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Zusammenfassung

Für symbolisches Rechnen mit Systemen linearer Funktionalgleichungen (z.B.
Integro-Differentialgleichungen, retardierten Differentialgleichungen, Rekur-
sionsgleichungen, . . . ), benötigen wir ein algebraisches Framework für solche
Systeme, das effektive Berechnungen in entsprechenden Operatorringen er-
laubt. Um solche Frameworks zu finden, verwenden wir anstelle der bisher
in der Literatur verwendeten parametrisierten Gröbnerbasen in freien Alge-
bren das basenfreie Analogon von Bergman in Tensorringen, welches oft ein
endliches Reduktionssystem mit eindeutigen Normalformen ermöglicht. Kurz
gesagt schlagen wir einen allgemeinen algorithmischen Ansatz für nichtkom-
mutative Operatoralgebren vor, die von additiven Operatoren erzeugt werden.

In dieser Dissertation wird eine vollständige Darstellung von Reduktion-
ssystemen in Tensorringen mit den entsprechenden Grundlagen wie Tensorpro-
dukt von Bimodulen, Tensorringen und Termersetzungssystemen vorgestellt.
Wir verwenden unsere Verallgemeinerung von Bergmans Tensorsetting, um
den Ring von Integrodifferentialoperatoren (IDO) mit (nichtkommutativen)
Matrixkoeffizienten zu konstruieren. Außerdem erweitern wir diesen Ring zum
Ring der Integrodifferentialoperatoren mit linearen Substitutionen (IDOLS).
Als neues Beispiel konstruieren wir den Ring der Summations- und Dif-
ferenzenoperatoren (SDO). Um Normalformen in diesen Ringen zu finden,
vervollständigen wir die definierenden Reduktionssysteme zu konfluenten.
Normalformen erlauben es, Operatorgleichungen mittels Ansatz zu lösen.

Wir zeigen, dass mit Tensorreduktionssystemen zum Beispiel die Methoden
der Variation der Konstanten und des Schrittweisen Integrierens automatisch
gefunden und bewiesen werden können. Wir zeigen wie Greensche Operatoren
für lineare gewöhnliche Randwertprobleme für Systeme erster Ordnung mittels
Normalformen von IDO berechnet werden können. Darüber hinaus automa-
tisieren wir im Ring von IDOLS bestimmte Berechnungen mit retardierten
Differentialgleichungen, beispielsweise die Artsteintransformation und eine
Verallgemeinerung davon. Basierend auf dem Mathematica-Paket TenReS

implementieren wir die Ringe von IDO, IDOLS, SDO, deren Normalformen
und verwenden diese auch für Berechnungen in Anwendungen.
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Abstract

In order to facilitate symbolic computations with systems of linear functional
equations (e.g. integro-differential, differential time-delay, recurrence, . . . ),
we require an algebraic framework for such systems which enables effective
computations in corresponding rings of operators. For finding such frameworks,
instead of using parametrized Gröbner bases in free algebras as has been
done so far in the literature, we exploit and generalize Bergman’s basis-free
analog in tensor rings, which often allows for a finite reduction system with
unique normal forms. In short, we propose a general algorithmic approach to
noncommutative operator algebras generated by additive operators.

In this thesis, a self-contained treatment of reduction systems in tensor
rings including preliminaries such as tensor product of bimodules, tensor
rings, and basics of term rewriting is presented. We apply our generalization
of Bergman’s setting to construct the ring of integro-differential operators
(IDO) having (noncommutative) matrix coefficients. Moreover, we extend
this ring to the ring of integro-differential operators with linear substitutions
(IDOLS). As a new instance of the tensor setting, we construct the ring of
inversive sum-difference operators (SDO). For finding normal forms in these
rings, we complete their defining reduction systems to obtain confluent ones.
These normal forms allow to solve operator equations by ansatz.

We show that, by applying tensor reduction systems, results like the
method of variation of constants in the ring of IDO and the method of steps in
the ring of IDOLS can be found and proven in an automated way. Using normal
forms in the ring of IDO, we illustrate how to compute Green’s operators
for first-order systems of linear ordinary boundary problems. Moreover,
in the ring of IDOLS, we partly automatize certain computations related
to differential time-delay systems, e.g. Artstein’s transformation and its
generalization. Using the Mathematica package TenReS, we implement the
rings of IDO, IDOLS, SDO, and corresponding normal forms. We also use
these implementations to perform computations for the applications treated
in this thesis.
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Chapter 1

Introduction

Many processes in science and engineering can be modelled by so-called
linear functional systems, for example, systems of differential and difference
equations. To represent and manipulate such systems algebraically, one
computes with the corresponding matrices and linear operators. For concrete
linear functional systems, so far, matrices of operators with scalar coefficients
are used. However, for statements about families of linear systems, an algebraic
framework for operators with undetermined matrix coefficients is required.
In this thesis, we propose a general approach to model additive operators
having noncommutative coefficients based on tensor reduction systems.

For effective symbolic computations with operators, normal forms are
needed. They can be used to prove operator identities as well as to solve
operator equations by ansatz. To find normal forms, we construct confluent
reduction systems for integro-differential operators starting only from basic
identities of differentiation, integration, and evaluation. We also work out
normal forms for integro-differential operators with linear substitutions and
sum-difference operators.

By normal form computations, results like the method of variation of
constants, Green’s operators for first-order linear systems, and the method of
steps can be found and proven in an automated way. Using the Mathematica
package TenReS, we implement normal forms for the rings of operators and
perform computations for the applications considered in this thesis.

1.1 Integro-differential operators

We motivate and illustrate how to use our approach for treating differential
and differential time-delay systems. First, we introduce informally integro-
differential rings and the corresponding operators without referring explicitly
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to tensor reduction systems. Recall from analysis that for differentiable
real-valued functions f and g, the Leibniz rule is expressed as

d

dt
(f(t)g(t)) = (

d

dt
f(t))g(t) + f(t)(

d

dt
g(t)).

Moreover, by the fundamental theorem of calculus, for a continuous real-valued
function f on a closed interval [t0, t] we have

d

dt

∫ t

t0

f(s) ds = f(t),

and the evaluation at t0 can be expressed in terms of differentiation and
integration as

f(t0) = f(t)−
∫ t

t0

d

ds
f(s) ds.

In addition, the evaluation at t0 of a product is the product of the individual
evaluations. Based on these identities, we define an integro-differential ring
as a natural generalization of a differential ring by adding integration

∫
and

evaluation E to the derivation ∂, see Definition 4.1 which generalizes the
definition given in [47, 51]. Note that the operations on these rings satisfy
not only the Leibniz rule, but also other well-known identities of smooth
functions like integration by parts and the Rota-Baxter axiom, see Table 4.2.
For a given integro-differential ring, the ring of integro-differential operators
is generated by ∂,

∫
, and E, see Section 4.1 for the formal construction via

tensor reduction systems.
To illustrate computations with operators in this ring, we consider the

simple example of a linear first-order differential system

d

dt
x(t)− A(t)x(t) = f(t),

where A(t) is a matrix of smooth functions of size n× n and f(t) is a vector
of smooth functions. If Φ(t) is a fundamental matrix for the homogeneous
system, then a particular solution for this system is

x0(t) = Φ(t)

∫ t

t0

Φ−1(s)f(s) ds,

obtained via variation of constants. In terms of operators, we can write
these equations as Lx(t) = f(t) and x(t) = Hf(t) where L = ∂ − A is the
corresponding differential operator and H = Φ ·

∫
· Φ−1 is the corresponding

integral operator, where by · we denote composition of operators. The fact
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that x0(t) is a particular solution of the differential system is equivalent to
saying that the composition L ·H equals to the identity. Proving the identity
L · H = 1 of operators not for a concrete differential system, but in full
generality, requires an algebraic setting for integro-differential operators with
undetermined matrix coefficients. Assuming such a framework, we have

L ·H = (∂ − A) · Φ ·
∫
· Φ−1 = ∂ · Φ ·

∫
· Φ−1 − A · Φ ·

∫
· Φ−1

= (Φ · ∂ + (∂Φ− AΦ)) ·
∫
· Φ−1 = Φ · ∂ ·

∫
· Φ−1 = Φ · Φ−1 = 1.

Note that the transition from matrices of operators to operators with ma-
trix coefficients is not mere notation but an essential part of the algebraic
framework in order to perform such a symbolic computation with matrix coef-
ficients of generic size on a computer. Indeed, constructing such a framework
including normal forms is one of the main points of the thesis, see Section 4.3.

Moreover, using the tensor setting, the ring of integro-differential operators
can be extended by adding linear substitution operators, see Section 4.5.
Formal computations with operators having rectangular matrices as their
coefficients can be done in the ring of integro-differential operators with linear
substitution, see [13, 40]. This ring can be used for studying systems of
differential time-delay equations. As a concrete application, we apply the
obtained normal forms to partly automatize certain computations related
to differential time-delay systems, e.g. Artstein’s transformation [2], see
our joint paper [13], and its generalization in Section 5.2: by means of this
transformation, a first-order linear differential system with delayed inputs

d

dt
x(t) = A(t)x(t) +B0(t)u(t) +B1(t)u(t− h), h > 0

is equivalent to a first-order linear differential system without delay under an
invertible transformation which includes integral and time-delay operators,
see Section 5.2 for further details.

1.2 Sum-difference operators

Difference equations occupy a central position in applied fields. For the theory
of difference equations, we refer the reader to [1, 35], for example. To treat
these equations algebraically with our tensor setting, we develop a formal
construction of rings of shift and summation operators. We are not aware
that reduction systems in tensor rings have been used so far in the literature
for an algorithmic treatment of inversive sum-difference operators.

In the following, we briefly outline the defining properties of these operators.
For a bi-infinite sequence (An)n∈Z in a ring, the operations shift forward σ

3



and shift backward σ̄ are inverses of each other, i.e.

σσ̄(An) = σ̄σ(An) = (An).

We define the summation operation Σ(An) = (
n−1∑
k=0

Ak)n∈Z by the sequence of

partial sums. Then, the identity

σΣ(An) = (An) + Σ(An)

holds. In addition, the evaluation E defined by E(An) = (A0) can be expressed
in terms of the shift forward and the summation by

E(An) = (An) + Σ
(
(An)− σ(An)

)
.

Based on these properties, we consider inversive sum-difference rings, see
Definition 6.3, which are generalization of difference rings [37]. The operations
also satisfy additional identities such as summation by parts and the Rota-
Baxter axiom with weight one, see Table 6.2. From a given inversive sum-
difference ring, we can construct the ring of inversive sum-difference operators
as the corresponding ring of operators generated by σ̄, σ, Σ, E, and the
elements of the coefficient ring, see Section 6.2 where we work out normal
forms for these operators.

The ring of inversive sum-difference operators can be used for solving
difference boundary problems. Moreover, it addresses the open Problem 6.2
in [10], where an operator framework for studying creative telescoping in the
difference case is asked for.

1.3 Algebraic frameworks for linear operators

For an algorithmic treatment of many linear operators, e.g. differential and
difference operators, skew polynomials are often used in the literature as a
well-established algebraic tool; see e.g. the works [12, 38, 9, 11, 36] or the
recent overview [22]. Normal forms for skew polynomials are given by the
standard polynomial basis. However, not all common operator algebras are
covered by this setting. For instance, normal forms for univariate integral
operators are sums of terms of the form f

∫
g. To overcome this problem, we

can exploit quotients of tensor algebras and tensor rings which provide useful
algebraic modelling of, and algorithmic computations with, linear operators.

Tensor algebras can be seen as a generalization of free noncommutative
polynomial algebras and inherit all their algorithmic obstructions. For tensor
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algebras, Bergman’s paper [5] also provides a framework in which reduc-
tion systems and corresponding normal forms can be analysed, analogous
to Gröbner bases. At the same time, parts of the tensor setting can be
automated, in particular, verification of the confluence criterion and subse-
quent computations with normal forms. In the tensor setting, reduction rules
are given by module homomorphisms. This often allows for finite reduction
systems with unique normal forms. In practice, normal forms are needed for
effective computation. Finding and proving the structure of normal forms is
a difficult task, in fact the general problem is even undecidable.

Tensor rings naturally capture the multiadditivity of compositions of addi-
tive operators. In addition, they allow basis-free treatment of multiplication
operators resp. coefficients. In particular, the coefficient ring is not required to
be finitely presented. For further details on tensor rings and proofs see [16, 53].
A Gröbner basis theory for free bimodules has been presented in [33] and for
bimodules over Poincaré-Birkhoff-Witt (PBW) algebras in [46, 36].

Tensor reduction systems in tensor rings have been exploited for the first
time by us in [30] to treat operator algebras algorithmically. We also develop
a generalization of Bergman’s setting by defining the notion of ambiguities
with specialization. The new setting allows overlapping domains of reduction
homomorphisms, which also make the algorithmic verification of the confluence
criterion more efficient.

In order to see applications of noncommutative Gröbner bases in the
free polynomial algebra to operator algebras, we recommend the reader to
read [26, 27, 48]. Integro-differential operators over a field of constants were
introduced in [47, 51]. They were defined in terms of a parametrized Gröbner
basis in infinitely many variables coming from a basis of the coefficient algebra;
see also the survey [52] for an automated confluence proof and [42] for related
references. For integro-differential operators with polynomial coefficients,
generalized Weyl algebras [4], skew polynomials [43], and noncommutative
Gröbner bases [41] have been used. An overview on Gröbner-Shirshov bases
for various algebraic structures is given in [6]; see, in particular, [24, 21, 20, 19]
in connection with differential type, integro-differential, and Rota-Baxter type
operators.

1.4 Contributions and results

We summarize the main contributions of this thesis and the related publica-
tions. A detailed description of contributions is given at the beginning of each
chapter. Chapter 2 includes all prerequisites needed for reading the thesis.
Chapter 3 is a self-contained description of tensor reduction systems including
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a fully worked-out proof of Bergman’s diamond lemma [5] for tensor rings
and its generalization, see [30]. Chapter 4 on the ring of integro-differential
operators (IDO) and the ring of integro-differential operators with linear
substitutions (IDOLS) includes the main results of our paper [30]. In addi-
tion, we show how to obtain confluent reduction systems for IDO and IDOLS
starting from basic identities and we construct the action of these rings of
operators on modules of vector-valued functions. In Chapter 5, we use our
algebraic framework for IDO to generalize the formula of Green’s operators
of first-order linear boundary problems to the system case. The rest of this
chapter on Artstein’s reduction presents our results in [13] and generalizes
some of them. The content of Chapter 6 is a discrete analog of IDO presented
for the first time in this thesis.

Our first results on tensor reduction systems were published in [28], where
we used a two-level reduction system in a tensor algebra in order to model IDO
with commutative coefficients. In particular, we compare the computational
effort for the confluence check to Bergman’s setting. In the case of IDO,
we explain a computer-assisted completion process for obtaining a confluent
reduction system in [29], where we also give a brief description of the package
TenReS. Generalizing our results in [28], we develop tensor reduction systems
with specialization in tensor rings in [30] where we also give confluent reduction
systems for IDO and IDOLS with noncommutative coefficients. In our joint
paper [13], we exploit this framework to recover Artstein’s transformation in
a computer-assisted way.

In order to support computations with tensor reduction systems, the
Mathematica package TenReS has been implemented, see [29]. In this thesis,
we use the package for verification of the confluence criterion, computing with
normal forms, and solving operator identities in the examples and applications.
We also make implementation of the package, along with all computations
related to the thesis available at the website for the package:

http://gregensburger.com/softw/tenres

1.5 Outline

In Chapter 2, we recall definitions and properties of basic algebraic objects
and constructions used in the thesis. We first recall the structure of free
modules, monoids, algebras and their universal properties in Section 2.1. The
direct sum and the tensor product of modules are described in Section 2.2.
For the rest of that section, we focus on free bimodules viewed as free left
modules. In Section 2.3, we summarize the structure of tensor rings over
arbitrary rings and differential rings. We explain in Section 2.4 basics of
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term rewriting. Then, in Section 2.5, we briefly outline the algebraic analysis
approach, which transforms systems of linear functional equations, needed
later in Section 5.2.

In Chapter 3, we provide a self-contained presentation of reduction systems
on tensor rings. To illustrate this approach, in Section 3.1, we explain infor-
mally the structure of the ring of differential operators over noncommutative
differential rings. In Section 3.2, we provide a detailed proof for Bergman’s
diamond lemma in tensor rings, which is omitted in his paper. In Section 3.3,
we describe a generalization of the tensor setting by introducing the concept
of specialization.

In Chapter 4, we give two instances for modelling rings of operators using
our tensor setting. First, in Section 4.1, we give the formal construction of
IDO with noncommutative coefficients. Then, in Section 4.2, we show that
the coefficient ring is a left module over the ring of IDO. We proceed by
describing a completion process for IDO in Section 4.3, yielding confluent
reduction systems and normal forms. Based on that, we illustrate how to solve
operator equations by ansatz. Later, in Section 4.4, we introduce the module
of vector-valued “functions” over the ring of IDO with matrix coefficients.
The second instance of rings of operators, explained in Section 4.5, extends
the ring of IDO by including linear substitutions. Another instance of the
rings of operators is given in Chapter 6.

In Chapter 5, we give applications of the rings of IDO and IDOLS. Sec-
tion 5.1 formulates first-order systems of linear boundary problems and their
Green’s operators in our framework. In Section 5.2, we discuss on computing
with operators in the ring of IDOLS having different domains and codomains.
Then, we recover the well-known Artstein’s transformation and work out a
generalization of it.

In Chapter 6, we develop an algebraic framework for the ring of inversive
sum-difference operators (SDO). We construct the ring of SDO in Section 6.1,
obtain a confluent reduction system in Section 6.2, and add some remarks on
computational aspects.

Notational conventions

Throughout this thesis, we have the following conventions:

• By a K-module, we always mean a left K-module.

• We use operator notation, e.g. we write ϕ1 instead of ϕ(1) or

∂AB = (∂A)B + A∂B

for the Leibniz rule instead of ∂(AB) = ∂(A)B + A∂(B).
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• All our operators act from the left, in particular, a product L · L′ acts
on A as (L · L′)(A).

• By using the notation ·, we distinguish multiplication of operators from
the action of operations. For instance, we denote by ∂ · A product of
the differential operator ∂ with the multiplication operator A, whereas
∂A is used for representing derivation of A.
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Chapter 2

Preliminaries

For the convenience of the reader, in this chapter, we summarize and discuss
algebraic notions, constructions, and results used in this thesis. We assume
basic notions from algebra, in particular, groups, rings, ideals, modules over
commutative rings, and isomorphism theorems to be known.

In Section 2.1, we review the construction of free modules, monoids, and
algebras. Section 2.2 is dedicated to study basic properties of direct sums
of modules, tensor products of modules over arbitrary rings, and the free
bimodules. Using these notions, in Section 2.3, we discuss tensor rings over
free bimodules, as basic objects in our tensor setting described in Chapter 3,
see also [15, 16, 53]. We also explain with entries in a given commutative
differential ring, how to construct a differential ring over its ring of matrices.

We recall in Section 2.4 basics of term rewriting that are needed for
explaining tensor reduction systems. The definitions, remarks, lemmas and
theorems which are recalled in this section have been taken from [3, Secs. 2.1
and 2.7], see also there for further details and proofs. In Section 2.5, we
explain briefly the algebraic analysis approach which addresses systems of
linear functional equations from an algebraic point of view. For more details,
we refer the reader to [11] and the references therein.

Throughout this chapterK denotes a unitary (not necessarily commutative)
ring, unless it is explicitly stated otherwise.

2.1 Free modules, monoids and algebras

In this section, we recall the notions of free left module, free monoid, and free
algebra on a set, which are essential for studying more complicated algebraic
structures explained in later sections.
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2.1.1 Free modules

Recall that the endomorphism ring of an abelian group G, denoted by End(G),
is the set of all endomorphisms of G (i.e. the set of all homomorphisms of G
into itself) endowed with an addition operation defined by pointwise addition
of functions and a multiplication operation defined by function composition.
A left K-module is an abelian group M together with a homomorphism
ϕ : K → End(M). The corresponding scalar multiplication is defined by
km = ϕ(k)(m), for all k ∈ K and m ∈M . It is easy to check this definition
is equivalent to the standard definition of a left module.

Definition 2.1. Let X = {xi | i ∈ I} be a set indexed by a set I. The set of
formal sums

KX = {
∑
i∈I

kixi | ki ∈ K and almost all ki are zero},

together with the following addition and scalar multiplication∑
i∈I

kixi +
∑
i∈I

lixi =
∑
i∈I

(ki + li)xi, c
∑
i∈I

kixi =
∑
i∈I

(cki)xi (c ∈ K),

is a K-module which is called the free K-module on the set X.

Theorem 2.2. (Factor theorem for modules) Let M and N be two K-modules.
Given a module homomorphism ϕ : M → N and a submodule M ′ of M with
natural homomorphism π : M → M/M ′, such that M ′ ⊆ kerϕ, there is a
unique K-module homomorphism ϕ : M/M ′ → N such that the following
diagram is commutative.

M M/M ′

N

π

ϕ
ϕ

Moreover, ϕ is a K-module monomorphism if and only if M ′ = kerϕ.

Theorem 2.3. (First isomorphism theorem of modules) Let ϕ : M → M ′

be a K-module homomorphism. Then the image of ϕ is isomorphic to the
quotient module M/ kerϕ.

Remark 2.4. Recall that analogues of Theorems 2.2 and 2.3 hold in any
algebraic structure.

Theorem 2.5. (Universal property of free modules) Let KX be the free K-
module on a set X = {xi | i ∈ I} indexed by a set I, ι : X ↪→ KX be the
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inclusion map, and N be a K-module. Then for each map ϕ : X → N , there
exists a unique K-module homomorphism ϕ : KX → N such that the following
diagram is commutative:

X KX

N

ι

ϕ
ϕ

In particular, ϕ satisfies ϕ(
∑
i∈I
kixi) =

∑
i∈I
kiϕ(xi).

Corollary 2.6. Let X = {xi | i ∈ I} be a set indexed by a set I. Then,
every K-module that satisfies the universal property of free modules on X is
isomorphic to KX.

Remark 2.7. In general, universal objects are unique up to level of isomor-
phisms. In order to see details, see [31, Sec. 1.7] and [53, Sec. 1].

2.1.2 Free monoids

In the following, we study the structure of the free monoid on a set whose
elements are all the finite sequences of zero or more elements from the set.
We start by recalling the definition of a monoid.

Definition 2.8. A semigroup is a non-empty set M together with a binary
operation · : M×M→M, called multiplication, such that (m·n)·l = m·(n·l)
for all m,n, l ∈ M. Moreover, if there exists an element e ∈ M satisfying
e ·m = m · e = m, for all m ∈M, then (M, ·) is called a monoid.

Throughout this thesis by an alphabet we mean a set X. Let us explain
notion of the word monoid on an alphabet.

Definition 2.9. A word W on an alphabet X is a finite sequence of elements
in X of the form W = x1 · · ·xr such that xi ∈ X, for i = 1, . . . , r.

We denote by 〈X〉 the set of all words over the alphabet X and equip it
with a binary operation ∗ which is defined as concatenation of words, i.e.

x1 · · ·xr ∗ y1 · · · ys = x1 · · · xry1 · · · ys.

Note that the operation ∗ is associative. The empty sequence is the neutral
element for the operation ∗. We call it the empty word and denote it by
ε. Therefore, (〈X〉, ∗) is a monoid which is called the word monoid on the
alphabet X.
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Example 2.10. Suppose that X = {a, b, c}. Then the elements of the word
monoid (〈X〉, ∗) are words of the form

ε, a, b, c, aa, bb, cc, ab, ba, ac, ca, bc, cb, aab, . . . .

From here on we omit the monoid operation. Therefore, we denote a
monoid (M, ·) only by M and write mn instead of m · n.

Theorem 2.11. (Universal property of word monoids) Let X be a set, M
be a monoid, and ι be the inclusion map from X into the word monoid 〈X〉.
Then for any map ϕ : X →M, there exists a unique monoid homomorphism
ϕ : 〈X〉 →M such that the following diagram is commutative:

X 〈X〉

M

ι

ϕ ϕ

In particular, ϕ satisfies ϕ(x1 · · ·xs) = ϕ(x1) · · ·ϕ(xs).

Because of the universal property of the word monoids, every word monoid
is also called a free monoid.

2.1.3 Free algebras

Our goal in this subsection is to explain notion of the free algebra on a set.
For the whole subsection we let K be a unitary commutative ring.

Definition 2.12. A K-algebra A is a unitary ring which is also a K-module
such that the multiplication operation in A is K-bilinear, i.e., for any a, a′ ∈ A
and k ∈ K we have

k · (aa′) = (k · a)a′ = a(k · a′)

where · denotes the action of K on A.

Equivalently, we can define an algebra as follows:

Definition 2.13. A K-algebra A is a unitary ring together with a ring
homomorphism ϕ : K → A such that ϕ(K) ⊆ Z(A) where Z(A) denotes
center of the ring A.

Proposition 2.14. It is routine to check that both Definition 2.12 and Defi-
nition 2.13 are equivalent.
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Definition 2.15. Let X = {xi | i ∈ I} be a set indexed by a set I and 〈X〉
be the word monoid on the set X. As a K-module, the free algebra K〈X〉 on
the set X over the ring K, is the free K-module on the set 〈X〉, i.e.,

K〈X〉 = {
∑
w∈〈X〉

kww | kw ∈ K and almost all kw are zero}.

This K-module becomes a K-algebra by defining the following multiplication( ∑
w∈〈X〉

kww
)( ∑

v∈〈X〉

k′vv
)

=
∑
u∈〈X〉

( ∑
wv=u

kwk
′
v

)
u

The elements of K〈X〉 are called noncommutative polynomials and they can
be written uniquely as ∑

kj1,...,jsxj1 · · ·xjs =
∑
J

kJxJ

where J runs over all distinct finite sequences in I, and for J = (j1, . . . , js)
we define xJ = xj1 · · ·xjs.

Definition 2.16. Let A and B be two K-algebras. A ring homomorphism
ψ : A → B is called a K-algebra homomorphism if ψ(ka) = kψ(a), for all
k ∈ K and a ∈ A.

Lemma 2.17. Let A and B be two K-algebras together with the ring ho-
momorphisms ϕ and ϕ′ respectively as in Definition 2.13. Then a ring
homomorphism ψ : A → B is a K-algebra homomorphism if and only if the
following diagram is commutative:

K A

B

ϕ

ϕ′
ψ

Definition 2.18. A K-subalgebra of a K-algebra A is a subring B of A that
is also a K-module.

Remark 2.19. Every A-submodule B of a K-algebra A is a K-submodule of
A, since we have k · b=(k · 1)b for all k ∈ K and b ∈ B.

Definition 2.20. A left ideal of a K-algebra A is a left A-submodule.

Similarly, one can define a right ideal as a right A-submodule. A two-sided
ideal of A is a left ideal that is a right ideal as well.
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Definition 2.21. Let A be a K-algebra and I be a two-sided ideal of A. The
quotient module

A/I = {a+ I | a ∈ A},

together with the following multiplication

(a1 + I)(a2 + I) = (a1a2 + I) (for all a1, a2 ∈ A),

is a K-algebra which is called the quotient algebra A/I.

Theorem 2.22. (Universal property of free algebras) Let K〈X〉 be the free K-
algebra on a set X = {xi | i ∈ I} indexed by a set I and let A be a K-algebra.
Then for each map ϕ : X → A, there exists a unique K-algebra homomorphism
ϕ : K〈X〉 → A such that the following diagram is commutative:

X K〈X〉

A

ι

ϕ ϕ

In particular, ϕ satisfies

ϕ(
∑
J

kJxj1 · · ·xjs) =
∑
J

kJϕ(xj1) · · ·ϕ(xjs).

2.2 The direct sum and the tensor product

of modules

2.2.1 The direct sum of modules

In this subsection we explain the direct sum of left modules over a ring. We
assume I to be an index set.

Definition 2.23. The direct product of a family (Mi)i∈I of K-modules, is
the Cartesian product of Mi, i.e, the set

Πi∈IMi = {(mi)i∈I | mi ∈Mi for all i ∈ I},

where the operations are defined componentwise:

(mi)i∈I + (m′i)i∈I = (mi +m′i)i∈I , k(mi) = (kmi)i∈I (k ∈ K)

With these operations, Πi∈IMi is a K-module. In particular, if Mi = M for
all i ∈ I, we obtain the direct power of M , denoted by M I .
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Definition 2.24. The external direct sum of a family (Mi)i∈I of K-modules,
is the K-submodule⊕

i∈I

Mi = {(mi)i∈I ∈ Πi∈IMi | mi = 0 for almost all i ∈ I}

of Πi∈IMi. In particular, when Mi = M for all i ∈ I, we have a direct sum
of copies of M , denoted by M (I). Any element of

⊕
i∈IMi is denoted by the

sum
∑
i∈I
mi where mi ∈Mi for all i ∈ I and mi = 0 for almost all i ∈ I.

For each i ∈ I we have the canonical injection ιi : Mi ↪→
⊕

i∈IMi which
maps x ∈ Mi to the family (xj)j∈I where xj = δijx. Moreover, for a finite
index set I the direct sum and the direct product coincide as modules.

Definition 2.25. A K-module, denoted by
∑

IMi, is called the sum of a
family of K-submodules, if∑

I

Mi = {
∑
i∈I

mi | mi ∈Mi and mi = 0 for almost all i ∈ I}.

If each element of this sum can be expressed in only one way, we write∑
IMi =

⊕
i∈IMi and call it the direct sum.

The module
∑

IMi is sometimes called the internal direct sum, to distin-
guish it from the external direct sum or coproduct

⊕
IMi. It is clear that⊕

IMi is in fact the internal direct sum of the submodules im ιi, where the
maps ιi are canonical injections.

Theorem 2.26. (Universal property of the direct sum of modules) Let (Mi)i∈I
be a family of K-modules. Let (ϕi)i∈I : Mi → N be a family of K-module
homomorphisms into a K-module N and let ιi : Mi ↪→

⊕
i∈IMi be the i-th

canonical injection. Then there exists a unique K-module homomorphism
ϕ :
⊕

i∈IMi → N such that for all i ∈ I the following diagram is commutative:

Mi

⊕
i∈IMi

N

ιi

ϕi
ϕ

In particular, ϕ
(∑
i∈I
mi

)
=
∑
i∈I
ϕi(mi).
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2.2.2 The tensor product over a commutative ring

The notion of tensor product may be defined for any pair of bimodules, but
first we discuss it for the simpler case of modules over a commutative ring.
In this subsection, we assume that K is a unitary commutative ring.

Definition 2.27. Let M,N , and L be K-modules. A map ϕ : M ×N → L
is called K-bilinear if it satisfies the following relations

ϕ(m+m′, n) = ϕ(m,n) + ϕ(m′, n), ϕ(m,n+ n′) = ϕ(m,n) + ϕ(m,n′),

ϕ(km, n) = kϕ(m,n), ϕ(m, kn) = kϕ(m,n),

for all m,m′ ∈M , n, n′ ∈ N , and k ∈ K.

Remark 2.28. Note that in Definition 2.27 commutativity of the ring K is
required, since for all k, k′ ∈ K, m ∈M , and n ∈ N we have

ϕ(km, k′n) = kϕ(m, k′n) = kk′ϕ(m,n)

and
ϕ(km, k′n) = k′ϕ(km, n) = k′kϕ(m,n).

Definition 2.29. Let M and N be K-modules. Let F be the free K-module
on the set M×N and let T be the K-submodule of F generated by all elements
of the form

(m+m′, n)− (m,n)− (m′, n), (m,n+ n′)− (m,n)− (m,n′),

(km, n)− k(m,n), (m, kn)− k(m,n),

for m,m′ ∈M , n, n′ ∈ N , and k ∈ K. The quotient module

M ⊗K N = F/T

containing all equivalence classes m⊗ n = (m,n) + T , together with the map
⊗ : M × N → M ⊗K N defined by ⊗(m,n) = m ⊗ n, is called the tensor
product of M and N over K.

By construction, the tensor product M ⊗K N is the K-module generated
by the set of all pure tensors {m⊗ n | m ∈M,n ∈ N} with relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) = m⊗ n+m⊗ n′,
km⊗ n = k(m⊗ n), m⊗ kn = k(m⊗ n),

for all m,m′ ∈M , n, n′ ∈ N , and k ∈ K. Every element of M ⊗K N can be
written as a finite sum of pure tensors, i.e.,

M ⊗K N = {
t∑
i=1

mi ⊗ ni | t ∈ N,mi ∈M,ni ∈ N}.
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Lemma 2.30. The map ⊗ defined in Definition 2.29 is a K-bilinear map.

Theorem 2.31. (Universal property of the tensor product of modules over
a commutative ring) Let M and N be K-modules and let (M ⊗K N,⊗) be
the tensor product of M and N together with the K-bilinear map ⊗. Then
for any K-bilinear map ϕ : M ×N → L, there exists a unique K-linear map
ϕ : M ⊗K N → L such that the following diagram is commutative:

M ×N M ⊗K N

L

⊗

ϕ
ϕ

In particular, the map ϕ satisfies ϕ(
t∑
i=1

mi ⊗ ni) =
t∑
i=1

ϕ(mi, ni).

Proposition 2.32. Let ϕ : M →M ′ and ψ : N → N ′ be two K-linear maps.
Then there exists a K-linear map denoted

ϕ⊗ ψ : M ⊗K N →M ′ ⊗K N ′

given by (ϕ⊗ ψ)(m⊗ n) = ϕ(m)⊗ ψ(n).

2.2.3 The tensor product over a ring

In the following, we explain the tensor product of bimodules over an arbitrary
unitary ring.

Definition 2.33. A K-bimodule is a left K-module M which is also a right
K-module satisfying the associativity condition

(km)k′ = k(mk′),

for all m ∈M and k, k′ ∈ K.

Definition 2.34. Let M be a right K-module and N be a left K-module.
Given an abelian group L, we call ψ : M × N → L a balanced map if it
satisfies the following relations

ψ(m+m′, n) = ψ(m,n) + ψ(m′, n),

ψ(m,n+ n′) = ψ(m,n) + ψ(m,n′),

ψ(mk, n) = ψ(m, kn),

for all m,m′ ∈M , n, n′ ∈ N , and k ∈ K.
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From the above relations it follows that

ψ(0, n) = ψ(0 + 0, n) = ψ(0, n) + ψ(0, n),

and now by cancellation law ψ(0, n) = 0 for all n ∈ N . Similarly ψ(m, 0) = 0
for all m ∈M . In addition, we have

0 = ψ(0, n) = ψ(m−m,n) = ψ(m,n) + ψ(−m,n).

Therefore, ψ(−m,n) = −ψ(m,n) and similarly ψ(m,−n) = −ψ(m,n) for all
m ∈M and n ∈ N .

Definition 2.35. Let M be a right K-module and N be a left K-module. Let
G be freely generated (as a Z-module) by the set M × N and let H be the
subgroup of G generated by all elements of the form

(m+m′, n)− (m,n)− (m′, n), (m,n+ n′)− (m,n)− (m,n′),

(mk, n)− (m, kn),

for m,m′ ∈M , n, n′ ∈ N , and k ∈ K. The abelian group

M ⊗K N = G/H

containing all equivalence classes m⊗ n = (m,n) +H, together with the map
⊗ : M × N → M ⊗K N defined by ⊗(m,n) = m ⊗ n, is called the tensor
product of M and N over K.

The tensor product M ⊗K N is generated by the set of all pure tensors
{m⊗ n | m ∈M,n ∈ N} with relations

(m+m′)⊗ n = m⊗ n+m′ ⊗ n,
m⊗ (n+ n′) = m⊗ n+m⊗ n′,

mk ⊗ n = m⊗ kn,

for m,m′ ∈ M , n, n′ ∈ N , and k ∈ K. Every element of M ⊗K N can be
written as a finite sum of pure tensors, i.e.

M ⊗K N = {
t∑
i=1

mi ⊗ ni | t ∈ N,mi ∈M,ni ∈ N}.

Lemma 2.36. The map ⊗ defined in Definition 2.35 is a balanced map.
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Proof. We have that

⊗(m+m′, n)−⊗ (m,n)−⊗(m′, n) = (m+m′)⊗ n−m⊗ n−m′ ⊗ n
= ((m+m′, n) +H)− ((m,n) +H)− ((m′, n) +H)

= ((m+m′, n)− (m,n)− (m′, n)) +H = H = 0.

Similarly, we have ⊗(m,n + n′) = ⊗(m,n) + ⊗(m,n′), and ⊗(mk, n) =
⊗(m, kn). Hence ⊗ is a balanced map.

Theorem 2.37. (Universal property of the tensor product of bimodules) Let
M be a right K-module and N be a left K-module and let (M ⊗KN,⊗) be the
tensor product of M and N together with the balanced map ⊗. Then for any
balanced map ϕ : M × N → L, there exists a unique group homomorphism
ϕ : M ⊗K N → L such that the following diagram is commutative:

M ×N M ⊗K N

L

⊗

ϕ
ϕ

In particular, the map ϕ satisfies ϕ(
t∑
i=1

mi ⊗ ni) =
t∑
i=1

ϕ(mi, ni).

Proof. Since the K-bimodule M ⊗K N is generated as an abelian group by
the set of all pure tensors and ϕ is free on this generating set, the group
homomorphism ϕ is uniquely determined if it exists.

Let G and H be the abelian groups which were defined in Definition 2.35.
By the universal property of free modules, the map ϕ : M ×N → L can be
uniquely extended to a Z-module homomorphism ϕ̃ : G → L. Since the map
ϕ is balanced we have

ϕ̃((m+m′, n)− (m,n)− (m′, n))

= ϕ(m+m′, n)− ϕ(m,n)− ϕ(m′, n) = 0,

ϕ̃((mk, n)− (m, kn)) = ϕ(mk, n)− ϕ(m, kn) = 0,

and similarly ϕ̃((m,n+n′)−(m,n)−(m,n′)) = 0 for all m,m′ ∈M , n, n′ ∈ N
and k ∈ K and hence H ⊆ ker ϕ̃. Now, by the factor theorem, the map ϕ̃
induces a unique group homomorphism ϕ : G/H → L such that ϕ̃ = ϕ ◦ π,
where π : G → G/H is the natural homomorphism.

Lemma 2.38. If M and N are K-bimodules, then M ⊗K N is again a K-
bimodule with scalar multiplications

(k,m⊗ n) 7→ km⊗ n and (m⊗ n, k) 7→ m⊗ nk.
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Proof. We first prove the left scalar multiplication defined above is well-
defined: taking an arbitrary but fixed element k ∈ K, we define a map
ϕk : M × N → M ⊗K N by ϕk(m,n) = km ⊗ n. Note that the map ϕk is
biadditive since

ϕk(m+m′, n) = k(m+m′)⊗ n = (km+ km′)⊗ n
= km⊗ n+ km′ ⊗ n = ϕk(m,n) + ϕk(m

′, n),

and similarly ϕk(m,n + n′) = ϕk(m,n) + ϕk(m,n
′) for all m,m′ ∈ M and

n, n′ ∈ N . It is also balanced since

ϕk(mk
′, n) = k(mk′)⊗ n = (km)k′ ⊗ n = km⊗ k′n = ϕk(m, k

′n),

for all m ∈ M , n ∈ N , and k′ ∈ K. Hence, by the universal property
of the tensor product of bimodules, there exists a group homomorphism
ϕk : M ⊗K N →M ⊗K N such that the following diagram is commutative:

M ×N M ⊗K N

M ⊗K N

⊗

ϕk
ϕk

In particular, ϕk(m⊗n) = km⊗n. Hence the scalar multiplication k(m⊗n) =
ϕk(m⊗n) is well-defined. Analogously, the right scalar multiplication defined
above is well-defined as well. We have

(k+k′)(m⊗n) = (k+k′)m⊗n = km⊗n+k′m⊗n = k(m⊗n) +k′(m⊗n),

k(m⊗ n+m′ ⊗ n′) = km⊗ n+ km′ ⊗ n′ = k(m⊗ n) + k(m′ ⊗ n′),

(kk′)(m⊗ n) = (kk′)m⊗ n = k(k′m)⊗ n = k(k′(m⊗ n)),

1(m⊗ n) = 1m⊗ n = m⊗ n,

for all k, k′ ∈ K, m,m′ ∈M , and n, n′ ∈ N . Hence M⊗KN is a left K-module.
Analogously, M ⊗K N is a right K-module. In addition,

(k(m⊗ n))k′ = (km⊗ n)k′ = km⊗ nk′ = k(m⊗ nk′) = k((m⊗ n)k′).

Hence, the associativity condition holds and M ⊗K N is a K-bimodule.
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2.2.4 Bimodules as left modules

In this subsection, we describe bimodules as left modules over a bigger ring.
This enables us to define the free bimodule on a set over a ring as a free left
module.

Proposition 2.39. Let C be a commutative ring and let R and S be two
C-algebras. Then R⊗ S is a C-algebra with the ring multiplication

(r ⊗ s)(r′ ⊗ s′) = rr′ ⊗ ss′,

for all r, r′ ∈ R and s, s′ ∈ S.

Proof. Let τ : S ×R → R⊗ S be map defined by τ(s, r) = r ⊗ s. The map
τ is bilinear since

τ(s+ s′, r) = r ⊗ (s+ s′) = r ⊗ s+ r ⊗ s′ = τ(s, r) + τ(s′, r),

and
τ(cs, r) = r ⊗ cs = rc⊗ s = cr ⊗ s = c(r ⊗ s) = cτ(s, r),

for all r ∈ R, s ∈ S, and c ∈ C. Similarly, τ(s, r + r′) = τ(s, r) + τ(s, r′)
and τ(s, cr) = cτ(s, r). Hence, by the universal property of tensor product
of modules, it induces a C-module homomorphism τ̃ : S ⊗R → R⊗ S such
that the following diagram is commutative:

S ×R S ⊗R

R⊗ S

⊗

τ τ̃

In particular, τ̃(s ⊗ r) = r ⊗ s, for all r ∈ R and s ∈ S. This gives rise to
the permutation map τ1 = idR⊗ τ̃ ⊗ idS : R⊗S ⊗R⊗S → R⊗R⊗S ⊗S,
where

τ1(r ⊗ s⊗ r′ ⊗ s′) = r ⊗ r′ ⊗ s⊗ s′.

Let µ : R×R → R and ν : S × S → S be ring multiplications. Since they
are bilinear, by the universal property of tensor product of modules, they
induce two C-module homomorphisms µ and ν respectively, such that the
following diagrams are commutative:

R×R R⊗R S × S S ⊗ S

R S

⊗

µ
µ

⊗

ν
ν
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Combining µ⊗ ν with the map τ1, we obtain a linear map

π = (µ⊗ ν) ◦ τ1 : R⊗ S ⊗R⊗ S → R⊗ S.

We claim that this multiplication is associative whenever µ and ν are. Put
U = R⊗ S, then the previous map can be written as π : U ⊗ U → U where
for any r, r′, r′′ ∈ R, s, s′, s′′ ∈ S we have

π ⊗ (π ⊗ idR⊗S)(r ⊗ s⊗ r′ ⊗ s′ ⊗ r′′ ⊗ s′′)
= π(rr′ ⊗ ss′ ⊗ r′′ ⊗ s′′) = (rr′)r′′ ⊗ (ss′)s′′.

Applying (π ⊗ idR⊗S)⊗ π, we obtain r(r′r′′)⊗ s(s′s′′), which is the same, by
associativity in R and S. Since the elements on the left span U ⊗ U ⊗ U , the
associativity of π follows. In addition, 1⊗ 1 is the identity element of R⊗ S.
In fact, for all r, s ∈ R,S we have

(1⊗ 1)(r ⊗ s) = r ⊗ s = (r ⊗ s)(1⊗ 1).

For the rest of this section, we focus on a special case where C = Z,
R = K, and S = Kop, where Kop denotes the opposite ring of K with the
multiplication k · k′ := k′k for all k, k′ ∈ K. More precisely, we consider the
tensor product of Z-modules

K ⊗Z Kop = {
p∑
i=1

ki ⊗ k′i | p ∈ N and k, k′ ∈ K},

as a ring together with the multiplication

(k ⊗ k′)(l ⊗ l′) = kl ⊗ l′k′.

Definition 2.40. Let M and N be K-bimodules. An additive map ϕ : M → N
is called a K-bimodule homomorphism if ϕ(kmk′) = kϕ(m)k′ for all m ∈M
and k, k′ ∈ K.

Theorem 2.41. Every K-bimodule M can also be viewed as a left K⊗Z Kop-
module. Conversely, every left K ⊗Z Kop-module M has the structure of
a K-bimodule. Moreover, any K ⊗Z Kop-module homomorphism induces a
K-bimodule homomorphism and any K-bimodule homomorphism induces a
K ⊗Z Kop-module homomorphism.

Proof. Let M be a K-bimodule. We show that M is a left K ⊗Z Kop-module
under the scalar multiplication (k ⊗ k′)m = kmk′ where k, k′ ∈ K and
m ∈ M . We first prove the scalar multiplication is well-defined: taking an
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arbitrary but fixed element m ∈M , we define a map ϕm : K ×Kop →M by
ϕm(k, k′) = kmk′. The map ϕm is biadditive since

ϕm(k + l, k′) = (k + l)mk′ = (km+ lm)k′

= kmk′ + lmk′ = ϕm(k, k′) + ϕm(l, k′),

and similarly ϕm(k, k′ + l′) = ϕm(k, k′) + ϕm(k, l′) for all k, k′, l, l′ ∈ K. It is
also balanced since

ϕm(kn, k′) = (kn)mk′ = k(nm)k′ = k(mn)k′ = km(nk′) = ϕm(k, nk′),

for all n ∈ Z. Hence, by the universal property of the tensor product of
bimodules, there exists a group homomorphism ϕm : K ⊗Z Kop → M such
that the following diagram is commutative:

K ×Kop K ⊗Z Kop

M

⊗

ϕm
ϕm

In particular, ϕm(k⊗k′) = kmk′. Hence the scalar multiplication (k⊗k′)m =
kmk′ is well-defined. We have

(k ⊗ k′)(m+ n) = k(m+ n)k′ = (km+ kn)k′

= kmk′ + knk′ = (k ⊗ k′)m+ (k ⊗ k′)n,
((k ⊗ k′)(l ⊗ l′))m = (kl ⊗ l′k′)m = klml′k′ = k(lml′)k′

= (k ⊗ k′)(lml′) = (k ⊗ k′)((l ⊗ l′)m),

for all k, k′, l, l′ ∈ K and m,n ∈M . In addition,

(k ⊗ k′ + l ⊗ l′)m = kmk′ + lml′ = (k ⊗ k′)m+ (l ⊗ l′)n

and (1 ⊗ 1)m = 1m1 = m. Hence, M is a left K ⊗Z Kop-module. For the
reverse implication, let M be a left K ⊗Z Kop-module. Considering the left
and the right scalar multiplications km = (k ⊗ 1)m and mk′ = (1⊗ k′)m, we
will show that M is a left K-module. We have

k(m+ n) = (k ⊗ 1)(m+ n) = (k ⊗ 1)m+ (k ⊗ 1)n = km+ kn,

(k + k′)m = ((k + k′)⊗ 1)m = (k ⊗ 1 + k′ ⊗ 1)m

= (k ⊗ 1)m+ (k′ ⊗ 1)m = km+ k′m,

for all k, k′ ∈ K and m,n ∈M . Moreover,

(kk′)m = (kk′ ⊗ 1)m = ((k ⊗ 1)(k′ ⊗ 1))m = (k ⊗ 1)(k′m) = k(k′m),
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and 1m = (1⊗ 1)m = m. Analogously, M is a right K-module and since

(km)k′ = ((k ⊗ 1)m)k′ = (1⊗ k′)(k ⊗ 1)m = (k ⊗ 1)(1⊗ k′)m = k(mk′),

hence the associativity condition holds. Now let ϕ : M → N be a K ⊗Z Kop-
module homomorphism. Considering M and N as K-bimodules we have

ϕ(kmk′) = ϕ((k ⊗ k′)m) = (k ⊗ k′)ϕ(m) = kϕ(m)k′,

for all k, k′ ∈ K and m ∈ M . Conversely, if ϕ : M → N is a K-bimodule
homomorphism, then viewing M , N as left K ⊗Z Kop-modules implies

ϕ((k ⊗ k′)m) = ϕ(kmk′) = kϕ(m)k′ = (k ⊗ k′)ϕ(m),

for all k, k′ ∈ K and m ∈M .

Definition 2.42. Let X = {xi | i ∈ I} be a set indexed by a set I. The free
K-bimodule on the set X is defined as the left K⊗Z Kop-module (viewed as a
K-bimodule) and is denoted by KXK.

Consequently, every element of the free K-bimodule KXK can be repre-
sented by a sum ∑

i∈I

pi∑
j=0

ki,jxik
′
i,j.

However, this representation is not unique. For example, for any x ∈ X and
k, l, k′ ∈ K,

(k + l)xk′ = kxk′ + lxk′

are the same element in KXK.

Theorem 2.43. (Universal property of free bimodules) Let X = {xi | i ∈ I}
be a set indexed by a set I and let ι : X → KXK be the inclusion map. Then
for any map ϕ : X → M , where M is a K-bimodule, there exists a unique
K-bimodule homomorphism ϕ : KXK →M such that the following diagram
is commutative:

X KXK

M

ι

ϕ
ϕ

In particular, ϕ
(∑
i∈I

pi∑
j=0

ki,jxik
′
i,j

)
=
∑
i∈I

pi∑
j=0

ki,jϕ(xi)k
′
i,j.
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Proof. As a K-bimodule, the free K-bimodule KXK is generated by the set
of all kxik

′ where k, k′ ∈ K and xi ∈ X for all i ∈ I. Therefore, for a fixed
map ϕ : X →M , any K-bimodule homomorphism ψ : KXK →M is equal to
ϕ on the generating set X and hence they are equal on KXK. This means
that ϕ is uniquely determined if it exists.

By Theorem 2.41, the K-bimodule M can be viewed as a left K ⊗Z Kop-
module. In addition, by Definition 2.42 and using the universal property
of free modules, there exists a unique (K ⊗Z Kop)-module homomorphism
ϕ̃ : (K ⊗Z Kop)X →M such that the following diagram is commutative:

X (K ⊗Z Kop)X

M

ι

ϕ ϕ̃

In particular, ϕ̃
(∑
i∈I

pi∑
j=0

(ki,j ⊗ k′i,j)xi
)

=
∑
i∈I

pi∑
j=0

(ki,j ⊗ k′i,j)ϕ(xi). By Theo-

rem 2.41, the map ϕ̃ induces a K-bimodule homomorphism.

2.3 Tensor rings and differential rings

In this section, we explain two important algebraic structures which we use
frequently in the following chapters.

2.3.1 Tensor rings

A tensor ring over an arbitrary ring is a generalization of the tensor algebra
over a commutative ring. We start this subsection by explaining the notion
of a K-ring and its basic properties.

Definition 2.44. A ring R which is also a K-bimodule, is called a K-ring if
the associativity property

(xy)z = x(yz)

holds for all x, y, z in R or K where two of them are in R and one is in K.

Remark 2.45. The notion of a K-ring is more general than the notion of
K-algebra, since the action of K does not necessarily centralize the ring even
if K is commutative, i.e., we do not require kr = rk for any k ∈ K and r ∈ R.
Therefore, we can describe the difference by saying that whereas a K-algebra
(K commutative) is a ring R with a homomorphism from K to the center of
R, a K-ring is a ring R with a homomorphism ρ : K → R.
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Lemma 2.46. Given a ring R and a homomorphism ρ : K → R, we can
always make R a K-bimodule by defining the scalar multiplications

k · r = ρ(k)r and r · k = rρ(k),

where the associativity property holds for all elements of R or K. Conversely,
given a ring R which is also a K-bimodule and satisfies the associativity
property, we can define a ring homomorphism ρ : K → R by ρ(k) = k · 1.

Proof. Let R be a ring and let ρ : K → R be a ring homomorphism. We
consider the scalar multiplications defined above and show that R is a K-
bimodule which satisfies the associativity property. Verifying that R is a left
and right K-module is straightforward. Then it becomes a K-bimodule since

(k · r) · k′ = (ρ(k)r) · k′ = (ρ(k)r)ρ(k′)

= ρ(k)(rρ(k′)) = ρ(k)(r · k′) = k · (r · k′)

for all k, k′ ∈ K and r ∈ R. Moreover, we have

k · (rr′) = ρ(k)(rr′) = (ρ(k)r)r′ = (k · r)r′,

(rr′) · k = (rr′)ρ(k) = r(r′ρ(k)) = r(r′ · k),

(r · k)r′ = rρ(k)r′ = r(ρ(k)r′) = r(k · r′)
for any r, r′ ∈ R and k, k′ ∈ K and hence the associative property holds.
Conversely, let R be K-bimodule together with the scalar multiplications
· : K × R → R and · : R × K → R. Then the map ρ(k) = k · 1 is a ring
homomorphism, since ρ(1K) = 1K · 1 = 1,

ρ(k + k′) = (k + k′) · 1 = k · 1 + k′ · 1 = ρ(k) + ρ(k′),

ρ(k)ρ(k′) = (k · 1)ρ(k′) = k · (1ρ(k′)) = k · ρ(k′)

= k · (k′ · 1) = (kk′) · 1 = ρ(kk′)

for all k, k′ ∈ K.

Definition 2.47. Let R and S be two K-rings. We call a ring homomorphism
ψ : R → S a K-ring homomorphism if it is also a K-bimodule homomorphism.

Lemma 2.48. Let R and S be two K-rings. Then a ring homomorphism
ψ : R → S is a K-ring homomorphism if and only if the following diagram is
commutative:

K R

S

ρ

ρ′
ψ
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Proof. If the diagram is commutative, then we have

ψ(k · r · k′) = ψ(ρ(k)rρ(k′)) = ψ(ρ(k))ψ(r)ψ(ρ(k′))

= ρ′(k)ψ(r)ρ′(k′) = k · ψ(r) · k′,

for all k, k′ ∈ K and r ∈ R. Conversely, if ψ is a K-bimodule homomorphism
then

ψ(ρ(k)) = ψ(ρ(k)1) = ψ(k · 1) = k · ψ(1) = k · 1 = ρ′(k),

for all k ∈ K. Hence the diagram commutes.

Definition 2.49. A K-subring of a K-ring R is a subring S of R that is a
K-bimodule as well.

Definition 2.50. A left ideal of a K-ring R is a left R-submodule. Similarly
we define a right ideal as a right R-submodule. A two-sided ideal of R is a
left ideal which is a right ideal as well.

Remark 2.51. Any ideal I of a K-ring R is also a K-subbimodule of R: the
ring R is a K-bimodule with scalar multiplications

k · r = ρ(k)r and r · k = rρ(k).

Since the ideal I is closed under the scalar multiplication in R, we conclude
that I with the scalar multiplications defined above is a K-subbimodule of R.

Lemma 2.52. Let R be a K-ring and I be a two-sided ideal of R. Then the
quotient module

R/I = {r + I | r ∈ R},

together with the following multiplication

(r1 + I)(r2 + I) = (r1r2 + I) (for all r1, r2 ∈ R),

is a K-ring which is called the quotient ring R/I.

Proof. Since I is an ideal of the K-ring R, by Remark 2.51 the ring R/I is
a K-bimodule as well. Moreover, one can easily check that the associativity
property (xy)z = x(yz) holds whenever two of them are in R/I and one is in
K. For instance,

((r1 + I)(r2 + I))k = (r1r2 + I)k = r1r2k + I

= (r1 + I)(r2k + I) = (r1 + I)((r2 + I)k).

Hence, by Definition 2.44 it is a K-ring.
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For the definition of the tensor ring, we need to consider the tensor product
of finitely many bimodules.

Definition 2.53. Let M1, . . . ,Mn be K-bimodules. Given an abelian group
A, a map ϕ : M1 × · · · ×Mn → A is called balanced if it is multiadditive and
satisfies the property

ϕ(m1, . . . ,mik,mi+1, . . . ,mn) = ϕ(m1, . . . ,mi, kmi+1, . . . ,mn)

for all k ∈ K, mj ∈Mj, where i = 1, . . . , n− 1 and j = 1, . . . , n.

Theorem 2.54. (Universal property of the tensor product of bimodules) Let
M1, . . . ,Mn, where n ≥ 1, be K-bimodules and let (M1 ⊗ · · · ⊗Mn,⊗) be the
tensor product of M1, . . . ,Mn together with the balanced map ⊗. Then for
any balanced map ϕ : M1 × · · · ×Mn → L, where L is an abelian group, there
exists a unique group homomorphism ϕ : M1 ⊗ · · · ⊗Mn → L such that the
following diagram is commutative:

M1 × · · · ×Mn M1 ⊗ · · · ⊗Mn

L

⊗

ϕ
ϕ

In particular, ϕ satisfies ϕ(
p∑
i=1

mi,1 ⊗ · · · ⊗mi,n) =
p∑
i=1

ϕ(mi,1, . . . ,mi,n).

Proof. Similar to the proof of Theorem 2.37.

As a K-bimodule, M1 ⊗ · · · ⊗Mn is generated by the following set

{m1 ⊗ · · · ⊗mn | mi ∈Mi for i = 1, . . . , n},

and each element of this generating set is called a pure tensor. Every element
t ∈M1 ⊗ · · · ⊗Mn can be written as a finite sum of pure tensors, i.e,

t =

p∑
i=1

mi,1 ⊗ · · · ⊗mi,n.

Note that if M1, . . . ,Mn are K-bimodules, then M1 ⊗ · · · ⊗Mn is again a
K-bimodule with scalar multiplications

k(m1⊗· · ·⊗mn) = km1⊗· · ·⊗mn and (m1⊗· · ·⊗mn)k = m1⊗· · ·⊗mnk.

We denote the n-fold tensor product of a K-module M with itself over K
by M⊗n (n factors). In addition, we define M⊗1 = M and M⊗0 as the free
K-module Kε, where ε denotes the empty tensor.
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Definition 2.55. The K-tensor ring on a K-bimodule M , is the K-bimodule

K〈M〉 =
∞⊕
n=0

M⊗n

together with the ring multiplication M⊗p ×M⊗q →M⊗(p+q) defined by

(m1 ⊗ · · · ⊗mp, m̃1 ⊗ · · · ⊗ m̃q) 7→ m1 ⊗ · · · ⊗mp ⊗ m̃1 ⊗ · · · ⊗ m̃q

which can be extended to K〈M〉 by biadditivity. With this multiplication,
K〈M〉 is a K-ring with ε being its identity element. Every element t ∈ K〈M〉
is unique of the form t =

∑
n∈N

tn.

Theorem 2.56. (Universal property of tensor rings). Let M be a K-bimodule
and let R be a K-ring. Let K〈M〉 be the K-tensor ring on M and ι : M ↪→
K〈M〉 be the inclusion map. Then for every K-bimodule homomorphism
ϕ : M → R, there exists a unique K-ring homomorphism ϕ : K〈M〉 → R such
that the following diagram is commutative:

M K〈M〉

R

ι

ϕ ϕ

In particular, ϕ satisfies

ϕ
(
kε+

p∑
i=1

mi,1 ⊗ · · · ⊗mi,ni

)
= k1 +

p∑
i=1

ϕ(mi,1) · · ·ϕ(mi,ni
).

Proof. Since the K-ring K〈M〉 is generated by the set M , for a K-bimodule
homomorphism ϕ : M → R, the K-ring homomorphism ϕ is uniquely deter-
mined if it exists. For each n ≥ 1, the map ϕn from M × · · · ×M (n times)
to R defined by ϕn(m1, . . . ,mn) = ϕ(m1) · · ·ϕ(mn) is balanced since

ϕn(m1, . . . ,mi +m′ik,mi+1, . . . ,mn) = ϕ(m1) · · ·ϕ(mi +m′ik) · · ·ϕ(mn)

= ϕ(m1) · · ·ϕ(mi)ϕ(mi+1) · · ·ϕ(mn) + ϕ(m1) · · ·ϕ(m′i)ϕ(kmi+1) · · ·ϕ(mn)

= ϕn(m1, . . . ,mi,mi+1, . . . ,mn) + ϕn(m1, . . . ,m
′
i, kmi+1, . . . ,mn),

for all mj,m
′
j ∈M , where i = 1, . . . , n− 1, j = 1, . . . , n, and k ∈ K. Hence,

by the universal property of the tensor product of bimodules, the map ϕn
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induces a unique K-bimodule homomorphism ϕ̃n from M ⊗ · · ·⊗M (n times)
to R such that the following diagram is commutative:

M × · · · ×M M ⊗ · · · ⊗M

R

⊗

ϕn

ϕ̃n

In addition, the K-bimodule homomorphism ϕ̃0 : Kε → R is defined by
ϕ̃0(ε) = 1. On putting the maps ϕ̃n together, by the universal property of
the direct sum of bimodules, we obtain a unique K-bimodule homomorphism
ϕ : K〈M〉 → R. Finally, since ϕ is additive and

ϕ(mm̃) = ϕ(m1 ⊗ · · · ⊗mr ⊗ m̃1 ⊗ · · · ⊗ m̃s)

= ϕ(m1) · · ·ϕ(mr)ϕ(m̃1) · · ·ϕ(m̃s)

= ϕ(m1 ⊗ · · · ⊗mr)ϕ(m̃1 ⊗ · · · ⊗ m̃s) = ϕ(m)ϕ(m̃),

for all m = m1 ⊗ · · · ⊗mr ∈M⊗r, m̃ = m̃1 ⊗ · · · ⊗ m̃s ∈M⊗s, it is a K-ring
homomorphism.

Definition 2.57. We define the free K-ring K〈X〉 on a set X as the K-tensor
ring K〈M〉 over the free K-bimodule KXK on the set X.

Remark 2.58. Note that as a K-bimodule, the free K-ring K〈X〉 is generated
by the set

Y = {x1 ⊗ k2x2 ⊗ · · · ⊗ knxn | n ∈ N , ki ∈ K,
and xj ∈ X for all 2 ≤ i ≤ n and 1 ≤ j ≤ n}.

Theorem 2.59. (Universal property of free K-rings) Let K〈X〉 be the free
K-ring on a set X = {xi | i ∈ I}, indexed by a set I, and let R be a K-ring.
Then for each map ϕ : X → R, there exists a unique K-ring homomorphism
ϕ : K〈X〉 → R such that the following diagram is commutative:

X K〈X〉

R

ι

ϕ ϕ

Proof. Let ι1 : X ↪→ KXK be the canonical embedding. By the universal
property of the free bimodules, for any map ϕ : X → R, there exists a unique
K-bimodule homomorphism ϕ̃ : KXK → R such that the left side of the
following diagram is commutative. Let ι2 : KXK ↪→ K〈X〉 be the canonical
embedding and let K〈X〉 = K〈M〉 be the free K-ring on the set X. By the
universal property of the tensor rings, the map ϕ̃ induces a unique K-ring
homomorphism ϕ : K〈X〉 → R such that the right side of the diagram
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X KXK K〈X〉

R

ι1

ϕ

ι2

ϕ̃ ϕ

is commutative and this completes the proof.

2.3.2 Differential rings

In the following we recall the definition of differential rings which is used
in Chapter 4 to define integro-differential rings and integro-differential rings
with linear substitutions.

Definition 2.60. Let R be a ring and let ∂ : R → R be an additive map
satisfying the Leibniz rule

∂rs = (∂r)s+ r∂s

for all r, s ∈ R. Then, (R, ∂) is called a differential ring and its ring of
constants is given by

{c ∈ R | ∂c = 0}.

Note that in a differential ring (R, ∂) the ring R and the ring of constants
K are not necessarily commutative rings. The ring R has both a left and a
right K-module structure which satisfy

(c1r)c2 = c1(rc2)

for all c1, c2 ∈ K and for all r ∈ R. Hence, it is a K-bimodule. We also have

∂cr = (∂c)r + c∂r = c∂r and ∂rc = (∂r)c+ r∂c = (∂r)c,

for all c ∈ K and for all r ∈ R. This means ∂ is both left and right linear
over the ring of constants K and thus ∂ is a K-bimodule endomorphism. The
following example shows for a given commutative differential ring, it is always
possible to construct a differential ring of matrices with entries in this ring.

Example 2.61. Let (S, ∂) be a commutative differential ring and let

R = Mn(S)

be the ring of n×n matrices over the ring S. We define a map ∂ : R → R as
follows: for any A = (aij) ∈ R, where i, j = 1, . . . , n, we have ∂A = (∂aij).
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The map ∂ satisfies the Leibniz rule: let A = (aij) and B = (bij) be elements

of R. If AB = (cij) then cij =
n∑
k=1

aikbkj and

∂cij =
n∑
k=1

∂aikbkj =
n∑
k=1

(
(∂aik)bkj +aik∂bkj

)
=

n∑
k=1

(∂aik)bkj +
n∑
k=1

aik∂bkj

for i, j = 1, . . . , n. This implies that ∂AB = (∂A)B + A∂B and thus (R, ∂)
is a differential ring with ring of constants given by matrices with constant
entries, i.e.,

{C = (cij) ∈ R | ∂cij = 0}.

2.4 Basics of term rewriting

Term rewriting is a simple computational method which is based on the
repeated application of simplification rules. It is particularly suited for tasks
such as symbolic computation, program analysis and program transforma-
tion. Exploiting term rewriting helps to solve these tasks in a very effective
manner. Intuitively, a reduction is analogous to any step by step activity and
mathematically this means we are simply talking about binary relations.

Definition 2.62. An abstract reduction system is a pair (A,→), where the
reduction → is a binary relation on the set A, i.e. → ⊆ A× A. Instead of
(a, b) ∈ → we write a→ b.

The term “reduction” has been chosen due to the fact that in many
applications something decreases with each reduction step, but cannot decrease
forever. Recall that for the sets A, B, and C and the relations R ⊆ A× B
and S ⊆ B × C the composition of the relations is defined by

R ◦ S = {(x, z) ∈ A× C | ∃ y ∈ B such that (x, y) ∈ R and (y, z) ∈ S}.

Based on this definition, we introduce some symbols and their notions.

Definition 2.63. Composing a reduction with itself, we define the following
notions:
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(i)
0−→ := {(x, x) | x ∈ A} identity

(ii)
i+1−−→ :=

i−→ ◦ −→ (i+ 1)-fold composition, i ≥ 0

(iii)
+−→ :=

⋃
i>0

i−→ transitive closure

(iv)
∗−→ :=

+−→ ∪ 0−→ reflexive transitive closure

(v)
=−→ := −→ ∪ 0−→ reflexive closure

(vi) ← := {(y, x) | x −→ y} inverse

(vii) ↔ := −→ ∪ ←− symmetric closure

(viii)
∗←→ := (←→)∗ reflexive transitive symmetric closure

Remark 2.64. Notations like
∗−→ and ←− only work for arrow-like symbols.

We also write x
∗−→ y if there exists some finite path from x to y.

Note that the P closure of a relation R is the least set with property P
which contains R. For example,

∗−→, the reflexive transitive closure of −→, is
the least reflexive and transitive relation which contains −→. It is easy to show
that

∗−→ is the least equivalence relation containing −→. We also denote by
∗←→

the reflexive transitive symmetric closure of −→. The reader may notice that
for arbitrary P and R, the P closure of R need not exist, but in the above
cases they always do because reflexivity, transitivity and symmetry are closed
under arbitrary intersections. In such cases the P closure of R can be defined
directly as the intersection of all sets with property P which contain R. In
the following we add some terminology to this notation.

1. x is reducible iff there is a y such that x −→ y.

2. x is in normal form (irreducible) iff it is not reducible.

3. y is a normal form of x iff x
∗−→ y and y is in normal form. If x has a

uniquely determined normal form, the latter is denoted by ↓ .

4. x and y are joinable iff there is a z such that x
∗−→ z

∗←− y, in which case
we write x ↓ y.

Example 2.65. Let A := N \ {0, 1} and −→:= {(m,n) | m > n and n | m}.
Then

(i) m is in normal form iff m is prime.

(ii) p is a normal form of m iff p is a prime factor of m.

(iii) m ↓ n iff m and n are not relatively prime.

(iv)
+−→ = −→ because > and “divides” are already transitive.
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(v)
∗←→ = A× A.

Example 2.66. Let A := 〈{a, b}〉 (the set of words over the alphabet {a, b})
and −→:= {(ubav, uabv) | u, v ∈ A}. Then

(i) w is in normal form iff w is sorted, i.e. of the form a∗b∗.

(ii) Every w has a unique normal form w ↓, the result of sorting w.

(iii) w1 ↓ w2 iff w1
∗←→ w2 iff w1 and w2 contain the same number of as and

bs.

As an important application of rewriting systems one can point to the
word problem for sets of identities which can be described as follows: let E be
a set of identities and let x, y ∈ A. Is it possible to transform x into y, using
the identities in E as rewrite rules that can be applied in both directions?

In order to answer this question, one possibility is to consider the identities
as uni-directional rewrite rules. Two elements x and y are called equivalent
if they can be transformed into each other by applying identities in both
directions. For checking the equivalence between x and y, we reduce x to a
normal form x1 and y to a normal form y1. Then we check whether x1 and y1

are syntactically equal.
While exploiting this method for the word problem above, two problems

arise that must be considered. First is that equivalent terms can have distinct
normal forms and second is normal forms need not exist since the process of
reducing a term may lead to an infinite chain of rule applications. In order to
ensure existence and uniqueness of normal forms we will introduce the notions
of termination and confluence as important properties for a reduction system.
In the following definition we list some of the most important properties of a
reduction system.

Definition 2.67. A reduction −→ is called
Church-Rosser iff x

∗←→ y implies x ↓ y (see Figure 2.1).

confluent iff y1
∗←− x

∗−→ y2 implies y1 ↓ y2 (see Figure 2.1).

terminating iff there is no infinite descending chain a0 −→ a1 −→ · · ·
normalizing iff every element has a normal form.

convergent iff it is both confluent and terminating.

Remark 2.68. Each diagram in Figure 2.1 has an exact meaning. Solid
arrows represent universal and dashed arrows existential quantification; The
whole diagram is an implication of the form ∀x : P (x) ⇒ ∃y : Q(x, y). For
instance, the confluence diagram becomes

∀x, y1, y2.y1
∗←− x

∗−→ y2 ⇒ ∃z : y1
∗−→ z

∗←− y2.
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x y x y1 x y1

z y2 z y2 z

∗

∗ ∗

∗

∗ ∗ ∗ ∗

∗ ∗

Figure 2.1: Church-Rosser property, confluence and semi-confluence.

Note that the given reductions in Examples 2.65 and 2.66 are terminating,
but only the second one is Church-Rosser and confluent. For proving equiva-
lence between the Church-Rosser and confluent properties we need to define
an intermediate property:

Definition 2.69. A relation −→ is semi-confluent (see Figure 2.1) iff

y1 ←− x
∗−→ y2 ⇒ y1 ↓ y2.

One may think that semi-confluence is weaker than confluence, but in fact
they are equivalent:

Theorem 2.70. The following conditions are equivalent:

(i) −→ has the Church-Rosser property.

(ii) −→ is confluent.

(iii) −→ is semi-confluent.

In addition, this theorem has the following consequences.

Corollary 2.71. If → is confluent and x
∗←→ y then

(i) x −→ y if y is in normal form, and

(ii) x = y if both x and y are in normal form.

Therefore, for confluent relations, two elements are equivalent iff they are
joinable. Of course the test for joinability can be a difficult task (and even
undecidable) if the relation does not terminate. Given two elements which
are not joinable, when should we stop the search for a common successor in
case of an infinite reduction starting from one of the two elements, as in the
following example?

a0 −→ a1 −→ a2 −→ . . . ,

b0 −→ b1 −→ b2 −→ . . . .

It turns out for determining joinability we only need to check normalization.
For understanding this better, let us investigate the relationship between
termination, normalization, confluence, and the uniqueness of normal forms.
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Remark 2.72. If −→ is confluent then every element has at most one normal
form. Since every element has at least one normal form if −→ is normalizing,
it follows that for confluent and normalizing relations every element x has
exactly one normal form which we write x ↓:

Lemma 2.73. If −→ is normalizing and confluent, every element has a unique
normal form.

Having established under what conditions the notation x ↓ is well-defined,
we can conclude the following theorem:

Theorem 2.74. If −→ is normalizing and confluent then x
∗←→ y ⇔ x ↓= y ↓.

Proof. The ⇐ direction is trivial. Conversely, if x
∗←→ y then x ↓ ∗←→ y ↓ and

hence x ↓= y ↓ by Corollary 2.71.

Hence we have eventually arrived at a very goal-directed equivalence test:
simply check if the normal forms of both elements are identical. If normal
forms are computable and identity is decidable then we may conclude that
equivalence becomes decidable as well. Proving confluence can be a difficult
task since one has to consider forks y1

∗←− x
∗−→ y2 of arbitrary length. Let

us look at different ways of localizing the confluence test to single-step forks
y1 ←− x −→ y2.

Definition 2.75. A relation → is locally confluent (see Figure 2.2) iff

y1 ←− x −→ y2 ⇒ y1 ↓ y2.

∗

∗

∗

=

Figure 2.2: Local confluence, strong confluence, and the diamond property.

Local confluence is strictly weaker than confluence. As an easy example we
look at Figure 2.3: although both local forks a←− 0 −→ 1 and 0←− 1 −→ b can
be closed, but the reduction is not confluent. Still one might think that the
cycle between 0 and 1 makes it confluent, but the second example in Figure 2.3
(only an initial segment of the infinite graph generated by 2n −→ a, 2n+ 1 −→ b
and n −→ n+ 1, is shown) proves that this is not the case.

36



10a b 0

1

b

3

2 4

a

···

Figure 2.3: Local confluence does not imply confluence.

Even for acyclic relations (i.e. there is no element a such that a
+−→ a),

local confluence does not imply confluence. Both example are nonterminating.
This is a consequence of Newman’s Lemma :

Theorem 2.76. A terminating relation is confluent if it is locally confluent.

Termination enables us to check confluence through local confluence in a
simple way. It is still possible to localize the confluence test when relations
are nonterminating if we restrict the notion of closedness for forks.

Definition 2.77. A relation −→ is strongly confluent (see Figure 2.2) iff

y1 ←− x −→ y2 ⇒ ∃z : y1
∗−→ z

=←− y2.

One should be aware of the symmetry in this definition: y1 ←− x −→ y2

must imply both y1
∗−→ z1

=←− y2 and y1
∗−→ z2

=←− y2 for suitable z1 and z2.
Hence, neither of the relations in Figure 2.3 are strongly confluent.

Lemma 2.78. Any strongly confluent relation is confluent.

In order to benefit from this strong property, we do not apply Lemma 2.78
directly to the real object of interest −→. Rather we define a strongly confluent
relation −→s such that

∗−→=
∗−→s. Now Lemma 2.78 yields confluence of −→s

which carries over to −→ using the following observation:

Remark 2.79. If
∗−→1=

∗−→2 then −→1 is confluent iff −→2 is confluent.

The following lemma facilitates the application of this fact:

Lemma 2.80. If −→1⊆−→2⊆
∗−→1 then

∗−→1=
∗−→2.

Proof. Since the reflexive transitive closure is a monotone and idempotent
operation, −→1⊆−→2⊆

∗−→1 implies
∗−→1⊆

∗−→2⊆ (
∗−→1)

∗ =
∗−→1 and thus

∗−→1=
∗−→2.
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Putting Lemma 2.78, Remark 2.79, and Lemma 2.80 together we obtain

Corollary 2.81. If −→1⊆−→2⊆
∗−→1 and −→2 is strongly confluent, then −→1 is

confluent.

In practice we are able to work with a yet stronger property:

Definition 2.82. A relation −→ has the diamond property (see Figure 2.2)
if and only if

y1 ←− x −→ y2 ⇒ ∃z : y1 −→ z ←− y2.

The diamond property implies trivially strong confluence. Hence Corol-
lary 2.81 also holds if −→2 has the diamond property. Moreover, the reduction
system −→ is confluent iff

∗−→ has the diamond property.

2.5 Linear functional systems

In this section, we briefly recall characterization of the transformations, which
map solutions of a linear functional system (e.g., differential, time-delay,
difference, . . . ) to solutions of another one. This characterization relies on the
so-called algebraic analysis approach which provides a unified mathematical
framework for studying linear systems of functional equations, by methods of
module theory, homological algebra and sheaf theory. For more details, see [45]
and the references therein. Within this approach, we define a rectangular
system of q linear functional equations in p unknown functions by means of a
q× p matrix with entries in a noncommutative ring D of functional operators.
If F is a left D-module, e.g., a functional space which is closed under the left
action of D, then a linear system, also called behavior, can be defined as

kerF(R.) := {η ∈ Fp | Rη = 0}.

A transformation between systems defined by R ∈ Dq×p and R′ ∈ Dq′×p′

maps a solution η′ ∈ kerF(R′.) to a solution η ∈ kerF(R.). If we can find a
matrix P ∈ Dp×p′ for which there exists a matrix Q ∈ Dq×q′ satisfying

RP = QR′, (2.1)

then the matrix P induces such a transformation by η = Pη′, since for all
η′ ∈ kerF(R′.) we easily see that

Rη = R (P η′) = Q (R′ η′) = 0.

We exploit equation (2.1) later in Sections 5.2.2 and 5.2.3. The rest of this
section briefly summarizes the algebraic background of the algebraic analysis
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approach. A behavior is actually the solution space of an underlying system
of linear equations and depends on F . Algebraically, the intrinsic object of
linear system Rη = 0 is its associated module

M := D1×p/(D1×qR),

which is a left D-module finitely presented by R, i.e., both numerator and
denominator are finitely generated D-modules. This module M defines a
linear system of equations: let {fj}j=1,...,p be the standard basis of the free
left D-module D1×p, let π : D1×p →M be the canonical projection onto M ,
and let yj := π(fj) for j = 1, . . . , p. Then, it is easy to check that {yj}j=1,...,p

is a set of generators of M . Let us denote by Ri• the ith row of the matrix R.
The set of generators {yj}j=1,...,p of M satisfies the D-linear relations

p∑
j=1

Rijyj =

p∑
j=1

Rijπ(fj) = π(

p∑
j=1

Rijfj) = π(Ri•) = 0,

for i = 1, . . . , q, since Ri• ∈ D1×qR. Hence, if we note y := (y1, . . . , yp)
T ∈Mp,

then y satisfies Ry = 0. Let us define the abelian group

homD(M,F) = {φ : M → F | φ is a left D-linear map}.

The next result shows that the behavior kerF (R.) can intrinsically be inter-
preted as the dual homD(M,F) of M .

Theorem 2.83. With the above notations, we have the following isomorphism
of abelian groups:

χ : homD(M,F)→ kerF(R.)

φ 7→ η := (φ(y1), . . . , φ(yP ))T ,

whose inverse χ−1 is defined by χ−1(η) = φη, where φη(π(λ)) := λη for all
λ ∈ D1×p and η ∈ kerF (R.).

In the following, we just prove that the map χ is bijective. Clearly, for
η = χ(φ) we can prove that η ∈ kerF(R.). Moreover, φη is a well-defined left
D-linear map which implies φη ∈ homD(M,F). We note σ(η) := φη where
η ∈ kerF(R.). Then, we get (σ ◦ χ)(φ) = φ(φ(y1),...,φ(yp))T , i.e.

(σ ◦ χ)(φ)(π(λ)) =

p∑
j=1

λjφ(yj) = φ
( p∑
j=1

λjπ(fj)
)

= φ(π(λ)),
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and thus σ ◦ χ = idhomD(M,F). Finally, if η ∈ kerF(R.), then we have

(χ ◦ σ)(η) = (φη(y1), . . . , φη(yp))
T ,

where φη(yj) = fjη = ηj, i.e., χ ◦ σ = idkerF (R.).
For two behaviors kerF(R.) and kerF(R′.) as above, we consider the left

D-modules M and M ′ finitely presented by R ∈ Dq×p and R′ ∈ Dq′×p′ ,
respectively. The following theorem shows that every left D-homomorphism
φ : M −→ M ′ induces an abelian group homomorphism φ? : kerF(R′.) −→
kerF(R.), i.e., a transformation which sends a solution of R′ η′ = 0 to a
solution of Rη = 0.

Theorem 2.84. (Cluzeau and Quadrat [14]). We have:

(i) Any φ ∈ homD(M,M ′) is defined by

φ(π(λ)) = π′(λP ),

for all λ ∈ D1×p, where P ∈ Dp×p′ satisfies D1×q(RP ) ⊆ D1×q′R′, i.e.,
P is such that there exists Q ∈ Dq×q′ satisfying:

RP = QR′. (2.2)

(ii) φ induces the following homomorphism of abelian groups:

φ∗ : kerF(R′.)→ kerF(R.)

η′ 7→ η := Pη′.
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Chapter 3

Tensor reduction systems

The main goal of this chapter is to elaborate generalized Bergman’s basis-
free approach for tensor reduction systems. The relevant references can
be found in Section 1.3. The framework provided uses quotients of tensor
rings over two-sided ideals for constructing rings of operators. A motivating
example of such rings, given in Section 3.1, is the ring of differential operators
over a noncommutative differential ring, as generalization of the algebra of
differential operators over a commutative ring.

One main contribution to this chapter, presented in Section 3.2, is pro-
viding a detailed proof for the Bergman’s diamond lemma in tensor setting
by including a stronger notion for resolvability of ambiguities. The diamond
lemma provides a heuristic approach for computer-assisted construction of a
confluent reduction system starting from a given reduction system. The pro-
cess is analogous to Buchberger’s algorithm and Knuth-Bendix completion [32]
as well. A confluent tensor reduction system enables effective computations
based on normal forms.

Another contribution to generalize Bergman’s tensor setting is made in
Section 3.3 by introducing the concept of specialization. This new setting is
based on constructing tensor rings over free modules that can be split into
further submodules. It allows to define reduction homomorphisms over bigger
domains, which leads to reduce number of ambiguities significantly. Therefore,
it makes the algorithmic verification of the confluence criterion more efficient.

3.1 Introductory example

For a short discussion on several approaches for modelling rings of operators,
we use the well-known example of differential operators. Recall that differential
operators with polynomial coefficients (Weyl algebra) over a field K ⊇ Q can
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be defined as the quotient algebra

K〈X,D〉/(DX −XD − 1)

of the free polynomial algebra K〈X,D〉 by a two-sided ideal; see for example
[18]. Now, we consider a commutative differential ring (R, ∂) with ring of
constants K. For the case where R is a finitely presented K-algebra it is true
that the differential operators R〈∂〉 are a finitely presented K-algebra as well,
analogous to the Weyl algebra.

Skew polynomials are a well-established approach that only introduces
finitely many rules for differential operators over arbitrary differential rings
R (e.g. rational functions): they are represented by defining a multiplication
on normal forms

∑
fi∂

i based on the commutation rule

∂ · f = f∂ + ∂f.

Viewed as construction by generators and relations, this amounts to (poten-
tially) infinitely many relations, one for each generator of R.

In the following, we motivate and illustrate informally tensor reduction
systems. For a commutative differential ring, the construction leads to a
quotient of the tensor algebra as in [28]. The commutation rule for skew
polynomials above corresponds to a reduction homomorphism for tensors
below. In contrast to the case of skew polynomials, where the ring R is
regarded as the coefficient ring, in the tensor construction below R is just
assumed to be a K-module and we tensor over the ring K only. Consequently,
for the multiplication in R, we need to introduce an additional reduction
homomorphism for tensors.

Example 3.1. Let (R, ∂) be a commutative differential ring with ring of con-
stants K. Recall from Subsection 2.3.2, by the Leibniz rule, that the derivation
∂ : R → R is a K-module homomorphism. In addition, commutativity of
the ring R implies the multiplication operators induced by f ∈ R mapping
g 7→ fg are K-module homomorphisms as well.

Now consider the K-tensor algebra K〈M〉 on the K-module M = R⊕K∂
where MD = K∂ denotes the free left K-module generated by the symbol ∂.
The identities in K〈M〉 reflect the identities coming from the K-linearity of
the operators and their compositions, where we interpret ⊗ as composition
of operators. Using reduction rules defined by K-module homomorphisms
on certain submodules of the tensor algebra, we are able to incorporate the
additional identities. We consider two homomorphisms defined by

f ⊗ g 7→ fg and ∂ ⊗ f 7→ f ⊗ ∂ + ∂f,
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corresponding to the composition of multiplication operators and the Leibniz
rule. These two reduction rules induce the two-sided ideal

J = (f ⊗ g − fg, ∂ ⊗ f − f ⊗ ∂ − ∂f | f, g ∈ R)

which is used for defining the K-algebra of differential operators as the quotient
algebra

R〈∂〉 = K〈M〉/J.

Our goal is to obtain unique normal forms in the quotient by applying the
reduction rules above. A tensor of the form

∂ ⊗ f ⊗ g

corresponds to an overlap ambiguity of these two rules, since we can reduce it
by the homomorphisms in different ways to obtain either

(f ⊗ ∂ + ∂f)⊗ g or ∂ ⊗ (fg).

For checking resolvability of the ambiguity the S-polynomial formed by the
difference of these alternatives should be reducible to zero. In the present
case, it reduces to zero because of the Leibniz rule in R. Another ambiguity is
expressed by tensors of the form f ⊗ g ⊗ h and is resolvable as well. Since
all ambiguities are resolvable, we obtain normal forms in terms of irreducible
tensors

∂⊗j and f ⊗ ∂⊗j.

For differential operators with matrix coefficients, we assume R to be a
ring of matrices over some (commutative) differential ring. As a concrete case,
one may think of the matrix ring Mn(C∞(R)) where its ring of constants
K is the ring of constant matrices in Mn(C∞(R)). Then, not only is R a
noncommutative differential ring but also K is no longer commutative and
elements of K do not commute with elements of R. Consequently, R is not
a K-algebra anymore and rather it is a K-ring. More generally, we consider
an arbitrary differential ring R. It is a bimodule over its ring of constants K
and tensoring over K leads to a construction of the differential operators as a
quotient of the tensor ring instead of the tensor algebra.

Example 3.2. Let (R, ∂) be an arbitrary differential ring with ring of con-
stants K. In contrast to ∂ which is a K-bimodule homomorphism of R,
multiplication operators B 7→ AB in general are only right K-module homo-
morphisms. We consider the K-tensor ring K〈M〉 on the K-bimodule

M = R⊕MD
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where by MD we denote the K-bimodule non-freely generated by ∂ subject to
the identity

K1∂ ·K2 = K1K2∂,

which is used to define the right scalar multiplication on MD. Therefore, we
are required to consider one more relation on MD and hence it is a non-free
K-bimodule. The identities in the tensor ring K〈M〉 reflect the identities
coming from additivity of the operators and their compositions. Reduction
rules are K-bimodule homomorphisms defined by the same formulae as above.
For further details we ask the reader to see Example 3.17.

3.2 Bergman’s setting

In this section, we explain analogs of Gröbner bases in tensor rings following [5,
Sec. 6], using standard notation for rewriting systems from [3] and Section 2.4.
First, we outline the construction and some properties of the K-tensor ring
K〈M〉 on a K-bimodule M over an arbitrary ring K with unit element. If
K is commutative and the left and right scalar multiplication on M agree,
then K〈M〉 is the tensor algebra on M , which is a generalization of the
noncommutative polynomial algebra on a set of indeterminates. In contrast
to the noncommutative polynomials, in the tensor ring the “coefficients” in
K do not commute with the “indeterminates”.

3.2.1 Diamond lemma in tensor rings

We first consider a family of K-bimodules (Mx)x∈X indexed by a set X.
These modules Mx play the role of the indeterminates in the noncommutative
polynomial algebra. Recall that the word monoid on X is denoted by 〈X〉.
For a word W = x1 · · ·xn ∈ 〈X〉, we denote the tensor product of the
corresponding bimodules by

MW := Mx1 ⊗ · · · ⊗Mxn .

In particular, for the empty word/tensor ε we have Mε = Kε. Here, the pure
tensors m1 ⊗ · · · ⊗mn ∈MW with mi ∈Mxi play the role of the monomials
in the noncommutative polynomial algebra. Now, we consider the direct sum

M :=
⊕
x∈X

Mx (3.1)

and the K-tensor ring on M , which can be written as

K〈M〉 =
∞⊕
n=0

M⊗n =
⊕
W∈〈X〉

MW =
⊕
W∈〈X〉

(

|W |⊗
i=1

Mxi). (3.2)
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We have already seen in Section 2.3 that every tensor t ∈ K〈M〉 can be
written as a sum of pure tensors. However, in contrast to linear combinations
of monomials in the noncommutative polynomial algebra, this representation
is not unique. This is due to the fact that M⊗n is not freely generated as a
K-bimodule by the pure tensors, e.g. in M⊗2 for m3 = m1 +m2 ∈M we have

m1 ⊗m3 +m2 ⊗m1 = m3 ⊗m1 +m1 ⊗m2.

However, using bimodule homomorphisms, one can still define reductions
analogous to polynomial reduction for (non-)commutative Gröbner bases.

Definition 3.3. Let M be given by (3.1). A reduction rule for K〈M〉 is
given by a pair (W,h) of a word W ∈ 〈X〉 and a K-bimodule homomorphism
h : MW → K〈M〉. For a reduction rule r = (W,h) and words A,B ∈ 〈X〉, we
define a reduction as the K-bimodule homomorphism

hA,r,B : K〈M〉 → K〈M〉

acting as idA ⊗ h ⊗ idB on MAWB and the identity on all other MV with
V ∈ 〈X〉 and V 6= AWB.

Thus, for a pure tensor a⊗ w ⊗ b ∈MAWB with a ∈MA, w ∈MW , and
b ∈MB, the reduction hA,r,B is given by

a⊗ w ⊗ b 7→ a⊗ h(w)⊗ b.

Therefore, as for polynomial reduction, we “replace” the “leading monomial”
w by the “tail” h(w) given by the homomorphism h.

In the following, we explain some terminology for reduction systems over
tensor rings, see also Section 2.4. Let t ∈ K〈M〉. A reduction hA,r,B acts
trivially on t, i.e. hA,r,B(t) = t, if the summand of t in MAWB is zero, see (3.2).
A reduction rule r = (W,h) reduces t to s ∈ K〈M〉 if a reduction hA,r,B for
some A,B ∈ 〈X〉 acts non-trivially on t and hA,r,B(t) = s, and we write
t→r s.

A reduction system for K〈M〉 is a set Σ of reduction rules. Every reduction
system Σ induces a reduction relation →Σ on tensors by defining t→Σ s for
t, s ∈ K〈M〉 if t →r s for some reduction rule r ∈ Σ. Fixing a reduction
system Σ, we say that t ∈ K〈M〉 can be reduced to s ∈ K〈M〉 by Σ if t = s
or there exists a finite sequence of reduction rules r1, . . . , rn in Σ such that

t→r1 t1 →r2 · · · →rn−1 tn−1 →rn s

and we write t
∗→Σ s. In other words,

∗−→Σ denotes the reflexive transitive
closure of the reduction relation →Σ. Note that we can represent any finite
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chain of reductions by a composition of K-bimodule homomorphisms: we
let ρi := hAi,ri,Bi

, for i = 1, . . . , n with suitable Ai, Bi ∈ 〈X〉, and by ρ we
denote the K-bimodule homomorphism ρn · · · ρ1. This allows us to represent
the chain above as ρ(t) = s.

The set of irreducible words 〈X〉irr ⊆ 〈X〉 consists of those words having
no subwords from the set {W | (W,h) ∈ Σ}. We define the K-subbimodule
of irreducible tensors as

K〈M〉irr =
⊕

W∈〈X〉irr

MW =
⊕

W∈〈X〉irr

(

|W |⊗
i=1

Mxi). (3.3)

In order to guarantee that for a given reduction system Σ all sequences
of reductions are finite, we consider partial orders on 〈X〉 with some specific
properties.

Definition 3.4. A partial order ≤ on 〈X〉 is called a semigroup partial order
on 〈X〉 if the condition

B < B̃ ⇒ ABC < AB̃C,

holds for all A,B, B̃, C ∈ 〈X〉. If in addition ε ≤ A for all A ∈ 〈X〉, then
it is called a monoid partial order. It is called Noetherian if there are no
infinite descending chains.

Remark 3.5. Note that a lexicographic order on 〈X〉 is not a semigroup order
if |X| > 1: consider a lexicographic order on X = {x1, x2} with ε < x1 < x2.
Then, by definition of semigroup order, from ε < x1 we have x2 < x1x2

which contradicts with definition of the lexicographic order above. However,
a (weighted) degree-lexicographic order of the words is a semigroup (total)
order on 〈X〉, and it is Noetherian if X is finite. Given a semigroup S with a
semigroup partial order � on it and a semigroup homomorphism ϕ : 〈X〉 → S,
we can define the induced semigroup partial order on 〈X〉 by

V ≤ W :⇔ V = W or ϕ(V ) ≺ ϕ(W ).

For example, for S = N with the usual order and the homomorphism given
by ϕ(x0) = 1 for x0 ∈ X and ϕ(x) = 0 for x ∈ X \ {x0}, the induced
partial order just compares the degree in x0. Given two semigroups S1 and
S2 with corresponding semigroup partial orders ≤1 and ≤2 respectively, we
can combine them lexicographically to obtain a semigroup partial order on
S = S1 × S2 by

(a1, a2) ≤ (b1, b2) :⇔ a1 <1 b1 or a1 = b1 and a2 ≤2 b2.
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In the following lemmas, for a ring K, we let M =
⊕

x∈XMx where
(Mx)x∈X is a fixed family of K-bimodules indexed by a set X. We also let Σ
be a fixed reduction system on K〈M〉. For the rest of this chapter, we fix the
notation

M<W :=
⊕
V ∈〈X〉
V <W

MV

where W is a word in 〈X〉. Note that M<W is a K-subbimodule of K〈M〉.

Definition 3.6. A semigroup partial order ≤ is called compatible with a
reduction system Σ if for all reduction rules (W,h) ∈ Σ,

h(MW ) ⊆M<W .

If a compatible semigroup partial order is Noetherian, then there do not
exist infinite sequences of reductions in Σ. In other words, the reduction
relation →Σ is terminating or Noetherian. So, in that case, every t ∈ K〈M〉
can be reduced in finitely many steps to an irreducible tensor

t
∗→Σ s ∈ K〈M〉irr

and such an s is called a normal form of t. In general, a tensor can have
different normal forms. If the element t ∈ K〈M〉 has a unique normal form,
we denote it by t↓Σ.

In order to guarantee that normal forms for reduction systems on tensor
rings are unique, we state below Bergman’s analog of Buchberger’s criterion
for Gröbner bases [7]. In the context of Gröbner-Shirshov bases for various
algebraic structures this is also referred to as the Composition-Diamond
Lemma; see e.g. the survey [6].

Let Σ be a reduction system. We study the cases when two different
reductions act non-trivially on tensors in MW for W ∈ 〈X〉.

Definition 3.7. An overlap ambiguity is given by two (not necessarily dis-
tinct) reduction rules (W,h), (W̃ , h̃) ∈ Σ and nonempty words A,B,C ∈ 〈X〉
such that

W = AB and W̃ = BC.

It is called resolvable if for all pure tensors a ∈ MA, b ∈ MB, and c ∈ MC

the S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∗→Σ 0.

An inclusion ambiguity is given by distinct reduction rules (W,h), (W̃ , h̃) ∈ Σ
and words A,B,C ∈ 〈X〉 with W = B and W̃ = ABC. It is called resolvable
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if for all pure tensors a ∈MA, b ∈MB, and c ∈MC the S-polynomial can be
reduced to zero:

a⊗ h(b)⊗ c− h̃(a⊗ b⊗ c) ∗→Σ 0.

With slight abuse of notation, we refer to S-polynomials of an overlap or
inclusion ambiguity, respectively, by

SP(AB,BC) or SP(B,ABC).

A reduction system Σ induces the two-sided reduction ideal

IΣ := (t− h(t) | (W,h) ∈ Σ and t ∈MW ) ⊆ K〈M〉. (3.4)

Note that the definition of resolvability above differs from the definition
used by Bergman. Actually, he uses two different notions for resolvability of
ambiguities, which we briefly describe below. Both of them are weaker than
Definition 3.7 in general. However, we show in Theorem 3.15 that if every
tensor has a unique normal form, then all three definitions of resolvability
are equivalent. We express one slightly weaker notion as follows.

Definition 3.8. An overlap ambiguity given by (not necessarily distinct)
reduction rules (W,h) and (W̃ , h̃) in Σ and words A,B,C ∈ 〈X〉 with W =
AB and W̃ = BC is called j-resolvable, if for all pure tensors a ∈ MA,
b ∈MB, and c ∈MC there exists a tensor t ∈ K〈M〉 such that

h(a⊗ b)⊗ c ∗→Σ t
∗←Σ a⊗ h̃(b⊗ c).

Similarly, an inclusion ambiguity given by two distinct reduction rules r and
r̃ in Σ and words A,B,C ∈ 〈X〉 with W = B and W̃ = ABC is called
j-resolvable, if for all pure tensors a ∈MA, b ∈MB, and c ∈MC , there exists
a tensor t ∈ K〈M〉 such that

a⊗ h(b)⊗ c ∗→Σ t
∗←Σ h̃(a⊗ b⊗ c).

In other words, in both cases, the two different results of the reductions of
a⊗ b⊗ c are joinable.

Example 3.9. Consider the K-tensor ring K〈M〉 for M = MA ⊕MB ⊕MC

on the alphabet X = {A,B,C}. Let Σ = {r1, r2, r3, r4} be a reduction system
on X with

r1 = (AB, a⊗ b 7→ a), r2 = (BC, b⊗ c 7→ a+ c),

r3 = (AC, a⊗ c 7→ 0), r4 = (AC, a⊗ c 7→ −a⊗ a).
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It is easy to see that any degree-lexicographic order with C > A is compatible
with Σ. The overlap ambiguity between the reduction rules r1 and r2 is
j-resolvable, since for all pure tensors a ∈MA, b ∈MB and c ∈MC we have

h1(a⊗ b)⊗ c = a⊗ c→r3 0,

and
a⊗ h2(b⊗ c) = a⊗ a+ a⊗ c→r4 a⊗ a− a⊗ a = 0.

However, this ambiguity is not resolvable:

h1(a⊗ b)⊗ c− a⊗ h2(b⊗ c) = −a⊗ a.

Before describing the other notion of resolvability, which is even weaker
and depends on semigroup partial order ≤, we require more notation: for a
semigroup partial order ≤ on 〈X〉 compatible with the reduction system Σ
and any word W in 〈X〉, we denote by IΣ,W the K-bimodule generated by⋃

V ∈〈X〉
V <W

{t− s | t ∈MV and t→Σ s ∈ K〈M〉}.

Definition 3.10. An overlap or inclusion ambiguity with words A,B,C ∈
〈X〉 is called ≤-resolvable if and only if all its S-polynomials are contained
in the K-bimodule IΣ,ABC.

Remark 3.11. If the semigroup partial order ≤ is compatible with Σ, then
IΣ,W is contained in a “truncation” IΣ ∩M<W of the reduction ideal IΣ.

In order to determine whether a given tensor t ∈ K〈M〉 belongs to IΣ,W

or not, one possibility is to work with some reduction of t under Σ, as the
following result shows:

Lemma 3.12. Let ≤ be a semigroup partial order compatible with Σ. Let ρ
be a finite composition of reductions. If t ∈M<W , then

t− ρ(t) ∈ IΣ,W .

As a consequence, for t ∈M<W , we see that t ∈ IΣ,W if and only if ρ(t) ∈ IΣ,W .

Proof. We prove the lemma by induction: first assume that ρ represents only
one reduction rule r1 = (W1, h1), say ρ := hA1,r1,B1 for A1, B1 ∈ 〈X〉. Since

t ∈M<W , we get t =
p∑
i=1

ai⊗wi⊗bi+ t1 where ai ∈MA1 , wi ∈MW1 , bi ∈MB1

for i = 1, . . . , p, and t1 ∈ M<W . If A1W1B1 ≮ W , we get ρ(t) = t which
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implies the trivial result t− ρ(t) = t− t = 0 ∈ IΣ,W . If A1W1B1 < W , then
it follows that

t− ρ(t) = a1 ⊗ (w1 − h1(w1))⊗ b1 ∈ IΣ,W ,

and ρ(t) ∈ M<W . Now let ρ = ρn · · · ρ1 and t′ = ρn−1 · · · ρ1(t). By the
induction hypothesis, t− t′ ∈ IΣ,W and t′ ∈M<W . Moreover, we have proved
that t′ − ρn(t′) ∈ IΣ,W . Therefore,

t− ρ(t) = t− ρn(t′) = t− t′ + t′ − ρn(t′) ∈ IΣ,W

as required.

For the rest of this section, we denote by K〈M〉un the set of all elements
with unique normal forms in K〈M〉. In addition, we define the map

πΣ : K〈M〉un → K〈M〉irr
t 7→ t ↓Σ .

Lemma 3.13. Let ≤ be a Noetherian semigroup partial order on 〈X〉 that is
compatible with Σ. Then

(i) The set K〈M〉un is a K-subbimodule, and the map πΣ is a K-bimodule
homomorphism.

(ii) Suppose that a, b, c ∈ K〈M〉 are such that for all homogeneous com-
ponents aA, bB, cC of a, b, c in any of the summands MA,MB,MC of
K〈M〉, respectively, the product aA⊗ bB⊗ cC has a unique normal form.
(In particular this implies that a⊗ b⊗ c has a unique normal form.) Let
ρ be a finite composition of reductions. Then a⊗ ρ(b)⊗ c has unique
normal form,

πΣ(a⊗ ρ(b)⊗ c) = πΣ(a⊗ b⊗ c).

Proof. (i) Suppose that t, t′ ∈ K〈M〉un and k, k′ ∈ K. Since ≤ is Noetherian,
the element kt + t′k′ ∈ K〈M〉 can be reduced in finitely many steps to an
irreducible tensor in K〈M〉irr. Let ρ be any finite composition of reductions
such that ρ(kt + t′k′) = t′′ where t′′ ∈ K〈M〉irr. Since t has a unique
normal form, we can always find a composition of reductions ρ′ such that
ρ′ρ(t) = πΣ(t). Similarly, there is a composition of reductions ρ′′ such that
ρ′′ρ′ρ(t′) = πΣ(t′). Now since t′′ is irreducible and reductions are K-bimodule
homomorphisms, we can conclude

t′′ = ρ′′ρ′ρ(kt+ t′k′) = kρ′′ρ′ρ(t) + ρ′′ρ′ρ(t′)k′ = kπΣ(t) + πΣ(t′)k′,
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as required.
(ii) By (i) and the way (ii) is formulated, it clearly suffices to prove (ii)

in the case where a, b, c are elements from MA,MB,MC , respectively, and a
single reduction hD,r,E. In this case, a⊗ hD,r,E(b)⊗ c = hAD,r,EC(a⊗ b⊗ c),
which is the image of a⊗ b⊗ c ∈MABC under a reduction. Hence, it has a
unique normal form if a⊗ b⊗ c does, with the same reduced form.

Lemma 3.14. Let ≤ be a Noetherian semigroup partial order on 〈X〉 that is
compatible with the reduction system Σ. If all ambiguities of Σ are ≤-resolvable
then every t ∈ K〈M〉 has a unique normal form t ↓Σ.

Proof. It will suffice to prove that for all D ∈ 〈X〉, all elements d ∈ MD

have unique normal forms, since by Lemma 3.13 the set K〈M〉un forms a
K-subbimodule. We proceed by induction: let D ∈ 〈X〉 be minimal w.r.t. ≤
or MD ⊆ K〈M〉irr. Then any d ∈MD has a unique normal form, since there
is no reduction acts non-trivially on it. Now, let D ∈ 〈X〉 be non-minimal
w.r.t. ≤ and assume that for all E < D all e ∈ME have unique normal form.
Thus, the domain of πΣ contains the K-subbimodule M<D, so the kernel of
πΣ contains IΣ,D. We prove that all pure tensors d ∈MD have unique normal
forms and hence by Lemma 3.13 all elements in MD have unique normal
forms. We must show that given any two reductions hL,r,R′(d) and hL′,r̃,R(d),
each acting non-trivially on d ∈MD (and hence each sending d to an element
of M<D), we will have πΣ(hL,r,R′(d)) = πΣ(hL′,r̃,R(d)) for all d ∈ MD. There
are three cases, according to the relative location of the subwords W and W̃
in D. Of course, we can assume without loss of generality that |L| ≤ |L′|, i.e.,
the indicated copy of W in D begins no later than the indicated copy of W̃ .

Case 1. The subwords W and W̃ overlap in D, but neither contains the
other. Then D = LABCR, where (r, r̃, A,B,C) is an overlap ambiguity of Σ.
Suppose that d = l⊗ a⊗ b⊗ c⊗ r ∈MD where l ∈ML, a ∈MA, b ∈MB, c ∈
MC , r ∈MR and hence

hL,r,R′(d)− hL′,r̃,R(d) = l ⊗ (h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c))⊗ r.

By assumption, we have h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∈ IΣ,ABC and hence

l ⊗ (h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c))⊗ r ∈ IΣ,LABCR(= IΣ,D),

which is annihilated by πΣ. Thus πΣ(ρ1(d))− πΣ(ρ′1(d)) = 0, as needed.
Case 2. One of the subwords W, W̃ of D is contained in the other.

Suppose that W = ABC, W̃ = B and d = l ⊗ a⊗ b⊗ c⊗ r ∈MD, then

hL,r,R′(d)− hL′,r̃,R(d) = l ⊗ (h(a⊗ b⊗ c)− a⊗ h̃(b)⊗ c)⊗ r.
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By resolvability of inclusion ambiguities we have h(a⊗b⊗c)−a⊗h̃(b) ∈ IΣ,ABC .
Consequently,

l ⊗ (h(a⊗ b⊗ c)− a⊗ h̃(b)⊗ c)⊗ r ∈ IΣ,LABCR(= IΣ,D).

The case W = B and W̃ = ABC is analogous.
Case 3. W and W̃ are disjoint subwords of D. Then D = LWNW̃R

and d = l⊗w⊗ n⊗ w̃⊗ r where l ∈ML, w ∈MW , n ∈MN , w̃ ∈MW̃ , and
r ∈MR. The elements we must prove equal are

πΣ(l ⊗ h(w)⊗ n⊗ w̃ ⊗ r) and πΣ(l ⊗ w ⊗ n⊗ h̃(w̃)⊗ r).

By Lemma 3.13 (ii) we have

πΣ(l ⊗ h(w)⊗ n⊗ w̃ ⊗ r) = πΣ(l ⊗ h(w)⊗ n⊗ h̃(w̃)⊗ r),

and
πΣ(l ⊗ w ⊗ n⊗ h̃(w̃)⊗ r) = πΣ(l ⊗ h(w)⊗ n⊗ h̃(w̃)⊗ r),

which completes the proof.

For studying operator algebras, we want to compute in the factor ring
K〈M〉/IΣ. If all ambiguities are resolvable, then we can do this effectively
using reductions in K〈M〉 and the corresponding normal forms with respect
to →Σ. This is the confluence criterion (condition (i) below) that we will
check algorithmically.

Theorem 3.15. Let K be a ring, let (Mx)x∈X be a family of K-bimodules
indexed by a set X, and let M =

⊕
x∈XMx. Let Σ be a reduction system

on K〈M〉 and let ≤ be a Noetherian semigroup partial order on 〈X〉 that is
compatible with Σ. Then the following are equivalent:

(i) All ambiguities of Σ are resolvable.

(ii) All ambiguities of Σ are j-resolvable.

(iii) All ambiguities of Σ are ≤-resolvable.

(iv) Every t ∈ K〈M〉 has a unique normal form t ↓Σ.

(v) K〈M〉/IΣ and K〈M〉irr are isomorphic as K-bimodules.

If these conditions hold, then we can define a multiplication on K〈M〉irr by
s · t := (s⊗ t)↓Σ so that K〈M〉/IΣ and K〈M〉irr are isomorphic as K-rings.

52



Proof. Recall that by Noetherianity of ≤ every t ∈ K〈M〉 can be reduced

in finitely many steps to an irreducible tensor t
∗→Σ s ∈ K〈M〉irr. We start

by proving the equivalence (iv)⇔ (v). Equivalent to (v) we have K〈M〉 =
K〈M〉irr ⊕ IΣ. Suppose that (iv) holds, then the map πΣ : K〈M〉 → K〈M〉irr
is a projection; if t ∈ kerπΣ then t ↓Σ= 0. This implies that t ∈ IΣ and
kerπΣ ⊆ IΣ. In addition, we have kerπΣ ⊇ IΣ, since for any a ∈MA, b ∈MB,
w ∈MW , and r = (W,h) ∈ Σ by use of Lemma 3.13 we have

πΣ(a⊗ (w − h(w))⊗ b) = πΣ(a⊗ w ⊗ b)− πΣ(a⊗ h(w)⊗ b) = 0

which proves (v). Conversely, assume (v) and suppose t ∈ K〈M〉 is reduced
to either of s, s′ ∈ K〈M〉irr. Therefore, we get s − s′ ∈ K〈M〉irr ∩ IΣ = {0}
which proves (iv).

The final comment in the statement of the theorem is clear, and the
implications of (iv) ⇒ (i) ⇒ (ii) ⇒ (iii) are easy: assuming (iv), every
d ∈ K〈M〉 has a unique normal form, say d ↓Σ. This means for all overlap
ambiguities r = (W,h), r̃ = (W̃ , h̃) with W = AB and W̃ = BC and for all
elements d = a⊗ b⊗ c ∈MABC ,

πΣ(hε,r,C(d) = πΣ(d) = πΣ(hA,r̃,ε(d)),

which implies by Lemma 3.13 that

(hε,r,C(d))− hA,r̃,ε(d))
∗−→Σ 0.

Similarly, for all inclusion ambiguities r = (W,h), r̃ = (W̃ , h̃) with W = B
and W̃ = ABC and for all elements d = a⊗ b⊗ c ∈MABC ,

πΣ(hA,r,C(d)) = πΣ(d) = πΣ(hε,r̃,ε(d)),

which implies by the same lemma that

(hA,r,C(d)− hε,r̃,ε(d))
∗−→Σ 0.

For proving the implication (i)⇒ (ii), consider the overlap ambiguity given
by (W,h), (W̃ , h̃) ∈ Σ and nonempty words A,B,C ∈ 〈X〉 such that

W = AB and W̃ = BC.

By (i), for all pure tensors a ∈MA, b ∈MB, and c ∈MC the corresponding
S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∗→Σ 0.

53



In other words, there is a composition ρ of reductions such that

ρ(h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c)) = 0.

Therefore, we have

ρ(h(a⊗ b)⊗ c) = ρ(a⊗ h̃(b⊗ c)) =: t

which allows us to conclude

h(a⊗ b)⊗ c ∗−→Σ t
∗←−Σ a⊗ h̃(b⊗ c).

The proof for inclusion ambiguities of (W,h), (W̃ , h̃) ∈ Σ with W = B and
W̃ = ABC is analogous. Now let us prove the implication (ii) ⇒ (iii).
By (ii), for the overlap ambiguity (W,h), (W̃ , h̃) ∈ Σ and nonempty words
A,B,C ∈ 〈X〉 such that

W = AB and W̃ = BC,

and for all pure tensors a ∈MA, b ∈MB, and c ∈MC we have

h(a⊗ b)⊗ c ∗−→Σ t
∗←−Σ a⊗ h̃(b⊗ c).

This means there are two compositions ρ and ρ′ of reductions such that

t = ρ(h(a⊗ b)⊗ c) = ρ′(a⊗ h̃(b⊗ c)).

The corresponding S-polynomial can be written as(
h(a ⊗ b) ⊗ c − ρ(h(a ⊗ b) ⊗ c)

)
−
(
a ⊗ h̃(b ⊗ c) − ρ′(a ⊗ h̃(b ⊗ c)

)
.

Here, h(a⊗ b)⊗ c, a⊗ h̃(b⊗ c) ∈M<ABC . Moreover, by Lemma 3.12, both

h(a⊗ b)⊗ c− ρ(h(a⊗ b)⊗ c) and a⊗ h̃(b⊗ c)− ρ′(a⊗ h̃(b⊗ c))

live in IΣ,ABC . Therefore, the corresponding S-polynomial is contained in
IΣ,ABC . Analogously, for inclusion ambiguities, we can prove the implication
(ii)⇒ (iii). Finally, by Lemma 3.14 the implication (iii)⇒ (iv) holds and
this completes the proof.

Remark 3.16. In order to do computations in the quotient ring K〈M〉/IΣ,
we are interested in finding a system of representatives. According to Theo-
rem 3.15, the irreducible tensors K〈M〉irr are such a system when the tensor
reduction system is confluent. Therefore, if the given reduction system is not
confluent, we try to complete it to a confluent one such that it generates the
same reduction ideal of (3.4).
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In the following example we revisit Example 3.2 for studying it formally
in the tensor ring setting.

Example 3.17. Let (R, ∂) be a differential ring and let K denote its ring of
constants. We consider the K-bimodule MR= R (indexed by the letter R). In
addition, we consider the free left K-module MD= K∂ generated by ∂ (indexed
by the letter D), which we view as a K-bimodule with right multiplication

K1∂ ·K2 = K1K2∂,

for all K1, K2 ∈ K. This definition is based on left K-linearity of the operation
∂ on R:

(K1∂K2)A = K1∂(K2A) = (K1K2∂)A.

Let M = MR ⊕MD be the module of basic operators. Then words on the
alphabet X = {R,D} index the direct summands of the K-tensor ring K〈M〉.

We interpret elements A ∈ R as multiplication operators, ∂ as the deriva-
tion on R, and the tensor product ⊗ as the composition of operators. So, we
consider the reduction system Σ = {rRR, rDR} with the reduction rules

rRR = (RR, A⊗B 7→ AB) and rDR = (DR, ∂ ⊗ A 7→ A⊗ ∂ + ∂A)

corresponding to the composition of multiplication operators and the Leibniz
rule. These two reduction rules induce the two-sided ideal

IΣ = (A⊗B − AB, ∂ ⊗ A− A⊗ ∂ − ∂A | A,B ∈ R)

which we use to define the K-ring of differential operators as the quotient ring

R〈∂〉 = K〈M〉/IΣ

of the tensor ring by the two-sided reduction ideal. The informal definition of
the reduction homomorphisms above can be made formal in the following way.
First, since

MR ×MR →MR

(A,B) 7→ AB

is a balanced map, it induces a well-defined homomorphism MRR → MR of
abelian groups. This homomorphism is a K-bimodule homomorphism, which
we use to define rRR. Extending the definition

β(∂,A) := A⊗ ∂ + ∂A
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by
β(K1∂,A) := β(∂,K1A),

we obtain a balanced map β : MD ×MR →MRD ⊕MR, since

β(K1∂ ·K2, A) = β(K1K2∂,A) = β(∂,K1K2A) = β(K1∂,K2A).

Like above, β induces a K-bimodule homomorphism MDR → MRD ⊕ MR

constituting rDR.
Any semigroup partial order ≤ on 〈X〉 with RR > R, as well as DR > RD

and DR > R is compatible with Σ, e.g. the degree-lexicographic order with
D > R. There are two overlap ambiguities. The S-polynomials of the first
ambiguity reduce to zero in two steps:

SP(RR,RR) = (AB)⊗ C − A⊗ (BC)→rRR
(AB)C − A(BC) = 0,

and the S-polynomials of the second ambiguity reduce to zero by applying the
Leibniz rule.

SP(DR,RR) = (A⊗ ∂ + ∂A)⊗B − ∂ ⊗ (AB)

→rDR
A⊗B ⊗ ∂ + A⊗ ∂B + (∂A)B − AB ⊗ ∂ − ∂(AB)

→rRR
AB ⊗ ∂ + A∂B + (∂A)B − AB ⊗ ∂ − ∂(AB)

= A∂B + (∂A)B − ∂(AB) = 0.

Now since 〈X〉irr = {ε,R,D,RD,D2,RD2, . . .}, by Theorem 3.15 we conclude
that every t ∈ K〈M〉 has a unique normal form t↓Σ in K〈M〉irr, where

K〈M〉irr = Kε⊕MR ⊕MD ⊕ (MR ⊗MD)⊕M⊗2
D ⊕ (MR ⊗M⊗2

D )⊕ . . . .

In other words, we can write t ↓Σ as a sum of pure tensors of the form
ε, A, ∂, A ⊗ ∂, ∂ ⊗ ∂, A ⊗ ∂ ⊗ ∂, . . . and recover the well-known normal
forms of differential operators.

Remark 3.18. If some α ∈Mx corresponds to a left K-linear operator, like
∂ ∈MD above, then for the right scalar multiplication of left multiples of α,
we always have

K1α ·K2 = K1K2α

with K1, K2 ∈ K. As soon as such an operator is present, the ring over
which the tensors are formed has to contain K in order to incorporate the
corresponding relations directly into the tensor ring.
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3.2.2 Computational aspects

We investigate the algorithmic aspects of Theorem 3.15 by assuming a finite
reduction system Σ on a finite alphabet X. In addition, we should consider a
compatible Noetherian semigroup partial order.

For obtaining the set of ambiguities, it is enough to work in the word
monoid 〈X〉. Similarly, determining the set of irreducible words 〈X〉irr is a
purely combinatorial problem on words as well, cf. the proofs of Theorems 4.14,
4.22, and 6.9. In order to check resolvability of ambiguities, it is sufficient to
work with S-polynomials which are constructed from general elements of the
basic bimodules Mx. The result of a reduction step, i.e. the application of
a homomorphism from the reduction system, needs to be simplified in the
tensor ring. This involves application of properties of the tensor product
and of identities in the bimodules, like the Leibniz rule in Example 3.17. In
practice, the reduction to zero often can be detected heuristically without
having a canonical simplifier in the bimodules.

The Mathematica package TenReS supports verification of the confluence
criterion and completion based on S-polynomial computations. We can
exploit it for generating all ambiguities and corresponding S-polynomials of a
reduction system given by the user. The package itself contains routines for
computing in the tensor ring, but still we have to implement identities needed
for computing in the bimodules of equation (3.1) in each concrete case.

In contrast to specifying new identities in the polynomial resp. term
algebra, already the constructive specification of reduction homomorphisms
in the tensor setting is not clear in general.

3.3 Tensor setting with specialization

In order to exploit Bergman’s tensor setting directly, the sum in (3.1) has to
be direct. Consequently, in a reduction system overlaps between domains of
reduction rules cannot occur, in fact even their tensor factors cannot overlap.
Considering this, for the case we have overlapping domains (or factors),
reduction rules must be split into several smaller parts so that domains of
those smaller rules do not overlap. Therefore, in practice computations with
such reduction systems can be inconvenient and inefficient, as the smaller
rules technically are just individual rules that need to be applied separately.
In addition, this causes some redundancy in the investigation of ambiguities
and S-polynomials. Sticking to the above definition of reduction systems for
tensor rings, this situation cannot be avoided.
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Example 3.19. Note that in Example 3.17 irreducible tensors still have some
relations among them when they act as operators. For instance, Kε ∈M⊗0

and K ∈ M both act by multiplying with K ∈ K. Therefore, we require an
additional reduction rule reducing K ∈M to Kε ∈M⊗0 for K ∈ K. Fixing a
direct complement R = K ⊕ R̃ in R for defining the reduction rule

rK = (K, 1 7→ ε),

would cause the splitting of the reduction rule rRR into four reduction rules
rKK, rKR̃, rR̃K, rR̃R̃ and similarly rDR would split into two reduction rules. The
aim of this section is to introduce a framework that allows coexistence of the
reduction rule rK with the reduction rules rRR and rDR.

To resolve this situation, in this section we introduce a more flexible
tensor setting where the definable reduction systems are much more general.
Although the induced reduction relations in the new system are also more
general, the corresponding reduction ideals are not, however.

Definition 3.20. Let M be a K-bimodule and let Z be an alphabet. A family
(Mz)z∈Z of K-subbimodules of M is called a decomposition with specialization,
if M =

∑
z∈ZMz and there exists a subset X ⊆ Z such that

(i) we have the direct sum decomposition M =
⊕

x∈XMx and

(ii) for every z ∈ Z the corresponding module Mz satisfies

Mz =
⊕
x∈S(z)

Mx (3.5)

where S(z) := {x ∈ X |Mx ⊆Mz} is the set of specializations of z.

Following this definition we conclude that S(x) = {x} for x ∈ X. In the
following, we define a framework for tensor reduction systems that are based
on such a decomposition with specialization. To this end, we fix a K-bimodule
M , alphabets X ⊆ Z, and a decomposition (Mz)z∈Z of M with specialization.

For words W = w1 . . . wn ∈ 〈Z〉, the corresponding subbimodule of K〈M〉
is defined as before by MW := Mw1 ⊗ · · · ⊗Mwn . Because of (3.5), any MW

is a direct sum of certain MV , for V ∈ 〈X〉. For an exact statement, we
can extend the notion of specialization from the alphabet Z to the whole
word monoid 〈Z〉 by the definition below such that we have the following
generalization of (3.5):

MW =
⊕

V ∈S(W )

MV . (3.6)
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Definition 3.21. For a word W = w1 . . . wn ∈ 〈Z〉 we define the set of
specializations of W by

S(W ) := {v1 . . . vn ∈ 〈X〉 | ∀i : vi ∈ S(wi)}.

Remark 3.22. The reader should note that for any V ∈ 〈X〉 and W ∈ 〈Z〉 we
have either MV ∩MW = {0} or MV ⊆MW . Furthermore, the specializations
of W ∈ 〈Z〉 are also given by

S(W ) = {V ∈ 〈X〉 |MV ⊆MW}.

Definition 3.3 carries over by replacing X with Z. For such a reduction
system Σ on Z we define the reduction ideal IΣ by (3.4) and we define 〈X〉irr
as the set of words from 〈X〉 containing no subwords from the set⋃

(W,h)∈Σ

S(W ).

Based on 〈X〉irr we defineK〈M〉irr as in (3.3). Furthermore, for every reduction
system Σ on Z we call its reformulation as a reduction system on X the
refined reduction system ΣX , which is given by

ΣX :=
⋃

(W,h)∈Σ

{(V, h|MV
) | V ∈ S(W )}. (3.7)

Lemma 3.23. Let Σ be a reduction system on Z and let ΣX be its refinement
on X. Then the reduction ideals and the irreducible words are the same for Σ
and for ΣX . Moreover, also K〈M〉irr stays the same.

Proof. Follows immediately from the definitions.

Remark 3.24. In the refined reduction relation →ΣX
every reduction hA,r,B

is given by a reduction rule r and the words A,B ∈ 〈X〉. Consequently,
the refined reduction system ΣX does not define the same reduction relation
induced by the reduction system Σ, even when Σ and ΣX are equal. In general,
we neither have →Σ⊆→ΣX

nor →ΣX
⊆→Σ, but →Σ⊆

∗−→ΣX
holds.

Example 3.25. In Example 3.17, by fixing a direct complement R = K ⊕ R̃
in R, we can define the K-bimodule

MR := MK ⊕MR̃

where MK := K and MR̃ := R̃. We define two alphabets

X = {K, R̃,D}, Z = X ∪ {R},
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and the K-bimodule
M := MR ⊕MD.

On the alphabets above, we consider the reduction systems

ΣX = {rK, rKK, rKR̃, rR̃K, rR̃R̃, rDK, rDR̃}, Σ = {rK, rRR, rDR},

respectively. It is easy to check→Σ*→ΣX
. For instance, for the reduction rule

rK in Σ, K ∈MK, and B ∈MR we have hε,rK,R(K ⊗B) = KB, whereas there
does not exist any reduction rule in ΣX with the same result. Moreover, for
the reduction rule rR̃R̃ in ΣX and A = K1 + Ã, B = K2 + B̃ with K1, K2 ∈MK

and Ã, B̃ ∈MR̃, the reduction hε,rR̃R̃,ε
reduces

A⊗B = K1 ⊗K2 +K1 ⊗ B̃ + Ã⊗K2 + Ã⊗ B̃

to the tensor
K1 ⊗K2 +K1 ⊗ B̃ + Ã⊗K2 + ÃB̃,

which is not obtained by applying any rule in Σ and thus →ΣX
*→Σ.

Example 3.26. Assume that in Example 3.25 we have the reduction systems
Σ = ΣX = {rK}. Then for the reduction rule rK, K ∈ MK, and B ∈ MR

we have hε,rK,R(K ⊗ B) = KB, which can not be obtained by applying any
reduction rule in ΣX . Therefore, we conclude that →ΣX

6=→Σ.

Definition 3.27. A partial order ≤ on 〈Z〉 is called consistent with special-
ization if for all words V,W ∈ 〈Z〉 with V < W we also have Ṽ < W̃ for all
specializations Ṽ ∈ S(V ) and W̃ ∈ S(W ).

As a consequence of the above definition a word W is incomparable to
all elements in S(W ), except possibly W itself, which can be viewed by
considering the two cases V ∈ S(W ) and W ∈ S(V ) in the definition.

A semigroup partial order ≤ on 〈Z〉 is called compatible with a reduction
system Σ on Z if for all (W,h) ∈ Σ we have

h(MW ) ⊆
∑
V ∈〈Z〉
V <W

MV .

If ≤ is consistent with specialization, then for any W̃ ∈ S(W ) we have∑
V ∈〈Z〉
V <W

MV ⊆M<W̃ .
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Lemma 3.28. Let Σ be a reduction system on Z and let ≤ be a semigroup
partial order on 〈Z〉 consistent with specialization and compatible with Σ.
Then the restricted order ≤ on 〈X〉 is compatible with ΣX .

Proof. By definition of ΣX , for each reduction rule (W̃ , h̃) ∈ ΣX there ex-
ists (W,h) ∈ Σ such that W̃ ∈ S(W ) and h̃ = h|MW̃

. Therefore, by the
assumptions, we have

h̃(MW̃ ) = h(MW̃ ) ⊆ h(MW ) ⊆
∑
V ∈〈Z〉
V <W

MV ⊆M<W̃ .

In fact the sum K〈M〉 =
∑

W∈〈Z〉MW is not necessarily direct anymore.
Taking this into account, we require to generalize the notion of ambiguities.

Definition 3.29. Let (W,h), (W̃ , h̃) ∈ Σ be two (not necessarily distinct)
reduction rules and let A,B1, B2, C ∈ 〈Z〉 be nonempty words with

W = AB1, W̃ = B2C, and S(B1) ∩ S(B2) 6= ∅,

then we call this an overlap ambiguity. An overlap ambiguity is called
resolvable if for all pure tensors a ∈ MA, b ∈ MB1 ∩MB2, and c ∈ MC the
S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∗→Σ 0.

Similarly, an inclusion ambiguity is given by two distinct reduction rules
(W,h), (W̃ , h̃) ∈ Σ and words A,B1, B2, C ∈ 〈Z〉 with W = B1, W̃ = AB2C,
and S(B1) ∩ S(B2) 6= ∅. An inclusion ambiguity is called resolvable if for all
pure tensors a ∈MA, b ∈MB1 ∩MB2, and c ∈MC the S-polynomial can be

reduced to zero: a⊗ h(b)⊗ c− h̃(a⊗ b⊗ c) ∗→Σ 0.
If B1 6= B2 for an overlap or inclusion ambiguity, then we say that the

ambiguity is with specialization.

Again, we use SP(AB1, B2C) or SP(B1, AB2C), respectively, to refer to
S-polynomials of an overlap or inclusion ambiguity.

Remark 3.30. The reader should note that in total there now can be four
types of ambiguities: in addition to the two types of ambiguities (without
specialization) of Definition 3.7 there are also corresponding versions with
specialization as defined above.

Corresponding to Definition 3.8 for the word monoid 〈Z〉, we have the
following definition.
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Definition 3.31. An overlap ambiguity (with specialization) given by (not
necessarily distinct) reduction rules (W,h) and (W̃ , h̃) in Σ and nonempty
words A,B1, B2, C ∈ 〈Z〉, with W = AB1, W̃ = B2C, and S(B1)∩S(B2) 6= ∅
is called j-resolvable if for all pure tensors a ∈ MA, b ∈ MB1 ∩MB2, and
c ∈MC there exists a tensor t ∈ K〈M〉 such that

h(a⊗ b)⊗ c ∗→Σ t
∗←Σ a⊗ h̃(b⊗ c).

Similarly, an inclusion ambiguity (with specialization) given by reduction
rules (W,h) and (W̃ , h̃) in Σ and nonempty words A,B1, B2, C ∈ 〈Z〉, with
W = B1, W̃ = AB2C, and S(B1) ∩ S(B2) 6= ∅ is called j-resolvable if for
all pure tensors a ∈ MA, b ∈ MB1 ∩MB2, and c ∈ MC there exists a tensor
t ∈ K〈M〉 such that

a⊗ h(b)⊗ c ∗→Σ t
∗←Σ h̃(a⊗ b⊗ c).

Considering the definition above, one can prove the following generalization
of Bergman’s result. For demonstrating properties of the reduction system
Σ on Z, we apply Bergman’s result (Theorem 3.15) to the refined reduction
system ΣX on X.

Theorem 3.32. Let M be a K-bimodule and let (Mz)z∈Z be a decomposition
with specialization. Let Σ be a reduction system on Z over K〈M〉 and let ≤
be a Noetherian semigroup partial order on 〈Z〉 consistent with specialization
and compatible with Σ. Then the following are equivalent:

(i) All ambiguities of Σ are resolvable.

(ii) All ambiguities of Σ are j-resolvable.

(iii) Every t ∈ K〈M〉 has a unique normal form t ↓Σ.

(iv) K〈M〉/IΣ and K〈M〉irr are isomorphic as K-bimodules.

Moreover, if these conditions are satisfied, then we can define a multi-
plication on K〈M〉irr by s · t := (s⊗ t)↓Σ so that K〈M〉/IΣ and K〈M〉irr are
isomorphic as K-rings.

Proof. First we prove the implication (iii) ⇒ (i). Any S-polynomial of an
ambiguity of Σ is of the form h(t)− h̃(t) for some pure tensor t ∈ K〈M〉 and
reductions h and h̃ of Σ. Let ρ and ρ′ be compositions of reductions of Σ
such that ρ(h(t)) ∈ K〈M〉irr and ρ′(ρ(h̃(t))) ∈ K〈M〉irr. Since t has a unique
normal form w.r.t. Σ then ρ′(ρ(h(t))) = ρ(h(t)) = ρ′(ρ(h̃(t))) and thus

ρ′(ρ(h(t)− h̃(t))) = ρ′(ρ(h(t)))− ρ′(ρ(h̃(t))) = 0.
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For proving the implication (i)⇒ (ii), consider the overlap ambiguity given
by (W,h), (W̃ , h̃) ∈ Σ and nonempty words A,B1, B2, C ∈ 〈Z〉 where

W = AB1, W̃ = B2C, and S(B1) ∩ S(B2) 6= ∅.

By (i), for all pure tensors a ∈ MA, b ∈ MB1 ∩ MB2 , and c ∈ MC the
corresponding S-polynomial can be reduced to zero:

h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c) ∗→Σ 0.

In other words, there is a K-bimodule homomorphism ρ inducing a chain of
reduction rules in Σ such that

ρ(h(a⊗ b)⊗ c− a⊗ h̃(b⊗ c)) = 0.

Therefore, we have

ρ(h(a⊗ b)⊗ c) = ρ(a⊗ h̃(b⊗ c)) =: t

which allows us to conclude

h(a⊗ b)⊗ c ∗−→Σ t
∗←−Σ a⊗ h̃(b⊗ c).

The idea of proof for inclusion ambiguities W = B1 and W̃ = AB2C is
analogous.

The rest of the proof is reduced to Theorem 3.15 via properties of the
refined reduction system ΣX . Lemma 3.23 shows that we can replace the
reduction system Σ by its refinement ΣX without changing the reduction ideal
or K〈M〉irr, hence statement (iv) holds for Σ if and only if it holds for ΣX .
Furthermore, we note that every S-polynomial of ΣX is also an S-polynomial
of Σ and that

∗→Σ⊆
∗→ΣX

, hence statement (i) holds for ΣX if it holds for Σ.
Analogously, if for the words A,B1, B2, C ∈ 〈Z〉 and all pure tensors a ∈MA,
b ∈MB1 ∩MB2 , and c ∈MC there exists a tensor t ∈ K〈M〉 such that

h(a⊗ b)⊗ c ∗→Σ t
∗←Σ a⊗ h̃(b⊗ c) or a⊗ h(b)⊗ c ∗→Σ t

∗←Σ h̃(a⊗ b⊗ c)

then by the fact that
∗→Σ⊆

∗→ΣX
, we conclude that

h(a⊗b)⊗c ∗→ΣX
t
∗←ΣX

a⊗h̃(b⊗c) or a⊗h(b)⊗c ∗→ΣX
t
∗←ΣX

h̃(a⊗b⊗c)

Hence statement (ii) holds for ΣX if it holds for Σ.

If statement (iii) holds for ΣX , then by
∗→Σ⊆

∗→ΣX
and the fact that

K〈M〉irr does not change it also holds for Σ. Finally, Lemma 3.28 implies that
ΣX and the restriction of ≤ to 〈X〉 satisfy the assumptions of Theorem 3.15,
which concludes the proof.
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Remark 3.33. Note that for ambiguities with specializations in 〈Z〉 it is not
clear how to define notion of resolvability with respect to an order ≤, since
in this case we do not know what is the corresponding K-bimodule to IΣ,ABC

in Definition 3.10, such that we can claim that resolvability with respect to
the order holds for ΣX if it holds for Σ. Therefore, in this thesis, we do not
phrase in Theorem 3.32 analogue of statement (iii) in Theorem 3.15.

Note that for W, W̃ ∈ 〈Z〉 having a common specialization, i.e. S(W ) ∩
S(W̃ ) 6= ∅, there does not necessarily exist V ∈ 〈Z〉 such that S(V ) =
S(W ) ∩ S(W̃ ). In general, the intersection of two modules is given by

MW ∩MW̃ =
⊕

V ∈S(W )∩S(W̃ )

MV =
n⊗
k=1

⊕
x∈S(wk)∩S(w̃k)

Mx,

where W = w1 . . . wn and W̃ = w̃1 . . . w̃n.

Example 3.34. Consider alphabets X = {x1, x2, x3} and Z = X ∪ {y1, y2}
with bimodules My1 = Mx1 ⊕Mx3 and My2 = Mx2 ⊕Mx3. The words W =
x1y2y1 and W̃ = y1y2y2 in 〈Z〉 satisfy S(W )∩S(W̃ ) = {x1x2x3, x1x3x3} 6= ∅.
We have MW ∩ MW̃ = Mx1 ⊗ My2 ⊗ Mx3. So, in this case, there even
exists a word V = x1y2x3 that satisfies S(V ) = S(W ) ∩ S(W̃ ) and MV =
MW ∩MW̃ .

Example 3.35. Consider alphabets X = {x1, x2, x3, x4} and Z = X∪{y1, y2}
with S(yi) = X \ {x5−i}. The words W = y1 and W̃ = y2 satisfy

S(W ) ∩ S(W̃ ) = {x1, x2} 6= ∅

and there is no word V with S(V ) = S(W ) ∩ S(W̃ ).

In order to describe the intersection of modules in terms of words again
it will be convenient to also consider another partial order � on 〈Z〉, which
is induced by the natural partial order, given by set inclusion, on all sets of
the form S(W ) ⊆ 〈X〉. In other words, we have V � W in 〈Z〉 if and only if
S(V ) ⊆ S(W ), which holds if and only if MV is contained in MW .

In addition, for a set S ⊆ 〈Z〉 we define the K-bimodule

MS :=
∑
W∈S

MW ⊆ K〈M〉 (3.8)

with MS being the trivial bimodule {0} if S is empty. We also define

lb(S) := {V ∈ 〈Z〉 | V � W for all W ∈ S}
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as the set of all lower bounds of S with respect to the partial order �. Note
that this implies ⋂

W∈S

MW = Mlb(S) = Mlb(S)∩〈X〉

where we have lb(S) ∩ 〈X〉 =
⋂
W∈S S(W ). If � satisfies the ascending

chain condition, it is enough to consider only maximal elements of lb(S) for⋂
W∈SMW = Mlb(S).

Example 3.36. Consider alphabets X = {x1, x2, x3, x4, x5, x6} and Z =
X ∪ {y1, y2, y3, z1, z2} with S(yi) = {xi, xi+1} and S(zi) = X \ {x7−i}. The
words W = z1 and W̃ = z2 satisfy S(W ) ∩ S(W̃ ) = {x1, x2, x3, x4} 6= ∅
and there is no word V with S(V ) = S(W ) ∩ S(W̃ ). We have lb(W, W̃ ) =
{x1, x2, x3, x4, y1, y2, y3} and the maximal elements of lb(W, W̃ ) are y1, y2, y3.
As explained above, we have MW ∩ MW̃ = Mlb(W,W̃ ) = Mlb(W,W̃ )∩〈X〉 =
M{y1,y2,y3}. In this example, we can even find words such that the intersection
is a direct sum of as few modules as possible: MW ∩MW̃ = My1 ⊕My3.

Remark 3.37. As a special case of the above tensor setting, we can briefly
explain the multi-level tensor setting presented in [30, Subsec. 3.1] as follows.
Consider a family of alphabets (Xi)i∈I such that each corresponds to a direct
sum decomposition M =

⊕
x∈Xi

Mx, the “levels”. On the index set I we can
define a partial order � such that i � j if and only if (Mx)x∈Xi

is a refinement
of (Mx)x∈Xj

, i.e. there exists a partition (Xxj)xj∈Xj
of Xi such that

(i) Xxj = {xi} for all xj ∈ Xi ∩Xj and

(ii) Mxj =
⊕

xi∈Xxj
Mxi for all xj ∈ Xj.

The set I is required to have a least element 0 ∈ I w.r.t. �, i.e. there
exists a finest level that is a refinement of all levels. Defining X := X0 and
Z :=

⋃
i∈I Xi we easily recognize this as a special case of the above tensor

setting with specialization. The setting is worthwhile because of the following
property. If � is a total order on I, i.e. if all levels are nested, then for any
W, W̃ ∈ 〈Z〉 with S(W )∩S(W̃ ) 6= ∅, there exists (at least one) V ∈ 〈Z〉 such
that S(V ) = S(W ) ∩ S(W̃ ), i.e. MV = MW ∩MW̃ .

Remark 3.38. Analogous to Buchberger’s algorithm [7] and Knuth-Bendix
completion [32], the completion process in our setting is done by adding new
rules corresponding to non-resolvable ambiguities (S-polynomials resp. critical
pairs); see also [8]. Deciding existence of finite Gröbner bases and the
undecidability of the word problem are obstructions for general algorithms
inherited from the noncommutative polynomial algebra case [39].
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Remark 3.39. The method we follow for completing tensor reduction systems
involves also non-algorithmic steps, in addition to semi-decision algorithms
used in noncommutative Gröbner basis computations and Knuth-Bendix com-
pletion. One of the problematic cases is to define a new reduction homo-
morphism based on the S-polynomials of a non-resolvable ambiguity. As for
verification of confluence, a compatible semigroup partial order is sufficient, as
one can also start the completion process with a compatible semigroup partial
order instead of a total one. Extending this order in a compatible way may
not always be possible.

3.3.1 Computational aspects and implementation

Many properties that we discussed for Bergman’s tensor setting also hold
for the tensor setting with specialization we introduced above. For instance,
determining ambiguities and irreducible words is done just on the level of
words. In the following, we discuss the differences of the two settings.

The main computational benefit of Theorem 3.32 compared to Theo-
rem 3.15 lies in the fact that for the confluence criterion, we only need to
check ambiguities of Σ on the alphabet Z and no computations with ΣX are
needed. Computing with the refined reduction system on X instead, would
generally lead to a higher number of ambiguities, since one reduction rule in
Σ can give rise to many reduction rules in ΣX . Only for determination of
irreducible words we restrict to 〈X〉.

If we formulate our reduction system Σ on the alphabet Z, instead of using
some Σ̃ on the smaller alphabet X for the same reduction ideals IΣ̃ = IΣ, we
may be able to considerably reduce the size of the reduction system. This may
happen in two different ways. Firstly, assume a partition of X such that some
homomorphisms in Σ̃ are defined by the same formula and the homomorphisms
differ only by the choice of their domain and the corresponding words are
obtained as specializations from some template. Then the corresponding
reduction rules from Σ̃ could be merged into one reduction rule in Σ. This is
exactly what happens for Σ̃ = ΣX . Secondly, also extending the domain of
some homomorphism from Σ̃ may contribute to obtaining a smaller reduction
system Σ. So usually we will have Σ̃ ⊂ ΣX .

By means of the Mathematica package TenReS we can discover all overlap
and inclusion ambiguities with specialization together with their corresponding
S-polynomials. Therefore, it supports completing a given reduction system
to a confluent one, based on S-polynomial computations. In addition, it can
be used for other purposes such as verification of the confluence criterion,
computing normal forms for a given ring of operators, proving operator
identities, and so on.
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Chapter 4

Integro-differential operators

Our tensor setting with specialization, described in Section 3.3, is flexible
enough to model integro-differential operators where constants are not com-
mutative, see Section 4.1. Moreover, working with tensors we do not need
to fix a basis for the coefficient ring. Integro-differential rings over a field of
constants have been introduced in [51], where they are used for multiplying
and factoring linear boundary problems for ordinary differential equations.
In fact, one of the main applications of integro-differential operators is that
they describe the differential equation, boundary conditions and the solu-
tion operator (Green’s operator) of a linear boundary problem in a uniform
language.

In order to illustrate computations in these rings, we verify algebraically the
variation of constants method. For finding solutions of differential equations
and linear boundary problems, we need to apply integro-differential operators
to functions from the left. More precisely, we require a left module over the
ring of integro-differential operators. In Section 4.2, we show that any integro-
differential ring is a left module over the corresponding ring of operators.

For obtaining normal forms in the ring of integro-differential operators,
we complete the defining reduction system to a confluent one, see Section 4.3.
Computations with normal forms can be used to partly automatize solving
operator equations. In many applications, for finding solutions of differential
systems, we have to apply operators to vectors of functions. In Section 4.4,
we discuss vector-valued “functions” as a left module over a ring of integro-
differential operators, where coefficients are matrices of “functions”.

Another application of our tensor setting, explained in in Section 4.5, is
the ring of integro-differential operators with linear substitutions. This ring
provides an algebraic framework for solving time-delay differential equations.
Like in the previous example, we discover a confluent reduction system and the
corresponding normal forms for this ring. We illustrate how, by elementary
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computations in this framework, results like the method of steps can be found
and proven in an automated way. For further references on the rings of IDO
and IDOLS, see also Section 1.1.

4.1 Integro-differential rings and operators

Bergman’s tensor setting can be used for defining the ring of integro-differential
operators (IDO) over an arbitrary integro-differential ring. It is an algebraic
structure with (matrices of) coefficients and the operations differentiation,
integration, and evaluation applying on them; recall that by the fundamental
theorem of calculus, for matrix-valued function A(t), we have

d

dt

∫ t

t0

A(s) ds = A(t),

and the evaluation at t0 can be expressed in terms of differentiation and
integration as follows:

A(t0) = A(t)−
∫ t

t0

A′(s) ds.

Moreover, the evaluation at t0 of a product is the product of the individual
evaluations. In other words, evaluation at t0 is a multiplicative operation.
Based on these properties, we define an integro-differential ring analogous to
the definition of an integro-differential algebra in [52, 23].

Definition 4.1. Let (R, ∂) be a differential ring with ring of constants K
such that ∂R = R. Moreover, let

∫
: R → R be a K-bimodule homomorphism

satisfying the identity
∂
∫
A = A, (4.1)

for all A ∈ R. We call (R, ∂,
∫

) an integro-differential ring if the evaluation

EA := A−
∫
∂A (4.2)

is multiplicative, i.e. for all A,B ∈ R we have

EAB = (EA)EB.

Analogous to Example 2.61, where we obtained a differential ring from a
commutative differential ring, we can always construct an integro-differential
ring whose coefficients are matrices with entries in a commutative integro-
differential ring.
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Example 4.2. Let (S, ∂,
∫

) be a commutative integro-differential ring and let
R = Mn(S). Recall from Example 2.61 that the ring R together with the map
∂ : R → R, defined by ∂A = (∂aij) for any A = (aij) ∈ R and i, j = 1, . . . , n,
is a differential ring with ring of constants

K = {(aij) | aij ∈ S and ∂(aij) = 0}.

We define a map
∫

: R → R componentwise by∫
A = (

∫
aij).

Then the map
∫

satisfies (4.1): let A = (aij) be an arbitrary element of R.
Since for any ai,j ∈ S, we have ∂

∫
aij = aij then ∂

∫
A = A. Moreover, the

map E: R → K defined by
EA = (Eaij)

is multiplicative: for A = (aij) and B = (bij), if AB = (cij) then cij =
n∑
k=1

aikbkj and hence

Ecij = E(
n∑
k=1

aikbkj) =
n∑
k=1

Eaikbkj =
n∑
k=1

(Eaik)Ebkj.

This implies EAB = (EA)EB and thus (R, ∂,
∫

) is an integro-differential ring
over its ring of constants.

Remark 4.3. In practice, most of the time, it is enough to compute in the free
integro-differential ring that is generated by the expressions occurring in the
systems under consideration. In addition, identifying more specific relations
among the generators, enable us to compute modulo additional identities taken
from the integro-differential ideal generated by those relations. This is the
approach taken in all our examples and in our package. Formally, the free
ring of IDO is constructed by considering the term algebra on the set of
generators modulo the identities that hold in any integro-differential ring. See,
for example, [3, Ch. 3] or [16, Ch. 1] for details on the general construction
of free algebraic structures in universal algebra.

Example 4.4. To model a fundamental system of the equation

ẋ(t)− A(t)x(t) = 0,

we assume Φ ∈ R is invertible and satisfies ∂Φ−AΦ = 0. In order to compute
with this Φ, we consider the free integro-differential ring generated by the
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symbols A,Φ,Φ−1. We consider a factor ring of this free ring by computing
modulo the additional identities

∂Φ− AΦ = 0, ΦΦ−1 = 1, Φ−1Φ = 1, ∂(Φ−1) = −Φ−1(∂Φ)Φ−1.

Hence, we can compute ∂(Φ−1) = −Φ−1A. So, this identity also holds in R.

The next lemma shows that in any integro-differential ring, the evaluation
E acts as the identity on the constants, in particular, it is also a homomorphism
of rings with unity. In addition, we can decompose the ring R as the direct
sum of constant and non-constant “functions”.

Lemma 4.5. Let (R, ∂,
∫

) be an integro-differential ring with ring of constants
K. Then, we have E1 = 1, EA ∈ K for all A ∈ R, and

R = K ⊕
∫
R,

as direct sum of K-bimodules.

Proof. We first compute E1 = 1−
∫
∂1 = 1. Then, for all A ∈ R, we see that

∂EA = ∂(A−
∫
∂A) = ∂A− ∂A = 0.

For proving the second assertion, we have

A = EA+ A− EA = EA+
∫
∂A,

for any A ∈ R and hence R = K +
∫
R. Finally, let A ∈ K ∩

∫
R and B ∈ R

such that A =
∫
B. Then 0 = ∂A = ∂

∫
B = B, which implies A = 0.

For the rest of this section, we fix an arbitrary integro-differential ring
(R, ∂,

∫
) with ring of constants K. By an operator, we understand in the

following a K-bimodule homomorphism from R to R. For instance, the
operations ∂,

∫
,E can be viewed as operators.

Following Lemma 4.5, we consider the direct sum decomposition R =
K ⊕

∫
R and the corresponding K-bimodules

MK = K and MR̃ =
∫
R (4.3)

(indexed by the letters K and R̃). One should note we do not interpret the
elements of MK and MR̃ as functions but as left multiplication operators
B 7→ AB induced by those functions. For studying linear boundary prob-
lems algebraically, we are also required to deal with other multiplicative
“functionals” on R with the same properties as E. We consider the set

Φ := {ϕ : R → K | ϕ is a K-bimodule homomorphism

with ϕAB = (ϕA)ϕB and ϕ1 = 1}.
(4.4)
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It is also possible to define Φ as a proper subset (containing E) of the full set
defined above which leads us to work with a smaller ring of operators later.
For the operators ∂,

∫
, E, and ϕ ∈ Φ̃ with Φ̃ = Φ \ {E}, we consider the free

left K-modules

MD = K∂, MI = K
∫
, ME = KE, MΦ̃ = KΦ̃ (4.5)

generated by them (indexed by the letters D, I, E, and Φ̃). These modules
together with right multiplication defined by

K1α ·K2 = K1K2α

where α ∈ {∂,
∫
,E} ∪ Φ̃ and K1, K2 ∈ K are viewed as K-bimodules, because

of correspondence between the generators of these modules and left K-linear
operators. We define two alphabets

X = {K, R̃,D, I,E, Φ̃} and Z = X ∪ {R,Φ}, (4.6)

with the K-bimodules (Mx)x∈X defined in (4.3) and (4.5) as well as

MR = MK ⊕MR̃ and MΦ = ME ⊕MΦ̃. (4.7)

Now, we define the module M by

M := MR ⊕MD ⊕MI ⊕MΦ, (4.8)

which turns (Mz)z∈Z into a decomposition with specialization.

Definition 4.6. Let (R, ∂,
∫

) be an integro-differential ring with ring of
constants K. We call

R〈∂,
∫
,Φ〉 := K〈M〉/IΣ0

the ring of integro-differential operators, where IΣ0 is the two-sided reduction
ideal induced by the reduction system

Σ0 = {(K, 1 7→ ε), (RR, A⊗B 7→ AB), (ΦR, ϕ⊗ A 7→ (ϕA)ϕ),

(ΦΦ, ψ ⊗ ϕ 7→ ϕ), (DR, ∂ ⊗ A 7→ A⊗ ∂ + ∂A), (DΦ, ∂ ⊗ ϕ 7→ 0),

(DI, ∂ ⊗
∫
7→ ε), (ID,

∫
⊗ ∂ 7→ ε− E)}.

Remark 4.7. According to (3.4), the two sided reduction ideal IΣ0 is generated
by union of the set

{1− ε, ∂ ⊗
∫
− ε,

∫
⊗ ∂ − ε+ E}

with the set of families

{A⊗B − AB, ϕ⊗ A− (ϕA)ϕ, ψ ⊗ ϕ− ϕ,
∂ ⊗ A− A⊗ ∂ − ∂A, ∂ ⊗ ϕ | A,B ∈MR, ϕ, ψ ∈MΦ}.

71



Remark 4.8. In analogy to the definition of reduction homomorphisms in
Section 3.2, we should make the informal definitions of reduction rules in Σ0

and their consequences given in Definition 4.6 formal. For example,

βID(
∫
, ∂) := ε− E

is extended to a balanced map on MI ×MD via

βID(K
∫
, L∂) := KLβID(

∫
, ∂)

and similarly
βIRΦ(

∫
, A, ϕ) :=

∫
A⊗ ϕ

with ϕ ∈ Φ extended to a balanced map on MI ×MR ×MΦ by

βIRΦ(K
∫
, A,

∑
i

Kiϕi) :=
∑
i

βIRΦ(
∫
, KAKi, ϕi).

Even without introducing normal forms for the ring of IDO, it is possible
to do computations by means of reduction rules in Σ0. In the following, we
provide an algebraic proof for the variation of constants method for matrices
of generic size.

Example 4.9. Consider the differential system

ẋ(t)− A(t)x(t) = f(t)

where A is a matrix in R = C∞(R)n×n. The system corresponds to the
operator L = ∂ − A ∈ R〈∂,

∫
,Φ〉. Let Φ ∈ R be an invertible solution of

Ly = 0. Then the operator

H := Φ⊗
∫
⊗ Φ−1

is a right inverse of L since independent of the size n we have

L⊗H = (∂ − A)⊗ Φ⊗
∫
⊗ Φ−1 →rRR

∂ ⊗ Φ⊗
∫
⊗ Φ−1 − AΦ⊗

∫
⊗ Φ−1

→rDR
Φ⊗ ∂ ⊗

∫
⊗ Φ−1 →rDI

Φ⊗ Φ−1 →rRR
ΦΦ−1 →rK

ε.

This is exactly the formula x = Hf for a particular solution of Lx = f
that is obtained from a fundamental matrix by variation of constants:

x(t) = Φ(t)

∫ t

t0

Φ−1(s)f(s) ds.
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4.2 Integro-differential ring as an IDO-module

For every integro-differential ring (R, ∂,
∫

), the ring R is a module over
the corresponding ring of integro-differential operators. In the following, we
elaborate on the structure of this module.

Let R〈∂,
∫
,Φ〉 be the ring of integro-differential operators over an integro-

differential ring (R, ∂,
∫

) with ring of constants K. The abelian group

End(R) = {ψ : R → R | ψ is an additive map}

together with composition as multiplication is a ring. We define a map
K 7→ End(R) by K 7→ (B 7→ KB). Since in particular R is a left K-module,
then for all B ∈ R and K1, K2 ∈ K we have

1B = B, (K1 +K2)B = K1B +K2B, (K1K2)B = K1(K2B)

and hence the map is a ring homomorphism. Therefore, by Lemma 2.46,
we conclude that End(R) is a K-ring. In the following, we define the maps
R → End(R) by A 7→ (B 7→ AB) and {∂,

∫
} ∪ Φ→ End(R) by

∂ 7→ ∂,
∫
7→
∫
, ϕ 7→ ϕ.

Let {∂,
∫
} ∪ Φ → K∂ ⊕ K

∫
⊕ KΦ be the inclusion map. By Theorem 2.5,

there exists a unique K-module homomorphism K∂ ⊕K
∫
⊕KΦ→ End(R).

Recall that we can view the left K-modules K∂, K
∫

, and KΦ as K-bimodules
with the right multiplication defined by

K1α ·K2 = K1K2α

where K1, K2 ∈ K and α ∈ {∂,
∫
} ∪ Φ, since the generators of these modules

correspond to left K-linear operators. For the K-bimodule

M = R⊕K∂ ⊕K
∫
⊕KΦ

let M → K〈M〉 be the inclusion map. By Theorem 2.56, the K-bimodule
homomorphism θ̃ : M → End(R) can be extended uniquely to a K-ring
homomorphism θ : K〈M〉 → End(R) such that the following diagram is
commutative.

M K〈M〉

End(R)

ι

θ̃
θ
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Since any reduction rule in Σ0 corresponds to an identity in R, we conclude
that IΣ0 ⊆ Ker(θ). For instance, for any A ∈ R and ϕ ∈ Φ we have

θ(ϕ⊗ A− (ϕA)ϕ) = ϕ ◦ A− (ϕA)ϕ = 0,

since (ϕ ◦ A)B = ϕ(AB) = (ϕA)ϕB. As another example, we have

θ(
∫
⊗ ∂ − ε+ E) =

∫
◦ ∂ − ε+ E = 0,

since for any B ∈ R we have (
∫
◦ ∂)B =

∫
∂B = B − EB. Now, let

π : K〈M〉 → R〈∂,
∫
,Φ〉 be the canonical map. By the factor theorem, there

exists a unique K-ring homomorphism θ : R〈∂,
∫
,Φ〉 → End(R) such that

the following diagram is commutative.

K〈M〉 R〈∂,
∫
,Φ〉

End(R)

π

θ
θ

Hence, the ring R is an R〈∂,
∫
,Φ〉-module.

Proposition 4.10. The ring R together with the scalar multiplication

• : R〈∂,
∫
,Φ〉 × R → R

(L,A) 7→ θ(L)A

is an R〈∂,
∫
,Φ〉-module.

4.3 Completion of tensor reduction system

for the ring of IDO

In the following, we describe the completion process for the ring of IDO.
Consider the reduction system Σ0 given in Definition 4.6. We collect the
conditions that any compatible partial order on 〈Z〉 in (4.6) has to satisfy.
For simplicity, we restrict ourselves to monoid partial order where we have the
condition ε < A, for any A ∈ 〈Z〉. We also require to consider the additional
properties DR > RD and ID > E. Then, in order to obtain the minimal
partial order which is consistent with specialization, we also have to consider
DK > KD, DK > R̃D, DR̃ > KD, and DR̃ > R̃D.

The reduction rules rDI and rID have two overlap ambiguities with each
other, one is resolvable and one is not. The latter has S-polynomial

SP(ID,DI) = (ε− E)⊗
∫
−
∫
⊗ ε = −E⊗

∫
.
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This trivially gives rise to the new rule

(EI,E⊗
∫
7→ 0).

Remark 4.11. In general, each time a new rule is discovered, we also add
the corresponding identity in the coefficient ring R. For instance, by applying
the operator identity induced by the rule rEI on any B ∈ R, we have

(E ·
∫

) •B = 0.

This allows us to consider the following identity for the coefficient ring R.

E
∫
B = 0

For the reduction rules rID and rDR, we get a non-resolvable overlap
ambiguity with S-polynomials

SP(ID,DR) = (ε− E)⊗ A−
∫
⊗(A⊗ ∂ + ∂A)→rΦR

A− (EA)E−
∫
⊗ A⊗ ∂ −

∫
⊗ ∂A.

While we could reduce further, by using rK for example, we will not be able
to reduce to zero for all A ∈ R. Based on the expression above, however, we
can introduce a new rule

(IRD,
∫
⊗ A⊗ ∂ 7→ A− (EA)E−

∫
⊗ ∂A)

that allows us to reduce all the S-polynomials of the overlap ambiguity of rID

and rDR to zero. We should also add IRD > E to the conditions we need for
compatible partial orders. Analogous to the previous case, by applying the
operator identity induced by this rule on any B ∈ R, we observe that

(
∫
· A · ∂) •B = A •B − (EA)E •B − (

∫
· ∂A) •B.

This allows us to consider the following identity for the coefficient ring R.∫
A∂B = AB − (EA)EB −

∫
∂AB

The rule rIRD gives rise to a non-resolvable overlap ambiguity with rDI among
others. The corresponding S-polynomials can be reduced to

SP(IRD,DI) = (A− (EA)E−
∫
⊗ ∂A)⊗

∫
−
∫
⊗ A⊗ ε

→rEI
A⊗

∫
−
∫
⊗ ∂A⊗

∫
−
∫
⊗ A.

75



We define a new reduction homomorphism on MIRI that reduces
∫
⊗ ∂A⊗

∫
to A⊗

∫
−
∫
⊗ A. We replace A by

∫
A and then arrive at the rule

(IRI,
∫
⊗ A⊗

∫
7→
∫
A⊗

∫
−
∫
⊗
∫
A).

Similarly, the overlap ambiguity of rIRD and rDΦ with S-polynomials

SP(IRD,DΦ) = (A− (EA)E−
∫
⊗ ∂A)⊗ ϕ−

∫
⊗ A⊗ 0

→rΦΦ
A⊗ ϕ− (EA)ϕ−

∫
⊗ ∂A⊗ ϕ.

Replacing A with
∫
A in the S-polynomials above and then using E

∫
A = 0

we obtain the rule
(IRΦ,

∫
⊗ A⊗ ϕ 7→

∫
A⊗ ϕ)

We consider the inclusion ambiguity (with specialization) of the new rule rIRI

with rK, which has irreducible S-polynomial

SP(K, IRI) =
∫
⊗ ε⊗

∫
− (
∫

1⊗
∫
−
∫
⊗
∫

1)

=
∫
⊗
∫
−
∫

1⊗
∫

+
∫
⊗
∫

1.

At this point, the leading term is not determined by our partial order above.
Hence, we add I > R̃ to the conditions we had for the partial orders, since we
want to have the new rule

(II,
∫
⊗
∫
7→
∫

1⊗
∫
−
∫
⊗
∫

1).

Analogously, the overlap ambiguity of rIRΦ and rDΦ has an inclusion ambiguity
with rK. It leads to the irreducible S-polynomials

SP(K, IRΦ) =
∫
⊗ ε⊗ ϕ−

∫
1⊗ ϕ =

∫
⊗ ϕ−

∫
1⊗ ϕ,

which gives rise to the new rule

(IΦ,
∫
⊗ ϕ 7→

∫
1⊗ ϕ).

Thereby, we obtain the confluent reduction system ΣIDO given in Table 4.1.
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Reduction rules in Σ0

K 1 7→ ε

RR A⊗B 7→ AB

ΦR ϕ⊗ A 7→ (ϕA)ϕ

ΦΦ ψ ⊗ ϕ 7→ ϕ

DR ∂ ⊗ A 7→ A⊗ ∂ + ∂A

DΦ ∂ ⊗ ϕ 7→ 0

DI ∂ ⊗
∫
7→ ε

ID
∫
⊗ ∂ 7→ ε− E

Consequences of reduction rules in Σ0

EI E⊗
∫
7→ 0

IΦ
∫
⊗ ϕ 7→

∫
1⊗ ϕ

II
∫
⊗
∫
7→
∫

1⊗
∫
−
∫
⊗
∫

1

IRΦ
∫
⊗ A⊗ ϕ 7→

∫
A⊗ ϕ

IRD
∫
⊗ A⊗ ∂ 7→ A−

∫
⊗ ∂A− (EA)E

IRI
∫
⊗ A⊗

∫
7→
∫
A⊗

∫
−
∫
⊗
∫
A

Table 4.1: Reduction rules for IDO

The whole completion process for Table 4.1 can be found in the example file
of the TenReS package. The following table presents identities in the coefficient
ring R corresponding to the reduction rules in Σ0 and their consequences
obtained by the completion process.

Identities in R corresponding to reduction rules in Σ0

ϕAB = (ϕA)ϕB ∂
∫
B = B

ψϕB = ϕB
∫
∂B = B − EB

∂AB = A∂B + (∂A)B ∂ϕB = 0

Identities in R corresponding to consequences of reduction rules in Σ0

E
∫
B = 0

∫
A∂B = AB −

∫
(∂A)B − (EA)EB∫

AϕB = (
∫
A)ϕB

∫
A
∫
B = (

∫
A)
∫
B −

∫
(
∫
A)B

Table 4.2: Identities in R corresponding to reduction system ΣIDO
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Remark 4.12. Among the identities listed in Table 4.2, E
∫
B = 0, integration

by parts ∫
A∂B = AB −

∫
(∂A)B − (EA)EB,

and the Rota-Baxter identity∫
A
∫
B = (

∫
A)
∫
B −

∫
(
∫
A)B

for the integral can either be verified directly or are consequences of S-
polynomial computations as explained in Remark 4.11. The remaining identi-
ties follow immediately from the definitions (like multiplicativity of functionals,
K-linearity, and the Leibniz rule).

Example 4.13. We continue Example 4.9 by doing computations using the
confluent reduction system ΣIDO. The equation Lx = f is equivalent to

(H ⊗ L)x = Hf.

We easily find the irreducible form

H ⊗ L = Φ⊗
∫
⊗ Φ−1 ⊗ (∂ − A)

→rIRD
Φ⊗ (Φ−1 −

∫
⊗ ∂(Φ−1)− (EΦ−1)E)− Φ⊗

∫
⊗ Φ−1A

= 1− ΦEΦ−1 ⊗ E,

where we used the identity ∂(Φ−1) + Φ−1A = 0 obtained in Example 4.4.
Defining the projector P = ΦEΦ−1 ⊗ E allows us to write (H ⊗ L)x = Hf
as x = Px+Hf , which yields the general solution obtained by variation of
constants:

x(t) = Φ(t)Φ−1(t0)x(t0) + Φ(t)

∫ t

t0

Φ−1(s)f(s) ds.

With the aim of doing computations in the ring R〈∂,
∫
,Φ〉, we analyse

the reduction system defined by Table 4.1 according to Theorem 3.32 and
determine normal forms of tensors. Following the definition in (3.7), the
refined reduction system ΣX is obtained, according to (4.7), by splitting rules
whose words contain R or Φ into “smaller” rules using S(R) = {K, R̃} and
S(Φ) = {E, Φ̃}. For instance, the reduction rule (ΦR, h) ∈ ΣIDO is split into
the rules (W,h|MW

) ∈ ΣX where W ∈ S(ΦR) = {EK,ER̃, Φ̃K, Φ̃R̃}.

Theorem 4.14. Let (R, ∂,
∫

) be an integro-differential ring with constants
K and let Φ be the set of multiplicative K-bimodule homomorphisms given
by (4.4). Let M be defined by (4.7) and (4.8) and let the reduction system
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ΣIDO be defined by Table 4.1. Then every t ∈ K〈M〉 has a unique normal
form t↓ΣIDO

, which is given by a sum of pure tensors of the form

A⊗ ϕ⊗ ∂j or A⊗ ϕ⊗
∫
⊗B

where j ∈ N0, each of A,B ∈MR̃ and ϕ ∈ Φ may be absent, and ϕ⊗
∫

does
not specialize to E⊗

∫
. Moreover, as K-rings we have

R〈∂,
∫
,Φ〉 ∼= K〈M〉irr

where the multiplication on K〈M〉irr is defined by s · t := (s⊗ t)↓ΣIDO
.

Proof. We consider the alphabets X and Z given by (4.6). This turns (Mz)z∈Z
into a decomposition with specialization for the module M , see Definition 3.20.
For defining a Noetherian monoid partial order ≤ on 〈Z〉 that is compatible
with ΣIDO, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃.

For instance, we could use a degree-lexicographic order with I > D > Φ > R on
〈{R,D, I,Φ}〉 ⊆ 〈Z〉 or other degree-lexicographic orders with D > R and I > R.
We extend it to a monoid partial order on 〈Z〉 based on Definition 3.27 in
order to make it consistent with specialization. Then, by the package TenReS,
we verify that all ambiguities of ΣIDO are resolvable, see Subsection 4.3.1.
Hence, by Theorem 3.32 every element of K〈M〉 has a unique normal form
and K〈M〉/IΣIDO

∼= K〈M〉irr as K-rings.
It remains to determine the explicit form of elements in K〈M〉irr. To

do so, we determine the set of irreducible words 〈X〉irr in 〈X〉. Irreducible
words containing only the letters K and R̃ have to avoid the subwords K
and S(RR) = {KK,KR̃, R̃K, R̃R̃}, hence only the words ε and R̃ are left. The
irreducible words containing only E and Φ̃ are exactly ε, E, and Φ̃, since
they have to avoid the subwords S(ΦΦ) = {EE,EΦ̃, Φ̃E, Φ̃Φ̃}. Altogether,
we see that the irreducible words containing only the letters K, R̃, E, and
Φ̃ are given by the set {ε, R̃,E, Φ̃, R̃E, R̃Φ̃}, since they also have to avoid the
subwords S(ΦR) = {EK,ER̃, Φ̃K, Φ̃R̃}. Allowing also the letter D, we have to
avoid the subwords coming from S(DR) = {DK,DR̃} and S(DΦ) = {DE,DΦ̃}.
Therefore, we can only append words Dj with j ∈ N0 to the irreducible words
determined so far, in order to obtain all elements of 〈X〉irr not containing the
letter I. Finally, we also consider the letter I. Since subwords EI and DI have to
be avoided, the first occurrence of I in an irreducible word can only be preceded
by ε, R̃, Φ̃, or R̃Φ̃. We also have to avoid the subwords S(IΦ) = {IE, IΦ̃}, ID,
and II, so any letter immediately following I has to be R̃. In addition, we have
to avoid the subwords S(IRΦ) = {IKE, IKΦ̃, IR̃E, IR̃Φ̃}, S(IRD) = {IKD, IR̃D},
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and S(IRI) = {IKI, IR̃I}, so the letter I cannot be followed by a subword of
length greater than one. Altogether, the elements of 〈X〉irr are of the form

R̃V Dj or R̃Φ̃IR̃,

where j ∈ N0 and each of R̃, Φ̃, and V ∈ S(Φ) = {E, Φ̃} may be absent. The
normal forms follow from (3.3).

By means of the normal forms above, we are allowed to do coefficient
comparison for operator identities in the ring of IDO.

Example 4.15. For finding a family of right inverses for the operator L =
∂ − A we make the ansatz

H = H0 +H1 · ϕ1 +H2 · ϕ2 · ∂ +H3 ·
∫
·H4 +H5 · ϕ3 ·

∫
·H6.

In terms of normal forms given in Theorem 4.14 we can compute

L ·H = (∂H5 − AH5) · ϕ3 ·
∫
·H6 + (∂H3 − AH3) ·

∫
·H4

+ (∂H2 − AH2) · ϕ2 · ∂ + (∂H1 − AH1) · ϕ1 +H0 · ∂
+ ∂H0 − AH0 +H3H4.

Then, by coefficient comparison, for the blocks H0, H1, H2, H3, H4, H5 we
obtain the following conditions.

∂H5 − AH5 = 0

∂H3 − AH3 = 0

∂H2 − AH2 = 0

∂H1 − AH1 = 0

H0 = 0

∂H0 − AH0 +H3H4 = 1

For solving these equations, we adjoin an invertible Φ such that ∂Φ−AΦ = 0
and let H1 = H2 = H3 = H5 = Φ, H4 = Φ−1. Then for an arbitrary element
H6 in R we obtain

H = Φ · ϕ1 + Φ · ϕ2 · ∂ + Φ ·
∫
· Φ−1 + Φ · ϕ3 ·

∫
·H6.

Hence, we find a family of right inverses for the operator L that contains
the operator H in Example 4.9 and the Green’s operator G in Theorem 5.5
as special cases.
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4.3.1 Computational aspects

In the following, some computational details of the tensor setting with spe-
cialization for integro-differential operators are briefly discussed. For the
reduction system ΣIDO, by applying TenReS in total we obtain 52 ambiguities
and corresponding S-polynomials. Among them, there are 4 ambiguities for
which the corresponding S-polynomials are zero anyway, for instance

SP(DΦ,EI) = 0⊗
∫
− ∂ ⊗ 0 = 0.

Applying automatically the implementation of reduction rules from ΣIDO,
identities in R and identities in MD, MI and MΦ we see that the S-polynomials
of the 48 remaining ambiguities are reduced to zero. The complete computa-
tion is included in the example files of the package. Here we consider a few
concrete instances of ambiguities. For example, we use the definition of E in
R in the reduction of the following S-Polynomial

SP(IRD,DΦ) = (A−
∫
⊗ ∂A− (EA)E)⊗ ϕ−

∫
⊗ A⊗ 0

→rIRΦ
A⊗ ϕ− (

∫
∂A)⊗ ϕ− (EA)E⊗ ϕ

= A⊗ ϕ− (A− EA)⊗ ϕ− (EA)E⊗ ϕ
= EA⊗ ϕ− (EA)E⊗ ϕ→rΦΦ

EA⊗ ϕ− (EA)ϕ→rK
0.

As another example, we use the definition of the right multiplication in the
K-bimodule MI in the following reduction

SP(IΦ,ΦR) = (
∫

1⊗ ϕ)⊗ A−
∫
⊗ (ϕA)ϕ→rIΦ

∫
1⊗ ϕ⊗ A− ϕA(

∫
1⊗ ϕ)

→rΦR

∫
1⊗ (ϕA)ϕ− ϕA(

∫
1⊗ ϕ) = (

∫
1ϕA)⊗ ϕ− ϕA(

∫
1⊗ ϕ)

= (ϕA)
∫

1⊗ ϕ− ϕA(
∫

1⊗ ϕ) = 0.

There are 41 ambiguities without specialization. The remaining 11 ambiguities
consist of 4 overlap ambiguities with specialization and 7 inclusion ambiguities
with specialization. For example,

SP(IRΦ,EI) = (
∫
A⊗ E)⊗

∫
−
∫
⊗ A⊗ 0→rEI

0,

and
SP(K,DR) = ∂ ⊗ ε⊗ ε− 1⊗ ∂ →rK

∂ − ∂ = 0.

The reader should note the confluence criterion of Theorem 3.32 directly
works with the reduction system ΣIDO, no computations with the refined
reduction system ΣX on X given in (4.6) are required.
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4.4 Vector-valued functions as an IDO-module

In Example 4.2, we showed that how to construct an integro-differential ring
(Mn(S), ∂,

∫
) with ring of constants K = {(aij) | aij ∈ S and ∂aij = 0} from

a commutative integro-differential ring (S, ∂,
∫

). Now, Sn becomes a left
module over (Mn(S), ∂,

∫
). Recall that the abelian group

End(Sn) = {ψ : Sn → Sn | ψ is an additive map}

together with composition is a ring. We define a map K 7→ End(Sn) by
K 7→ K̂, where by K̂ we denote the endomorphism sending any element
f ∈ Sn to the matrix multiplication Kf . Since in particular Sn is a left
K-module, then for all f ∈ Sn and K1, K2 ∈ K, we have

1̂f = f, (K̂1 + K̂2)f = K̂1f + K̂2f, (K̂1K̂2)f = K̂1(K̂2f)

and hence the map is a ring homomorphism. Hence, by Lemma 2.46, the ring
End(Sn) is a K-ring. We also define a map R → End(Sn) by A 7→ Â, where
Â maps f to Af . In addition, we define a map {∂,

∫
} ∪ Φ→ End(Sn) by

∂ 7→ ∂̂,
∫
7→
∫̂
, ϕ 7→ ϕ̂,

where ∂̂,
∫̂
, ϕ̂ denote endomorphisms on Sn such that

∂̂(fi) := (∂fi),
∫̂

(fi) := (
∫
fi), ϕ̂(fi) := (ϕfi),

for any A ∈ Mn(S) and (fi) ∈ Sn. Let {∂,
∫
} ∪ Φ → K∂ ⊕ K

∫
⊕ KΦ

be the inclusion map. By Theorem 2.5, there exists a unique K-module
homomorphism K∂ ⊕K

∫
⊕KΦ→ End(Sn). Analogous to Section 4.2, there

exists a unique K-bimodule homomorphism M → End(Sn) and a unique
extension to a K-ring homomorphism θ : K〈M〉 → End(Sn). We can also
verify that IΣ0 ⊆ Ker(θ). For instance, for any A ∈ R and ϕ ∈ Φ we have

θ(ϕ⊗ A− (ϕA)ϕ) = ϕ̂Â− (ϕA)ϕ̂ = ϕ̂Â− (ϕ̂A)ϕ̂ = 0.

To prove the last equality, we see that if A = (aij) ∈Mn(S) and f = (fi) ∈ Sn,

then Af = (gi) ∈ Sn where gi =
n∑
k=1

aikfk. Since

ϕgi = ϕ(
n∑
k=1

aikfk) =
n∑
k=1

ϕaikfk =
n∑
k=1

(ϕaik)ϕfk,
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then we can conclude that ϕ̂Âf = (ϕ̂A)ϕ̂f for any f ∈ Sn. As another
example, we have

θ(
∫
⊗ ∂ − ε+ E) =

∫̂
∂̂ − ε̂+ Ê = 0,

where correctness of the last equality is deduced by∫̂
∂̂(fi) =

∫̂
(∂fi) = (

∫
∂fi) = ((ε− E)fi) = (fi)− (Efi) = ε̂(fi)− Ê(fi).

Similar to Section 4.2, by the factor theorem, existence of the unique K-ring
homomorphism θ : Mn(S)〈∂,

∫
,Φ〉 → End(Sn) is proven and we can view Sn

as an Mn(R)〈∂,
∫
,Φ〉-module:

Proposition 4.16. The abelian group Sn with the scalar multiplication

• : Mn(S)〈∂,
∫
,Φ〉 × Sn → Sn

(L, (fi)) 7→ θ(L)(fi)

is a Mn(S)〈∂,
∫
,Φ〉-module which is called the module of vector-valued func-

tions over the ring Mn(S)〈∂,
∫
,Φ〉.

Interpreting the method of variation of constants in terms of integro-
differential operators amounts to constructing right inverses of differential
operators. In fact, right inverses and particular solutions of inhomogeneous
differential equations are closely related.

Example 4.17. Let (Sn,+, •) be the module of vector-valued functions
over the ring Mn(S)〈∂,

∫
,Φ〉. Let H be a right inverse for L = ∂ − A

in Mn(S)〈∂,
∫
,Φ〉. Then H • f is a particular solution for the system of

inhomogeneous differential equation L • y = f where y, f ∈ Sn, since

L • (H • f) = (LH) • f = 1 • f = f.

We recall from Example 4.9 that if Φ ∈ Mn(S) is invertible with ∂Φ = AΦ,
then the operator

H = Φ ·
∫
· Φ−1

is a right inverse of L. Therefore, for this H, we observe that

H • f = Φ ·
∫
· Φ−1 • f

is a particular solution of L • y = f .
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4.5 Integro-differential operators with linear

substitutions

In the following, we describe the construction of the ring of integro-differential
operators with linear substitutions (IDOLS) obtained by extending the ring of
IDO. A significant motivation for studying this ring comes from the work in [40]
where such operators and their commutation rules are used for an algorithmic
approach to Artstein’s integral transformation of linear differential systems
with delayed inputs to linear differential system without delays. IDOLS also
addresses the univariate case in [49], where algebraic aspects of multivariate
integration with linear substitutions are studied. Moreover, they provide
an algebraic setting for dealing with delay differential equations and the
corresponding initial and linear boundary problems in general.

A delay differential equation is an ordinary differential equation where the
derivative at a certain time depends on the solution at prior times; for more
details see [25, 54]. A general first-order constant delay equation has the form

y′(x) = A(x, y(x), y(x− b1), y(x− b2), . . . , y(x− bn))

where the time delays bj for 1 ≤ j ≤ n are positive constants. A homogeneous
linear first-order time-delay equation with one constant delay has the form

y′(x) = A0(x)y(x) + A1(x)y(x− b).

The chain rule and integration by substitution from calculus describe
the interaction of linear substitutions A(ax − b) with differentiation and
integration. More formally, let σa,b denote the linear substitution operator
mapping a smooth function A(x) to A(ax− b) for a nonzero constant a and
an arbitrary constant b. Then we observe that

∂xσa,bA(x) = aȦ(ax− b) = aσa,b∂xA(x).

and∫ x

0

σa,bA(t) dt =
1

a

∫ ax−b

−b
A(t) dt =

1

a
σa,b

∫ x

0

A(t) dt− 1

a
Eσa,b

∫ x

0

A(t) dt.

Following these identities, we want to define an integro-differential ring
with linear substitutions. In what follows, we denote by

C = K ∩ Z(R)

the ring of elements of K which commute with all elements of R and C∗
denotes its group of units. For finding a proper algebraic setting, we add an
axiomatization of linear substitution operations to an integro-differential ring.
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Definition 4.18. Let (R, ∂,
∫

) be an integro-differential ring with constants
K and let

S := {σa,b | a ∈ C∗, b ∈ C}
where σa,b : R → R are multiplicative K-bimodule homomorphisms on R fixing
the constants K such that

σ1,0A = A, σa,bσc,dA = σac,bc+dA (4.9)

and
∂σa,bA = aσa,b∂A (4.10)

for all a, c ∈ C∗, b, d ∈ C and A ∈ R. Then we call (R, ∂,
∫
,S) an integro-

differential ring with linear substitutions.

Remark 4.19. The set S along with composition can be considered as a
group of K-bimodule homomorphisms on R. The neutral element is σ1,0 and
the inverse for σa,b ∈ S is given by

σ−1
a,b = σa−1,−ba−1 .

So the elements in S are actually automorphisms.

In the following, we fix an integro-differential ring with linear substitutions
(R, ∂,

∫
,S) with constants K and evaluation E = id−

∫
∂. We consider the

modules MK, MR̃, MD, MI, ME, MΦ̃, MR, and MΦ which are introduced
in (4.3), (4.5), and (4.7). In addition, we add the free left K-module

MG := KS.

We also view it as a K-bimodule with the right multiplication defined by
K1σa,b ·K2 = K1K2σa,b with K1, K2 ∈ K. It has the direct sum decomposition

MG = MN ⊕MG̃

such that MN := Kσ1,0 is the K-bimodule generated by the trivial substitution
σ1,0 = id and MG̃ is the K-bimodule generated by all linear substitutions in
S̃ = S \ {σ1,0}. Therefore, we take the alphabets

X := {K, R̃,D, I,E, Φ̃,N, G̃} and Z := X ∪ {R,Φ,G}. (4.11)

With the K-bimodules

MR = MK ⊕MR̃, MΦ = ME ⊕MΦ̃, MG = MN ⊕MG̃, (4.12)

we define
M := MR ⊕MD ⊕MI ⊕MΦ ⊕MG. (4.13)

Then (Mz)z∈Z is a decomposition with specialization.
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Definition 4.20. Let (R, ∂,
∫
,S) be an integro-differential ring with linear

substitutions. We call

R〈∂,
∫
,Φ,S〉 := K〈M〉/IΣ̃0

the ring of integro-differential operators with linear substitutions, where IΣ̃0
is

the two-sided reduction ideal induced by the reduction system Σ̃0 = Σ0 ∪ ΣLS,
where Σ0 is the reduction system in Definition 4.6 and

ΣLS = {(N, σ1,0 7→ε), (GR, σa,b ⊗ A 7→ σa,bA⊗ σa,b), (GΦ, σa,b ⊗ ϕ 7→ ϕ),

(GG, σa,b ⊗ σc,d 7→ σac,bc+d), (DG, ∂ ⊗ σa,b 7→ aσa,b ⊗ ∂}.

Example 4.21. Consider the differential time-delay system

ẋ(t)− A0(t)x(t)− A1(t)x(t− h) = f(t)

corresponding to the operator R := L+ S with differential part L = ∂ −A0 as
in Example 4.9 and time-delay part S := −A1 · δ, where by δ we denote the
time-delay operator σ1,h. For solving this system, like Example 4.9, we first
note that the equation R • x = f is equivalent to the equation

(H ·R) • x = H • f

similar to above. We have

H ·R = 1− ΦEΦ−1 · E− Φ ·
∫
· Φ−1A1δ.

Taking H ·R = ε−G, where

G := P −H · S = ΦEΦ−1 · E + Φ ·
∫
· Φ−1 · A1δ,

we can rewrite (H ·R) • x = H • f as the recurrence equation

x = G • x+H • f.

This is the operator interpretation of the method of steps, see e.g. [25]:

x(t) = Φ(t)
(

Φ−1(t0)x(t0) +

∫ t

t0

Φ−1(s)
(
f(s) + A1(s)x(s− h)

)
ds
)
.
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4.6 Completion of tensor reduction system

for the ring of IDOLS

In the following, we describe the completion process for the ring of IDOLS.
Consider the reduction system obtained by adjoining the reduction system
ΣLS given in Definition 4.20 to the confluent reduction system ΣIDO from
Definition 4.20. Similar to the completion process for the ring of IDO, we
collect the required conditions for compatible partial orders on the word
monoid 〈Z〉 in (4.11). Hence, we consider all the conditions we obtained
for monoid partial orders compatible with ΣIDO, together with the new
conditions GR > RG, DG > GD, and the corresponding conditions for their
specializations. Note that in each step of completion, among the new S-
polynomials, we only take one of them in order to derive a new rule.

For the reduction rules rID and rDG we get a non-resolvable overlap ambi-
guity with S-polynomials

SP(ID,DG) = σa,b − E⊗ σa,b − a
∫
⊗ σa,b ⊗ ∂

which leads to introduce the new rule

(IGD,
∫
⊗ σa,b ⊗ ∂ 7→ a−1(ε− E)⊗ σa,b).

In this step we should also add I > E to the conditions we obtained for partial
orders. The reduction rules rIGD and rDI have two overlap ambiguities with
each other, one is resolvable and one is not. The latter has S-polynomial

SP(IGD,DI) = a−1σa,b(ε− E)⊗ σa,b −
∫
⊗ σa,b

which implies a new reduction rule as

(IG,
∫
⊗ σa,b 7→ a−1(ε− E)⊗ σa,b ⊗

∫
).

We observe that the rule rIG reduces the S-polynomials SP(ID,DG) to zero.
Therefore, we drop the obtained reduction rule rIGD from the reduction system
we are completing. Consequently, we do not consider any more the condition
I > E. Instead, we add the weaker condition IG > EGI to the list of conditions
required for compatible monoid partial orders. For the rest, among the non
resolvable ambiguities we only look at the overlap ambiguity between the
reduction rules rIG and rGR with S-polynomials

SP(IG,GR) = a−1(ε− E)⊗ σa,b ⊗
∫
⊗ A−

∫
⊗ σa,b ⊗ A

→rGR
a−1(ε− E)⊗ σa,b ⊗

∫
⊗ A−

∫
⊗ σa,bA⊗ σa,b.
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We are motivated to define a new reduction homomorphism on MIRG that
reduces

∫
⊗ σa,bA⊗ σa,b to a−1(ε−E)⊗ σa,b ⊗

∫
⊗A. Then, we replace A by

σ−1
a,bA and arrive at the rule

(IRG,
∫
⊗ A⊗ σa,b 7→ a−1(ε− E)⊗ σa,b ⊗

∫
⊗ σ−1

a,bA).

As a consequence, we obtain the identity∫
Aσa,bB = a−1(id− E)σa,b

∫
(σ−1

a,bA)B,

for any A,B ∈ R which corresponds to integration by substitution. We also
need to consider the new condition IRG > EGIR. Since the rule rIRG reduces
the S-polynomials SP(IRD,DG) to zero, then we drop the reduction rule rIGD

from our reduction system. Altogether, we get a confluent reduction system
by adjoining the following table to Table 4.1.

Reduction rules in ΣLS

N σ1,0 7→ ε

GR σa,b ⊗ A 7→ σa,bA⊗ σa,b
GΦ σa,b ⊗ ϕ 7→ ϕ

GG σa,b ⊗ σc,d 7→ σac,bc+d

DG ∂ ⊗ σa,b 7→ aσa,b ⊗ ∂

Consequences of reduction rules from ΣIDO ∪ ΣLS

IG
∫
⊗ σa,b 7→ a−1(ε− E)⊗ σa,b ⊗

∫
IRG

∫
⊗ A⊗ σa,b 7→ a−1(ε− E)⊗ σa,b ⊗

∫
⊗ σ−1

a,bA

Table 4.3: New reduction rules in IDOLS

The identities for IDOLS contain those identities we collected in Section 4.1
for IDO, as well as the identities involving the substitution operators. In the
following table, we collect identities involving substitution operations that
hold in R. For all A,B ∈ R, ϕ ∈ Φ and σa,b, σc,d ∈ S we have:

σ1,0B = B σa,bσc,dB = σac,bc+dB

σa,bAB = (σa,bA)(σa,bB) ∂σa,bB = aσa,b∂B

σa,bϕB = ϕB
∫
Aσa,bB = a−1(id− E)σa,b

∫
(σ−1

a,bA)B

Table 4.4: Identities in R corresponding to new rules in IDOLS
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Similar to the previous example, the refined reduction system ΣX is
obtained, according to (4.12), by splitting rules whose words contain R, Φ
or G into “smaller” rules using S(R) = {K, R̃}, S(Φ) = {E, Φ̃} and S(G) =
{N, G̃}. Following Theorem 3.32, we determine normal forms of tensors in
R〈∂,

∫
,Φ,S〉.

Theorem 4.22. Let (R, ∂,
∫
,S) be an integro-differential ring with linear

substitutions and let M be as in (4.12) and (4.13), and let the reduction
system be ΣIDOLS defined by tables 4.1 and 4.3. Then every t ∈ K〈M〉 has a
unique normal form given by a sum of pure tensors

A⊗ ϕ⊗ σa,b ⊗ ∂j or A⊗ ϕ⊗ σa,b ⊗
∫
⊗B,

where j ∈ N0, each of A,B ∈ MR̃, ϕ ∈ Φ and σa,b ∈ S̃ may be absent, and
ϕ⊗σa,b⊗

∫
does not specialize to E⊗

∫
. Moreover, defining the multiplication

s · t := (s⊗ t) ↓ΣIDOLS
on K〈M〉irr we have

R〈∂,
∫
,Φ,S〉 ∼= K〈M〉irr.

Proof. We consider the alphabets X and Z as defined in (4.11). Then (Mz)z∈Z
is a decomposition with specialization for the module M , see Definition 3.20.
For defining a Noetherian monoid partial order ≤ on 〈Z〉 that is compatible
with ΣIDOLS, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃, GR > RG,

DG > GD, IG > EGI, IRG > EGIR.

For instance, on the word monoid 〈Y 〉 with Y = {R,D, I,Φ,G}, we first define
an order by

V ≤ W :⇔ Ṽ ≺ W̃ or Ṽ = W̃ and V � W,

where Ṽ and W̃ are obtained by removing all occurrences of Φ, cf. Remark 3.5,
and � is the degree-lexicographic order with I � D � G � Φ � R on 〈Y 〉.
Then, we extend ≤ to a monoid partial order on 〈Z〉 based on Definition 3.27
in order to make it consistent with specialization.

Then by the package TenReS we verify that all ambiguities of ΣIDOLS are
resolvable, see Section 4.6.1. Hence, by Theorem 3.32 every element of K〈M〉
has a unique normal form and K〈M〉/IΣIDOLS

∼= K〈M〉irr as K-rings.
It remains to determine the explicit form of elements in K〈M〉irr. To

do so, we determine the set of irreducible words 〈X〉irr in 〈X〉. Note that
ΣIDO ⊂ ΣIDOLS and thus the irreducible words w.r.t. ΣIDOLS are among the
irreducible words w.r.t. ΣIDO. In Theorem 4.14, we already determined the
irreducible words that do not contain the letters N and G̃ to be of the form

R̃V Dj or R̃Φ̃IR̃,
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where j ∈ N0 and each of R̃, Φ̃, and V ∈ S(Φ) may be absent.
The irreducible words containing only N and G̃ are exactly ε and G̃, since

they have to avoid the subwords N and S(GG) = {NN,NG̃, G̃N, G̃G̃}. The
irreducible words in 〈X〉irr also have to avoid subwords from S(GR), S(GΦ),
S(DG), S(IG), and S(IRG). Hence they are of the form

R̃V G̃Dj or R̃V G̃IR̃,

where j ∈ N0 and each of R̃, G̃, and V ∈ S(Φ) may be absent and V G̃I does
not specialize to EI. The normal forms follow from (3.3).

4.6.1 Computational aspects

In the following, we briefly mention some computational details of the ten-
sor setting with specialization for integro-differential operators with linear
substitutions. Applying TenReS to the reduction system ΣIDOLS, in total 87
ambiguities and corresponding S-polynomials are generated. All ambiguities
are resolvable and the automatic verification can be found in the example
files of the package. There are 66 ambiguities without specialization. For
instance,

SP(IRΦ,EI) = (
∫
A⊗ E)⊗

∫
−
∫
⊗ A⊗ 0→rEI

∫
A⊗ 0 = 0,

and

SP(IG,GR) = (a−1σa,b ⊗
∫
− a−1E⊗ σa,b ⊗

∫
)⊗ A−

∫
⊗ (σa,bA⊗ σa,b)

= a−1(σa,b ⊗
∫
⊗ A− E⊗ σa,b ⊗

∫
⊗ A)−

∫
⊗ σa,bA⊗ σa,b

→rIRG
0.

Among the remaining 21 ambiguities we have 5 overlap ambiguities with
specialization and 16 inclusion ambiguities with specialization. They all
involve the following three reduction rules (on X)

(K, 1 7→ ε), (EI,E⊗
∫
7→ 0), (N, σ1,0 7→ ε)

and their S-polynomials can be reduced to zero. For example,

SP(N,DG) = ∂ ⊗ ε− σ1,0 ⊗ ∂ →rN
∂ − ∂ = 0,

and

SP(N, IRG) =
∫
⊗ A− (ε− E)⊗ σ1,0 ⊗

∫
⊗ A

→rN
E⊗ σ1,0 ⊗

∫
⊗ A→rN

E⊗
∫
⊗ A→rEI

0.
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Chapter 5

Applications of the rings of
IDO and IDOLS

Boundary problems play an important rule in science and engineering. How-
ever, they are usually treated numerically and are rarely considered in symbolic
computation, from both a theoretical and practical perspective using computer
algebra systems. For solving regular two-point linear boundary problems
with constant coefficients, a symbolic approach was developed in [47]. A
generalization of this method for differential algebras was proposed in [51],
where also a factorization method applicable to linear boundary problems for
ordinary differential equations was developed, see also [34, 50, 52]. In analogy
to the symbolic methods for finding Green’s operators of ordinary boundary
problems of order n, our tensor setting for IDO allows us to propose similar
Green’s operators for first-order systems.

Using the algebraic framework for IDOLS and its implementation based
on TenReS, classes of linear DTD systems and their transformations can
be studied. Moreover, by formal computations in the ring of IDOLS also
operators having rectangular matrices as their coefficients can be considered.
In Section 5.2, following section 4 of [13], we apply our implementation of
IDOLS to largely automatize the computations of [40] for recovering Artstein’s
transformation. This transformation is used for proving the equivalence
between linear differential systems with delayed inputs and linear differential
systems without time-delays. Furthermore, we propose a generalization that
transforms the solution spaces of differential time-delay systems and solution
spaces of the corresponding differential systems into each other without
distinguishing state and control variables.
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5.1 Green’s operators of first-order systems

In this section, we study Green’s operators of first-order linear ordinary
boundary problems in the ring of integro-differential operators. Throughout
this section, we let R〈∂,

∫
,Φ〉 be a ring of integro-differential operators over

an integro-differential ring (R, ∂,
∫

) with constants K. Let (F ,+, •) be a left
R〈∂,

∫
,Φ〉-module. Moreover, we assume F is a right K-module such that

(L • f)K = L • (fK),

for all L ∈ R〈∂,
∫
,Φ〉, f ∈ F , and K ∈ K. In other words, F is an R〈∂,

∫
,Φ〉-

K-bimodule. In particular, F = R satisfies these properties because all
operations on R are right K-linear. Given a first-order differential operator
L = ∂ − A ∈ R〈∂〉 and a linear boundary condition β from the right ideal
generated by Φ in R〈∂,

∫
,Φ〉, acting as right K-linear functional R → K, we

say G ∈ R〈∂,
∫
,Φ〉 is a Green’s operator for the linear boundary problem

(L, β), if it satisfies
L ·G = 1, and β ·G = 0.

Then, for any f ∈ F , we see that u = G • f ∈ F is a solution of the inhomo-
geneous differential equation L • y = f satisfying the boundary condition

β • u = 0.

We have already seen in Example 4.15 how to compute a family of right
inverses, denoted by H, for first-order differential operators in the ring of
integro-differential operators. In the following, we will see how to modify H
to compute an integro-differential operator G that also satisfies the additional
equation given by the boundary condition.

We are required to know how to define and compute with boundary
conditions and idempotents as particular integro-differential operators. Recall
that for any A ∈ R and ϕ ∈ Φ, we have the identity ϕ · A = (ϕA)ϕ. Based
on that, we can construct idempotents, i.e., elements satisfying P 2 = P in
the ring of integro-differential operators R〈∂,

∫
,Φ〉. Let ϕ ∈ Φ and assume

that there exists A ∈ R with ϕA = 1. Then

P = A · ϕ

is idempotent in R〈∂,
∫
,Φ〉. We have

P · P = (A · ϕ) · (A · ϕ) = A · (ϕA)ϕ · ϕ = A · 1ϕ = A · ϕ = P.

Moreover, 1− P is idempotent since (1− P )2 = 1− 2P + P 2 = 1− P and

ϕ · (1− P ) = ϕ · (1− A · ϕ) = ϕ− ϕ · A · ϕ
= ϕ− (ϕA)ϕ · ϕ = ϕ− (ϕA)ϕ = ϕ− 1ϕ = 0.
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We considered so far only basic linear functionals ϕ ∈ Φ. However, all
elements in the right ideal generated by Φ act as right K-linear functionals
R → K. Their normal forms are K-linear combinations of products

ϕ · ∂j and ϕ ·
∫
·B, (5.1)

where j ∈ N0, B ∈ R, and
∫

may be absent, leading to the following definition.

Definition 5.1. The elements of the K-bimodule generated by all the normal
forms presented in (5.1) are called boundary conditions in R〈∂,

∫
,Φ〉.

With the next lemma, the above considerations about idempotents and pro-
jectors generalize immediately to general boundary conditions in R〈∂,

∫
,Φ〉

as stated in the theorem below.

Lemma 5.2. Let β, γ ∈ R〈∂,
∫
,Φ〉 be boundary conditions. Then for any

A ∈ R, we have

β · A · γ = (β • A)γ.

Proof. By Definition 5.1, every boundary condition can be written as a K-
linear combination of the normal forms as in (5.1). Hence, we have to check
the validity of the identity in the lemma only for these normal forms. We can
assume without loss of generality that the boundary condition is of the form
γ = ϕ for some ϕ ∈ Φ, since the above statement can be multiplied from
the right by any appropriate element of the ring R〈∂,

∫
,Φ〉. In the following,

for the boundary condition β, we consider different cases: if β = ψ for some
ψ ∈ Φ, then the lemma holds since

ψ · A · ϕ = (ψA)ψ · ϕ = (ψA)ϕ = (ψ • A)ϕ.

If β = ψ ·B, then we compute

β · A · γ = ψ ·B · A · ϕ = ψ ·BA · ϕ
= (ψBA)ϕ = ((ψ ·B) • A)ϕ = (β • A)γ.

For the case β = ψ ·
∫
·B, we compute

β · A · γ = ψ ·
∫
·B · A · ϕ = ψ ·

∫
·BA · ϕ = ψ · (

∫
·BA) · ϕ

= (ψ ·
∫
·BA) · ϕ = ((ψ ·

∫
·B) • A)ϕ = (β • A)γ.

For β = ψ · ∂, we compute

β · A · γ = ψ · ∂ · A · ϕ = ψ · A · ∂ · ϕ+ ψ · ∂A · ϕ
= 0 + ψ · ∂A · ϕ = ((ψ · ∂) • A)ϕ = (β • A)γ

and similarly for β = ψ · ∂j with j > 1.
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Theorem 5.3. Let β ∈ R〈∂,
∫
,Φ〉 be a boundary condition. Assume there

exists A ∈ R with β • A = 1. Then, the operator

P = A · β

is idempotent. Moreover, the idempotent 1− P satisfies

β · (1− P ) = 0.

Proof. By Lemma 5.2, we see that

P · P = (A · β) · (A · β) = A · ((β • A) · β) = A · 1 · β = A · β = P.

Moreover, we have

β · (1− P ) = β · (1− A · β) = β − β · A · β
= β − (β • A) · β = β − 1 · β = β − β = 0.

Definition 5.4. A first order linear boundary problem is given by a pair
(L, β), where L ∈ R〈∂〉 is a monic differential operator and β ∈ R〈∂,

∫
,Φ〉

is a boundary condition. An integro-differential operator G ∈ R〈∂,
∫
,Φ〉 is a

Green’s operator for (L, β) if

L ·G = 1 and β ·G = 0.

The following theorem presents a formula for computing a Green’s operator
of a first-order boundary problem from a given right inverse of the defining
differential operator and solutions which “interpolate” the boundary condition.
We have already seen in Example 4.15 how to compute a family of right inverses
for a monic first-order differential operator in the ring of integro-differential
operators assuming that we have a solution for the homogeneous equation
which is invertible inR. In addition, every boundary condition β ∈ R〈∂,

∫
,Φ〉

is a K-linear combination of operators of the form ϕ ·N , with N ∈ R〈∂,
∫
,Φ〉

according to (5.1). Hence, we see the reduction ∂ · ϕ = 0 for ϕ ∈ Φ implies

∂ · β = 0. (5.2)

Theorem 5.5. Let (L, β) be a first-order linear boundary problem. Let H be
a right inverse of L = ∂ − A ∈ R〈∂,

∫
,Φ〉, let W ∈ R such that L •W = 0

with β •W invertible. Let P = W (β •W )−1 · β. Then

G := (1− P ) ·H ∈ R〈∂,
∫
,Φ〉

is a Green’s operator for (L, β).
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Proof. First, we assume β •W = 1. Then P = W · β is idempotent and by
Theorem 5.3,

β ·G = β · (1− P ) ·H = 0 ·H = 0.

So, it remains to show that G is a right inverse of L. Since

L ·W = (∂ − A) ·W = W · ∂ + ∂W − AW = W · ∂,

then, by equation (5.2), we have

L ·W · β = W · ∂ · β = W · 0 = 0.

Therefore, we have L · P = 0 and

L ·G = L · (1− P ) ·H = L ·H − L · P ·H = 1 + 0 ·H = 1.

This means G is a Green’s operator for (L, β). If β • W 6= 1, we take
W̃ = W (β •W )−1. Then, we have

L • W̃ = L • (W (β •W )−1) = (L •W )(β •W )−1 = 0,

and
β • W̃ = β • (W (β •W )−1) = (β •W )(β •W )−1 = 1,

and we are reduced to the previous case.

5.2 Symbolic computations with IDOLS

The goal for this section is to algebraize and automatize symbolic computations
with linear differential time-delay (DTD) systems of the form

ẋ(t) = A0(t)x(t) + A1(t)x(t− h), (5.3)

where A0(t) and A1(t) are square matrices and h > 0. With the explicit
matrices A0(t) and A1(t) in (5.3), a standard approach utilizes the ring of
integro-differential operators with linear substitutions D = A〈∂,

∫
,Φ, δ〉 where

by δ we denote the shift operator σ1,h, and the coefficient ring A consists of
scalar functions. By Theorem 4.22, all sums of terms of the form fϕδi∂j or
fϕδi

∫
g live in this ring. We can also use the matrix of DTD operators

∂In − A0 − A1δ ∈ Dn×n,

for representing the system of (5.3) where, for shorter notation, its coefficients
are collected into matrices A0, A1 ∈ An×n. However, the formula above
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is a matrix of operators in Dn×n. Within the algebraic analysis approach,
described in Section 2.5, we can study the system by means of the matrix of
operators, of its associated module, and of the properties of some function
space F that can be considered as a left D-module.

Note that considering a fixed linear differential time-delay system for
studying certain (control) problems is not always sufficient. Rather, we
should look at whole classes of systems as, for instance, the set of all systems
of the form of (5.3) where the matrices A0 and A1 are general matrices of
generic size. However, such matrices can not be treated rigorously by means
of matrices of operators. This requires us to perform formal computations
with undetermined matrices as coefficients. To this end, we directly equip our
operators with coefficients from some abstract ring R, whose elements repre-
sent matrices. In other words, we consider the ring of operators R〈∂,

∫
,Φ, δ〉.

Then, the above system is represented by the operator

R = ∂ − A0 − A1 · δ ∈ R〈∂,
∫
,Φ, δ〉

with coefficients A0, A1 ∈ R representing matrices. Following this method, it
is possible to consider general classes of systems at once and results on these
classes can be obtained directly. To this end, computer algebra methods have
been developed at the level of the ring R〈∂,

∫
,Φ, δ〉, see Section 4.6.

By formal computations in the ring of IDOLS, operators having rectan-
gular matrices as their coefficients can also be treated. To illustrate these
use-cases, we apply the implementation of IDOLS to largely automatize the
computations of [40] for recovering Artstein’s transformation and we make
these computations available online. We also generalize Artstein’s transfor-
mation to differential time-delay systems where state and control variables
are no longer distinguished.

5.2.1 Rectangular coefficients

It is clear in analysis that we can not add or multiply operators with different
domains and codomains (e.g., they have rectangular matrices as their coeffi-
cients) together. However, the ring R of coefficients is just an abstract ring
without restriction on addition and multiplication. If some elements of R
stand for matrices of different formats, then their sum in R can not be inter-
preted as a matrix. A similar situation arises when multiplying two elements
in R that stand for matrices with incompatible formats. This problem carries
over to the whole ring of operators R〈∂,

∫
,Φ,S〉 where the generators ∂,

∫
,

as well as elements from Φ and S can be interpreted as operators acting on
objects of any size.
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Still, by applying the reduction system given in Tables 4.1 and 4.3, valid
expressions in R〈∂,

∫
,Φ,S〉 are transformed into valid expressions, i.e. we can

interpret them as actual operators with domain and codomain. We can see
this by observing that in each reduction rule the right hand side is interpreted
automatically as an operator with the same domain and codomain whenever
the left hand side is. In order to do that, one should keep in mind that for
every A ∈ R which can be interpreted as an operator A : Fm −→ Fn, the
operations ∂,

∫
, and all ϕ ∈ Φ and σa,b ∈ S give operators ∂A,

∫
A, ϕA and

σa,bA with the same domain and codomain. The generators ∂,
∫

, and all
ϕ ∈ Φ and σa,b ∈ S in R〈∂,

∫
,Φ,S〉 are interpreted as operators from any

Fn to itself, as indicated above. For example, we now explicitly check that
the Leibniz rule transforms valid expressions into valid expressions. If some
A ∈ R can be interpreted as a multiplication operator A : Fm −→ Fn, then
in ∂ · A the derivation is interpreted as an operator ∂ : Fn −→ Fn and the
Leibniz rule

∂ · A = A · ∂ + ∂A

yields A ·∂, where the derivation is interpreted as an operator ∂ : Fm −→ Fm,
and ∂A which both map from Fm to Fn. Analogous to the discussion above,
we can check that in each of the identities in R, whenever one term can
be interpreted as operator from some Fm to some Fn also the other terms
can be interpreted as having the same domain and codomain. A formaliza-
tion of symbolic computations with operators having different domains and
codomains will be presented in a future publication.

Example 5.6. Consider the rectangular differential system

A1(t)ẋ(t)− A0(t)x(t) = f(t)

corresponding to the operator L := A1 · ∂ − A0. Like Example 4.15, we
make the irreducible ansatz H := H1 ·

∫
·H2 for a right inverse of L, with

undetermined multiplication operators H1 and H2. Then, using the reduction
system, we write the product L ·H in irreducible form.

L ·H = (A1 · ∂ − A0) ·H1 ·
∫
·H2

= (A1H1 · ∂ + A1∂H1) ·
∫
·H2 − A0H1 ·

∫
·H2

= A1H1H2 + (A1∂H1 − A0H1) ·
∫
·H2

Comparing coefficients in L ·H = 1 yields

A1H1H2 = 1 and A1∂H1 − A0H1 = 0.

To solve these equations, we adjoin Θ and Θ̃ such that

A1ΘΘ̃ = 1, A1∂Θ− A0Θ = 0,

and we let H1 = Θ and H2 = Θ̃.
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5.2.2 Recovering Artstein’s transformation

In this section, following the work of [40], we show how our framework can be
used to recover and prove Artstein’s transformation for DTD control systems
of the form

ẋ(t) = A(t)x(t) +B0(t)u(t) +B1(t)u(t− h). (5.4)

In order to apply the algebraic framework introduced in Section 4.5, we
write this control system as a differential time-delay system where coefficient
matrices have block structure:

(
In 0

)(ẋ(t)

u̇(t)

)
=
(
A(t) B0(t)

)(x(t)

u(t)

)
+
(

0 B1(t)
)(x(t− h)

u(t− h)

)
. (5.5)

We show how to use our setting to find by ansatz (and then prove) a trans-
formation from the DTD system (5.4) to the differential system

ż(t) = E(t)z(t) + F (t)v(t), (5.6)

considered as a differential system with block structure

(
In 0

)(ż(t)

v̇(t)

)
=
(
E(t) F (t)

)(z(t)

v(t)

)
. (5.7)

The systems (5.5) and (5.7) correspond to the operators

R′ = R′0 · ∂ +R′1 +R′2 · δ, (5.8)

R = R0 · ∂ +R1, (5.9)

where

R′0 =
(
In 0

)
, R′1 =

(
−A −B0

)
, R′2 =

(
0 −B1

)
,

R0 =
(
In 0

)
, R1 =

(
−E −F

)
.

Based on statement (i) in Theorem 2.84, we are required to find operators P
and Q such that

R · P = Q ·R′. (5.10)

We choose Q = Q0 where Q0 is a multiplication operator, and consider the
following ansatz for the operator P

P = P0 · δ ·
∫
· P1 + P2 ·

∫
· P3 + P4 · δ + P5, (5.11)
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where the multiplication operators P0, P1, P2, P3, P4, P5 have undetermined
blocks P11, P22, a0, a1, a2, a3, a4, a5 as follows.

P0 =

(
a0

0

)
, P1 =

(
0 a1

)
, P2 =

(
a2

0

)
, P3 =

(
0 a3

)
,

P4 =

(
0 a4

0 0

)
, P5 =

(
P11 a5

0 P22

)
(5.12)

With this ansatz and using our setting, we discover conditions for the coeffi-
cients in order to have (5.10). First, the irreducible forms for the left and the
right hand sides of (5.10) are computed. Then, by coefficient comparison, the
following conditions are obtained for the blocks a0, a1, a2, a3, a5, P11, P22, Q0:

∂a0 − Ea0 = 0, (5.13)

∂a2 − Ea2 = 0, (5.14)

P11 = Q0, (5.15)

a4 = 0, (5.16)

a5 = 0, (5.17)

a0δa1 + ∂a4 − Ea4 = −Q0B1, (5.18)

∂P11 − EP11 = −Q0A, (5.19)

∂a5 + a2a3 − Ea5 − FP22 = −Q0B0. (5.20)

For solving these equations, following [40], we set a4 = a5 = 0 and we let P11

be such that (5.19) holds. Furthermore, we set Q0 = P11 and we let Φ be
invertible such that

∂Φ = EΦ. (5.21)

Then, for arbitrary constants c0 and c2, we assume that

a0 = Φc0 and a2 = Φc2. (5.22)

This solves six of the above equations. The remaining equations are (5.18)
and (5.20) which can be written as

c0a1 = −δ−1Φ−1P11B1, (5.23)

c2a3 = Φ−1(FP22 − P11B0), (5.24)

and we assume that c0, c2, a1, a3 are such that they satisfy these equations.
Considering these assumptions, it is easy to verify that all conditions (5.13)
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through (5.20) are satisfied, also (5.10) can be verified directly. With these
assumptions, equation (5.11) can be rewritten as

P = −

(
Φ

0

)
· δ ·

∫
·
(

0 δ−1Φ−1P11B1

)
+

(
Φ

0

)
·
∫
·
(

0 Φ−1(FP22 − P11B0)
)

+

(
P11 0

0 P22

)
. (5.25)

In other words, we obtain the invertible transformation(
z(t)

v(t)

)
=

(
P11(t)x(t)

P22(t)u(t)

)
+

(
Φ(t)

0

)∫ t

t0

Φ−1(s)T2(s)u(s) ds

−

(
Φ(t)

0

)∫ t−h

t0

Φ−1(s+ h)P11(s+ h)B1(s+ h)u(s) ds,

where T2(t) := F (t)P22(t)− P11(t)B0(t), as in Theorem 5 of [40].

5.2.3 Generalization of Artstein’s transformation

The algebraic framework we utilize for transforming equation (5.4) can also
be used to transform the differential time-delay control system

A1(t)ẋ(t) + A0(t)x(t) +B1(t)x(t− h) = 0, (5.26)

where state and control variables are not distinguished, to the differential
system

E1(t)ż(t) + E0(t)z(t) = 0, (5.27)

with the corresponding operators

R′ = A1 · ∂ + A0 +B1 · δ, (5.28)

R = E1 · ∂ + E0. (5.29)

Although equation (5.5) is an instance of equation (5.26) and equation (5.7)
is an instance of (5.27), in contrast to Subsection 5.2.2, we no longer impose
a block structure. This generalization (and variants of it) and possible
applications will be investigated in future works. For finding a transformation,
we again need to find operators P and Q such that

R · P = Q ·R′. (5.30)
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We choose Q = Q0 where Q0 is a multiplication operator, and consider the
following ansatz for the operator P :

P = P0 · δ ·
∫
· P1 + P2 ·

∫
· P3 + P5. (5.31)

Using our framework, we compute the normal forms for the left and the right
hand sides of (5.30).

R · P =(E0P0 + E1∂P0) · δ ·
∫
· P1

+ (E0P2 + E1∂P2) ·
∫
· P3 + E1P5 · ∂ (5.32)

+ E1P0δP1 · δ + E1∂P5 + E1P2P3 + E0P5

Q ·R′ = Q0A1 · ∂ +Q0B1 · δ +Q0A0 (5.33)

Then, by coefficient comparison, we get the following sufficient conditions:

E0P0 + E1∂P0 = 0, (5.34)

E0P2 + E1∂P2 = 0, (5.35)

E1P5 = Q0A1, (5.36)

E1P0δP1 = Q0B1, (5.37)

E1∂P5 + E1P2P3 + E0P5 = Q0A0. (5.38)

For solving these equations, we need to introduce an analog of the fundamental
system and a few right inverses. We start by solving (5.34) and (5.35). Let
Θ be such that

E1∂Θ + E0Θ = 0.

Then for constants C0 and C2, we assume that

P0 = ΘC0, P2 = ΘC2. (5.39)

For solving equation (5.36) to (5.38) we take Θ̃ such that

E1ΘΘ̃ = 1.

With an arbitrary multiplication operator N5, the operator

P5 = ΘΘ̃Q0A1 + (1−ΘΘ̃E1)N5, (5.40)

solves equation (5.36). For solving equation (5.37) assume that P1 can be
chosen such that we have

C0P1 = δ−1Θ̃Q0B1, (5.41)
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and for solving equation (5.38) assume that P3 can be chosen such that

C2P3 = Θ̃
(
Q0A0 − E0P5 − E1∂P5

)
. (5.42)

Therefore, equation (5.31) can be rewritten as

P = Θ · δ ·
∫
· δ−1Θ̃Q0B1 + Θ ·

∫
· Θ̃
(
Q0A0 − E0P5 − E1∂P5

)
+ P5. (5.43)

If, in addition, Θ̃ has a right inverse and

Q0A0 − E0P5 − E1∂P5 + E1Θδ−1Θ̃Q0B1 = 0, (5.44)

the operator simplifies to P = Θ · (δ − 1) ·
∫
· δ−1Θ̃Q0B1 + P5.

Theorem 5.7. Consider the time-delay system

A1(t)ẋ(t) + A0(t)x(t) +B1(t)x(t− h) = 0,

of size n×m and the differential system

E1(t)ż(t) + E0(t)z(t) = 0,

of size k × l. Let Θ(t) and Θ̃(t) such that

E1(t)Θ̇(t) + E0(t)Θ(t) = 0 and E1(t)Θ(t)Θ̃(t) = Ik.

For arbitrary matrices Q0(t) of size k × n and N5(t) of size l ×m, we define

P5(t) = Θ(t)Θ̃(t)Q0(t)A1(t) +
(
Il −Θ(t)Θ̃(t)E1(t)

)
N5(t),

T (t) = Q0(t)A0(t)− E0(t)P5(t)− E1(t)Ṗ5(t).

Then, the transformation

z(t) = P5(t)x(t) + Θ(t)

∫ t

t0

Θ̃(s)T (s)x(s) ds

+ Θ(t)

∫ t−h

t0

Θ̃(s+ h)Q0(s+ h)B1(s+ h)x(s) ds (5.45)

is a homomorphism mapping solutions of the time-delay system to solutions
of the differential system. In particular, if Θ̃(t) has a right inverse and

Q0(t)A0(t)− E0(t)P5(t)− E1(t)Ṗ5(t)

+ E1(t)Θ(t)Θ̃(t+ h)Q0(t+ h)B1(t+ h) = 0,

then the transformation simplifies to

z(t) = P5(t)x(t)−Θ(t)

∫ t

t−h
Θ̃(s+ h)Q0(s+ h)B1(s+ h)x(s) ds.
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Note that we can instantiate Theorem 5.7 to obtain the Artstein’s trans-
formation (5.25) as follows: we consider special cases of R′, R, P , and Θ as
follows: for the systems R′ and R we take

A1 =
(
In 0

)
, A0 =

(
−A −B0

)
, B1 =

(
0 −B1

)
,

E1 =
(
In 0

)
, E0 =

(
−E −F

)
.

For the operator P in (5.43), we choose

Θ =

(
Φ

0

)
and Θ̃ = Φ−1,

where Φ is a fundamental system of the equation ∂Φ = EΦ, and we let
Q0 = P11 and

N5 =

(
0 0

0 P22

)
.

Therefore, in Artstein’s case equation (5.40) corresponds to Q = P11, a5 = 0.
Furthermore, equation (5.42) corresponds to the two equations

∂P11 = EP11 − P11A, and a2a3 + P11B0 − FP22 − Ea5 + ∂a5 = 0.

5.2.4 Inverse of Artstein’s transformation

In this section we investigate sufficient conditions for existence of a right
inverse of the operator P in (5.31), which allows to transform the solution
space of the system R into the solution space of the system R′. The ansatz we
consider for such a right inverse is constructed based on the following lemma.

Lemma 5.8. Let A and B be two operators and assume that for operators
A0, A1, and B0 we have

A = A1 + A0 and B = −B0A1B0 +B0

such that A1B0A1 = 0. Then A0B0 = 1 implies AB = 1, and B0A0 = 1 im-
plies BA = 1.

Proof. We see that

AB = −A1B0A1B0 − A0B0A1B0 + A1B0 + A0B0,

BA = −B0A1B0A1 −B0A1B0A0 +B0A1 +B0A0.

Now by assumption A1B0A1 = 0. Hence clearly A0B0 = 1 implies AB = 1
and B0A0 = 1 implies BA = 1.
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In addition, we need to consider a few more inverses: let P̃ be a right
inverse of P and let Q̃ be a left inverse of Q. Then from (5.30) we obtain the
following condition.

Q̃ ·R · P · P̃ = R′ · P̃ (5.46)

Based on Lemma 5.8 one possible choice for P̃ can be as follows:

P̃ = −P̃5P0 · δ ·
∫
· P1P̃5 − P̃5P2 ·

∫
· P3P̃5 + P̃5 (5.47)

where P̃5 is a right inverse of P5 with

(P0 · δ ·
∫
· P1 + P2 ·

∫
· P3) · P̃5 · (P0 · δ ·

∫
· P1 + P2 ·

∫
· P3) = 0.

Then, by Lemma 5.8, after computing normal forms and coefficient comparison,
we realize that under the following assumptions

P1P̃5P2 = 0

P3P̃5P2 = 0

P1P̃5P0 = 0

P3P̃5P0 = 0

(5.48)

equation P · P̃ = 1 for P in (5.31) and P̃ in (5.47) holds. In particular,
considering the operator P obtained in (5.43) with

P0 = Θ, P1 = δ−1Θ̃Q0B1,

P2 = Θ, P3 = Θ̃
(
Q0A0 − E0P5 − E1∂P5

) (5.49)

conditions (5.48) are satisfied if(
δ−1Θ̃Q0B1

)
P̃5Θ = 0, Θ̃

(
Q0A0 − E0P5 − E1∂P5

)
P̃5Θ = 0. (5.50)

Theorem 5.9. In addition to the assumptions of Theorem 5.7, assume that
there exists P̃5(t) such that

Θ̃(t+ h)Q0(t+ h)B1(t+ h)P̃5(t)Θ(t) = 0,

Θ̃(t)T (t)P̃5(t)Θ(t) = 0.

Then, if P̃5(t) is a right (resp. left) inverse of P5(t), the transformation

x(t) = P̃5(t)

(
z(t)−Θ(t)

∫ t

t0

Θ̃(s)T (s)P̃5(s)z(s) ds

−Θ(t)

∫ t−h

t0

Θ̃(s+ h)Q0(s+ h)B1(s+ h)P̃5(s)z(s) ds

)
(5.51)

is a right (resp. left) inverse of the transformation (5.45).
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Chapter 6

Inversive sum-difference
operators

Difference equations arise as mathematical models for describing real life
situations in diverse subjects such as probability theory, statistical problems,
combinatorial analysis, geometry, electrical networks, and so on. We use the
theory of difference algebra for studying difference (or functional) equations
from the algebraic point of view. The structure of difference algebra is
analogous to differential algebra but concerned with difference equations
rather than differential equations. As an independent subject, it was initiated
by J. F. Ritt [44] and his student R. M. Cohn [17]. For a self-contained
reference in the area of difference algebra and algebraic structures with
operators, we suggest the reader to look at [37].

An inversive sum-difference ring is a generalization of an inversive difference
ring by adding the operations summation and evaluation satisfying certain
properties. One of our main contributions described in this chapter is the
construction of the ring of inversive sum-difference operators (SDO) over an
inversive sum-difference ring by applying tensor reduction systems. The ring
of inversive SDO allows us to do symbolic computations with systems of linear
difference equations effectively. In fact, we proceed as in the discussions for
IDO in Chapter 4. We define this ring in Section 6.1 and illustrate some
computations by giving an algebraic proof for the discrete version of the
variation of constants method. Then, in Section 6.2, we complete the given
reduction system to a confluent one and find normal forms. In addition,
by making ansatz and normal form computations we discover a family of
right inverses for first-order difference operators. Finally, some computational
aspects are mentioned. Some related references for this chapter are also given
in Section 1.2.
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6.1 Inversive sum-difference rings

A bi-infinite sequence (An)n∈Z in a ring R is simply a map from Z to R. The
set of all bi-infinite sequences in R together with componentwise addition and
multiplication becomes a ring. On such a ring, we can define the operations
shift forward σ, shift backward σ̄, and evaluation E by

σ(An)n∈Z := (An+1)n∈Z, σ̄(An)n∈Z := (An−1)n∈Z, E(An)n∈Z := (A0)n∈Z.

We can also define the summation operation Σ as

Σ(An)n∈Z :=
( n−1∑
k=0

Ak
)
n∈Z,

with the convention

n−1∑
k=0

Ak = −
0∑

k=n−1

Ak, for all n ≤ 1.

One can easily check that the operations above satisfy the following identities.

σσ̄(An)n∈Z = σ̄σ(An)n∈Z = (An)n∈Z,

σΣ(An)n∈Z = (An)n∈Z + Σ(An)n∈Z,

(A0)n∈Z = (An)n∈Z + Σ
(
(An)n∈Z − σ(An)n∈Z

)
Moreover, we can also consider the forward and backward difference operators
∆ and ∇ defined by

∆(An)n∈Z := (An+1 − An)n∈Z,

∇(An)n∈Z := (An − An−1)n∈Z.

Since we have the identities

∆ = σ − id, ∇ = id− σ̄,

we do not consider them as basic operators in the setting. The relations
among σ, σ̄, and Σ motivate us to define an inversive sum-difference ring. But,
first let us recall the definition of a difference ring and its ring of constants.

Definition 6.1. Let R be a ring. We call (R, σ) a difference ring if σ is an
injective endomorphism of R. For a difference ring (R, σ), we also define its
ring of constants by

K := {A ∈ R | σA = A}.
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Definition 6.2. Let (R, σ) be a difference ring. We call (R, σ, σ̄) an inversive
difference ring if σ̄ is an injective endomorphism of R with σσ̄ = σ̄σ = id.

Definition 6.3. Let (R, σ, σ̄) be an inversive difference ring with ring of
constants K. Let Σ: R → R be a K-bimodule homomorphism such that

σΣA = A+ ΣA (6.1)

for all A ∈ R. We call (R, σ, σ̄,Σ) an inversive sum-difference ring if the
evaluation

EA := A+ Σ(A− σA) (6.2)

is multiplicative, i.e. for all A,B ∈ R we have EAB = (EA)EB.

The following lemma shows that in any inversive sum-difference ring, the
evaluation E maps to the constants and acts as the identity on them, in
particular, it is also a homomorphism of rings. Moreover, the ring R can be
decomposed as direct sum of constant and non-constant “functions”.

Lemma 6.4. Let (R, σ, σ̄,Σ) be an inversive sum-difference ring with ring
of constants K. Then, we have E1 = 1, EA ∈ K for all A ∈ R, and

R = K ⊕ ΣR,

as direct sum of K-bimodules.

Proof. We first compute E1 = 1 + Σ1− Σσ1 = 1 and

σEA = σ(A+ ΣA− ΣσA) = σA+ σΣA− σΣσA

= σA+ (A+ ΣA)− (σA+ ΣσA) = A+ ΣA− ΣσA = EA.

For any A ∈ R, we have

A = EA+ A− EA = EA+ Σ(σA− A)

and hence R = K + ΣR. Let A ∈ K ∩ ΣR and B ∈ R where A = ΣB. Then

0 = σA− A = σΣB − ΣB = B + ΣB − ΣB = B,

which implies A = 0.

Example 6.5. Let (S, σ, σ̄,Σ) be a commutative inversive sum-difference
ring and let R = Mm(S). We leave to the reader to check that the ring R
together with the maps σ : R → R and σ̄ : R → R defined by σA = (σaij)
and σ̄A = (σ̄aij), for any A = (aij) ∈ R where i, j = 1, . . . ,m, respectively
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is an inversive difference ring with ring of constants given by matrices with
constant entries, i.e.,

K = {(cij) ∈ R | σcij = cij}.

We define also Σ: R → R componentwise by

ΣA = (Σaij).

Then the map Σ satisfies (6.1): let A = (aij) be an arbitrary element of R.
Since for any ai,j ∈ S, we have σΣaij = aij + Σaij then σΣA = A + ΣA.
Moreover, the map E: R → K defined by

EA = (Eaij)

is multiplicative: for A = (aij) and B = (bij), if AB = (cij) then cij =
m∑
k=1

aikbkj and hence

Ecij = E(
m∑
k=1

aikbkj) =
m∑
k=1

Eaikbkj =
m∑
k=1

(Eaik)Ebkj.

This implies that EAB = (EA)EB and thus (R, σ, σ̄,Σ) is an inversive sum-
difference ring over its ring of constants.

For the rest of this section, we fix an inversive sum-difference ring
(R, σ, σ̄,Σ) and we denote its ring of constants by K. By an operator, we
understand in the following a K-bimodule homomorphism from R to R. For
example, the operations σ, σ̄, Σ, and E can be viewed as operators.

Following Lemma 6.4, we consider the direct sum decomposition R =
K ⊕ ΣR and the corresponding K-bimodules

MK = K and MR̃ = ΣR (6.3)

(indexed by the letters K and R̃). We do not interpret the elements of MK

and MR̃ as functions but as left multiplication operators B 7→ AB induced
by those functions. For the operators σ, σ̄, Σ, and E we consider the free left
K-modules

MF = Kσ, MB = Kσ̄, MS = KΣ, ME = KE (6.4)

generated by them (indexed by the letters F, B, S, and E). We view these
modules as K-bimodules with right multiplication defined by

cα · d = cdα
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where α ∈ {σ, σ̄,Σ,E} and c, d ∈ K, since the generators of these modules
correspond to left K-linear operators. We define two alphabets

X = {K, R̃,F,B, S,E} and Z = X ∪ {R}, (6.5)

with the K-bimodules (Mx)x∈X defined in (6.3) and (6.4) as well as

MR = MK ⊕MR̃. (6.6)

Now, we define the module M by

M := MR ⊕MF ⊕MB ⊕MS ⊕ME, (6.7)

which turns (Mz)z∈Z into a decomposition with specialization.

Definition 6.6. Let (R, σ, σ̄,Σ) be a inversive sum-difference ring with con-
stants K. Then

R〈σ, σ̄,Σ,E〉 := K〈M〉/IΣ0

is called the ring of inversive sum-difference operators, where IΣ0 is the
two-sided reduction ideal induced by the reduction system

Σ0 = {(K, 1 7→ ε), (RR, A⊗B 7→ AB), (ER,E⊗ A 7→ (EA)E),

(BR, σ̄ ⊗ A 7→ σ̄A⊗ σ̄), (BF, σ̄ ⊗ σ 7→ ε), (FR, σ ⊗ A 7→ σA⊗ σ),

(FB, σ ⊗ σ̄ 7→ ε), (FS, σ ⊗ Σ 7→ Σ + ε), (SF,Σ⊗ σ 7→ Σ + ε− E)}.
As in Remark 4.8, we define K-bimodule homomorphisms based on reduc-

tion rules in Σ0. In the following, we verify the variation of constants formula
for difference equations algebraically, see for example [1].

Example 6.7. Consider the difference system

xn+1 − Anxn = fn, n ∈ Z
where A = (An)n∈Z = ((aijn)i,j)n∈Z is a sequence in R, the ring of sequences
of matrices of size m having bi-infinite sequences as entries. The system above
corresponds to the operator L = σ − A ∈ R〈σ, σ̄,Σ,E〉. Let Φ ∈ R be an
invertible solution of Lx = 0. Then H := Φ⊗ Σ⊗ σΦ−1 is a right inverse of
L, since independent of the size m we have

L⊗H = (σ − A)⊗ Φ⊗ Σ⊗ σΦ−1

→rRR
σ ⊗ Φ⊗ Σ⊗ σΦ−1 − AΦ⊗ Σ⊗ σΦ−1

→rFR
σΦ⊗ σ ⊗ Σ⊗ σΦ−1 − AΦ⊗ Σ⊗ σΦ−1

→rFS
σΦ⊗ σΦ−1 →rRR

ΦΦ−1 →rK
ε.

This is exactly the formula x = Hf for a particular solution of Lx = f
that is obtained from a fundamental matrix by variation of constants:

xn = Φn

n−1∑
m=0

Φ−1
m+1fm.
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6.2 Completion and normal forms

In the following, we describe a completion process for the ring of inversive
SDO. Consider the reduction system Σ0 given in Definition 6.6. We collect
the conditions that any compatible partial order on 〈Z〉 in (6.5) has to satisfy.
Analogous to the completion of IDO, we restrict ourselves to monoid partial
orders where we have the condition ε < A, for any A ∈ 〈Z〉. We also require
to consider the additional properties FR > RF, BR > RB, and SF > E.
Then, in order to obtain the minimal partial order which is consistent with
specialization, we also have to consider

FK > KF, BK > KB,FK > R̃F,BK > R̃B,FR̃ > KF,

BR̃ > KB,FR̃ > R̃F,BR̃ > R̃B.

The rules rFS, and rSF have two overlap ambiguities with each other. One
has S-polynomial

SP(FS, SF) = (Σ + ε)⊗ σ − σ ⊗ (Σ + ε− E)

→rSF
Σ + ε− E− σ ⊗ Σ + σ ⊗ E

→rFS
−E + σ ⊗ E,

which gives rise to the new rule

(FE, σ ⊗ E 7→ E).

Analogous to Section 4.2, we can prove that for any inversive sum-difference
ring (R, σ, σ̄,Σ), the ring R is a left module over the corresponding ring of
inversive SDO. Consequently, by applying the operator identity induced by
each reduction rule on any B ∈ R, correctness of the corresponding identity
in R follows, see Remark 4.11. The other has S-polynomial

SP(SF,FS) = (Σ + ε− E)⊗ Σ− Σ⊗ (Σ + ε) = −E⊗ Σ,

and this gives rise to the new rule

(ES,E⊗ Σ 7→ 0).

The rules rBF, and rFS have a non-resolvable overlap ambiguity with S-
polynomials

SP(BF,FS) = ε⊗ Σ− σ̄ ⊗ (Σ + ε) = Σ− σ̄ ⊗ Σ− σ̄,

which yields the new rule

(BS, σ̄ ⊗ Σ 7→ Σ− σ̄).
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The rules rSF, and rFB have a non-resolvable overlap ambiguity with S-
polynomials

SP(SF,FB) = (Σ + ε− E)⊗ σ̄ − Σ⊗ ε
= Σ⊗ σ̄ + σ̄ − E⊗ σ̄ − Σ,

and hence we obtain the new rule

(SB,Σ⊗ σ̄ 7→ Σ− σ̄ + E⊗ σ̄).

Moreover, we have to add the condition SF > EF and drop the weaker
condition SF > E from the conditions required for monoid partial orders. The
rules rSB, and rBR have a non-resolvable overlap ambiguity with S-polynomials

SP(SB,BR) = −σ̄ ⊗ A+ Σ⊗ A+ E⊗ σ̄ ⊗ A− Σ⊗ σ̄A⊗ σ̄
→rBR

−σ̄A⊗ σ̄ + Σ⊗ A+ E⊗ σ̄A⊗ σ̄ − Σ⊗ σ̄A⊗ σ̄
→rER

−σ̄A⊗ σ̄ + Σ⊗ A+ (Eσ̄A)E⊗ σ̄ − Σ⊗ σ̄A⊗ σ̄.

While we could reduce further, by using rK for example, we will not be able
to reduce to zero for all A ∈ R. We would like to have a new reduction
homomorphism on MSRB that reduces Σ⊗ σ̄A⊗ σ̄ to

−σ̄A⊗ σ̄ + Σ⊗ A+ (Eσ̄A)E⊗ σ̄.

Replacing A by σA, we arrive at the definition

(SRB,Σ⊗ A⊗ σ̄ 7→ −A⊗ σ̄ + Σ⊗ σA+ (EA)E⊗ σ̄).

In addition, we add the condition SR > E to the list of conditions for the
monoid orders we had so far. The rules rSF, and rFR have a non-resolvable
overlap ambiguity with S-polynomials

SP(SF,FR) = A+ Σ⊗ A− E⊗ A− Σ⊗ σA⊗ σ
→rER

A+ Σ⊗ A− (EA)E− Σ⊗ σA⊗ σ.

We want to have a new reduction homomorphism on MSRF that reduces
Σ⊗ σA⊗ σ to A+ Σ⊗ A− (EA)E. Then replacing A by σ̄A, we arrive at
the definition

(SRF,Σ⊗ A⊗ σ 7→ σ̄A+ Σ⊗ σ̄A− (Eσ̄A)E).

That allows to reduce all the S-polynomials of the overlap ambiguity of rSF,
and rFR to zero. This rule gives rise to a non-resolvable overlap ambiguity
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with rFS among others. The corresponding S-polynomials can be reduced to

SP(SRF,FS) = Σ⊗ σ̄A⊗ Σ + σ̄A⊗ Σ

− (Eσ̄A)E⊗ Σ− Σ⊗ A− Σ⊗ A⊗ Σ

→rES
Σ⊗ (σ̄A− A)⊗ Σ + σ̄A⊗ Σ− Σ⊗ A.

We would like to have a new reduction homomorphism on MSRS that reduces
Σ⊗ (σ̄A− A)⊗ Σ to Σ⊗ A− σ̄A⊗ Σ . Replacing A by ΣσA, we arrive at
the definition

(SRS,Σ⊗ A⊗ Σ 7→ ΣA⊗ Σ− Σ⊗ ΣA− Σ⊗ A),

where we consider the condition S > R̃ for the partial orders. The rules rBF,
and rFE have a non-resolvable overlap ambiguity with S-polynomials

SP(BF,FE) = ε⊗ E− σ̄ ⊗ E = E− σ̄ ⊗ E,

and hence we obtain from it the new rule

(BE, σ̄ ⊗ E 7→ E).

The rules rSF, and rFE have a non-resolvable overlap ambiguity with S-
polynomials

SP(SF,FE) = (Σ + ε− E)⊗ E− Σ⊗ E = E− E⊗ E,

and hence we obtain from it the new rule

(EE,E⊗ E 7→ E).

Finally, we consider the inclusion ambiguity (with specialization) of this new
rule with rK, which has irreducible S-polynomials

SP(K, SKS) = Σ⊗ ε⊗ Σ− (Σ1⊗ Σ− Σ⊗ Σ1− Σ⊗ 1)

= Σ⊗ Σ− Σ1⊗ Σ + Σ⊗ Σ1 + Σ.

At this point, the leading term is not determined by our partial order above.
We decide to have the new rule

(SS,Σ⊗ Σ 7→ Σ1⊗ Σ− Σ⊗ Σ1− Σ)

and extend ≤ accordingly to have it compatible with the new rule. Similarly,
the overlap ambiguity of rSRF and rFE gives rise to the rule rSRE, which in turn
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has an inclusion ambiguity with rK giving rise to rSE. Thereby, we obtain the
reduction system given in Table 6.1.

Reduction rules in Σ0

K 1 7→ ε

RR A⊗B 7→ AB

ER E⊗ A 7→ (EA)E

BR σ̄ ⊗ A 7→ σ̄A⊗ σ̄
BF σ̄ ⊗ σ 7→ ε

FR σ ⊗ A 7→ σA⊗ σ
FB σ ⊗ σ̄ 7→ ε

FS σ ⊗ Σ 7→ Σ + ε

SF Σ⊗ σ 7→ Σ + ε− E

Consequences of reduction rules in Σ0

EE E⊗ E 7→ E

ES E⊗ Σ 7→ 0

BE σ̄ ⊗ E 7→ E

BS σ̄ ⊗ Σ 7→ Σ− σ̄
FE σ ⊗ E 7→ E

SE Σ⊗ E 7→ Σ1⊗ E

SB Σ⊗ σ̄ 7→ Σ− σ̄ + E⊗ σ̄
SS Σ⊗ Σ 7→ Σ1⊗ Σ− Σ⊗ Σ1− Σ

SRE Σ⊗ A⊗ E 7→ ΣA⊗ E

SRB Σ⊗ A⊗ σ̄ 7→ −A⊗ σ̄ + Σ⊗ σA+ (EA)E⊗ σ̄
SRF Σ⊗ A⊗ σ 7→ σ̄A+ Σ⊗ σ̄A− (Eσ̄A)E

SRS Σ⊗ A⊗ Σ 7→ ΣA⊗ Σ− Σ⊗ ΣA− Σ⊗ A

Table 6.1: Reduction rules for inversive SDO

The whole completion process for Table 6.1 can be found in the exam-
ple file of the TenReS package. The following table represents identities in
the coefficient ring R corresponding to the reduction rules in Σ0 and their
consequences discovered in the completion process.
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Identities in R corresponding to reduction rules in Σ0

EAB = (EA)EB σσ̄B = B

σ̄AB = (σ̄A)σ̄B σΣB = B + ΣB

σ̄σB = B ΣσB = ΣB +B − EB

σAB = (σA)σB

Identities in R corresponding to consequences of reduction rules in Σ0

EEB = EB ΣAEB = (ΣA)EB

EΣB = 0 ΣAσ̄B = −Aσ̄B + Σ(σA)B + (EA)Eσ̄B

σ̄EB = EB ΣAσB = (σ̄A)B + Σ(σ̄A)B − (Eσ̄A)EB

σ̄ΣB = ΣB − σ̄B ΣAΣB = (ΣA)ΣB − Σ(ΣA)B − (ΣA)B

σEB = EB

Table 6.2: Identities in R corresponding to reduction rules for inversive SDO

The identities that do not follow immediately from the definitions are
EΣB = 0, summation by parts

ΣAσ̄B = −Aσ̄B + Σ(σA)B + (EA)Eσ̄B,

ΣAσB = (σ̄A)B + Σ(σ̄A)B − (Eσ̄A)EB,

and the Rota-Baxter identity with weight 1, i.e.

ΣAΣB = (ΣA)ΣB − Σ(ΣA)B − (ΣA)B.

These identities can be verified as explained in Remark 4.11.

Example 6.8. Analogous to Example 4.13, we continue Example 6.7 by doing
computations in the confluent reduction system ΣSDO. The equation Lx = f
is equivalent to the equation (H ⊗ L)x = Hf . We find the irreducible form

H ⊗ L = Φ⊗ Σ⊗ σΦ−1 ⊗ (∂ − A)

→rRR
Φ⊗ Σ⊗ σΦ−1 ⊗ ∂ − Φ⊗ Σ⊗ σΦ−1A

→rSRF
ΦΦ−1 + Φ⊗ Σ⊗ Φ−1 − Φ(EΦ)⊗ E− Φ⊗ Σ⊗ (σΦ−1)A

→rK
ε− ΦEΦ−1 ⊗ E,

where we used the identity Φ−1 − σΦ−1A = 0 obtained in Example . Defining
the projector P = Φ(EΦ−1) ⊗ E allows us to write (H ⊗ L)x = Hf as
x = Px + Hf , which yields the general solution obtained by variation of
constants:

xn = ΦnΦ−1
n0
xn0 + Φn

n−1∑
m=0

Φ−1
m+1fm.
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In order to compute in R〈σ, σ̄,Σ,E〉 we want to analyze the reduction
system defined by Table 6.1 according to Theorem 3.32 for tensor rings and
determine normal forms of tensors.

Theorem 6.9. Let (R, σ, σ̄,Σ) be an inversive sum-difference ring with con-
stants K. Let M be defined by (6.6) and (6.7) and let the reduction system
ΣSDO be defined by Table 6.1. Then every t ∈ K〈M〉 has a unique normal
form t↓ΣSDO

, which is given by a sum of pure tensors of the form

A⊗ E⊗ σi or A⊗ E⊗ σ̄j or A⊗ Σ⊗B

where i, j ∈ N0, each of A,B ∈MR̃ and E may be absent. Moreover,

R〈σ, σ̄,Σ,E〉 ∼= K〈M〉irr

as K-rings, where the multiplication on K〈M〉irr is defined by

s · t := (s⊗ t)↓ΣSDO
.

Proof. We consider the alphabets X and Z given by (6.5). This turns (Mz)z∈Z
into a decomposition with specialization for the module M , see definition
of decomposition with specialization over a K-bimodule. For defining a
Noetherian monoid partial order ≤ on 〈Z〉 that is compatible with ΣSDO, it
is sufficient to require the order to satisfy

BR > RB, FR > RF, SB > BE, SR > E, S > R̃.

For instance, we could use a degree-lexicographic order with S > F > B >
E > R on 〈{R,F,B, S,E}〉 ⊆ 〈Z〉 or other degree-lexicographic orders with
F > R, B > R, S > E, and S > R. We extend it to a monoid partial order on
〈Z〉 based on definition of refined order in order to make it consistent with
specialization. Then by the package TenReS we verify that all ambiguities of
Σ are resolvable. Hence, by Theorem 3.32 for tensor rings every element of
K〈M〉 has a unique normal form and K〈M〉/IΣSDO

∼= K〈M〉irr as K-rings.
It remains to determine the explicit form of elements in K〈M〉irr. To

do so, we determine the set of irreducible words 〈X〉irr in 〈X〉. Irreducible
words containing only the letters K and R̃ have to avoid the subwords K
and S(RR) = {KK,KR̃, R̃K, R̃R̃}, hence only the words ε and R̃ are left. In
addition, the irreducible words containing only E are exactly ε, E. Altogether,
we see that the irreducible words containing only the letters K, R̃, and E
are given by the set {ε, R̃,E, R̃E}, since they also have to avoid the subwords
S(ER) = {EK,ER̃}. Allowing also the letters F and B, we have to avoid the
subwords coming from S(FR) = {FK,FR̃}, and S(BR) = {BK,BR̃}. Therefore,
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we can only append words Fj and Bt with j, t ∈ N0 to the irreducible words
determined so far, in order to obtain all elements of 〈X〉irr not containing the
letter S. Finally, we also consider the letter S. Since subwords ES, FS, and
BS have to be avoided, the first occurrence of S in an irreducible word can
only be preceded by ε or R̃. We also have to avoid the subwords SE, SF, SB,
and SS, so any letter immediately following S has to be R̃. In addition, we
have to avoid the subwords S(SRE) = {SKE, SR̃E}, S(SRB) = {SKB, SR̃B},
S(SRF) = {SKF, SR̃F}, and S(SRS) = {SKS, SR̃S}, so the letter S cannot be
followed by a subword of length greater than one. Altogether, the elements
of 〈X〉irr are of the form

R̃EFi or R̃EBj or R̃SR̃,

where i, j ∈ N0 and R̃ may be absent. The normal forms follow from definition
of the K-subbimodule of irreducible tensors.

By means of the normal forms above we are allowed to do coefficient
comparison for operator identities in the ring of SDO.

Example 6.10. For finding a family of right inverses for the operator L =
σ − A we make the ansatz

H = H0 +H1 · E +H2 · E · σ +H3 · E · σ̄ +H4 · Σ ·H5.

In terms of normal forms given in Theorem 6.9 we can compute

L ·H = (σH4 − AH4) · E · Σ ·H5 + (σH3 − AH3) · E · σ̄
+ (σH2 − AH2) · E · σ + (σH1 − AH1) · E + σH0 · σ
+ (σH4)H5 − AH0.

Then, by coefficient comparison, for the blocks H0, H1, H2, H3, H4, H5 we
obtain the following conditions.

σH4 − AH4 = 0

σH3 − AH3 = 0

σH2 − AH2 = 0

σH1 − AH1 = 0

σH0 = 0

(σH4)H5 − AH0 = 1

For solving these equations, we adjoin an invertible Φ such that σΦ−AΦ = 0
and let H1 = H2 = H3 = H4 = Φ, H5 = σΦ−1. Then, we obtain

H = Φ · E + Φ · E · σ + Φ · E · σ̄ + Φ · Σ · σΦ−1,

as a family of right inverses for L involving the operator H in Example 6.7.
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6.2.1 Computational aspects

In the following, we express some computational details of the tensor setting
with specialization for the ring of inversive sum-difference operators. For the
reduction system ΣSDO, by applying TenReS in total we obtain 92 ambiguities
and corresponding S-polynomials. Among them, there are 6 ambiguities for
which the corresponding S-polynomials are zero anyway, for instance

SP(BF,FB) = ε⊗ σ̄ − σ̄ ⊗ ε = 0.

Applying automatically the implementation of reduction rules from ΣSDO,
identities in R and identities in MB, MF, MS and ME we see that the
S-polynomials of the 86 remaining ambiguities are reduced to zero. The
complete computation is included in the example files of the package. Here
we consider a few concrete instances of ambiguities. For example, we use the
definition of E in R in the reduction of the following S-Polynomial

SP(SRF,FE) = (σ̄A+ Σ⊗ σ̄A− (Eσ̄A)E)⊗ E− Σ⊗ A⊗ E

→rSRE
σ̄A⊗ E + Σσ̄A⊗ E− (Eσ̄A)E⊗ E− ΣA⊗ E

→rEE
σ̄A⊗ E + Σσ̄A⊗ E− (Eσ̄A)E− ΣA⊗ E

= σ̄A⊗ E + (Σ− σ̄ + Eσ̄)A⊗ E− (Eσ̄A)E− ΣA⊗ E = 0.

As another example, we use the definition of the right multiplication in the
K-bimodule MS in the following reduction

SP(SE,ER) = (Σ1⊗ E)⊗ A− Σ⊗ (EA)E→rSE
Σ1⊗ E⊗ A− EA(Σ1⊗ E)

→rER
Σ1⊗ (EA)E− EA(Σ1⊗ E) = (Σ1EA)⊗ E− EA(Σ1⊗ E)

= (EA)Σ1⊗ Σ− EA(Σ1⊗ E) = 0.

There are 83 ambiguities without specialization. The remaining 13 are
inclusion ambiguities with specialization. For example,

SP(SRE,ES) = (ΣA⊗ E)⊗ Σ− Σ⊗ A⊗ 0→rES
0,

and
SP(K,FR) = σ ⊗ ε⊗ ε− 1⊗ σ →rK

σ − σ = 0.

Note that the confluence criterion of Theorem 3.32 directly works with the
reduction system ΣSDO. Therefore, no computations with the refined reduction
system ΣX on X, given in (6.5), are required.
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