P ′ = F ∪ {agb | (a, g, b) ∈ G′}
4: M = RRef(MP ′)
5: also compute the transformation matrix T such that TMP ′ = M
6: set triples = {t1, . . . , tm} such that

{t1, . . . , tm} = {triple1, . . . , triplen} ∪G′

and ti corresponds to the i-th row in MP ′

7: P̃ = ∅
8: for i = 1, . . . , m do
9: p = φ(Mi)

10: if p ̸= 0 and lm(p) /∈ lm(P ) then
11: linearComb = {(Ti,jaj , gj , bj) | tj = (aj , gj , bj), 1 ≤ j ≤ m}
12: P̃ = P̃ ∪ {(p, linearComb)}
13: return F̃

Similar to Algorithm 5, the main task of this algorithm is to reduce the polynomials contained
in the pairs of the input by G. Simultaneously, we now also compute a cofactor representation
of the returned elements with respect to G. The polynomials in the input are expected to
come from the ExtendedCriticalPairs(G) subroutine, and hence, are elements of G multiplied
from the left and right by some monomials. This information is stored in the triplei part of
the pairs. As a first step in Algorithm 12, we extract the polynomials from the pairs. So,
the set P corresponds to the input of the usual Reduction algorithm. In step 2, we call the
ExtendedSymbolicPreprocessing subroutine, which returns the reductors and cofactors in the
form of triples (a, g, b) ∈ ⟨X⟩×G×⟨X⟩. Then, we form the set P ′ that contains all polynomials
to be reduced and the reductors, but now multiplied by the corresponding cofactors.

After that, we compute M = RRef(MP ′) as in Algorithm 5. However, now we also have
to compute the transformation matrix T such that TMP ′ = M , since this matrix encodes the
cofactor representations we are looking for. It is easy to see that

Mi =
|P ′|∑
j=1

Ti,j · (MP ′)j ,

where the multiplication Ti,j ·(MP ′)j of the scalar Ti,j with the vector (MP ′)j is done component-
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wise. In terms of polynomials, this equation reads

φ(Mi) =
|P ′|∑
j=1

Ti,j · φ((MP ′)j), (2)

where φ denotes the isomorphism that maps a row of a matrix to a polynomial in spanK(supp(P ′)).
Since all polynomials φ((MP ′)j) are of the form ajgjbj with aj , bj ∈ ⟨X⟩ and gj ∈ G this is a
cofactor representation of φ(Mi) with respect to G. However, we want to know the cofactors
aj , bj and the elements gj explicitly. To this end, we form the set triples = {t1, . . . , tm} in
step 6 of Algorithm 12. This set consists of the triples of the input and the triples returned by
ExtendedSymbolicPreprocessing(P, G). We note that we have exactly one triple tj = (aj , gj , bj)
corresponding to each element p′ ∈ P ′, and hence, also to each row in MP ′ , such that p′ = ajgjbj .
When we label the triples in triples such that tj corresponds to the polynomial represented by
the j-th row of MP ′ , we can go through all rows of M and translate equation (2) into an explicit
cofactor representation of φ(Mi) basically by replacing φ((MP ′)j) by tj . More precisely, this is
done by forming the set {(Ti,jaj , gj , bj) | tj = (aj , gj , bj), 1 ≤ j ≤ m}. Of course, this only has
to be done if φ(Mi) actually appears in the output, i.e. if φ(Mi) ̸= 0 and lm(φ(Mi)) /∈ lm(f).
Finally, we return the set P̃ consisting of pairs (p, linearComb) where p is a reduced polynomial
and linearComb is a cofactor representation of p with respect to G.

We can now put all pieces together and state an extended version of the F4 algorithm.

Algorithm 13 ExtendedF4
Input: a finite set F ⊆ K⟨X⟩ such that all elements in F are monic
Output if the algorithm terminates: G ⊆ K⟨X⟩ such that G is a Gröbner basis of (F ) and

a set cofactors such that for every gi ∈ G \ F there is a pair (gi, linearCombi) ∈ cofactors
with linearCombi being a cofactor representation of gi w.r.t. F .

1: G = F
2: s = 0
3: while s ̸= |G| do
4: s = |G|
5: critPairs = ExtendedCritPairs(G)
6: while critPairs ̸= ∅ do
7: select C ⊆ critPairs
8: critPairs = critPairs \ C
9: P = {(fa, tf ) | (fa, ga, tf , tg) ∈ C} ∪ {(ga, tg) | (fa, ga, tf , tg) ∈ C}

10: P̃ = ExtendedReduction(P, G)
11: G = G ∪ {p | (p, linearComb) ∈ P̃}
12: cofactors = cofactors ∪ P̃

13: cofactors = Rewrite(cofactors)
14: return (G, cofactors)

As a result of this algorithm, we obtain exactly the same set G that the usual F4 algorithm
would return. Additionally, we also get a set of pairs cofactors that is of the same structure
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as the equally named set returned by the extended Buchberger algorithm. As in the previous
section, if we label the elements in G \ F chronologically according to the moment they have
been added to G, then the cofactor representation of gi ∈ G \ F saved in cofactors is initially
with respect to F ∪ {g1, . . . , gi−1}. This allows us to reuse the Rewrite subroutine presented in
the previous section to obtain cofactor representations with respect to F . Also, note that here
we do not have to worry about making the polynomials monic that we add to G, since each of
these polynomials corresponds to a row of a matrix in reduced row echelon form, and therefore,
has to be monic.

4.5 Optimisations
It is well known that already in the commutative case the time complexity of the Buchberger
algorithm is doubly exponential in the number of indeterminates [MM82]. So, in order to make
this algorithm also applicable to larger problems, much effort was put into optimising it. The
two most prominent approaches to do this are deletion criteria [Buc79, GM88] and selection
strategies [GMNRT91]. The latter one is concerned with implementing certain heuristics speci-
fying when to process which S-polynomial in order to keep the computation as short as possible.
Selection strategies also ultimately led to the development of the F4 algorithm, which should get
rid of some of these heuristics by processing several S-polynomials simultaneously. Here, how-
ever, we will focus on the first approach, deletion criteria, which are used to detect and delete
unnecessary critical pairs. In the commutative case, there are two classical deletion criteria:
the product criterion and the chain criterion, both of which are due to Buchberger [Buc79]. In
Section 4.5.1, we consider their noncommutative analogs for excluding redundant ambiguities
from consideration. Instead of deleting redundant ambiguities, we can also try to directly re-
move unnecessary elements from a (partial) Gröbner basis. In Section 4.5.2, we discuss how this
can be done. While these first two optimisation techniques are applicable to both, the (non-
commutative) Buchberger algorithm as well as the (noncommutative) F4 algorithm, the third
optimisation that we consider is relevant solely for F4. In Section 4.5.3, we present an algorithm
due to Faugère and Lachartre [FL10] that can be used to compute the reduced row echelon form
of a matrix and that is especially efficient on matrices appearing during the executing of the F4
algorithm.

4.5.1 Deletion criteria

In the commutative case, the product criterion allows us to delete a critical pair whenever the
leading monomials of the two polynomials involved are coprime. In the noncommutative case,
this translates to: ambiguities of two polynomials f, g ∈ K⟨X⟩ \ {0} whose leading terms do not
simultaneously divide monomials of length less than | lm(f)| + | lm(g)| need not be considered
during a Gröbner basis computation. However, this criterion is superfluous since such polyno-
mials f and g do not form any ambiguities anyway. Hence, in the following, we only concern
ourselves with generalising the chain criterion, cf. [Mor94, HRR18].

First, we consider the noncommutative chain criterion for overlap ambiguities. To this end,
we recall that an ambiguity a = (ABC, A, C, f, g) of a set G ⊆ K⟨X⟩ is called ⪯-resolvable if
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sp(a) ∈ IG,ABC = spanK({wg′w′ | g′ ∈ G, w, w′ ∈ ⟨X⟩ such that w lm(g′)w′ ≺ ABC}).

Theorem 4.31. (Chain criterion for overlap ambiguities)
Let g1, g2 ∈ G ⊆ K⟨X⟩ have an overlap ambiguity (ABC, A, C, g1, g2) with A, B, C ∈ ⟨X⟩.
Furthermore, let g3 ∈ G be such that lm(g3) | ABC and such that one of the following cases
holds.

1. lm(g3) is a subword of A = L lm(g3)R and the inclusion ambiguity (L lm(g3)RB, L, RB, g1, g3)
is ⪯-resolvable.

2. lm(g3) is a subword of B = L lm(g3)R and the two inclusion ambiguities (AL lm(g3)R, AL, R, g1, g3)
and (L lm(g3)RC, L, RC, g2, g3), respectively, are ⪯-resolvable.

3. lm(g3) is a subword of C = L lm(g3)R and the inclusion ambiguity (BL lm(g3)R, BL, R, g2, g3)
is ⪯-resolvable.

4. lm(g3) is a subword of AB = L lm(g3)R (with nonempty U, V such that lm(g3) = UV
and B = V R) and the inclusion ambiguity (L lm(g3)R, L, R, g1, g3) as well as the overlap
ambiguity (UV RC, U, RC, g3, g2) are ⪯-resolvable.

5. lm(g3) is a subword of BC = L lm(g3)R (with nonempty U, V such that lm(g3) = UV
and B = LU) and the overlap ambiguity (ALUV, AL, V, g1, g3) as well as the inclusion
ambiguity (L lm(g3)R, L, R, g2, g3) are ⪯-resolvable.

6. There are nonempty L, R such that lm(g3) = LBR (with A = A1L and C = RC2) and
the overlap ambiguity (A1LBR, A1, R, g1, g3), respectively the inclusion ambiguity (if A1 is
empty) (A1LBR, A1, R, g3, g1), as well as the inclusion/overlap ambiguity (depending on
whether C2 is empty or not) (LBRC2, L, C2, g3, g2) are ⪯-resolvable.

Then, the overlap ambiguity (ABC, A, C, g1, g2) is ⪯-resolvable.

We will not prove this theorem but instead state and prove the following theorem, which
generalises the chain criterion also to inclusion ambiguities. We note that the proof of Theo-
rem 4.31 works along the same lines as the proof that we will do. For a proof of Theorem 4.31
in the setting of tensor rings, we refer to [HRR18].

Theorem 4.32. (Chain criterion for inclusion ambiguities)
Let g1, g2 ∈ G ⊆ K⟨X⟩ have an inclusion ambiguity (ABC, A, C, g1, g2) with A, B, C ∈ ⟨X⟩.
Furthermore, let g3 ∈ G be such that lm(g3) | ABC and such that one of the following cases
holds.

1. lm(g3) is a subword of A = L lm(g3)R and the inclusion ambiguity (L lm(g3)RBC, L, RBC, g1, g3)
is ⪯-resolvable.

2. lm(g3) is a subword of B = L lm(g3)R and the two inclusion ambiguities (AL lm(g3)RC, AL, RC, g1, g3)
and (L lm(g3)R, L, R, g2, g3), respectively, are ⪯-resolvable.

3. lm(g3) is a subword of C = L lm(g3)R and the inclusion ambiguity (ABL lm(g3)R, ABL, R, g1, g3)
is ⪯-resolvable.
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4. There are L, R with nonempty R such that AB = L lm(g3)R (with nonempty U, V such
that lm(g3) = UV and B = V R) and the inclusion ambiguity (L lm(g3)RC, L, RC, g1, g3)
as well as the overlap ambiguity (UV R, U, R, g3, g2) are ⪯-resolvable.

5. There are L, R with nonempty L such that BC = L lm(g3)R (with nonempty U, V such
that lm(g3) = UV and B = LU) and the inclusion ambiguity (AL lm(g3)R, AL, R, g1, g3)
as well as the overlap ambiguity (LUV, L, V, g2, g3) are ⪯-resolvable.

6. There are L, R, not both empty, such that lm(g3) = LBR (with A = A1L and C =
RC2) and the two inclusion ambiguities (A1LBRC2, A1, C2, g1, g3) and (LBR, L, R, g3, g2),
respectively, are ⪯-resolvable.

Then, the inclusion ambiguity (ABC, A, C, g1, g2) is ⪯-resolvable.

In order to prove Theorem 4.32, we first establish the following result.

Lemma 4.33. Let g1, g2 ∈ G ⊆ K⟨X⟩ be nonzero and let W ∈ ⟨X⟩ be such that lm(g1) and
lm(g2) do not overlap in W , i.e. W = A lm(g1)B lm(g2)C for some A, B, C ∈ ⟨X⟩. Then,

hA,g1,B lm(g2)C(W )− hA lm(g1)B,g2,C(W ) ∈ IG,W .

Proof. We denote ci = lc(gi), mi = lm(gi), ti = tail(gi) for i = 1, 2. Then, a simple computation
yields

hA,g1,Bm2C(W )− hAm1B,g2,C(W )

= 1
c1

At1Bm2C − 1
c2

Am1Bt2C

= 1
c1c2

(c2At1Bm2C + At1Bt2C)− 1
c1c2

(c1Am1Bt2C + At1Bt2C)

= 1
c1c2

(At1Bg2C −Ag1Bt2C)

Since lm(At1Bg2C) ≺ lm(Ag1Bg2C) = W , we have that At1Bg2C ∈ IG,W . Analogously, we get
that Ag1Bt2C ∈ IG,W , and therefore, also 1

c1c2
(At1Bg2C −Ag1Bt2C) ∈ IG,W .

Now, we can proceed to prove Theorem 4.32.

Proof of Theorem 4.32. According to Definition 4.9, we have to show that sp(a) = h1,g1,1(ABC)−
hA,g2,C(ABC) ∈ IG,ABC . We do this for each case individually.

Case 1: We note that L lm(g3)RBC = ABC and that we can write sp(a) as

sp(a) =
(
h1,g1,1(ABC)− hL,g3,RBC(ABC)

)
+
(
hL,g3,RBC(ABC)− hA,g2,C(ABC)

)
.

According to our assumptions, we have that h1,g1,1(ABC) − hL,g3,RBC(ABC) ∈ IG,ABC and
since lm(g3) and lm(g2) do not overlap in ABC, Lemma 4.33 yields that hL,g3,RBC(ABC) −
hA,g2,C(ABC) ∈ IG,ABC . Hence, also sp(a) ∈ IG,ABC .
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Case 2: We note that AL lm(g3)RC = ABC and that we can write sp(a) as

sp(a) =
(
h1,g1,1(ABC)− hAL,g3,RC(ABC)

)
+
(
hAL,g3,RC(ABC)− hA,g2,C(ABC)

)
.

According to our assumptions, we have that h1,g1,1(ABC) − hAL,g3,RC(ABC) ∈ IG,ABC and
hL,g3,R(B)− h1,g2,1(B) ∈ IG,B. Hence,

hAL,g3,RC(ABC)− hA,g2,C(ABC) = A
(
hL,g3,R(B)− h1,g2,1(B)

)
C ∈ IG,ABC ,

and therefore, also sp(a) ∈ IG,ABC .
Case 3: We note that ABL lm(g3)R = ABC and that we can write sp(a) as

sp(a) =
(
h1,g1,1(ABC)− hABL,g3,R(ABC)

)
+
(
hABL,g3,R(ABC)− hA,g2,C(ABC)

)
.

According to our assumptions, we have that h1,g1,1(ABC) − hABL,g3,R(ABC) ∈ IG,ABC and
since lm(g3) and lm(g2) do not overlap in ABC, Lemma 4.33 yields that hABL,g3,R(ABC) −
hA,g2,C(ABC) ∈ IG,ABC . Hence, also sp(a) ∈ IG,ABC .

Case 4 : We note that LUV RC = ABC and that we can write sp(a) as

sp(a) =
(
h1,g1,1(ABC)− hL,g3,RC(ABC)

)
+
(
hL,g3,RC(ABC)− hA,g2,C(ABC)

)
.

According to our assumptions, we have that h1,g1,1(ABC) − hL,g3,RC(ABC) ∈ IG,ABC and
h1,g3,R(UV R)− hU,g2,1(UV R) ∈ IG,UV R. Hence,

hL,g3,RC(ABC)− hA,g2,C(ABC) = L
(
h1,g3,R(UV R)− hU,g2,1(UV R)

)
C ∈ IG,LUV RC = IG,ABC ,

and therefore, also sp(a) ∈ IG,ABC .
Case 5 : We note that ALUV R = ABC and that we can write sp(a) as

sp(a) =
(
h1,g1,1(ABC)− hAL,g3,R(ABC)

)
+
(
hAL,g3,R(ABC)− hA,g2,C(ABC)

)
.

According to our assumptions, we have that h1,g1,1(ABC) − hAL,g3,R(ABC) ∈ IG,ABC and
h1,g2,V (LUV )− hL,g3,1(LUV ) ∈ IG,LUV . Hence,

hAL,g3,R(ABC)− hA,g2,C(ABC) = −A
(
h1,g2,V (LUV )− hL,g3,1(LUV )

)
R ∈ IG,ALUV R = IG,ABC ,

and therefore, also sp(a) ∈ IG,ABC .
Case 6 : We note that A1LBRC2 = ABC and that we can write sp(a) as

sp(a) =
(
h1,g1,1(ABC)− hA1,g3,C2(ABC)

)
+
(
hA1,g3,C2(ABC)− hA,g2,C(ABC)

)
.

According to our assumptions, we have that h1,g1,1(ABC) − hA1,g3,C2(ABC) ∈ IG,ABC and
h1,g3,1(LBR)− hL,g2,R(LBR) ∈ IG,LBR. Hence,

hA1,g3,C2(ABC)−hA,g2,C(ABC) = A1
(
h1,g3,1(LBR)−hL,g2,R(LBR)

)
C2 ∈ IG,A1LBRC2 = IG,ABC ,

and therefore, also sp(a) ∈ IG,ABC .
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So, the previous two theorems allow us to safely delete an ambiguity, given that one or two
other ambiguities are (⪯-)resolvable. When we want to use the chain criterion as part of an
actual Gröbner basis computation, we could, given an ambiguity a = (ABC, A, C, g1, g2) ∈ ambG

and g3 ∈ G such that lm(g3) | ABC, analyse in which particular case of Theorem 4.31 or
Theorem 4.32 we are and explicitly check whether the other ambiguities appearing in this case
of the chain criterion are resolvable to decide whether we can delete a or have to process it.
However, this is very costly and would most likely take more time than just reducing sp(a)
as we would usually do. Hence, we have to find simpler criteria that assure that the other
ambiguities appearing in the particular case of the chain criterion that we are in are resolvable.
We note that these other ambiguities are for sure resolvable if we process them during the next
step of our Gröbner basis computation. To ensure that this is indeed the case, we have to take
care that we do not end up in a cycle of deleting ambiguities, where we remove an ambiguity a1
assuming that another ambiguity a2 is resolvable and simultaneously remove a2 assuming that
a1 is resolvable. To avoid such cycles, we can impose a strict partial ordering on ambiguities
and only apply the chain criterion to delete an ambiguity a in situations where a is larger than
all ambiguities that the chain criterion relates to a.

Proposition 4.34. Let G = {g1, . . . , gn} ⊆ K⟨X⟩ and let Î be a strict partial ordering on
ambG. Furthermore, let S ⊆ ambG be the set of all ambiguities a = (ABC, A, C, gi, gj) ∈ ambG

such that there exists gk ∈ G with lm(gk) | ABC and such that the ambiguities a1, a′
1 ∈ ambG,

that the chain criterion relates to a and gk, are both smaller than a with respect to Î, i.e.
a1 Î a and a′

1 Î a (respectively, such that a1 is smaller than a if the chain criterion relates
only one ambiguity to a and gk). Then, all ambiguities in ambG are ⪯-resolvable if and only if
all ambiguities in ambG \S are ⪯-resolvable.

Proof. It is clear that all ambiguities in ambG \S are ⪯-resolvable if all ambiguities in ambG are
⪯-resolvable. For the other implication, assume that all ambiguities in ambG \S are ⪯-resolvable
but that not all ambiguities in ambG are ⪯-resolvable. Let a0 ∈ ambG be such an ambiguity.
Then, in particular, we have a0 ∈ S, which implies that the chain criterion is applicable to a0
and some gk ∈ G, where the ambiguities a1, a′

1 ∈ ambG, that the chain criterion relates to a0 and
gk, are both smaller than a0 with respect to Î (respectively, where a1 is smaller than a0 if the
chain criterion relates only one ambiguity to a and gk). Since a0 is not ⪯-resolvable, at least one
of these ambiguities can also not be ⪯-resolvable because of Theorem 4.31 and Theorem 4.32.
W.l.o.g. let this be a1. Then, we must have a1 ∈ S and by the same arguments as above, we
get the existence of a2 ∈ S such that a2 is not ⪯-resolvable and a1 Ï a2. If we keep doing
this process, we obtain a sequence of non ⪯-resolvable elements ai ∈ S, where ai Ï ai+1. Since
G is finite, also ambG and S are finite. This implies that we can do this process only a finite
number of times, and consequently, that the sequence obtained in this way has to be finite. Let
an ∈ S be the last, and hence, smallest element of this sequence. Then, all ambiguities that the
chain criterion relates to an and some gk ∈ G are ⪯-resolvable, because otherwise, at least one
of them would have to be in S and would be smaller than an. But this implies that also an is
⪯-resolvable, which is a contradiction.

One example of a strict partial ordering, that can be used for this purpose, is the fol-
lowing. For a set of polynomials G = {g1, . . . , gn} ⊆ K⟨X⟩ and a = (ABC, A, C, gi, gj),
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a′ = (A′B′C ′, A′, C ′, gk, gl) ∈ ambG, we define

a Î a′ :⇔ min{i, j} < min{k, l}.

It is easy to see that Î is indeed a strict partial ordering on ambG. Based on this ordering,
the following simple test assures that the chain criterion is only applied to delete an ambiguity
a in situations where a is larger than the ambiguities that the chain criterion relates to a, and
consequently, allows us to safely delete a during a Gröbner basis computation without having
to make any explicit (⪯-)resolvability checks.

Corollary 4.35. Let G = {g1, . . . , gn} ⊆ K⟨X⟩. Furthermore, let a = (ABC, A, C, gi, gj) ∈
ambG and gk ∈ G be such that lm(gk) | ABC and k < min{i, j}. Then, a does not have to be
considered during a Gröbner basis computation with G as input.

Proof. Independent of the particular case of the chain criterion, all ambiguities that are related
to a and gk are between gi and gk or gj and gk. Hence, the assumption k < min{i, j} and the
definition of Î imply that a is larger than all these ambiguities with respect to Î. Then, the
result follows from Proposition 4.34 and the fact that all ambiguities, that are not removed, are
processed at some point during the Gröbner basis computation.

While this is already a very good test that allows to very efficiently apply the chain criterion,
it is too strict in some cases. This means that sometimes instances where the chain criterion could
be applied remain undetected. In order to improve this performance, we tried different orderings
on ambiguities and modifications of Corollary 4.35 on several examples and the following strict
partial ordering combined with the criteria stated in Corollary 4.36 and Corollary 4.37 turned
out to provide the best tradeoff between efficiency in applying the tests and detecting as many
redundant ambiguities as possible.

For a set of polynomials G = {g1, . . . , gn} ⊆ K⟨X⟩ and a = (ABC, A, C, gi, gj),
a′ = (A′B′C ′, A′, C ′, gk, gl) ∈ ambG, we define a Î a′ if one of the following holds.

1. a is an inclusion ambiguity and a′ is an overlap ambiguity.

2. a and a′ are both overlap ambiguities and

(a) |ABC| < |A′B′C ′|, or
(b) |ABC| = |A′B′C ′| and |A| < |A′|, or
(c) |ABC| = |A′B′C ′| and |A| = |A′| and |C| < |C ′|.

3. a and a′ are both inclusion ambiguities and

(a) |ABC| < |A′B′C ′|, or
(b) |ABC| = |A′B′C ′| and j < l.

It is straightforward to check that this is indeed a strict partial ordering on ambG. We split
the corresponding set of conditions to be checked during a Gröbner basis computation into two
parts. The criteria to delete an overlap ambiguity are as follows.
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Corollary 4.36. Let G = {g1, . . . , gn} ⊆ K⟨X⟩. Furthermore, let a = (ABC, A, C, gi, gj) ∈
ambG be an overlap ambiguity and let gk ∈ G be such that lm(gk) | ABC and such that one of
the following conditions holds.

1. lm(gk) | m for some m ∈ {A, B, C}

2. There exist L, R ∈ ⟨X⟩ such that ABC = L lm(gk)R and

(a) |L| = 0 and |R| < |C|, or
(b) 0 < |L| < |A|, or
(c) |L| ≥ |A| and |R| > 0.

Then, a does not have to be considered during a Gröbner basis computation with G as input.

Proof. Due to Proposition 4.34 and the fact that all ambiguities, that are not removed, are
processed at some point during the Gröbner basis computation, it suffices to show that the
conditions above assure that the ambiguity a is larger with respect to Î than all ambiguities
that the chain criterion relates to a and gk. To show this, we consider the different cases of
Corollary 4.36 separately.

Case 1. If lm(gk) | m for some m ∈ {A, B, C}, then we are either in case 1,2 or 3 of
Theorem 4.31 and in all these cases only inclusion ambiguities are related to a and gk. Then, it
follows by the definition of Î that a is larger than all these ambiguities.

Now, assume that there exist L, R ∈ ⟨X⟩ such that ABC = L lm(gk)R.
Case 2.(a) If |L| = 0 and |R| < |C|, then we are in case 6 of Theorem 4.31. In this case, the

related ambiguity between gi and gk is an inclusion ambiguity, since |L| = 0, and consequently,
smaller than a. The related ambiguity between gj and gk is a′ = (lm(gk)R, A, R, gk, gj), which
is either an inclusion ambiguity (if |R| = 0) or an overlap ambiguity, where | lm(gk)R| = |ABC|
and |R| < |C|. In both cases, our ordering assures that we have a′ Î a.

Case 2.(b) If 0 < |L| < |A|, then we are either in case 4 or 6 of Theorem 4.31, depending
on whether |R| ≥ |C| or |R| < |C|. First, we note that if |R| = 0, we are in a similar situation
as in the proof of Case 2.(a) only with the roles of L and R, respectively A and C, swapped.
In particular, then the related ambiguity between gk and gj is an inclusion ambiguity, since
|R| = 0, and consequently, smaller than a. The related overlap ambiguity between gi and gk

is a′ = (L lm(gk), L, C, gi, gk), where |L lm(gk)| = |ABC| and |L| < |A|. Hence, a′ Î a. If
0 < |R| < |C|, then we can write ABC as ABC = LA1BC2R with nonempty A1, C2 such
that A1BC2 = lm(gk). In this case, the related ambiguities are the overlap ambiguities a′ =
(LA1BC2, L, C2, gi, gk) and a′′ = (A1BC2R, R, A1, gk, gj). Since |L|, |R| > 0, we have that
|LA1BC2| < |ABC| and |A1BC2R| < |ABC|, and therefore, a′ Î a and a′′ Î a. Finally,
we consider the case where |R| ≥ |C|. Then, we are in case 4 of Theorem 4.31, which relates
an inclusion ambiguity as well as an overlap ambiguity to a and gk. The inclusion ambiguity
is trivially smaller than a. The overlap ambiguity is a′ = (UV R, U, R, gj , gk), with U, V such
that lm(gk) = UV and A = LU . Since |L| > 0, we have |UV R| < |LUV R| = |ABC|, and
consequently, a′ Î a.

Case 2.(c) If |L| ≥ |A| and |R| > 0, then we are in case 5 of Theorem 4.31, which relates
an inclusion ambiguity between gj and gk as well as an overlap ambiguity between gi and gk
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to a and gk. The inclusion ambiguity is trivially smaller than a. The overlap ambiguity is
a′ = (LUV, L, V, gi, gk), with U, V such that lm(gk) = UV and C = V R. Since |R| > 0, we have
|LUV | < |LUV R| = |ABC|, and consequently, a′ Î a.

The criteria to delete an inclusion ambiguity look as follows.

Corollary 4.37. Let G = {g1, . . . , gn} ⊆ K⟨X⟩. Furthermore, let a = (ABC, A, C, gi, gj) ∈
ambG be an inclusion ambiguity and let gk ∈ G with k < j be such that lm(gk) | ABC and such
that one of the following conditions holds.

1. lm(gk) | m for some m ∈ {A, C}

2. lm(gk) | B and |AC| > 0

3. B | lm(gk) and | lm(gk)| < |ABC|

Then, a does not have to be considered during a Gröbner basis computation with G as input.

Proof. As in the proof of Corollary 4.36, we only have to show that the conditions above assure
that the ambiguity a is larger with respect to Î than all ambiguities that the chain criterion
relates to a and gk. To show this, we consider the different cases of Corollary 4.37 separately.

Case 1. If lm(gk) | m for some m ∈ {A, C}, then we are either in case 1 or 3 of Theorem 4.32.
In both of these cases, the chain criterion relates an inclusion ambiguity a′ = (ABC, L, R, gi, gk)
with some L, R ∈ ⟨X⟩ to a and gk. Then, it follows from the assumption k < j and the definition
of Î that a′ Î a.

Case 2. If lm(gk) | B and |AC| > 0, then we are in case 2 of Theorem 4.32. In this
case, the related ambiguities are inclusion ambiguities of the form a′ = (ABC, L, R, gi, gk) and
a′′ = (B, L′, R′, gj , gk) with some L, L′, R, R′ ∈ ⟨X⟩. Then, k < j implies that a′ is smaller than
a. Furthermore, |AC| > 0 implies that |B| < |ABC|, and consequently, that also a′′ is smaller
than a.

Case 3. If B | lm(gk) and | lm(gk)| < |ABC|, then we are in case 6 of Theorem 4.32.
In this case, the chain criterion relates the inclusion ambiguities a′ = (ABC, L, R, gi, gk) and
a′′ = (lm(gk), L′, R′, gk, gj) with some L, L′, R, R′ ∈ ⟨X⟩ to a and gk. Then, k < j implies that
a′ is smaller than a. Furthermore, | lm(gk)| < |ABC| implies that also a′′ is smaller than a.

At the end of the following section, we show the effectiveness of Corollary 4.36 and Corol-
lary 4.37 on the basis of several examples.

4.5.2 Generator reduction

In the previous section, we concerned ourselves with finding criteria that allow us to reduce
the number of ambiguities, that actually have to be processed, i.e. checked for resolvability,
during a Gröbner basis computation, by deleting redundant ambiguities on the basis of other
ambiguities. In this section, we discuss a different approach that also helps us to reduce the
number of ambiguities, namely redundant generator reduction. This optimisation strategy,
which is also presented in [Xiu12, Section 4.2.2], aims at using elements that are about to be
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added to a (partial) Gröbner basis G to remove other elements in G. We additionally propose
to occasionally interreduce parts of G. In this way, we keep the (partial) Gröbner basis as small
as possible, and therefore, also reduce the total number of ambiguities that can arise.

The theoretical foundation for this section is the following refinement of Proposition 3.46.

Proposition 4.38. Let G ⊆ K⟨X⟩ be a partial Gröbner basis obtained as an intermediate result
during the execution of Algorithm 3 or Algorithm 6. Furthermore, let g ∈ G and g′ ∈ K⟨X⟩
be such that g →G\{g} g′. Then, we can replace G by (G \ {g}) ∪ {g′} in the Gröbner basis
computation.

Proof. We denote G′ = (G \ {g}) ∪ {g′} and let G̃ be the result of Algorithm 3 or Algorithm 6,
where we replaced G by G′ at some point. To prove Proposition 4.38, we show that G̃ is a
Göbner basis of (G). To this end, we first note that (G) = (G̃) follows from Lemma 3.47.
Hence, it remains to show that all ambiguities of G̃ are ⪯-resolvable. To this end, let a =
(ABC, A, C, f, f ′) ∈ ambG be an ambiguity of G̃. We distinguish between two cases depending
on when a was processed during the computation of G̃. If a was processed after G was replaced
by G′, then a is clearly ⪯-resolvable with respect to G̃. If a was processed before G was replaced
by G′, then we have sp(a) ∈ IG,ABC . To show that also sp(a) ∈ IG̃,ABC holds, we prove
that IG,ABC ⊆ IG̃,ABC . This statement trivially holds if g /∈ IG,ABC because then IG,ABC ⊆
IG′,ABC ⊆ IG̃,ABC . For the other case, we note that by the properties of the reduction relation,
we can write g as g = g′ + lg̃r, with l, r ∈ ⟨X⟩ and g̃ ∈ G \ {g} such that lm(g) ⪰ lm(g′), lm(g̃).
Hence, if g ∈ IG,ABC , then also g′, lg̃r ∈ IG̃,ABC , and therefore, g ∈ IG̃,ABC , which implies that
IG,ABC ⊆ IG̃,ABC .

In particular, Proposition 4.38 allows us to interreduce a partial Gröbner basis G at any
time during a Gröbner basis computation. Thereby, we can remove redundant generators from
G and keep this set, and consequently also ambG, as small as possible. However, interreducing
the whole partial Gröbner basis can be computationally expensive, especially when G is already
fairly large. Hence, we are seeking a simple criterion that tells us when an element g ∈ G would
be interreduced to zero by G \ {g}. The following corollary provides such a test.

Corollary 4.39. Let G ⊆ K⟨X⟩ be a partial Gröbner basis obtained as an intermediate result
during the execution of Algorithm 3 or Algorithm 6. Furthermore, let g, g′ ∈ G be such that
lm(g) = A lm(g′)C for some A, C ∈ ⟨X⟩. If the inclusion ambiguity (A lm(g′)C, A, C, g, g′) is
resolvable with respect to G, then g can be removed from G.

Proof. We denote a = (A lm(g′)C, A, C, g, g′) and note that g →A,g′,C − 1
lc(g) sp(a). Hence,

Proposition 4.38 allows us to replace G by G′ = (G \ {g})∪ {− 1
lc(g) sp(a)}. Since a is resolvable

with respect to G and lm(sp(a)) ≺ lm(g), we have that − 1
lc(g) sp(a) →∗

G\{g} 0. So, another
application of Proposition 4.38 yields that we can replace G′ by G′\{− 1

lc(g) sp(a)} = G\{g}. We
do not have to add zero to the partial Gröbner basis as it does not influence further computations
anyway.

Note that we do not have to explicitly check the resolvability of the inclusion ambiguity
(A lm(g′)C, A, C, g, g′). It suffices to ensure that this ambiguity will be processed at some point
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of the Gröbner basis computation. Hence, we can safely remove g from G if we add the inclusion
ambiguity (A lm(g′)C, A, C, g, g′) to the ambiguities that are about to be processed.

Intuitively, we would want to apply Corollary 4.39 whenever we add a new element to the
Gröbner basis. However, in practice, it turned out to be advantageous to apply this criterion only
at the end of each iteration of Algorithm 3 or Algorithm 6, respectively, i.e. when we compute
a new set of ambiguities. Additionally, we can also interreduce the elements which have been
added to the partial Gröbner basis during an iteration before applying Corollary 4.39. In this
way, we can “reveal” more new leading terms, which allows us to reduce the number of generators
even more. Also, since the number of newly added elements is usually small compared to the size
of the whole partial Gröbner basis, this interreduction does not affect the overall computation
time too much.

In the following, we adapt Algorihtm 6 so that it incorporates the generator reduction as
discussed above. We note that Algorithm 3 can be adapted in a similar fashion.

Algorithm 14 F4 with generator reduction
Input: a finite set F ⊆ K⟨X⟩
Output if the algorithm terminates: G ⊆ K⟨X⟩ such that G is a Gröbner basis of (F )

1: Gold = ∅
2: Gnew = F
3: while Gnew ̸= ∅ do
4: Gnew = Interreduce(Gnew)
5: amb = ∅
6: for g ∈ Gold do
7: if there exist g′ ∈ Gnew, A, C ∈ ⟨X⟩ such that lm(g) = A lm(g′)C then
8: Gold = Gold \ {g}
9: amb = amb ∪ {(A lm(g′)C, A, C, g, g′)}

10: Gold = Gold ∪Gnew

11: Gnew = ∅
12: critPairs = critGold

∪ {cp(a) | a ∈ amb}
13: while critPairs ̸= ∅ do
14: select C ⊆ critPairs
15: critPairs = critPairs \ C
16: P =

⋃
(fa,ga)∈C{fa, ga}

17: P̃ = Reduction(P, Gold ∪Gnew)
18: Gnew = Gnew ∪ P̃

19: return Gold

Theorem 4.40. At the end of every iteration of the outer while loop of Algorithm 14, all
ambiguities of Gold are resolvable with respect to Gold ∪ Gnew. Furthermore, for a finite set
F ⊆ K⟨X⟩ such that (F ) admits a finite Gröbner basis, Algorithm 6 terminates given F as
input and returns a Gröbner basis of (F ).

Proof. The result follows from Theorem 4.29, Proposition 4.38 and Corollary 4.39.
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To end this section, we illustrate the effectiveness of the deletion criteria developed in the
previous section and the methods to remove redundant generators discussed in this section by
applying them to compute Gröbner bases for several ideals.

Example 4.41. We work over Q⟨a, b⟩ equipped with ⪯deglex where we order the indeterminates
as b ≺lex a and consider 13 different ideals In ⊆ Q⟨a, b⟩, n = 1, . . . , 13. As done in [Xiu12], we
generate these ideals by finite systems of generators derived from finite generalised triangular
groups taken from [RM02, Theorem 2.12]. This means that, for n = 1, . . . , 13, we have In = (Gn),
with

G1 = {a2 − 1, b3 − 1, (ababab2ab2)2 − 1}, G2 = {a2 − 1, b3 − 1, (ababab2)3 − 1},
G3 = {a3 − 1, b3 − 1, (abab2)2 − 1}, G4 = {a3 − 1, b3 − 1, (aba2b2)2 − 1},
G5 = {a2 − 1, b5 − 1, (abab2)2 − 1}, G6 = {a2 − 1, b5 − 1, (ababab4)2 − 1},
G7 = {a2 − 1, b5 − 1, (abab2ab4)2 − 1}, G8 = {a2 − 1, b4 − 1, (ababab3)2 − 1},
G9 = {a2 − 1, b3 − 1, (abab2)2 − 1}, G10 = {a2 − 1, b3 − 1, (ababab2)2 − 1},

G11 = {a2 − 1, b3 − 1, (abababab2)2 − 1}, G12 = {a2 − 1, b3 − 1, (ababab2abab2)2 − 1},
G13 = {a2 − 1, b3 − 1, (ababababab2ab2)2 − 1}.

In the following table, we list the total number of ambiguities that have to be considered to
compute a Gröbner basis for In when using Algorithm 6 together with the different optimisation
techniques discussed so far. In particular, we compare the total number of ambiguities that are
checked for resolvability once using no optimisations (these numbers are listed in the column
named “no optimisation”), once using the deletion criteria from Corollary 4.36 and Corollary 4.37
(these numbers are listed in the column named “deletion criteria”), once using Corollary 4.39 as
described in Algorithm 14 (these numbers are listed in the column named “generator reduction”)
and once using deletion criteria and generator reduction together (these numbers are listed in
the column named “combined”). We also want to relate the total number of ambiguities with the
size of the obtained Gröbner bases. However, note that we cannot directly compare the (sizes
of the) Gröbner bases that we obtain using the different optimisation strategies as these need
not necessarily be equal. So, in the last column we list the number of elements in the (unique)
reduced Gröbner basis of In. All computations were done with the SageMath version of the
OperatorGB package (see Chapter 6).
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n
no deletion generator

combined RedGB
optimisation criteria reduction

1 18831 608 5473 562 35
2 137606 1362 46994 1534 96
3 4079 292 2586 325 40
4 9906 480 4596 603 28
5 2525 183 1203 222 21
6 124293 2759 75019 3413 164
7 392806 5885 101095 7719 164
8 11822 545 4036 452 37
9 227 38 103 47 5
10 2708 140 610 116 15
11 5378 287 2238 329 21
12 106563 1182 25651 1115 70
13 442728 5470 144542 3820 194

For each example, we have highlighted the column where the least number of ambiguities
has to be considered to compute a Gröbner basis. Surprisingly, in most cases, this is the column
where only deletion criteria are used. Nevertheless, we note that using our implementation, the
overall computation time in almost all of these examples, and especially in the larger examples,
is the lowest when both optimisation strategies are combined. To get a feeling of the magnitude
of speedup these optimisations provide, we note that the computation of the Gröbner basis of
I13 took more than eight hours using the plain F4 algorithm as described in Section 4.3 but
only about 80 seconds when used together with all the optimisation strategies discussed in this
chapter. Also, similar results are obtained when the Buchberger algorithm is used instead of the
F4 algorithm. So, independent of the actual algorithm, this shows that these optimisations can
really speed up a Gröbner basis computation.

4.5.3 Faugère-Lachartre elimination

To end this chapter, we explain an optimisation technique that is only relevant for the F4
algorithm and is concerned with fast reduced row echelon form computations. This is important
because, usually, when computing a (partial) Gröbner basis with the F4 algorithm, most of the
time is spent on reducing the matrices to reduced row echelon form, especially as the involved
matrices can get pretty big. However, these matrices all share certain special properties.

• sparse: Typically, most entries in each row are zero.

• rank deficient: The matrices do not necessarily have full rank.

• almost block triangular : A huge part of each matrix is already in triangular form and many
pivots are known prior to the computation.

The Faugère-Lachartre elimination algorithm [FL10] makes use of these properties to com-
pute the reduced row echelon form of a matrix, and hence, is especially efficient on matrices
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coming from Gröbner basis computations. Given a matrix M to reduce, the main idea of this
algorithm is to first analyse M and to permute all already visible pivots into an upper trian-
gular submatrix A by swapping rows and columns of M . The rest of the matrix is divided
into three blocks B, C and D, respectively. So that after this first step we obtain the following
decomposition.

M →

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ · · · · · · ∗ ∗ · · · · · · ∗
. . . A

...
... B

...
. . . ...

...
...

∗ ∗ · · · · · · ∗
∗ · · · · · · ∗ ∗ · · · · · · ∗
... C

...
... D

...
∗ · · · · · · ∗ ∗ · · · · · · ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Note that, when permuting columns, one has to take care that within each block the columns are
still ordered so that the corresponding monomials are decreasing with respect to the monomial
ordering used. It is no problem when there are monomials associated to columns of B that are
larger than monomials associated to columns of A.

Now, each submatrix is treated separately. Since all elements in the diagonal of A are
nonzero, A is invertible and a reduction of these rows yields an identity and A−1B. Then, the
identity part is used to zero out the submatrix C. Finally, the lower right block is reduced
using usual Gauss-Jordan elimination (or any other reduction algorithm). These steps can be
visualised as follows.

M →
(

A B

C D

)
→

(
I A−1B

C D

)
→

(
I A−1B

0 D − CA−1B

)
→

(
I A−1B

0 RRef(D − CA−1B)

)

Since the block D is typically much smaller than A, the reduction of D−CA−1B does not really
contribute to the overall time needed by the algorithm. In the end, the previously permuted
rows and columns can be permuted back to reconstruct a row echelon form of M . Note that
in order to obtain a reduced row echelon form of M , we would also have to reduce A−1B
by RRef(D − CA−1B). However, we can see that all polynomials returned by our reduction
procedure must be in the block RRef(D − CA−1B) because the pivots of the upper rows have
not changed and the lower left part has been zeroed out. So, in fact, we do not have to reverse
any row or column permutation and can immediately return all polynomials corresponding to
the nonzero rows of RRef(D − CA−1B).

Since we are also interested in cofactor representations, we as well have to compute the
transformation matrix T such that

T ·
(

A B

C D

)
=
(

I A−1B

0 RRef(D − CA−1B)

)
.

It is easy to see that T is given by

T =
(

A−1 0
−T̃CA−1 T̃

)
,
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with T̃ such that T̃ · (D −CA−1B) = RRef(D −CA−1B). In particular, we are only interested
in cofactor representations of the polynomials corresponding to the rows of RRef(D−CA−1B).
So, actually only the lower part of T is of interest for us as these rows encode the cofactor
representations of RRef(D − CA−1B). We also see that we in fact never need solely A−1 but
only CA−1, which can be computed efficiently using forward substitution since A is upper
triangular.
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Chapter 5

Proving operator identities

Now, we can finally dedicate ourselves to the actual goal of this thesis, namely to present an
algebraic framework for proving operator identities. In a nutshell, we want to use already known
identities of linear operators, our assumptions, to verify other, new identities, our claims, by a
purely algebraic computation.

To this end, we model such identities via noncommutative polynomials. Note that we have
to use noncommutative polynomials as the composition of linear operators is also noncommu-
tative. Then, proving that a claimed identity holds, basically translates into showing that the
polynomial associated to this claim lies in the ideal generated by the polynomials correspond-
ing to our assumptions. In order to verify this ideal membership, we can utilise the theory of
Gröbner bases developed in the previous chapters.

The first to apply the theory of noncommutaive Gröbner bases to operator identities were
Helton et al. [HW94, HSW98] at the end of the last century. They used Gröbner bases to simplify
matrix identities in linear system theory. Around the same time, Gröbner bases techniques
were also applied to discover operator identities and to solve matrix equations and matrix
completion problems [HS99, Kro01]. At the beginning of this century, Rosenkranz et al. used
noncommutative Gröbner bases to solve linear boundary value problems [RBE03].

However, when we transition from linear operators to noncommutative polynomials, we lose
important information. When working with actual operators, their domains and codomains
impose certain restrictions on which sums and products we are allowed to form but in case of
polynomials our computations are not restricted at all. So, in order to derive a statement about
operators from a verified ideal membership of noncommutative polynomials, we would have to
make sure that all computations done in K⟨X⟩ respect the restrictions imposed by the domains
and codomains of the operators. While it has already been observed in the pioneering work
that this is the case for the operations executed in the noncommutative version of Buchberger’s
algorithm, cf. [HSW98, Theorem 25], only recently Raab et al. [RRH19] have developed a simple
criterion on the polynomials corresponding to the assumptions and claims that allows us to
immediately translate a verified ideal membership to a valid statement about operators. In fact,
we then obtain a valid statement about operators for all situations in which the assumptions and
claims can be formulated (e.g. matrices of different sizes, bounded linear operators on Hilbert
spaces, etc.), all by a single formal computation.

72



In the first section of this chapter, we summarise the theory developed in [RRH19], which
eventually allows us to state a three step procedure to prove operator identities in a fully algebraic
fashion. We want to note that we only explain the main results of this theory that are relevant
for this thesis. For further details, proofs and generalisations of the concepts presented here, we
refer to [RRH19]. In Section 5.2, we then exemplarily apply this method to prove the uniqueness
of the Moore-Penrose inverse of a matrix.

5.1 Algebraic framework based on quivers
In this section, we derive a procedure that allows us to prove operator identities in a fully alge-
braic fashion. To this end, we should first clarify what we mean by “proving operator identities”.
Typically, this means that we are given some linear operators, such as matrices or bounded op-
erators on Hilbert spaces, having certain properties. These properties have to be expressible
as identities involving the operators and the arithmetic operations addition, composition and
scaling. We refer to these identities as our assumptions. Then, basically only using these as-
sumptions, we want to verify whether other identities of the given operators also hold. These
new identities are our claims.

Algebraically, we can model such identities by noncommutative polynomials. This is done
by uniformly replacing each linear operator by an indeterminate from some set X and forming
the difference of the left and right hand side of each identity. We illustrate this procedure on
a simple statement about the reverse order law for inner inverses, which we use as a running
example throughout this section.

Example 5.1. Let A and B be two linear operators. Furthermore, let A− and B− be linear
operators satisfying

AA−A = A and BB−B = B.

Such operators A− and B− are called inner inverses of A and B, respectively. We want to prove
that an inner inverse of AB is given by B−A−, i.e. that

ABB−A−AB = AB

holds, if the operator A−ABB− is idempotent, which means that

A−ABB−A−ABB− = A−ABB−.

Hence, our assumptions are

AA−A = A, BB−B = B, A−ABB−A−ABB− = A−ABB−,

and our claim is
ABB−A−AB = AB.

All these properties are already phrased as identities as required and we can therefore proceed
to translate them into noncommutative polynomials. If we replace A, A−, B and B− by a, a−,
b and b−, respectively, our assumptions translate into

aa−a− a, bb−b− b, a−abb−a−abb− − a−abb− ∈ Q⟨X⟩,
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and our claim corresponds to
abb−a−ab− ab ∈ Q⟨X⟩,

with X = {a, a−, b, b−}.

If we now collect all polynomials corresponding to our assumptions in a set F ⊆ K⟨X⟩, the
polynomials corresponding to all consequences of these assumptions, i.e. all operators that can
be formed by adding, composing and scaling our assumptions, are contained in (F ). Hence,
if one of our claims is indeed a consequence of our assumptions its associate polynomial must
be contained in (F ), and therefore, proving an operator identity comes down to verifying ideal
membership.

However, in general, not every element in an ideal generated by polynomials associated to
linear operators corresponds to a valid operator itself. As an example, consider two rectangular
matrices A ∈ Kn×m and B ∈ Km×k such that n ̸= k. Then, AB is well-defined but BA does not
exist. However, if we denote their corresponding polynomials by a, b ∈ Q⟨a, b⟩, then both, ab as
well as ba, are contained in (a). So, the ideal membership of the polynomial corresponding to
a claim in (F ) is a necessary condition for the corresponding operator identity to hold but it is
not sufficient. The goal of this section is to state a simple and sufficient condition that ensures
that the ideal membership indeed implies the corresponding operator identity.

To this end, we first have to transfer the restrictions, that the domains and codomains of the
operators involved in our identities impose, to the indeterminates in X that we used to replace
the actual linear operators. This can be done by considering a so-called labelled quiver, which
is a directed multigraph where edges are labelled by the indeterminates in X.

Definition 5.2. Let V, E, X be sets and s, t : E → V and l : E → X, respectively, be functions.
We call the tuple (V, E, X, s, t, l) a labelled quiver with vertices V , edges E and labels X. For
an edge e ∈ E, we refer to the vertices s(e) and t(e) as the source and target of e. Furthermore,
the label of e is given by l(e).

In the following, we extend the definition of a label from single edges to paths in a labelled
quiver such that concatenation of paths in Q corresponds to a multiplication of the labels in
⟨X⟩. To this end, we fix a labelled quiver Q = (V, E, X, s, t, l) for the rest of this section.

Definition 5.3. Let p be a nonempty path in Q, i.e. p = en . . . e1 such that ei ∈ E for 1 ≤ i ≤ n.
Then, the label of p is given by

l(p) := l(en) . . . l(e1) ∈ ⟨X⟩

and its source and target are given by s(p) := s(e1) and t(p) := t(en), respectively. The empty
path ϵv describes the path starting at the vertex v ∈ V and ending in v without passing through
any other edge. Its label, source and target are defined to be l(ϵv) := 1 ∈ ⟨X⟩, s(ϵv) := v and
t(ϵv) := v, respectively.

We can now encode the restrictions imposed by the operators by considering their domains
and codomains as the vertices of a labelled quiver and drawing an edge with the label x ∈ X
between two vertices v, w ∈ V if the operator that has been replaced by x maps between the
two spaces that are represented by v and w. To get a better understanding of this procedure,
we continue Example 5.1.
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Example 5.4. If all four operators A, A−, B and B− involved in Example 5.1 act on a single
space V, then this translates into the following labelled quiver.

•

a

b− a−

b

However, we can also consider another setting where the operators map between different spaces
Vu, Vv and Vw. For example,

A : Vv → Vw, A− : Vw → Vv, B : Vu → Vv, B− : Vv → Vu.

Then, this yields the following labelled quiver.

• • •
a−

a

b−

b

So, depending on different configurations of the domains and codomains of the operators
involved, we obtain different restrictions, and therefore, also different quivers. Note that we
draw the vertices of the quivers as simple black dots and do not label them according to the
underlying spaces. This should emphasise the fact that we are actually not interested in the
particular spaces but only in how they are related via the different operators. This abstraction
allows us to treat several different situations with the same quiver. For instance, in the first
part of Example 5.4 we do not care whether the particular space all the operators act on is Rn

or Cn or any other functional space; all these situations correspond to the same quiver. When
we want to assign concrete spaces to the vertices of a labelled quiver Q and actual operators
that map between these spaces to its edges, we have to consider a concrete representation of Q,
cf. [DW05].

Definition 5.5. Let V = (Vv)v∈V be a family of K-vector spaces and φ be a map that assigns
to each e ∈ E a K-linear map φ(e) : Vs(e) → Vt(e). Then, we call the pair (V, φ) a representation
of Q.

Remark. Note that every nonempty path en . . . e1 in Q induces a K-linear map φ(en) · . . . ·φ(e1),
since the definition of φ ensures that the maps φ(ei+1) and φ(ei) can be composed for all
1 ≤ i < n. Additionally, for every v ∈ V , the empty path ϵv induces the identity map on Vv.

So, a representation of Q helps us to translate the paths in Q, and consequently the mono-
mials in ⟨X⟩, back into linear operators. In the course of this process it appears natural to
demand that different paths having the same source, target and label get translated into the
same operator. While this is trivially the case if every edge has a unique label, the situation
becomes a bit more intricate if we allow nonunique labels. Therefore, we introduce what is called
a consistent representation of Q.
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Definition 5.6. Let R = (V, φ) be a representation of Q. Then, R is called consistent with
the labelling l if for all nonempty paths p = en . . . e1 and q = dn . . . d1 in Q with the same
source and target, equality of labels, l(p) = l(q), implies equality of the induces K-linear maps,
φ(en) · . . . · φ(e1) = φ(dn) · . . . · φ(d1).

Remark. In case that Q has unique labels, every representation of Q is consistent.
Given a consistent representation R = (V, φ) of a labelled quiver Q = (V, E, X, s, t, l), we can

formalise the intuitive concept of transforming a polynomial f ∈ K⟨X⟩ back into an actual linear
operator by replacing the indeterminates in f by the K-linear maps φ(e), e ∈ E. This, however,
is only possible if f respects the restrictions imposed by Q. This means that all monomials
in the support of f have to be labels of paths in Q with the same source and target. In the
following, we characterise such f .

Definition 5.7. Let m ∈ ⟨X⟩ be a monomial. The set of signatures of m is given by

σ(m) := {(s(p), t(p)) | p a path in Q with l(p) = m} ⊆ V × V.

For a polynomial f ∈ K⟨X⟩, we define the set of signatures of f to be

σ(f) :=
⋂

m∈supp(f)
σ(m) ⊆ V × V.

Additionally, for v, w ∈ V we define the set

K⟨X⟩v,w := {f ∈ K⟨X⟩ | (v, w) ∈ σ(f)}.

Remark. Note that σ(0) = V × V and σ(1) = {(v, v) | v ∈ V }.
So, a polynomial f ∈ K⟨X⟩ can be interpreted as a linear operator in the setting described

by the labelled quiver Q if and only if its set of signatures is nonempty, or in other words, if and
only if f lies in K⟨X⟩v,w for some v, w ∈ V . We call such a polynomial compatible with Q.

Definition 5.8. Let f ∈ K⟨X⟩. Then, f is compatible with the labelled quiver Q if σ(f) ̸= ∅. If
additionally all monomials m ∈ supp(f) have the same set of signatures σ(m), then f is called
uniformly compatible with Q.

Example 5.9. We revisit Example 5.1 and consider the following domains and codomains for
the operators involved:

A : Vv → Vw, A− : Vw → Vv, B : Vu → Vv, B− : Vv → Vu.

We have already seen that this constellation can be encoded in the following labelled quiver Q
with labels in X = {a, a−, b, b−}.

• • •
a−

a

b−

b
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We can check that the sets of signatures of the assumptions

aa−a− a, bb−b− b, a−abb−a−abb− − a−abb−,

as well as the set of signatures of the claim abb−a−ab− ab, all contain a single element. Hence,
all four polynomials are compatible with Q. In fact, it turns out that

σ(aa−a) = σ(a) = σ(aa−a− a),
σ(bb−b) = σ(b) = σ(bb−b− b),

σ(a−abb−a−abb−) = σ(a−abb−) = σ(a−abb−a−abb− − a−abb−),
σ(abb−a−ab) = σ(ab) = σ(abb−a−ab− ab),

which shows that all these polynomials are actually uniformly compatible with Q.

Remark. If the edges of a quiver Q have unique labels, each nontrivial monomial has at most
one signature. Therefore, in this case, a polynomial without constant term is compatible with
Q if and only if it is uniformly compatible with Q.

Given a compatible polynomial f ∈ K⟨X⟩v,w for some v, w ∈ V and a consistent represen-
tation R = (V, φ) of Q, we can plug in the linear maps φ(e), e ∈ E, for the indeterminates and
obtain an element in L(Vv,Vw), the set of K-linear maps from Vv to Vw. Note that, for fixed
v, w ∈ V , the operator obtained in this way is independent of the specific paths chosen, since R
is consistent. In particular, this means that we can define the following map φv,w.

Definition 5.10. Let R = (V, φ) be a consistent representation of Q and v, w ∈ V . We define
the K-linear map φv,w : K⟨X⟩v,w → L(Vv,Vw) by

φv,w(l(en . . . e1)) := φ(en) · . . . · φ(e1)

for all nonempty paths en . . . e1 in Q starting in v and ending in w. If v = w we define φv,v(1) :=
idVv . For f ∈ K⟨X⟩v,w we call φv,w(f) a realisation of f with respect to the representation R
of Q.

Remark. Note that a polynomial is compatible with Q if and only if it has at least one realisation
as a linear operator. Furthermore, if Q has unique labels, then every nonconstant compatible
polynomial has a unique realisation.

Example 5.11. Once again, we take a closer look at Example 5.1. We assume that Vu, Vv and
Vw are K-vector spaces and that

A ∈ L(Vv,Vw), A− ∈ L(Vw,Vv), B ∈ L(Vu,Vv), B− ∈ L(Vv,Vu).

The following three diagrams show a labelled quiver along with a labelling and a representation
of it, which can be used to describe these assumptions.

• • •
a−

a

b−

b

w v u

e2

e1

e4

e3

Vw Vv Vu

A−

A

B−

B
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Note that this representation is trivially consistent since every edge has a unique label. Further-
more, we have already checked that the polynomials

f1 = aa−a− a, f2 = bb−b− b, f3 = a−abb−a−abb− − a−abb−, f = abb−a−ab− ab

are (uniformly) compatible with this quiver. In fact, we have

f1 ∈ Q⟨X⟩v,w, f2 ∈ Q⟨X⟩u,v, f3 ∈ Q⟨X⟩v,v, f ∈ Q⟨X⟩u,w.

So, we can obtain the following realisations:

φv,w(f1) = φv,w(l(e1e2e1))− φv,w(l(e1)) = φ(e1) · φ(e2) · φ(e1)− φ(e1) = AA−A−A ∈ L(Vv,Vw),
φu,v(f2) = φu,v(l(e3e4e3))− φu,v(l(e3)) = φ(e3) · φ(e4) · φ(e3)− φ(e3) = BB−B −B ∈ L(Vu,Vv),

and similarly

φv,v(f3) = A−ABB−A−ABB− −A−ABB− ∈ L(Vv,Vv),
φu,w(f) = ABB−A−AB −AB ∈ L(Vu,Vw).

Combining all the notions defined so far, we can now finally state the main theorem of this
section, which introduces a simple criterion that allows us to immediately translate statements
about polynomials into statements about linear operators.

Theorem 5.12. Let F ⊆ K⟨X⟩ and f ∈ (F ). Furthermore, let Q be a labelled quiver such that
f is compatible with Q and all elements of F are uniformly compatible with Q. Then, for all
consistent representations R = (V, φ) of Q such that every realisation of any element of F with
respect to R is zero, we have that every realisation of f with respect to R is zero.

Proof. See [RRH19, Theorem 22].

To illustrate how Theorem 5.12 helps us to prove operator identities, we apply it to our
running example.

Example 5.13. We specify the following setting: given the operators

A ∈ L(Vv,Vw), A− ∈ L(Vw,Vv), B ∈ L(Vu,Vv), B− ∈ L(Vv,Vu)

mapping between the K-linear spaces Vu, Vv and Vw, where A− and B− are inner inverses of
A and B, respectively, we want to prove that B−A− is an inner inverse of AB if A−ABB− is
idempotent. In Example 5.1, we have already translated the corresponding operator identities
into the following noncommutative polynomials:

f1 = aa−a− a, f2 = bb−b− b, f3 = a−abb−a−abb− − a−abb−, f = abb−a−ab− ab.

If we take the quiver and the consistent representation described in Example 5.11, uniform com-
patibility of these polynomials has been shown in Example 5.9. Furthermore, by our assumptions
on the operators we know that the (unique) realisations

AA−A−A, BB−B −B, A−ABB−A−ABB− −A−ABB−
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of f1, f2 and f3 obtained in Example 5.11 are all zero. Hence, if f is in the ideal (f1, f2, f3),
Theorem 5.12 implies that also the realisation

ABB−A−AB −AB

of f is zero, which proves that B−A− is indeed an inner inverse of AB.
To finish this example, we have to show the ideal membership of f in (f1, f2, f3). This can

be done by exploiting the techniques developed in Chapter 4. We can compute the reduced
Gröbner basis of (f1, f2, f3) with respect to ⪯deglex where we order the indeterminates as a ≺lex

a− ≺lex b ≺lex b−, which turns out to be

G = {f1, f2, f}.

This immediately verifies the ideal membership of f in (f1, f2, f3), and therefore, finishes the
proof of our operator identity. Using the methods from Section 4.4, we can even provide an
explicit cofactor representation of f in terms of f1, f2 and f3:

f = f1bb−b− f1bb−a−abb−b + af2 − abb−a−af2 + af3b.

In fact, when we start with actual operator identities instead of polynomials, some conditions
of Theorem 5.12 become trivial. This allows us to state the following simple three step procedure
for proving operator identities in a fully algebraic fashion.

1. Phrase all assumptions on the operators involved as well as the claimed properties in terms
of identities involving those operators.

2. Convert these identities as well as the claimed identities to be proven into polynomials by
uniformly replacing each individual operator by a unique noncommutative indeterminate
from some set X in the differences of the left and right hand sides.

3. Prove that the polynomials corresponding to the claims lie in the ideal (F ) generated by
the set F of polynomials corresponding to the assumptions.

4. Consider different realisations R′ of the underlying quiver, to obtain analogous statements
in different settings.

Then, Theorem 5.12 yields that the claimed identities are indeed consequences of the as-
sumptions.

Note that we do not have to explicitly check the uniform compatibility of the assumptions
and the compatibility of the claims with a quiver. This relies on the observation that all polyno-
mials arising from actual operator identities are trivially compatible with the quiver Q describing
the situation of operators. In particular, since we replace each operator by an individual in-
determinate, including occurring identity operators, the polynomials that we form in step 1 of
this procedure do not have a constant term. Note that if an identity operator is replaced, its
properties of composition with other operators have to be included in the assumptions. Fur-
thermore, the associate quiver Q has unique labels, and therefore, all polynomials that we form
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are uniformly compatible with Q. Moreover, we also do not have to construct a representation
R of Q explicitly because R is already given implicitly by our translation of the actual operator
identities into polynomials and as Q has unique labels, R is automatically consistent with Q.
Additionally, we form each element in F in such a way that its unique realisation with respect to
R is zero. Hence, also this does not have to verified explicitly. However, by considering different
representations R′ of Q, for which the realisations of the elements in F are zero, we can even
obtain analogous statements for other operators in different settings without having to do any
additional computations.

In some cases, however, we might not want to replace each operator by a unique indetermi-
nate. Sometimes it can be advantageous to replace different operators by the same indeterminate.
For example, the identity operator can of course act on many different spaces, but because of
the very similar nature of these operators, we might want to replace all of them by the same
indeterminate. In this case, the associate quiver Q does not have unique labels anymore, and
therefore, we have to check the uniform compatibility of the assumptions explicitly. This means
that we have to perform the following fourth step before we are able to conclude that the claimed
identities indeed hold.

4. Check that all elements of F are uniformly compatible with the quiver Q describing the
situation of the given operators.

In fact, the assumption that the elements of F are uniformly compatible with the quiver Q
in Theorem 5.12 can be dropped. This was shown in [CHRR20]. Then, however, we have to
restrict how the ideal membership of the polynomials associated to the claims in the ideal (F )
is verified. In particular, the verification of the ideal membership has to be done by reducing
the polynomials corresponding to the claims to zero using a set G ⊆ (F ) of polynomials that
are Q-order compatible in the sense of the following definition.

Definition 5.14. Let f ∈ K⟨X⟩ be compatible with Q. Then, f is Q-order compatible if
σ(lm(f)) = σ(f).

Remark. Uniform compatibility implies Q-order compatibility. Additionally, if Q has unique
labels, the notions of Q-order compatibility and compatibility are equivalent

We can now state the following generalisation of Theorem 5.12.

Theorem 5.15. Let F ⊆ K⟨X⟩, G ⊆ (F ) and f ∈ K⟨X⟩ such that f →∗
G 0. Furthermore,

let Q be a labelled quiver such that f is compatible with Q and all elements of G are Q-order
compatible. Then, for all consistent representations R = (V, φ) of Q such that every realisation
of any element of G with respect to R is zero, we have that every realisation of f with respect
to R is zero.

Proof. See [CHRR20, Corollary 1].

So, if the assumption of uniform compatibility of the generators of (F ) is dropped, the
verification of the ideal membership depends on the quiver Q. Note that this is not the case in
Theorem 5.12, where ideal membership can be verified independently of any quiver. If F consists
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only of Q-order compatible polynomials, then a set G ⊆ (F ) as required in Theorem 5.15 can
be obtained by applying an adaptation of Algorithm 3 to F and Q, which is called Q-order
compatible completion and described in [CHRR20]. Given a set G, obtained by an application
of Q-order compatible completion to F and Q, and a consistent representation R = (V, φ) of Q,
every realisation of any element of G with respect to R is zero if and only if every realisation
of any element of F with respect to R is zero. Hence, based on Theorem 5.15, we can replace
the third and fourth step in our procedure for proving operator identities by the following
instructions.

3. Check that all elements of F are Q-order compatible with the quiver Q describing the
situation of the given operators.

4. Compute a set G ⊆ (F ) by applying Q-order compatible completion to F and Q, and use
it to reduce the polynomials corresponding to the claims to zero.

5.2 A worked example
In this section, we apply the procedure developed in the previous section to prove the uniqueness
of the Moore-Penrose inverse of a matrix. This generalised matrix inverse was introduced by
Penrose in [Pen55] and is defined as the solution of a certain set of equations. To be more
precise, the matrix A† ∈ Cn×m is called a Moore-Penrose inverse of A ∈ Cm×n if it satisfies the
following 4 conditions:

1. AA†A = A,

2. A†AA† = A†,

3. (AA†)∗ = AA†,

4. (A†A)∗ = A†A,

where M∗ ∈ Cl×k denotes the Hermitian transpose of the matrix M ∈ Ck×l.
We note that a Moore-Penrose inverse exists for every matrix A ∈ Cm×n (see [Pen55,

Theorem 1]) and in the following, we want to prove that it is actually unique. To this end,
we assume that we are given a matrix A ∈ Cm×n together with two Moore-Penrose inverses
A†

1, A†
2 ∈ Cn×m of A and we want to show that A†

1 = A†
2.

We note that we will replace each operator by a unique indeterminate. Hence, the quiver
corresponding to the situation of operators has unique labels, and consequently, we do not have
to check uniform compatibility or Q-order compatibility. So, it suffices to perform the three step
procedure described after Example 5.13.

Step 1: First, we have to phrase all assumptions on the operators involved in terms of identities.
Our only assumptions are that A†

1 as well as A†
2 are Moore-Penrose inverses of A and

according to the definition each of these assumptions can be phrased in terms of the four
defining equations of the Moore-Penrose inverse. However, whenever an operator identity
holds, also the adjoint statement holds. Hence, we have to add the adjoint statements
of the defining equations to our assumptions. Note that the third and fourth defining
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equation of the Moore-Penrose inverse are self-adjoint and of course, we have to them only
once. So, we obtain the following 12 assumptions.

AA†
1A = A, A†

1AA†
1 = A†

1, (AA†
1)∗ = AA†

1, (A†
1A)∗ = A†

1A,

AA†
2A = A, A†

2AA†
2 = A†

2, (AA†
2)∗ = AA†

2, (A†
2A)∗ = A†

2A.

(AA†
1A)∗ = A∗, (A†

1AA†
1)∗ = (A†

1)∗, (AA†
2A)∗ = A∗, (A†

2AA†
2)∗ = (A†

2)∗,

where the last line contains the four additional adjoint statements. Our claim A†
1 = A†

2 is
already phrased as an identity.

Step 2: Next, we have to translate the operator identities into noncommutative polynomials. We
do this by replacing the actual operators by the noncommutative indeterminates in X =
{a, a∗, a†

1, (a†
1)∗, a†

2, (a†
2)∗}. Then, our assumptions translate into

aa†
1a− a, a†

1aa†
1 − a†

1, (a†
1)∗a∗ − aa†

1, a∗(a†
1)∗ − a†

1a,

aa†
2a− a, a†

2aa†
2 − a†

2, (a†
2)∗a∗ − aa†

2, a∗(a†
2)∗ − a†

2a, (1)

a∗(a†
1)∗a∗ − a∗, (a†

1)∗a∗(a†
1)∗ − (a†

1)∗, a∗(a†
2)∗a∗ − a∗, (a†

2)∗a∗(a†
2)∗ − (a†

2)∗.

We collect all these polynomials in a set F ⊆ Q⟨X⟩. Analogously, our claim translates
into a†

1 − a†
2 ∈ Q⟨X⟩.

Step 3: Finally, we have to show that the polynomial corresponding to our claim lies in the ideal
generated by the polynomials corresponding to our assumptions, i.e. we have to verify that

a†
1 − a†

2 ∈ (F ).

Using ⪯deglex as a monomial ordering where we order the indeterminates as

a ≺lex a∗ ≺lex a†
1 ≺lex (a†

1)∗ ≺lex a†
2 ≺lex (a†

2)∗,

and applying the methods from Chapter 4, we can compute a Gröbner basis G of (F ).
The reduced Gröbner basis of (F ) is given by

G = {(a†
1)∗a∗ − aa†

1, a†
1a− a∗(a†

1)∗, aa∗(a†
1)∗ − a, a∗aa†

1 − a∗,

aa†
1(a†

1)∗ − (a†
1)∗, a∗(a†

1)∗a†
1 − a†

1, (a†
2)∗ − (a†

1)∗, a†
1 − a†

2}.

As we can see, our claim is an element of G. This verifies the ideal membership of a†
1− a†

2
in (F ). Additionally, we can apply the techniques developed in Section 4.4 to obtain the
following cofactor representation of the claim in terms of the assumptions

a†
1 − a†

2 = a†
1f1a†

2 − f2 + a†
1f3(aa†

2 − 1)− f4a∗(a†
2)∗a†

2 − a†
1f5a†

2

+ f6 + a†
1(a†

1)∗a∗f7 + (1− a†
1a)f8a†

2 + f9(a†
2)∗a†

2 − a†
1(a†

1)∗f11,
(2)

where fi denotes to the i-th polynomial in (1). This cofactor representation can be seen
as a certificate for the ideal membership a†

1 − a†
2 ∈ (F ).
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Now, applying Theorem 5.12 yields that the claimed operator identity A†
1 = A†

2 holds, which
means that the Moore-Penrose inverse of a matrix A ∈ Cn×m is indeed unique. Furthermore, by
considering different representations of the quiver associated to this example, Theorem 5.12 also
implies an analogous statement for linear operators over (infinite-dimensional) Hilbert spaces or
for elements of C∗-algebras. Also, note that the ideal membership of f in (F ) holds in Z⟨X⟩ as
well, since all coefficients in (2) are integers. This implies that an analogous statement holds in
an arbitrary ring with involution. For further details on this topic, we refer to [KDC07].

While the cofactor representation (2) in this illustrative example is rather short and the
computations required to obtain it could still be done by hand, more complicated examples
are often virtually impossible to do by hand as the representation of a polynomial in terms
of the generators of an ideal can be very involved and hard to find. For example, in joint
work in progress with Dragana Cvetković Ilić and her research group on algebraic proofs for
generalised inverses [CW17], we obtained certificates for certain ideal memberships related to
Hartwig’s triple reverse order law [Har86] consisting of several hundred terms. In such cases,
the assistance of a computer and dedicated software is very much needed. To this end, we have
developed the OperatorGB package, which we describe in detail in the following chapter.
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Chapter 6

Software

We have implemented all algorithms presented in this thesis in a package named OperatorGB
[HRR19]. In particular, we provide a version of this package for Mathematica and SageMath,
both of which are available at

http://gregensburger.com/softw/OperatorGB

along with documentation and examples.
In this chapter, we shall describe both of these versions, their main functionality and usage.

In particular, in Section 6.1, we discuss the two main methods provided by the package, which al-
low to compute noncommutative Gröbner bases together with tracing of cofactors and to almost
fully automatically certify operator identities. For further details concerning the functionality of
the package, we refer to the documentation. In Section 6.2, we provide some insights concern-
ing the design choices made when implementing these methods and explain some optimisations
which helped to obtain reasonably efficient software. Our implementation of noncommutative
Gröbner bases is by far not the only one publicly available. Other well-known packages that also
provide functionality for computing noncommutative Gröbner bases include the Mathematica
package NCAlgebra [HS01], the Singular package Letterplace [LSL09] and the GAP package
GBNP [CK16]. For a more extensive survey of computer algebra systems that provide the possi-
bility of performing computations in the noncommutative polynomial ring, we refer to [LSL09].
However, we note that at the time of writing this thesis, there is no other package publicly avail-
able that also allows to trace cofactors for arbitrary (partial) Gröbner bases computations in the
noncommutative polynomial ring. To end this chapter, we compare our implementations to the
other packages mentioned above using some of the benchmark examples presented in [LSL09]
as well as some of the examples from Section 4.5.2.

6.1 Main functionality
In this section, we shall describe the two most important methods implemented by our package,
namly Groebner and Certify. The first one allows to compute (partial) Gröbner bases of ar-
bitrary finitely generated ideals in Q⟨X⟩ together with tracing of cofactors, whereas the latter
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implements the procedure described after Theorem 5.12 to automatically verify operator iden-
tities. When the package manages to verify an operator identity, it also produces a certificate
of this proof, which can then be checked independently. Apart from this basic functionality, the
package also includes methods to check (uniform) compatibility of polynomials with quivers as
well as some other auxiliary methods for which we refer to the documentation. Note that, so
far, the only supported coefficient domain for noncommutative polynomials are the rationals.

The Mathematica version of the package can be loaded by placing it in the current working
directory and executing the following line.

In[1]:= << OperatorGB.m

Package OperatorGB version 1.2.0
Copyright 2019, Institute for Algebra, JKU
by Clemens Hofstadler, clemens.hofstadler@jku.at

Similarly, the SageMath version can be loaded by placing it in a directory where SageMath
can find it, e.g. the current working directory, and entering:

sage: from OperatorGB import *

Since the syntax of both versions of the package is very similar, we discuss the Mathematica
commands in more detail in the following sections and only show the usage of the corresponding
counterparts in SageMath briefly at the end of each section.

6.1.1 Computing noncommutative Gröbner bases

The first important application of our software is to compute noncommutative (partial) Gröbner
bases of arbitrary ideals in Q⟨X⟩, which can then be used to certify ideal membership via cofactor
representations. To illustrate how this can be achieved, we reconsider the polynomials from the
running example from Section 5.1. This means, we are given

f1 = aa−a− a, f2 = bb−b− b, f3 = a−abb−a−abb− − a−abb−

and we want to verify that
f = abb−a−ab− ab

is contained in the ideal (F ) = (f1, f2, f3) ⊆ Q⟨a, a−, b, b−⟩.
In Mathematica, these polynomials can be entered using the built-in noncommutative

multiplication.

In[2]:= F = {a**a-**a - a, b** b-**b - b,
a-**a**b** b-**a-**a**b**b- - a-**a**b**b-};

f = a**b**b-**a-**a**b - a**b;

Then, a monomial ordering has to be specified. The package supports a degree lexicographic
ordering as well as a multigraded lexicographic ordering with arbitrary many blocks. The first
ordering can be defined by passing a list of all variables that should be affected by the ordering
in ascending order to the function SetUpRing. Hence, the command
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In[3]:= SetUpRing[{a, a-, b, b-}]

a < a- < b < b-

defines a degree lexicographic ordering on Q⟨a, a−, b, b−⟩ where a ≺lex a− ≺lex b ≺lex b−. If
several lists are passed to SetUpRing, a multigraded lexicographic ordering is defined, where
each list defines one block of variables. So, for example, we can define a multigraded ordering
consisting of two blocks, where the first block consisting of a and a− is smaller than the second
block consisting of b and b−, as follows.

In[4]:= SetUpRing[{a, a-}, {b, b-}]

a < a- << b < b-

For this example, however, we stick to a degree lexicographic ordering where a ≺lex a− ≺lex

b ≺lex b−.
To now compute a (partial) Gröbner basis of the ideal generated by F, we call the method

Groebner. We note that in this particular example, we are in fact able to compute a complete
Gröbner basis. Besides a list of polynomials, the Groebner method takes an empty list (in this
example named cofactorsG) as an additional parameter. In this list, cofactor representations
of all elements in the Gröbner basis (including the generators given as input) are saved. Hence,
executing

In[5]:= cofactorsG = {};
G = Groebner[cofactorsG, F];

does not only yield a Gröbner basis G of the ideal generated by F

In[6]:= G

Out[6]= {-a + a**a-**a, -b + bb-**b, -a-**a**b**b- + a-**a**b**b-**a-**a**b**b-,
-a**b**b- + a**b**b-**a-**a**b**b-,
-a-**a**b + a-**a**b**b-**a-**a**b, -a**b + a**b**b-**a-**a**b}

but additionally for each element in G a cofactor representation in terms of the polynomials
in F, which is saved in form of a list of triples in cofactorsG. So, for example, the first list
in cofactorsG contains just one triple and corresponds to the first element in G, i.e. the first
element in F, the fourth list in cofactorsG corresponds to the fourth element in G, which is first
element that has been added during the Gröbner basis computation, and so on.

In[7]:= cofactorsG[[1]]

Out[7]= {{1, -a + a**a-**a, 1}}

In[8]:= cofactorsG[[4]]
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Out[8]= {{a, -a-**a**b**b- + a-**a**b**b-**a-**a**b**b-, 1},
{-1, -a + a**a-**a, b**b-**a-**a**b**b-}, {1, -a + a**a-**a, b**b-}}

Remark. The Groebner method can also take several optional arguments as input. Among other
things, these arguments can be used to limit the number of iterations of the outer while loop
(Line 3 in Algorithm 3 and Algorithm 6) or to impose a degree bound on the ambiguities that
are considered. We refer to the documentation for more information.

Having the Gröbner basis G, we can verify the ideal membership of f in the ideal generated
by F by computing a normal form of f with respect to G and checking whether this normal form
is zero. A normal form can be computed using the command ReducedForm, which, besides the
polynomial f to be reduced and the set of reductors G, also takes an empty list as input. In this
list, a cofactor representation of the difference of f and the computed normal form in terms of
G is saved.

In[9]:= cofactorsF = {};
ReducedForm[cofactorsF,G,f]

Out[9]= 0

As can be seen, we obtain zero, which proves the ideal membership. Additionally, cofactorsF
contains a cofactor representation of f − 0 = f in terms of G, which is just one triple as f was
already an element of G.

In[10]:= cofactorsF

Out[10]= {{1, -a**b + a**b**b-**a-**a**b, 1}}

However, usually, we want to have a linear combination consisting of the generators of the
ideal and not in terms of a Gröbner basis. This can be achieved using the method Rewrite,
which takes the list cofactorsF from the reduction and the list cofactorsG obtained from
calling Groebner[cofactorsG,F] as input and returns a cofactor representation of f in terms
of F.

In[11]:= certificate = Rewrite[cofactorsF, cofactorsG]

Out[11]= {{a, -b + b**b-**b, 1}, {-a**b**b-**a-**a, -b + b**b-**b, 1},
{a, -a-**a**b**b- + a-**a**b**b-**a-**a**b**b-, b},
{-1, -a + a**a-**a, b**b-**a-**a**b**b-**b}, {1, -a + a**a-**a, b**b-**b}}

This linear combination now serves as a certificate for the ideal membership of f in the ideal
generated by F. We can check that it still yields the polynomial f that we initially reduced using
the MultiplyOut command.

In[12]:= MultiplyOut[certificate] === f
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Out[12]= True

A SageMath session executing the same commands looks as follows. Note that before being
able to enter the polynomials, first a FreeAlgebra has to defined which serves as the parent for
the noncommutative polynomials. We have also replaced the variables a- and b- by aa and bb,
respectively. Furthermore, due to intermediate interreductions the Gröbner basis G computed
by the SageMath version of the package looks different to the one obtained in Mathematica.

# defining the free algebra
sage: A = FreeAlgebra(QQ,4,[’a’,’aa’,’b’,’bb’])
sage: a,aa,b,bb = A.gens()

# entering the polynomials
sage: F = [a*aa*a - a, b*bb*b - b, aa*a*b*bb*aa*a*b*bb - aa*a*b*bb]
sage: f = a*b*bb*aa*a*b - a*b

# defining the monomial ordering
sage: SetUpRing([a,aa,b,bb])
a < aa < b < bb

# computing a Groebner basis
sage: cofactorsG = []
sage: G = Groebner(cofactorsG,F)
sage: G
[-a + a*aa*a, -b + b*bb*b, -a*b + a*b*bb*aa*a*b]

# reducing the polynomial f
sage: cofactorsF = []
sage: ReducedForm(cofactorsF,G,f)
0
sage: cofactorsF
[(1, -a*b + a*b*bb*aa*a*b, 1)]

# rewriting the cofactors
sage: certificate = Rewrite(cofactorsF,cofactorsG)
sage: certificate
[(-1, -a + a*aa*a, b*bb*aa*a*b*bb*b),

(1, -a + a*aa*a, b*bb*b),
(a, -aa*a*b*bb + aa*a*b*bb*aa*a*b*bb, b),
(a, -b + b*bb*b, 1),
(-a*b*bb*aa*a, -b + b*bb*b, 1)]

# checking that the result is correct
sage: MultiplyOut(certificate) == f
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True

6.1.2 Certifying operator identities

The second main application and probably the standard use-case of our package is to almost fully
automatically certify operator identities using the method Certify. For illustrational purposes,
we again consider the running example from Section 5.1.

So, we are given the operators

A ∈ L(Vv,Vw), A− ∈ L(Vw,Vv), B ∈ L(Vu,Vv), B− ∈ L(Vv,Vu)

mapping between the K-linear spaces Vu, Vv and Vw, where A− and B− are inner inverses of A
and B, respectively, and we want to prove that B−A− is an inner inverse of AB if A−ABB− is
idempotent.

The translation of the actual operator identities into noncommutative polynomials still has
to be done by hand but from then on everything is automatised. Hence, we start by entering
the polynomials corresponding to the identities above into Mathematica.

In[1]:= assumptions = {a**a-**a - a, b** b-**b - b,
a-**a**b** b-**a-**a**b**b- - a-**a**b**b-};

claim = a**b**b-**a-**a**b - a**b;

Since our package does not assume that every operator has been replaced by a unique
indeterminate, we have to provide a quiver Q against which compatibility of the claim and
uniform compatibility of the assumptions is checked. Such a quiver can be defined by providing
a list of triples. For every operator L appearing in our operator identities, we have to provide a
triple of the form {l, s, t}, where l is the name of the indeterminate that we have replaced L with,
s is the codomain of L and t the domain of L. Hence, in case of our example, the corresponding
quiver can be set up as follows.

In[2]:= Q = {{a,Vv,Vw}, {a-,Vw,Vv}, {b,Vu,Vv}, {b-,Vv,Vu}};

Now, we can call the method Certify, which takes a set of assumptions, a claim (all in
form of noncommutative polynomials) and a quiver Q as input and automatically executes the
steps 3 and 4 of the procedure described after Theorem 5.12. The return value of Certify is
either a cofactor representation of the claim in terms of the assumptions, which proves that the
corresponding claimed operator identity is indeed a consequence of the assumed identities, or
$Failed (respectively, False in SageMath), indicating that the program was not able to prove
that the claimed identity follows from the assumptions.

In[3]:= certificate = Certify[assumptions,claim,Q]

Out[3]= {{a, -b + b**b-**b, 1}, {-a**b**b-**a-**a, -b + b**b-**b, 1},
{a, -a-**a**b**b- + a-**a**b**b-**a-**a**b**b-, b},
{-1, -a + a**a-**a, b**b-**a-**a**b**b-**b}, {1, -a + a**a-**a, b**b-**b}}
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As before, we can check that this is indeed a cofactor representation of our claim by multi-
plying it out.

In[4]:= MultiplyOut[certificate] === claim

Out[4]= True

In SageMath the same commands can be executed as follows.

# defining the free algebra
sage: A = FreeAlgebra(QQ,4,[’a’,’aa’,’b’,’bb’])
sage: a,aa,b,bb = A.gens()

# entering the assumptions and the claim
sage: assumptions = [a*aa*a - a, b*bb*b - b, aa*a*b*bb*aa*a*b*bb - aa*a*b*bb]
sage: claim = a*b*bb*aa*a*b - a*b

# defining the quiver
sage: Q = Quiver([(’a’,’Vv’,’Vw’),(’aa’,’Vw’,’Vv’),(’b’,’Vu’,’Vv’),(’bb’,’Vv’,’Vu’)])

# calling Certify
sage: certificate = Certify(assumptions,claim,Q)
sage: certificate
[[(-1, -a + a*aa*a, b*bb*aa*a*b*bb*b),

(1, -a + a*aa*a, b*bb*b),
(a, -aa*a*b*bb + aa*a*b*bb*aa*a*b*bb, b),
(a, -b + b*bb*b, 1),
(-a*b*bb*aa*a, -b + b*bb*b, 1)]]

# checking that the result is correct
sage: MultiplyOut(certificate) == claim
True

6.2 Implementation details
In this section, we summarise some important facts about the data structures used and some
code optimisations done in order to improve the performance of the Groebner method.

First of all, we note that the Mathematica version of the package implements the Buch-
berger algorithm whereas the SageMath version implements the F4 algorithm. The reason for
this is that Mathematica is particularly good at pattern matching, which is the foundation
for polynomial reduction as done in the Buchberger algorithm, but comparatively slow when it
comes to sparse linear algebra and matrix normal form computations. SageMath, however,
provides fast algorithms to efficiently compute reduced row echelon forms of sparse matrices.
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Regarding the data structures used in the Mathematica version of the package, there is not
much to say as in Mathematica everything is internally saved as a list anyway. However, we
note that in our procedures we do not use Mathematica’s built-in noncommutative multiplica-
tion, as it is very inflexible and does not provide a lot of support. Instead, we use our own data
structure to represent noncommutative monomials. This data structure automatically flattens
nested products or pulls out coefficients for example. Polynomial reduction is implemented via
replacement rules, which allows us to fully exploit Mathematica’s pattern matching capabili-
ties. When such a replacement rule is applied, the corresponding polynomial gets reduced and
simultaneously the cofactors of the reduction are saved in a separate list. In this way, we can
efficiently trace cofactors throughout the whole Gröbner basis computation.

The data structures used in the SageMath version of the package are a bit more intricate.
For example, we represent noncommutative monomials in form of strings. This has the big
advantage that divisibility checks of monomials, which have to be done very often, boil down to
checking whether one string is a substring of another string and this can be done very efficiently.
So, we store a monomial as a string consisting of all variables appearing in the monomial, each
separated by a special character, in our case this is “*”. Additionally, for divisibly checks to
work correctly, we add this special character also at the very beginning and the very end of each
monomial. As an example, the monomial aba gets converted into “*a*b*a*”. The empty word
becomes “*”. The data structure representing a term in a noncommutative polynomial then
consists of such a string and a coefficient stored as a SageMath rational. A noncommutative
polynomial is simply a list of such terms. At first, we tried storing a monomial as a tuple of
symbolic variables but with this approach the divisibility checks were way too slow, probably
due to costly equality checks of symbolic variables.

One important optimisation done in the Mathematica version of the package is the paral-
lelisation of certain parts of the computation. In particular, the computation of the ambiguities
as well as the computation of the S-polynomials are parallelised. To this end, we use the already
built-in Mathematica commands ParallelMap and Parallelize. These functions basically
take care of all things related to parallelising the computations without the user having to
worry about anything. It is only recommended to set the option DistributedContexts to
Automatic so that all needed variables and function definitions get shared among all kernels
automatically. Surprisingly, it turned out that parallelising the reductions done in the Check-
Resolvability subroutine does not yield a significant improvement. So far, in the SageMath
version of the package nothing is parallelised but we note that the only part of the Groebner
routine that would be worth parallelising is the computation of the reduced row echelon form
or the rewriting of the cofactors at the end of the procedure (if this is even possible).

Another interesting and probably at first glance not completely obvious optimisation in
Mathematica was to get rid of passing large arguments to functions. The reason for this is
that in Mathematica function arguments get evaluated by default, which can be very time
consuming in case of more complicated expressions or large lists.

We could also achieve a significant (and surprising) improvement by replacing all Table
commands by Map whenever large lists have to be generated. When it comes to incrementally
generating lists, we could also save time by replacing calls to AppendTo by Sow & Reap, which on
the one hand simplified the code, as some complicated Hold statements were no longer needed,
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and on the other hand avoided a lot of unnecessary internal copying. We also use the Sow &
Reap commands to trace the cofactors during (partial) Gröbner bases computations. This is
done by forming replacement rules, which do not only replace the leading term of a polynomial
by its tail, but at the same time also sow the cofactors used during this reduction. When these
replacement rules are then used to reduce a polynomial, all cofactors of this reduction can be
collected simply by calling Reap.

When it comes to optimisations done in the Sagemath version of the package, it is worth
mentioning that it is crucial to use sparse matrices and exploit SageMath’s efficient algorithms
for such matrices. Surprisingly, it is more efficient to compute the inverse of the submatrix A
in the Faugère-Lachartre elimination (see Section 4.5.3) by appending an identity matrix to the
right side of A and using the rref method instead of the explicit inverse method, most likely
because the latter is not optimised for sparse matrices. Apart from that, not much was done in
terms of code optimisations of the SageMath version of the package. So, there is probably still
room for improvement, especially when it comes to rewriting large cofactor representations.

6.3 Comparison
In this section, we compare the following packages for noncommutative Gröbner bases compu-
tations.

• GBNP version 1.0.3 running on GAP version 4.10.1

• Letterplace running on Singular 4.1.2

• NCAlgebra version 5.0.4 running on Mathematica 12.0.0

• OperatorGB version 1.2.0 (in the following abbreviated by OGB Mathematica) running on
Mathematica 12.0.0

• OperatorGB version 1.2.0 (in the following abbreviated by OGB SageMath) running on
SageMath 9.0

In particular, we measure the time needed to compute a (partial) Gröbner basis for the
following benchmark examples taken from [LSL09].

Example Generators of the ideal
braid3 yxy − zyz, xyx− zxy, zxz − yzx, x3 + y3 + z3 + xyz

braid4 yxy − zyz, xyz − zxy, zxz − yzx, x3 + y3 + z3 + xyz

lp1 z4 + yxyx− xy2x− 3zyxz, x3yxy − xyx, zyx− xyz + zxz

lv2 xy + yz, x2 + xy − yx− y2

As done in [LSL09], we only compute truncated Gröbner bases of these homogeneous ideals.
The designated degree bounds are indicated by the number after the “-” in the name of each
example in Table 6.1. So, for example lp1-10 means that we compute a partial Gröbner basis
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of the example lp1 up to degree 10. For all examples, we fix ⪯deglex as a monomial ordering
where we order the indeterminates as x ≺lex y ≺lex z and work over the coefficient field Q.

Since NCAlgebra does not provide the functionality to compute truncated Gröbner bases,
we cannot perform these computations with this package. Hence, we also reconsider some of
the ideals from Example 4.41 as these all admit a finite Gröbner basis. We add the following
examples to our benchmark tests.

Example Generators of the ideal
tri2 a2 − 1, b3 − 1, (ababab2)3 − 1
tri3 a3 − 1, b3 − 1, (abab2)2 − 1
tri12 a2 − 1, b3 − 1, (ababab2abab2)2 − 1
tri13 a2 − 1, b3 − 1, (ababababab2ab2)2 − 1

As for the other examples, we fix ⪯deglex as a monomial ordering where we order the inde-
terminates as b ≺lex a and work over the coefficient field Q.

The following table gives the timings for computing a (truncated) Gröbner basis for the
examples stated above in the format “minutes : seconds”. A timing of the form “> xx:xx”
indicates that the computation was aborted after this certain time. To be able to better com-
pare our algorithms to the other packages, which do not trace cofactors during their Gröbner
bases computations, we provide timings for our methods once with tracing of cofactors (the
corresponding columns are indicated by “w/ cf”) and once without tracing of cofactors (the
corresponding columns are indicated by “w/o cf”). We also note that all tests were performed
on a laptop equipped with a 2.7 GHz Quad-Core Intel Core i7 Processor with 16 GB of RAM
running macOS.

Example GBNP Letterplace NCAlgebra
OGB Mathematica OGB SageMath

w/ cf w/o cf w/ cf w/o cf
braid3-9 0:01 0:01 – 0:26 0:08 0:08 0:02
braid3-10 0:11 0:01 – > 100:00 3:58 23:14 0:55
braid4-10 0:03 0:01 – 0:29 0:12 0:17 0:05
braid4-11 0:13 0:01 – 5:15 1:13 2:16 0:24

lp1-10 0:01 0:01 – 0:04 0:03 0:02 0:01
lv2-15 0:03 0:01 – 0:01 0:01 0:01 0:01
tri2 0:01 0:06 9:19 1:34 0:58 0:33 0:06
tri3 0:01 0:01 0:21 0:01 0:01 0:01 0:01
tri12 0:01 0:01 2:40 0:37 0:26 0:20 0:04
tri13 0:02 0:39 64:41 6:15 3:45 1:23 0:40

Table 6.1: Running times for computing (partial) Gröbner bases for several benchmark examples.

As can be seen, our algorithms clearly outperform NCAlgebra but cannot compete with
GBNP and Letterplace. It also becomes obvious that tracing cofactors, especially in the larger
homogeneous examples, can become very costly. We are working to further improve this part
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of our implementation. Nevertheless, we consider the results obtained from these benchmark
examples to be encouraging that our package can indeed be useful in practice; especially when it
comes to verifying operator identities, where the required (partial) Gröbner basis computations
seem to be quite efficient.
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