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Abstract Motivated by boundary problems for linear differential equations,
we define an abstract boundary problem as a pair consisting of a surjective
linear map (“differential operator”) and an orthogonally closed subspace of
the dual space (“boundary conditions”). Defining the composition of bound-
ary problems corresponding to their Green’s operators in reverse order, we
characterize and construct all factorizations of a boundary problem from a
given factorization of the defining operator. For the case of ordinary differen-
tial equations, the main results can be made algorithmic. We conclude with
a factorization of a boundary problem for the wave equation.
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1 Introduction

To motivate our algebraic setting and terminology, we begin with two il-
lustrative examples for boundary problems, one for ordinary and one for
partial differential equations. The goal is to determine the operator mapping
the right-hand side (“forcing function”) of the differential equation to its
solution, subject to the given boundary conditions. It is known as Green’s
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operator [26], since it is the integral operator induced by the Green’s func-
tion. This name was introduced by Neumann [16] and Riemann [18, §23] in
honor of the mathematician Green (1793–1841), who invented the concept
in [8, p. 12].

The first example is a classical two-point boundary value problem on a
finite interval; see for example Stakgold [23]. Writing V for the complex
vector space C∞[0, 1], we consider the following problem: Given f ∈ V , find
u ∈ V such that

u′′ = f,
u(0) = u(1) = 0.

(1.1)

Let D : V → V denote the usual derivation and L,R ∈ V ∗ the two linear
functionals L : f 7→ f(0) and R : f 7→ f(1). Note that u is annihilated by
any linear combination of these two functionals so that problem (1.1) can
be described by (D2, [L,R]), where [L,R] is the subspace of the dual space
generated by L and R.

Based on an operator approach first presented in [20], a symbolic method
for computing Green’s operators for regular two-point boundary problems
with constant coefficients was given in [19]. We describe a symbolic frame-
work treating boundary problems for arbitrary linear ordinary differential
equations in [21]. A crucial step is the computation of normal forms using
a suitable noncommutative Gröbner basis that reflects the essential inter-
actions between certain basic operators. Gröbner bases were introduced by
Buchberger in [2,3].

As a second example consider the following boundary problem for the
wave equation on the domain Ω = R × R≥0, now writing V for C∞(Ω):
Given f ∈ V , find u ∈ V such that

utt − uxx = f,
u(x, 0) = ut(x, 0) = 0.

(1.2)

Note that we use the terms “boundary condition/problem” in the general
sense of linear conditions. (Usually one calls the above problem an initial
value problem; for a genuine boundary problem we refer to the end of the
paper. We prefer the term “boundary problem” to the more common expres-
sion “boundary value problem” since the latter would suggest that boundary
conditions are always point evaluations, while we will also need integral con-
ditions.)

The boundary conditions in (1.2) can be expressed by the infinite family
of linear functionals Lx : u 7→ u(x, 0), Mx : u 7→ ut(x, 0) with x ∈ R, so we
can represent the boundary problem by (∂2t − ∂2x, [Lx,Mx]x∈R). The space
[. . .] here denotes the orthogonal closure (see A.1 for details) of the subspace
generated by the boundary conditions: Since u is annihilated by the Lx and
Mx, it is also annihilated by all functionals in [Lx,Mx], for example the
functionals u 7→

∫ x
0
u(η, 0) dη for x ∈ R.

Abstracting from the above examples, we define a boundary problem as
a pair consisting of a surjective linear map and an orthogonally closed sub-
space of the dual space. Every finite-dimensional vector space of the dual is
orthogonally closed (like the boundary conditions in the first example), but



An algebraic foundation for factoring linear boundary problems 3

we need the notion of orthogonal closure to deal with infinite dimensional
vector spaces (as in the second example) if we are to remain in an algebraic
setting.

It would be interesting to extend our results such that additional topolog-
ical assumptions on the vector spaces and operators are taken into account.
For example, it should be possible to use a dual pairing [13] instead of a
vector space and its algebraic dual. For an approach along these lines, see
Wyler [26], dealing with generalized Green’s operators.

One motivation for us was that understanding algebraic aspects of bound-
ary problems is important for treating boundary problems by symbolic com-
putation, where one usually considers manipulations of the operators that
are independent of the spaces they act on. Since the surjective linear map
may also be a matrix differential operator, this approach can be extended to
boundary problems for systems of linear differential equations.

In the abstract setting, computing the Green’s operator of a boundary
problem means determining the right inverse of the defining operator corre-
sponding to the kernel complement given by the space of boundary condi-
tions. Going back from a Green’s operator to its boundary problem can be
interpreted as solving a suitably defined dual boundary problem.

The crucial step in our approach consists in the passage from a single
problem to a compositional structure on boundary problems, defined in such a
way that it corresponds to the composition of the Green’s operators in reverse
order. As we will see, the computation of Green’s operators can then be
seen as an anti-isomorphism between boundary problems and dual boundary
problems.

Our main result in this paper is the description of factorizations in this
compositional structure: Given a boundary problem, we characterize and
construct all possible factorizations along a given factorization of the defin-
ing operator. By the above anti-isomorphism, this also yields a method for
factoring Green’s operators.

In the setting of differential equations, factoring boundary problems al-
lows us to split a problem of higher order into subproblems of lower order,
provided we can factor the differential operator. For the latter, we can exploit
algorithms and results about factoring ordinary [11,17,22,24] and partial dif-
ferential operators [9,10,25]. The factor problems can then be dealt with by
symbolic, numerical or hybrid methods. For numerical or hybrid methods
one has to consider stability issues [6]: A given well-posed problem should be
factored such that the lower-order problems are well-posed.

The paper is organized as follows: In Section 2, we introduce abstract
boundary problems and dual boundary problems. The composition of bound-
ary problems with the above anti-isomorphism is described in Section 3. We
consider the question of factoring boundary problems in Section 4. For en-
domorphisms, we give in Section 5 an interpretation of the composition as a
semidirect product of monoids. In Section 6, we focus on operators with finite
dimensional kernel, where all the main constructions can be made algorith-
mic. This includes in particular boundary problems for ordinary differential
equations, treated from a symbolic computation perspective in [21]. We con-
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clude in Section 7 with computing factorizations and Green’s operators for
(1.1) and (1.2).

In the appendix, we recall and develop various auxiliary results from
linear algebra. In A.1 we treat the duality between subspaces of a vector
space and orthogonally closed subspaces of its dual. The relation between
orthogonality and the transpose is discussed in A.2. Left and right inverses are
covered in A.3, the dimension arguments needed for finitely many boundary
conditions in A.4.

2 Boundary problems and Green’s operators

A boundary problem is given by a pair (T,F), where T : V →W is a surjective
linear map between vector spaces V,W and F ⊆ V ∗ an orthogonally closed
subspace of boundary conditions. We say that u ∈ V is a solution of (T,F)
for a given w ∈W , if

Tu = w and f(u) = 0 for all f ∈ F

or equivalently u ∈ F⊥. A boundary problem (T,F) is regular if F⊥ is a
complement of K = KerT so that V = K uF⊥. Then there exists a unique
right inverse G : W → V of T with ImG = F⊥, see A.3. We call G the Green’s
operator for the boundary problem (T,F). Since TGw = w and Gw ∈ F⊥,
we see that the Green’s operator maps every right-hand side w ∈ W to its
unique solution u = Gw ∈ V . Hence we say that G solves the boundary
problem (T,F), and we use the notation

G = (T,F)−1.

Conversely, if there exists a right inverse G of T for a boundary problem
(T,F) such that ImG = F⊥, it is regular by (A.17). Since orthogonality
preserves direct sums, we see that (T,F) is regular iff

V ∗ = F uK⊥. (2.1)

By Proposition A.6, we have

KerG∗ = (ImG)⊥ = F⊥⊥ = F and ImT ∗ = (KerT )⊥ = K⊥ (2.2)

for a regular boundary problem (T,F). Given any right inverse G̃ of T , we
know with Lemma A.8 that the Green’s operator for a regular boundary
problem (T,F) is given by

G = (1− P )G̃, (2.3)

where P is the projection with ImP = K and KerP = F⊥.
If T is invertible, then (T, 0) is the only regular boundary problem for T ,

and its Green’s operator is (T, 0)−1 = T−1. In particular, we have

(1, 0)−1 = 1 (2.4)

for the identity operator.



An algebraic foundation for factoring linear boundary problems 5

A dual boundary problem is given by a pair (K,G), where G : W → V is
an injective linear map and K ⊆ V a subspace of dual boundary conditions.
We say that g ∈ V ∗ is a solution of (K,G) for a given h ∈W ∗ if

G∗g = h and g(v) = 0 for all v ∈ K

or equivalently g ∈ K⊥. A dual boundary problem (K,G) is regular if K is
a complement of I = ImG so that V = K u I. Then there exists a unique
left inverse T : V → W of G with KerT = K, see A.3. We call T the dual
Green’s operator for the dual boundary problem (K,G). Since G∗T ∗ = 1 and
ImT ∗ = K⊥ by Proposition A.6, we see that G∗T ∗h = h and T ∗h ∈ K⊥,
and so T ∗ maps every right-hand side h ∈W ∗ to its unique solution g = T ∗h.
Hence we say that T solves the dual boundary problem (K,G), and we use
the notation

T = (K,G)−1.

Conversely, if there exists a left inverse T of G for a dual boundary prob-
lem (K,G) such that KerT = K, it is regular by (A.17). Given any left

inverse T̃ of G, we know with Lemma A.10 that the dual Green’s operator
for a regular dual boundary problem (K,G) is given by T = T̃ (1−P ), where
P is the projection with ImP = K and KerP = I.

If G is invertible, then (0, G) is the only regular dual boundary problem
with G and its dual Green’s operator is (0, G)−1 = G−1. In particular, we
have

(0, 1)−1 = 1 (2.5)

for the identity operator.
For fixed vector spaces V and W we denote the set of all regular (dual)

boundary problems respectively by

R = {(T,F) | T : V →W, (T,F) regular}

and
R∗ = {(K,G) | G : W → V, (K,G) regular}.

We can interpret the bijection (A.20) between left and right inverses in terms
of boundary and dual boundary problems. The main part is always solving
a (dual) regular boundary problem, that is, computing its (dual) Green’s
operator. Note that for boundary problem we specify a complement of the
kernel by an orthogonally closed subspace of the dual space.

Proposition 2.1 The map

R→ R∗

(T,F) 7→ (KerT, (T,F)−1)

is a bijection between the sets of regular (dual) boundary problems, and

R∗ → R

(K,G) 7→ ((K,G)−1, (ImG)⊥).

is its inverse.

Proof Clear with Proposition A.11. ut
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3 Composing boundary problems

Let (T1,F1) and (T2,F2) be boundary problems with T1 : V → W and
T2 : U → V . We define the composition of (T1,F1) and (T2,F2) by

(T1,F1) ◦ (T2,F2) = (T1T2, T
∗
2 (F1) + F2). (3.1)

Proposition 3.1 The composition of two boundary problems is again a bound-
ary problem.

Proof The composition of surjective maps is surjective. We must show that
T ∗2 (F1) + F2 is an orthogonally closed subspace of U∗. But from Corollary
A.5 we know that the transpose maps orthogonally closed subspaces to or-
thogonally closed subspaces and from Proposition A.3 that the sum of two
orthogonally closed subspaces is orthogonally closed. ut

The composition of boundary problems is associative. Moreover, we have

(1V , 0) ◦ (T,F) = (T,F) and (T,F) ◦ (1W , 0) = (T,F)

with T : V → W and 0 the zero-dimensional vector space. So all boundary
problems of vector spaces over a fixed field form a category with objects the
vector spaces and morphisms the boundary problems.

The next proposition tells us that the composition of boundary problems
preserves regularity, and the corresponding Green’s operator is the compo-
sition of Green’s operators in reverse order. Hence the regular boundary
problems form a subcategory of the category of all boundary problems. We
denote the category of regular boundary problems by R.

Proposition 3.2 Let (T1,F1) and (T2,F2) be regular boundary problems
with Green’s operators G1 and G2. Then the composition

(T1,F1) ◦ (T2,F2) = (T,F)

is regular with Green’s operator G2G1 so that

((T1,F1) ◦ (T2,F2))−1 = (T2,F2)−1 ◦ (T1,F1)−1.

Moreover, the sum
F = T ∗2 (F1)u F2 (3.2)

is direct.

Proof We have
T1T2G2G1 = T11G1 = T1G1 = 1

so that G2G1 is a right inverse of T1T2. Since KerG∗1 = F1 and KerG∗2 = F2

by (2.2), we have with Proposition A.6 and (A.21)

(ImG2G1)⊥ = Ker (G2G1)
∗

= KerG∗1G
∗
2 = T ∗2 (F1)u F2.

The proposition now follows by the characterization of regular boundary
problems through Green’s operators. ut
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Note that with (A.15) and (A.5) we see that

T ∗2 (F⊥⊥1 ) + F⊥⊥2 = (T ∗2 (F1) + F2)⊥⊥

for arbitrary (not necessarily orthogonally closed) subspaces F1 and F2. If
the boundary conditions are given by the orthogonal closure of arbitrary
subspaces F1 and F2, the composition of two boundary problems is equal to

(T1,F⊥⊥1 ) ◦ (T2,F⊥⊥2 ) = (T1T2, (T
∗
2 (F1) + F2)⊥⊥). (3.3)

We will use this observation for boundary problems with partial differential
equations in Section 7.

Let now (K2, G2) and (K1, G1) be dual boundary problems with G2 : V →
U and G1 : W → V . We define the composition of (K2, G2) and (K1, G1) by

(K2, G2) ◦ (K1, G1) = (K2 +G2(K1), G2G1). (3.4)

Obviously, the composition is again a dual boundary problem. It is associa-
tive, and we have

(0, 1W ) ◦ (K,G) = (K,G) and (K,G) ◦ (0, 1V ) = (K,G)

with G : W → V . So all dual boundary problems of vector spaces over a fixed
field form a category.

As we will see, also for dual boundary problems the composition of two
regular problems is again regular. Hence the regular dual boundary problems
form a subcategory of the category of all dual boundary problems. We denote
the category of regular dual boundary problems by R∗.

Proposition 3.3 Let (K2, G2) and (K1, G1) be regular dual boundary prob-
lems with dual Green’s operators T2 and T1. Then the composition

(K2, G2) ◦ (K1, G1) = (K,G)

is regular with dual Green’s operator T1T2 so that

((K2, G2) ◦ (K1, G1))−1 = (K1, G1)−1 ◦ (K2, G2)−1.

Moreover, the sum K = K2 uG2(K1) is direct.

Proof We have
T1T2G2G1 = T11G1 = T1G1 = 1

so that T1T2 is a left inverse of G2G1. By (A.21), we have

Ker(T1T2) = G2(K1)uK2

with K1 = KerT1 and K2 = KerT2. The proposition follows now by the
characterization of regular dual boundary problems through dual Green’s
operators. ut

Summing up, we see that solving regular (dual) boundary problems gives
an anti-isomorphism between the categories of regular (dual) boundary prob-
lems, justifying our terminology for dual boundary problems.
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Theorem 3.4 The contravariant functor

F : R → R∗

(T,F) 7→ (KerT, (T,F)−1)

is an anti-isomorphism between the categories of regular (dual) boundary
problems, and

F ∗ : R∗ → R
(K,G) 7→ ((K,G)−1, (ImG)⊥).

is its inverse.

Proof By (2.4) and (2.5), we have F (1) = 1 as well as F ∗(1) = 1. Hence
F and F ∗ are contravariant functors by Proposition 3.2 and 3.3. Finally,
FF ∗ = 1 and F ∗F = 1 by Proposition 2.1. ut

4 Factoring boundary problems

Let (T,F) be a boundary problem with T : U →W and assume that we have
a factorization

(T1,F1) ◦ (T2,F2) = (T,F) (4.1)

into boundary problems with T1 : V → W and T2 : U → V . By definition
(3.1), this means that we have a factorization

T = T1T2

for the defining operators and a sum

F = T ∗2 (F1) + F2

for the boundary conditions. In this section, we characterize all possible fac-
torizations of a boundary problem into two boundary problems. In particular,
we show that if (T,F) is regular and a factorization T = T1T2 is fixed, there
exists a unique regular left factor (T1,F1), and we describe all right factors
(T2,F2).

Given a factorization T = T1T2 with surjective linear maps T1 and T2, we
construct all corresponding factorizations into (regular) boundary problems.
The boundary conditions for the factor problems can be described in terms of
the boundary conditions F and the factorization T = T1T2. More precisely,
we need K2 = KerT2 and an arbitrary right inverse of T2, which we denote
in this section by H2. We begin without any assumption on the regularity.

Lemma 4.1 Let (T1,F1) ◦ (T2,F2) = (T,F). Then

T ∗2 (F1) ⊆ F ∩K⊥2 (4.2)

and
T ∗2H

∗
2 (F̃1) = F̃1 (4.3)

for any F̃1 ⊆ K⊥2 .
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Proof Note that ImT ∗2 = K⊥2 by Proposition A.6 and T ∗2 (F1) ⊆ T ∗2 (F1) +
F2 = F . For the second equation observe that T ∗2H

∗
2 is a projection with

ImT ∗2H
∗
2 = ImT ∗2 = K⊥2 by (A.16). ut

Proposition 4.2 Let T = T1T2 be a factorization with surjective linear
maps T1 and T2. Let

F̃1 ⊆ F ∩K⊥2 and F2 ⊆ F

be orthogonally closed subspaces such that F = F̃1 + F2, and F1 = H∗2 (F̃1).
Then

(T1,F1) ◦ (T2,F2) = (T,F)

is a factorization of (T,F).

Proof By Corollary A.5, we know that F1 = H∗2 (F̃1) is orthogonally closed,
and so (T1,F1) is a boundary problem. Using (4.3), we observe

(T1,F1) ◦ (T2,F2) = (T1T2, T
∗
2H
∗
2 (F̃1) + F2) = (T, F̃1 + F2) = (T,F),

and the proposition is proved. ut
Let now (T,F) be regular with Green’s operator G, and assume that we

have a factorization T = T1T2 with T1 and T2 surjective. Then T2G is a right
inverse of T1 since

T1T2G = TG = 1.

So (T1, (ImT2G)⊥) is a regular boundary problem. We can describe its bound-
ary conditions without G only in terms of F and T2 with a right inverse H2.

Lemma 4.3 Let (T,F) be regular with Green’s operator G and let T = T1T2
be a factorization with surjective linear maps T1 and T2. Then

(ImT2G)⊥ = H∗2 (F ∩K⊥2 ),

and (T1, H
∗
2 (F ∩K⊥2 )) is regular with Green’s operator T2G.

Proof Using Proposition A.6 and (A.22), we obtain

(ImT2G)⊥ = Ker (T2G)
∗

= KerG∗T ∗2 = H∗2 (KerG∗ ∩ ImT ∗2 ).

From (2.2) we know that KerG∗ = F and ImT ∗2 = K⊥2 . ut
The following theorem tells us that given a regular boundary problem

(T,F) and a factorization T = T1T2, there is a unique regular left factor
described by the previous lemma.

Theorem 4.4 Let (T,F) be regular and T = T1T2 a factorization with sur-
jective linear maps T1 and T2. Then

(T1,F1) ◦ (T2,F2) = (T,F)

is a factorization with (T1,F1) regular iff

F1 = H∗2 (F ∩K⊥2 )

and F2 ⊆ F is an orthogonally closed subspace such that

F = (F ∩K⊥2 ) + F2.

Moreover, if (T1,F1) is regular, its Green’s operator is T2G.
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Proof Let (T1,F1)◦(T2,F2) = (T,F) with (T,F) and (T1,F1) regular. Writ-
ing F̄1 = H∗2 (F ∩ K⊥2 ), we see with (4.2) that F1 ⊆ F̄1. Since (T1,F1) is
regular by assumption and (T1, F̄1) by the previous lemma, we have

F1 uK
⊥
1 = F̄1 uK

⊥
1 = V ∗

by (2.1), so that F1 and F̄1 have a common complement. Using modularity,
we see that

F1 = F1 + (K⊥1 ∩ F̄1) = (F1 +K⊥1 ) ∩ F̄1 = F̄1 = H∗2 (F ∩K⊥2 ).

By (4.3), we have T ∗2 (F1) = T ∗2H
∗
2 (F ∩K⊥2 ) = F ∩K⊥2 , and so

F = (F ∩K⊥2 ) + F2.

Conversely, we know by the previous lemma that (T1, H
∗
2 (F∩K⊥2 )) is regular,

and (T1, H
∗
2 (F ∩K⊥2 )) ◦ (T2,F2) = (T,F) by Proposition 4.2. ut

Finally, assume that all boundary problems in the factorization (4.1) are
regular with corresponding Green’s operators G, G1 and G2. Then we have
the factorizations

T = T1T2 and G = G2G1,

by Proposition 3.2, and a direct sum of the boundary conditions

F = T ∗2 (F1)u F2

by (3.2). Since T2G = T2G2G1 = G1, we know from Lemma 4.3 that F1 =
H∗2 (F ∩K⊥2 ). By (4.3), we obtain T ∗2 (F1) = F ∩K⊥2 so that

F = (F ∩K⊥2 )u F2.

We write P̄(V ∗) for the lattice of orthogonally closed subspaces of V ∗; see A.1
in the appendix. With the following proposition relating complements, sub-
spaces and orthogonality, we can characterize all regular problems (T2,F2)
with F2 ⊆ F .

Proposition 4.5 Let K2 ⊆ K ⊆ V be subspaces and F ⊆ V ∗ an orthogo-
nally closed subspace such that

V = K u F⊥.

Then we have a bijection

{F2 ∈ P̄(V ∗) | F2 ⊆ F and V = K2 u F⊥2 } ∼= {V2 ∈ P(V ) | K = V2 uK2}

given by
F2 7→ F⊥2 ∩K and V2 7→ F ∩ V ⊥2 . (4.4)

Moreover,
V = K2 u F⊥2 iff F = (F ∩K⊥2 )u F2,

for orthogonally closed subspaces F2 ⊆ F .
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Proof Let F2 ⊆ F be orthogonally closed such that V = K2uF⊥2 . We obtain

K = V ∩K = (K2 + F⊥2 ) ∩K = K2 + (F⊥2 ∩K),

and the sum is direct since K2 ∩F⊥2 = 0, so F⊥2 ∩K is a complement of K2

in K. Since F ∩K⊥ = 0, we have

F ∩ (F⊥2 ∩K)⊥ = F ∩ (F2 +K⊥) = F2 + (F ∩K⊥) = F2.

Conversely, let V2 be a subspace such that K = V2uK2. Since V = K uF⊥
and (F ∩ V ⊥2 )⊥ = F⊥ + V2, we have

V = K + F⊥ = K2 u (F⊥ + V2) = K2 u (F ∩ V ⊥2 )⊥.

Moreover, note that

(F ∩ V ⊥2 )⊥ ∩K = (V2 + F⊥) ∩K = V2 + (F⊥ ∩K) = V2

since F⊥ ∩K = 0.
Now let F2 ⊆ F be orthogonally closed such that V = K2 u F⊥2 . Let

V2 = F⊥2 ∩K. Then we know from above that K = V2 uK2, so

V = K u F⊥ = V2 uK2 u F⊥.

Since orthogonality preserves direct sums, we obtain

V ∗ = (F ∩K⊥2 )u V ⊥2 .

So we have

F = F ∩ V ∗ = F ∩ ((F ∩K⊥2 ) + V ⊥2 ) = (F ∩K⊥2 ) + (F ∩ V ⊥2 ),

and the sum is direct since (F ∩ K⊥2 ) ∩ V ⊥2 = 0. Since we also know from
above that F ∩ V ⊥2 = F2, the first part of the equivalence is proved.

Conversely, let F2 be an orthogonally closed subspace such that

F = (F ∩K⊥2 )u F2.

Then (F ∩K⊥2 ) ∩ F2 = 0 and hence by passing to the orthogonal

V = K2 + F⊥ + F⊥2 = K2 + F⊥2 ,

the latter since F⊥2 ⊇ F⊥. Moreover, note that

F⊥ = (F ∩K⊥2 )⊥ ∩ F⊥2 = (F⊥ +K2) ∩ F⊥2 = F⊥ + (K2 ∩ F⊥2 ).

Since K ∩ F⊥ = 0, we obtain

0 = K ∩ (F⊥ + (K2 ∩ F⊥2 )) = (K ∩ F⊥) + (K2 ∩ F⊥2 ) = K2 ∩ F⊥2 .

Hence V = K2 u F⊥2 , and the proposition is proved. ut
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Corollary 4.6 Let (T,F) be regular and T2 surjective with KerT2 ⊆ KerT .
Then (4.4) defines a bijection between

{F2 ⊆ F | (T2,F2) regular}

and complements of KerT2 in KerT . Moreover, (T2,F2) is regular iff F2 is
an orthogonally closed complement of (F ∩K⊥2 ) in F .

The following corollary allows us to compute the boundary conditions for
the unique regular left factor if we have the Green’s operator for a regular
right factor.

Corollary 4.7 Let (T,F) be regular and T2 surjective with KerT2 ⊆ KerT .
Then

G∗2(F) = G∗2(F ∩K⊥2 )

if G2 is the Green’s operator for (T2,F2) regular with F2 ⊆ F .

Proof If G2 = (T2,F2)−1 with F2 ⊆ F , then

F = (F ∩K⊥2 )u F2,

by the previous corollary. Since KerG∗2 = F2 by (2.2), this implies G∗2(F) =
G∗2(F ∩K⊥2 ). ut

Summing up, we can now characterize and construct all possible factor-
izations of a regular boundary problem into two regular boundary problems
given a factorization of the defining operator.

Theorem 4.8 Let (T,F) be regular and T = T1T2 a factorization with sur-
jective linear maps T1 and T2. Then

(T1,F1) ◦ (T2,F2) = (T,F)

is a factorization with (T2,F2) regular iff

F1 = H∗2 (F ∩K⊥2 )

and F2 ⊆ F is an orthogonally closed subspace such that

F = (F ∩K⊥2 )u F2.

In particular, the left factor (T1,F1) is necessarily regular.

Proof Let (T1,F1) ◦ (T2,F2) = (T,F) with (T,F) and (T2,F2) regular. Let
G2 be the Green’s operator for (T2,F2). Since KerG∗2 = F2 by (2.2) and
F = T ∗2 (F1) + F2, we obtain G∗2(F) = F1. With the previous corollary this
yields

F1 = G∗2(F ∩K⊥2 ),

and so (T1,F1) is regular by Lemma 4.3. The theorem follows with Corollary
4.6 and Theorem 4.4. ut
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5 A monoid of boundary problems

In this section, we consider boundary problems with endomorphisms; this
case is also the basis for the symbolic computation treatment in [21]. Hav-
ing endomorphisms, the composition of boundary problems (3.1) and dual
boundary problems (3.4) coincides with the multiplication in a reverse semidi-
rect product of suitably defined monoids and actions. Moreover, the con-
travariant functors from Theorem 3.4 between regular (dual) boundary prob-
lems specialize to anti-isomorphisms between the submonoids of regular (dual)
boundary problems.

Given a monoid action, one can define the semidirect product of monoids
just as for groups. In contrast to groups, one must distinguish between left
and right actions and accordingly define the multiplication for semidirect
products.

We recall the definitions. Let M and N be monoids. Following a conven-
tion introduced by Eilenberg [5], which also fits perfectly with our applica-
tion, we write the product in M additively (without assuming commutativity
in general). Given a left action of N on M , denoted by n ·m, and specified
by a homomorphism ϕ : N → EndM , the semidirect product M oϕ N is the
set M ×N with the multiplication “from the left”

(m1, n1)(m2, n2) = (m1 + n1 ·m2, n1n2) = (m1 + ϕn1
(m2), n1n2).

One verifies that this multiplication is associative with identity (0, 1), so the
semidirect product M oϕ N is indeed a monoid.

Analogously, given a right action of N on M , denoted by m · n, and
specified by an anti-homomorphism ϕ : N → EndM , the reverse semidirect
product N nϕM is the set N ×M with the multiplication “from the right”

(n1,m1)(n2,m2) = (n1n2,m1 · n2 +m2) = (n1n2, ϕn2(m1) +m2).

Again N nϕM is a monoid with identity (1, 0).
Let now V be a vector space and L(V ) the monoid of endomorphisms

with respect to composition. The subspace lattice of V is denoted by P(V ),
and L(V ) acts on it from the left by A · V1 = A(V1), so we have a homomor-
phism ϕ : L(V )→ EndP(V ) with ϕA(V1) = A(V1). The multiplication in the
semidirect product P(V ) oϕ L(V ) is

(V1, A1)(V2, A2) = (V1 +A1(V2), A1A2),

which is exactly the definition (3.4) of the composition of dual boundary
problems. Writing H for the submonoid of all injective endomorphisms, the
semidirect product P(V )oϕH is the monoid of dual boundary problems. The
regular dual boundary problems form a submonoid

R∗ = {(K,G) ∈ P(V )×H | (K,G) regular}

since the composition of two regular dual boundary problems is regular by
Proposition 3.3.

We now discuss the situation for boundary problems. By Proposition A.3,
the sum of two orthogonally closed subspaces is orthogonally closed, so P̄(V ∗)
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is an additive monoid. We know from Corollary A.5 that the transpose maps
orthogonally closed subspaces to orthogonally closed subspaces. Hence L(V )
acts on P̄(V ∗) from the right via the transpose F ·A = A∗(F), and we have
the anti-homomorphism ϕ : L(V ) → End P̄(V ∗) with ϕA(F) = A∗(F). The
multiplication in the reverse semidirect product L(V ) nϕ P̄(V ∗) is

(A1,F1)(A2,F2) = (A1A2, A
∗
2(F1) + F2),

which is the definition (3.1) of the composition of boundary problems. Writing
S for the submonoid of all surjective endomorphisms, we see that the reverse
semidirect product S nϕ P̄(V ∗) is the monoid of boundary problems. The
regular boundary problems form a submonoid

R = {(T,F) ∈ S × P̄(V ∗) | (T,F) regular}
since the composition of two regular boundary problems is regular by Propo-
sition 3.2.

Solving regular (dual) boundary problems gives an anti-isomorphism be-
tween the monoids of regular (dual) boundary problems. More precisely, we
have the following result as a special case of Theorem 3.4.

Proposition 5.1 The map

R→ R∗

(T,F) 7→ (KerT, (T,F)−1)

is an anti-isomorphism between the monoids of regular (dual) boundary prob-
lems, and

R∗ → R

(K,G) 7→ ((K,G)−1, (ImG)⊥).

is its inverse.

Given a submonoid S1 of all surjective endomorpisms S, we can consider
the monoid of boundary problems S1 n P̄(V ∗) with linear maps in S1. We
can also restrict the boundary conditions to a submonoid F of P̄(V ∗) if F is
closed under S1 in the sense that

T ∗(F) ∈ F for all T ∈ S1 and F ∈ F,
so that S1 acts on F . In all such cases, the regular boundary problems form a
submonoid. As an example, take the submonoid of surjective endomorphisms
with finite dimensional kernel with finite dimensional subspaces of boundary
conditions.

Analogously, we can consider submonoids of all injective endomorphisms
and restrict the dual boundary conditions to suitable submonoids of P(V ).
The corresponding dual problems for the previous example are injective endo-
morphisms with finite codimensional image with finite dimensional subspaces
as dual boundary conditions.

Note that with the results from Section 4, given a factorization in S1, we
can construct all factorizations of a (regular) boundary problem into (reg-
ular) boundary problems with arbitrary boundary conditions. If we restrict
the boundary conditions to a submonoid F , we have to check whether the
constructed boundary conditions are again in F .
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6 Finitely many boundary conditions

In this section, we specialize some results and discuss algorithmic aspects for
boundary problems where the corresponding linear maps have finite dimen-
sional kernels and the spaces of boundary conditions are finite dimensional.
Note that this includes boundary value problems for (systems of) ordinary
differential equations and systems of partial differential equations with finite
dimensional solution space.

More precisely, we consider boundary problems (T,F) where T : V →W ,

dimK <∞ and F = [f1, . . . , fn]

with K = KerT . We can rewrite the condition that u ∈ V is a solution of
the boundary problem (T,F) for a given w ∈W in the following traditional
form

Tu = w,
f1(u) = . . . = fn(u) = 0.

By Corollary A.17, a necessary condition for the regularity of (T,F) is

dim KerT = dimF ,

meaning that we have the “correct” number of boundary conditions. More-
over, we get the following algorithmic regularity test for boundary problems
(to be found in Kamke [12, p. 184] for the special case of two-point boundary
conditions).

Proposition 6.1 A boundary problem (T,F) with dim KerT = dimF is
regular iff the matrix f1(u1) · · · f1(un)

...
. . .

...
fn(u1) · · · fn(un)


is regular, where the fi and uj are any basis of respectively F and KerT .

Let T be a fixed surjective linear map. By (2.3), given any right inverse

G̃ of T , the Green’s operator for a regular boundary problem (T,F) is given

by G = (1 − P )G̃, where P is the projection with ImP = K and KerP =
F⊥. If T has a finite dimensional kernel with basis u1, . . . , un, we can easily
describe the projection P in terms of a basis f1, . . . , fn of F . Since the matrix
B = (fi(uj)) is regular by the previous proposition, we can define

(f̃1, . . . , f̃n)t = B−1(f1, . . . , fn)t.

Then the (f̃i) and (uj) are biorthogonal, and P : V → V defined by

v 7→
n∑
i=1

〈v, f̃i〉ui

is the projection with ImP = K and KerP = F⊥ by Lemma A.1.
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Given a factorization T = T1T2 and a right inverse H2 of T2, we know
from Theorem 4.8 how to construct all possible factorizations of a regular
boundary problem (T,F) into two regular problems. The boundary condi-
tions for the left factor (T1,F1) are uniquely given by

F1 = H∗2 (F ∩K⊥2 ),

and all regular boundary problems (T2,F2) correspond to direct sums

F = (F ∩K⊥2 )u F2.

In the following, we discuss how all such factorizations can be computed by
linear algebra if T has a finite dimensional kernel.

Let (T,F) be regular, K = KerT , K2 = KerT2, and f1, . . . , fm+n a basis
of F . Choose a basis

u1, . . . , um, um+1, . . . , um+n

of K such that u1, . . . , um is basis of K2, and let

B =

 f1(u1) . . . f1(um) f1(um+1) . . . f1(um+n)
...

. . .
...

...
. . .

...
fm+n(u1) . . . fm+n(um) fm+n(um+1) . . . fm+n(um+n)

 . (6.1)

Since B is regular, we can perform row operations corresponding to a regular
matrix P such that

P B =

(
B2 C
0 D

)
(6.2)

is a block matrix, where B2 is a regular m×m matrix. Let

(f̃1, . . . , f̃m, f̃m+1, . . . , f̃m+n)t = P (f1, . . . , fm+n)t, (6.3)

that is,

f̃i =

m+n∑
j=1

Pijfj ,

and F2 = [f̃1, . . . , f̃m]. Then obviously [f̃m+1, . . . , f̃m+n] ⊆ F ∩K⊥2 and since
dim(F ∩K⊥2 ) = codim(F⊥ +K2) = n, they are equal. So

F = (F ∩K⊥2 )u F2

is a direct sum. Conversely, it is clear that any such direct sum given by bases
F2 = [f̃1, . . . , f̃m] and F ∩K⊥2 = [f̃m+1, . . . , f̃m+n] with P as in (6.3) gives a
block matrix as in (6.2). By Theorem 4.8, we know that

(T,F) = (T1,F1) ◦ (T2,F2)

is a factorization into regular boundary problems with

F1 = [H∗2 (f̃m+1), . . . ,H∗2 (f̃m+n)] and F2 = [f̃1, . . . , f̃m]. (6.4)

Note that if H2 is the Green’s operator for a regular right factor (T2,F2)
with F2 ⊆ F , we have H∗2 (F) = H∗2 (F ∩K⊥2 ) by Corollary 4.7. So we can
compute the uniquely determined boundary conditions F1 simply by applying
H∗2 to the boundary conditions F ; see the examples in the next section.
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7 Examples for differential equations

Let us now illustrate our algebraic approach to abstract boundary problems
in the concrete setting of differential equations, taking up the examples posed
in the introduction.

We want to factor the two-point boundary problem (D2, [L,R]) of (1.1)
into two regular problems with T1 = T2 = D. The indefinite integral A =

∫ x
0

is the Green’s operator for the regular right factor (D, [L]). By Corollary 4.7,
the boundary conditions for the unique left factor are

A∗[L,R] = [0, RA] = [RA],

where RA =
r 1

0
is the definite integral. So we obtain the factorization

(D, [RA]) ◦ (D, [L]) = (D2, [L,R])

or
u′ = f∫ 1

0
u(ξ) dξ = 0

◦ u′ = f
u(0) = 0

=
u′′ = f
u(0) = u(1) = 0

in the notation from the introduction. Note that the boundary condition for
the left factor is an integral condition. Such conditions are not considered in
the classical setting of two-point boundary problems but are known in the
literature as Stieltjes boundary conditions [1]. We check this factorization by
multiplying the two boundary problems according to Definition (3.1). Note
that

(D, [RA]) ◦ (D, [L]) = (D2, [D∗(RA), L])

and D∗(RA) = RAD =
∫ 1

0
D = L−R so that

[D∗(RA), L] = [L−R,R] = [L,R],

as we expect.
To illustrate the method from the previous section, we factor the bound-

ary problem (D2, [LD,R]). We use again the indefinite integralA = (D, [L])−1

as a right inverse of D, but for this boundary problem it is not a Green’s
operator for a regular right factor since L 6∈ [LD,R]. Hence we cannot simply
apply A∗ to the boundary conditions as we did before since this would give
us two conditions

A∗[LD,R] = [LDA,RA] = [L,RA]

for a first-order problem. So we have to proceed as described in the pre-
vious section. A suitable basis for KerD2 is 1, x. Evaluating the boundary
conditions LD,R on 1, x yields (

0 1
1 1

)
,

for the matrix B from (6.1). Swapping the first and the second row gives a
block triangular matrix as in (6.2). So by (6.4), the boundary condition is
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given by A∗(LD) = L for the left factor and by R for the right factor, and
we obtain the factorization

(D, [L]) ◦ (D, [R]) = (D2, [LD,R]).

See [21] for a general discussion on solving and factoring boundary problems
for ordinary differential equations in an algorithmic context.

As an example of a boundary problem for a partial differential equation,
we return to the wave equation (1.2) from the introduction. We write it as

W = (∂2t − ∂2x, [u(x, 0), ut(x, 0)]),

where u(x, 0) and ut(x, 0) are short for the functionals u 7→ u(x, 0) and
u 7→ ut(x, 0), respectively, and [. . .] denotes the orthogonal closure of the
subspace generated by these functionals with x ranging over R. The Green’s
operator for W is given by

Gf(x, t) =
1

2

∫ t

0

∫ x+(t−τ)

x−(t−τ)
f(ξ, τ) dξ dτ, (7.1)

as can be found in the literature [23, p. 485]. We show that one can determine
G by constructing a factorization of W along the factorization

∂2t − ∂2x = (∂t − ∂x)(∂t + ∂x).

A regular right factor is given by

W2 = (∂t + ∂x, [u(x, 0)]).

In general, choosing boundary conditions in such a way that they make up
a regular boundary problem for a given first-order right factor of a linear
partial differential operator amounts to a geometric problem involving the
characteristics. The Green’s operator for W2 can easily be computed as

G2f(x, t) =

∫ x

x−t
f(ξ, ξ − x+ t) dξ

and can be used for finding the boundary conditions for the uniquely deter-
mined left factor

W1 = (∂t − ∂x, G∗2[u(x, 0), ut(x, 0)]) = (∂t − ∂x, [u(x, 0)])

by Corollary 4.7. One can verify the factorization W =W1 ◦W2, taking into
account (3.3). The Green’s operator for W1 is analogously given by

G1f(x, t) =

∫ x+t

x

f(ξ, x− ξ + t) dξ,

and all we have to do now is to compute the composite

G2G1f(x, t) =

∫ x

x−t

∫ 2τ−x+t

τ

f(ξ, 2τ − ξ − x+ t) dξ dτ,
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which is the Green’s operator for W by Theorem 4.8. Since G and G2G1

solve the same regular boundary problem, we know that G = G2G1, as one
may also verify directly by a change of variables.

The above methodology can also be transferred to the computationally
more involved case of the wave equation on the bounded interval [0, 1], suc-
cinctly expressed in our notation by

V = (∂2t − ∂2x, [u(x, 0), ut(x, 0), u(0, t), u(1, t)])

with x ranging over [0, 1]. In a similar fashion, one can find a factorization
V = V1 ◦ V2 with

V1 = (∂t − ∂x, [u(x, 0),
r 1

max (1−t,0)u(ξ, ξ + t− 1) dξ]),

V2 = (∂t + ∂x, [u(x, 0), u(0, t)]).

Unlike in the unbounded case, the Green’s operator for V involves a finite sum
whose upper bound depends on the argument (x, t). These complications are
reflected in the Green’s operator for the left factor V1, whose computation
leads to a simple functional equation. A systematic investigation of partial
differential equations with integral boundary conditions is a subject of future
work.
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A Appendix

A.1 Orthogonally closed subspaces

In this section, we summarize the results needed for orthogonally closed subspaces of
a vector space and its dual. The notation should remind of the analogous well-known
results for Hilbert spaces. See for example Conway [4] and Lang [14, pp. 391–394]
for the Banach space setting.

First we recall the notion of orthogonality for a bilinear map of modules. Let
M and N be left modules over a commutative ring R and b : M × N → R be a
bilinear map. Two vectors x ∈ M and y ∈ N are called orthogonal with respect
to b if b(x, y) = 0. Let X⊥ denote the set of all y ∈ N that are orthogonal to X
for a fixed bilinear map b. This is obviously a submodule of N , which we call the
orthogonal of X. We define orthogonality on the other side in the same way.

It follows directly from the definition that for any subsets X1, X2 ⊆M we have

X1 ⊆ X2 ⇒ X⊥1 ⊇ X⊥2 and X1 ⊆ X⊥⊥1 . (A.1)

These statements hold analogously for subsets of N . Let P(M) denote the projec-
tive geometry of a module M , that is, the poset of all submodules (ordered by
inclusion). Then the two properties (A.1) for orthogonality imply that we have an
order-reversing Galois connection between the projective geometries P(M)� P(N)
defined by

M1 7→M⊥1 and N1 7→ N⊥1 . (A.2)



20 G. Regensburger, M. Rosenkranz

Hence we know in particular that S⊥ = S⊥⊥⊥ for any submodule S of M or N .
Moreover, the map S 7→ S⊥⊥ is a closure operator: an extensive (S ⊆ S⊥⊥), order-
preserving and idempotent self-map. We call a submodule S orthogonally closed if
S = S⊥⊥. The Galois connection restricted to orthogonally closed submodules is an
order-reversing bijection. For further details and references on Galois connections
we refer to Erné et al. [7].

We now consider the canonical bilinear form V × V ∗ → k of a vector space V
over a field k and its dual V ∗ defined by (v, f) 7→ f(v) and the induced orthogonality
on the subspaces. We use the notation 〈v, f〉 for f(v).

Let V1 ⊆ V be a subspace. Using the fact that any basis of a subspace can be
extended to a basis for V , we see that for any vector v ∈ V that is not in V1 there
is a linear form f ∈ V ∗ with f(v1) = 0 for all v1 ∈ V1 and f(v) = 1. It follows
immediately that every subspace of V is orthogonally closed with respect to the
canonical bilinear form V × V ∗ → k. Furthermore, we have a natural isomorphism

V ⊥1 ∼= (V/V1)∗.

Indeed, each f ∈ V ⊥1 defines a linear form on V/V1 since it vanishes on V1, and it is
easy to see that this gives an isomorphism between V ⊥1 and (V/V1)∗. This implies
in particular that

dimV ⊥1 = codimV1 if codimV1 <∞.

In the following, we consider subspaces of the dual vector space V ∗. We first
recall some results for biorthogonal systems. Two families (vi)i∈I of vectors in V
and linear forms (fi)i∈I in V ∗ are called biorthogonal or said to form a biorthogonal
system if

〈vi, fj〉 = δij =

{
1, if i = j,
0, if i 6= j.

For a biorthogonal system (vi)i∈I and (fi)i∈I we can easily compute the coefficients
of a linear combination v =

∑
aivi with finitely many ai ∈ k nonzero. Applying

fj , we obtain

〈v, fj〉 =
∑

ai〈vi, fj〉 = aj .

Evaluating a linear combination f =
∑
ajfj at vi gives analogously

〈vi, f〉 =
∑

aj〈vi, fj〉 = ai.

This implies in particular that the vi and fi are linearly independent. Moreover,
we can easily compute projections onto finite dimensional vector spaces from a
biorthogonal system. One can show the following lemma and proposition for finite
biorthogonal systems, cf. Köthe [13, p. 71–72].

Lemma A.1 Let (v1, . . . , vn) ∈ V and (f1, . . . , fn) ∈ V ∗ be biorthogonal. Let V1 =
[v1, . . . , vn] and F1 = [f1, . . . , fn] be their linear spans. Then P : V → V defined by

v 7→
n∑

i=1

〈v, fi〉vi

is a projection with ImP = V1 and KerP = F⊥1 so that V = F⊥1 u V1 and
codimF⊥1 = n. Moreover, for any f ∈ F⊥⊥1 we have

f =
n∑

i=1

〈vi, f〉fi,

so that F1 is orthogonally closed.
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Proposition A.2 Let f1, . . . , fn ∈ V ∗. Then the fi are linearly independent iff
there exist v1, . . . , vn ∈ V such that (vi) and (fi) are biorthogonal.

We conclude with the previous lemma that every finite dimensional subspace of
V ∗ is orthogonally closed. But if V is infinite dimensional, there are always linear
subspaces, and indeed hyperplanes in V ∗, that are not orthogonally closed; see
e.g. [13, p. 71]. Nevertheless, since all subspaces of V are orthogonally closed, we
have via the Galois connection (A.2) an order-reversing bijection between P(V ) and
the poset of all orthogonally closed subspaces of V ∗, which we denote by P̄(V ∗).

Recall that the projective geometry P(V ) of any vector space V is a complete
complemented modular lattice with the join and meet respectively defined as the
sum and intersection of subspaces. Modularity means that

V1 + (V2 ∩ V3) = (V1 + V2) ∩ V3

for all V1, V2, V3 ∈ P(V ) with V1 ⊆ V3.
Using (A.1) one can show that P̄(V ∗) is a complete lattice with the meet de-

fined as the intersection and the join defined as the orthogonal closure of the sum
of subspaces. Hence the Galois connection (A.2) is an order-reversing lattice iso-
morphism between the complete lattices P(V ) and P̄(V ∗). Therefore P̄(V ∗) is also
a complemented modular lattice.

Let V1, V2 ∈ P(V ) and F1,F2 ∈ P̄(V ∗). Since the meet in P̄(V ∗) is the set-
theoretic intersection, we know that

(V1 + V2)⊥ = V ⊥1 ∩ V ⊥2 and (F1 ∩ F2)⊥ = F⊥1 + F⊥2 . (A.3)

The sum of infinitely many orthogonally closed subspaces is in general not orthog-
onally closed when V is infinite dimensional. But using the fact that P̄(V ∗) is a
modular lattice, one can show the following proposition [13, p. 72].

Proposition A.3 The sum of two orthogonally closed subspaces is orthogonally
closed.

Hence we have also

(V1 ∩ V2)⊥ = V ⊥1 + V ⊥2 and (F1 + F2)⊥ = F⊥1 ∩ F⊥2 . (A.4)

Equations (A.3) and (A.4) imply that orthogonality preserves algebraic comple-
ments, that is, for direct sums

V = V1 u V2 and V ∗ = F1 u F2,

we have
V ∗ = V ⊥1 u V

⊥
2 and V = F⊥1 u F⊥2 .

Every subspace has a complement, hence every orthogonally closed subspace of
the dual has an orthogonally closed complement. So if we disregard completeness,
the Galois connection (A.2) is an order-reversing lattice isomorphism between the
complemented modular lattices P(V ) ∼= P̄(V ∗) with join and meet defined as sum
and intersection.

Moreover, for arbitrary (not necessarily orthogonally closed) subspaces F1 and
F2 of V ∗ we have

F⊥⊥1 + F⊥⊥2 = (F1 + F2)⊥⊥. (A.5)

Using the fact that taking the double orthogonal is a closure operator, we see
namely that F⊥⊥1 + F⊥⊥2 ⊆ (F1 + F2)⊥⊥; the reverse inclusion follows since the
left hand side of (A.5) is orthogonally closed by Proposition A.3. If ⊥⊥ were the
closure operator of a topology, (A.5) would mean that the sum is continuous and
closed.

We have already seen that if codimV1 <∞ and dimF1 <∞, then

codimV1 = dimV ⊥1 and dimF1 = codimF⊥1 . (A.6)

So we can also consider the restriction of the Galois connection to finite codi-
mensional subspaces of V and finite dimensional subspaces of V ∗. This yields an
order-reversing lattice isomorphism between modular lattices.
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A.2 The transpose

Let V and W be vector spaces over a field k and A : V → W a linear map. We
recall some basic properties of the transpose or dual map A∗ : W ∗ → V ∗ defined
by h 7→ h ◦A. Hence

〈Av, h〉W = 〈v,A∗h〉V for all v ∈ V, h ∈W ∗ (A.7)

with the canonical bilinear forms on W and V , respectively. The map A 7→ A∗

from L(V,W ) to L(W ∗, V ∗) is linear. It is injective since for every nonzero w ∈W
there exists a linear form h ∈ W ∗ with h(w) 6= 0. For finite dimensional vector
spaces, it is also surjective. We have (AB)∗ = B∗A∗ for linear maps A ∈ L(U, V )
and B ∈ L(V,W ). Since 1V

∗ = 1V ∗ , this implies that if A is left (respectively
right) invertible, A∗ is right (respectively left) invertible, so if A is invertible, also

A∗ is invertible with (A∗)−1 = (A−1)
∗
. Moreover, the map A 7→ A∗ is an injective

k-algebra anti-homomorphism from L(V ) to L(V ∗).
In the following, we discuss the relations between the image of subspaces under

a linear map, its transpose, and orthogonality. From (A.7) it follows immediately
that the orthogonal of the image of a subspace V1 ⊆ V is

A(V1)⊥ = (A∗)−1(V ⊥1 ). (A.8)

Since V ⊥ = 0, we have in particular (ImA)⊥ = KerA∗. Hence KerA∗ is orthogo-
nally closed. Taking the orthogonal, we obtain from (A.8)

A(V1) = (A∗)−1(V ⊥1 )⊥,

since every subspace of a vector space is orthogonally closed with respect to the
canonical bilinear form. In particular, we have ImA = (KerA∗)⊥. For orthogonally
closed subspaces F1 ⊆ V ∗, we obtain

A(F⊥1 ) = (A∗)−1(F1)⊥. (A.9)

Now we consider the images under the transpose. Again we see immediately
with (A.7) that

A∗(H1)⊥ = A−1(H⊥1 ) (A.10)

for subspacesH1 ⊆W ∗. Since (W ∗)⊥ = 0, we have in particular (ImA∗)⊥ = KerA.
Taking the orthogonal, we obtain from (A.10)

A∗(H1) ⊆ A∗(H1)⊥⊥ = A−1(H⊥1 )⊥. (A.11)

Note that in general we have a proper inclusion, as one can see by taking the identity
map and a subspace that is not orthogonally closed since the right-hand side is
orthogonally closed. But we do have equality for orthogonally closed subspaces. In
the Banach space setting, identity (A.13) comes in the context of the Closed Range
Theorem [27, p. 205] and holds only for operators with closed range.

Proposition A.4 We have

A∗(W⊥1 ) = A−1(W1)⊥ (A.12)

for subspaces W1 ⊆W . In particular,

ImA∗ = (KerA)⊥, (A.13)

and the image of A∗ is orthogonally closed.
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Proof With (A.11) and the fact that every subspace a vector space is orthogo-
nally closed with respect to the canonical bilinear form, we know the inclusion ⊆.
Conversely, let f ∈ A−1(W1)⊥. Then

f(v1) = 0 for all v1 ∈ V such that Av1 ∈W1.

So in particular f(KerA) = 0. We have to find a h ∈ W⊥1 such that f = A∗h. We

define h̃ : ImA→ K by h̃(Av) = f(v). Then h̃ is well-defined. If Av1 = Av2, then
v1 − v2 ∈ KerA. Hence f(v1) = f(v2) since f(KerA) = 0. Moreover, note that

h̃(ImA ∩W1) = 0.

We have to extend h̃ to a linear map h : W → K such that h vanishes on W1. To
this end, let Ĩ1 and W̃1 be complements of ImA∩W1 in ImA and W1, respectively,
so that

ImA = (ImA ∩W1) u Ĩ1 and W1 = (ImA ∩W1) u W̃1.

Then one sees that we have a direct sum

ImA+W1 = (ImA ∩W1) u Ĩ1 u W̃1.

Let P : ImA+W1 → ImA defined by

P (w̄ + w̃1) = w̄ where w̄ ∈ ImA and w̃1 ∈ W̃1.

Then P is a linear map with KerP = W̃1. We set h = h̃ ◦ P . Then h is defined on
ImA+W1. We extend h arbitrarily to a linear form on W and denote it again by
h. By definition h = h̃ on ImA, and so f = A∗h. We have to verify that h ∈ W⊥1 .
Let w1 ∈W1 and

w1 = w̄1 + w̃1 with w̄1 ∈ ImA ∩W1 and w̃1 ∈ W̃1.

Then
h(w1) = h̃(Pw1) = h̃(w̄1) = 0

since h̃(ImA ∩W1) = 0, and the proposition is proved. ut

We know from Section A.1 that the Galois connection (A.2) gives an isomor-
phism between P(W ) and the orthogonally closed subspaces P̄(W ∗). So the previous
proposition implies

A∗(H1) = A−1(H⊥1 )⊥ (A.14)

for orthogonally closed subspaces H1 ⊆ W ∗. Since the right hand side is orthogo-
nally closed, we obtain the following corollary.

Corollary A.5 The transpose gives an order-preserving map

P̄(W ∗)→ P̄(V ∗)

H1 7→ A∗(H1)

between orthogonally closed subspaces.

Moreover, using (A.14) and (A.10), we see that

A∗(H⊥⊥1 ) = A−1(H⊥1 )⊥ = A∗(H1)⊥⊥ (A.15)

for an arbitrary subspace H1 ⊆W ∗, which means that A∗ is “closed” and “contin-
uous” in the hypothetical topological interpretation mentioned after (A.5).

Finally, we sum up all the identities for the image of subspaces of a linear map
and its transpose and orthogonality in the following proposition.
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Proposition A.6 Let V and W be vector spaces over a field k and A : V → W a
linear map. Then we have

A(V1)⊥ = (A∗)−1(V ⊥1 ), A(F⊥1 ) = (A∗)−1(F1)⊥,

A∗(H1)⊥ = A−1(H⊥1 ), A∗(W⊥1 ) = A−1(W1)⊥,

for subspaces V1 ⊆ V , H1 ⊆ W ∗, W1 ⊆ W and orthogonally closed subspaces
F1 ⊆ V ∗. In particular, we have

(ImA)⊥ = KerA∗, ImA = (KerA∗)⊥,

(ImA∗)⊥ = KerA, ImA∗ = (KerA)⊥,

for the image and kernel of A and A∗.

Proof See s (A.8), (A.9), (A.10), and (A.12). ut

A.3 Left and right inverses

In this section, we recall and discuss some results for left and right inverses and
their relation to projections, complements and inverse images.

Let V and W be vector spaces over a field k. Let T : V →W and G : W → V be
linear maps such that TG = 1. Then T is surjective and G injective, respectively,
and GT is a projection with

KerGT = KerT and ImGT = ImG, (A.16)

so that
V = KerT u ImG. (A.17)

Conversely, we can begin with a given surjective or injective linear map and a
complement of the kernel and image, respectively, and ask if there exists a corre-
sponding right or left inverse. This is a special case of algebraic generalized inverses
as in Nashed and Votruba [15]. We discuss the results for both cases.

Let first T : V → W be a surjective linear map with K = KerT and I a
complement of K in V , so that

V = K u I.

Let P be the projection with ImP = K and KerP = I. Then by [15, Theorem
1.20] there exists a unique linear map G : W → V with

TG = 1, GT = 1− P, and GTG = G.

Lemma A.7 The equation GT = 1− P characterizes G uniquely.

Proof The third equation above is obviously redundant, and we show that the first
follows from the second. We get for w = Tv

TGw = TGTv = T (v − Pv) = Tv = w

since ImP = KerT . So TG = 1 since T is surjective. ut

We can also say that given a complement I of K = KerT , there exists a unique
right inverse G with ImG = I. So we have a bijection

{I ∈ P(V ) | V = K u I} ∼= {G ∈ L(W,V ) | TG = 1} (A.18)

between the set of complements of K in V and the set of right inverses of T .
Moreover, all right inverses can be described in terms of a fixed one.
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Lemma A.8 Given any right inverse G̃ of T , the right inverse corresponding to
the complement I is given by

G = (1− P )G̃,

where P is the projection with ImP = K and KerP = I.

Let now G : W → V be an injective linear map with I = ImG and K a
complement of I in V , so that

V = K u I.

Let P be the projection with ImP = K and KerP = I. Since Im(1−P ) = KerP =
I, there exists by [15, Theorem 1.20] a unique linear map T : V →W with

GT = 1− P, TG = 1, and TGT = T.

Lemma A.9 The equation GT = 1− P characterizes T uniquely.

Proof Note first that since G is injective KerT = KerGT = Ker(1 − P ) = K.
Therefore TGT = T − TP = T , which is the third equation above, and hence
TG = (TG)2 is a projection. We show that KerTG = 0, and so TG is the identity.
Let TGw = 0. Then

GTGw = (1− P )Gw = 0,

so that Gw = PGw. Since KerP = ImG, this implies Gw = 0, and thus w = 0
because G is injective. ut

We can also say that given a complement K of I = ImG, there exists a unique
left inverse T with KerT = K. So we have a bijection

{K ∈ P(V ) | V = K u I} ∼= {T ∈ L(V,W ) | TG = 1} (A.19)

between the set of complements of I in V and the set of left inverses of G. Analo-
gously as above one can describe all left inverses in terms of a fixed one.

Lemma A.10 Given any left inverse T̃ of G, the left inverse corresponding to the
complement K is given by

T = T̃ (1− P ),

where P is the projection with ImP = K and KerP = I.

Summing up, the bijections (A.18) and (A.19) yield with Lemma A.7 and A.9
the following proposition.

Proposition A.11 We have a bijection

{(T, I) | T : V →W surjective, I ∈ P(V ) with V = KerT u I}
∼= {(K,G) | G : W → V injective, K ∈ P(V ) with V = K u ImG}. (A.20)

Given respectively (T, I) or (K,G), we obtain G or T with TG = 1 as the unique
solution of

GT = 1− P,
where P is the projection with

ImP = KerT, KerP = I and ImP = K, KerP = ImG,

respectively.

The following two propositions describe the inverse image of a composition of
an arbitrary and respectively a surjective or injective linear map in terms of one of
its right or left inverses.
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Proposition A.12 Let U, V,W be vector spaces over a field k. Let A ∈ L(V,W ) be
arbitrary, T ∈ L(U, V ) surjective, G a right inverse of T , and W1 ⊆W a subspace.
Then we have

(AT )−1(W1) = G(A−1(W1)) uKerT

for the inverse image of the composite. In particular, we have

KerAT = G(KerA) uKerT (A.21)

for the kernel of the composite and

T−1(V1) = G(V1) uKerT

for the inverse image.

Proof One inclusion is obvious, since

AT (G(A−1(W1)) + KerT ) = A(A−1(W1)) + 0 ⊆W1.

Conversely, let u ∈ (AT )−1(W1). Then Tu = v with v ∈ A−1(W1). Hence

T (u−Gv) = Tu− v = 0

and therefore u ∈ G(A−1(W1)) + Ker(T ). The sum is direct by (A.17). ut

Proposition A.13 Let U, V,W be vector spaces over a field k. Let A ∈ L(V,W )
be arbitrary, G ∈ L(U, V ) injective, T a left inverse of G, and W1 ⊆W a subspace.
Then we have

(AG)−1(W1) = T (A−1(W1) ∩ ImG)

for the inverse image of the composite. In particular, we have

KerAG = T (KerA ∩ ImG) (A.22)

for the kernel of the composite and

G−1(V1) = T (V1 ∩ ImG)

for the inverse image.

Proof Let v ∈ A−1(W1) ∩ ImG. Since GT is a projection with ImGT = ImG, see
(A.16), we get AGTv = Av ∈W1, and one inclusion is proved.

Conversely, let u ∈ (AG)−1(W1). Then Gu = v with v ∈ A−1(W1) ∩ ImG.
Hence TGu = u = Tv, and therefore u ∈ T (A−1(W1) ∩ ImG). ut

Observe that for dimU = dimV < ∞, surjectivity as well as injectivity are
of course equivalent to bijectivity, and the propositions are trivial. In particular,
if T or G is an endomorphism, the propositions are nontrivial only for an infinite
dimensional vector space.

A.4 Dimension and codimension

Recall that for subspaces V1 and V2 of a vector space V we have

dim(V1 + V2) + dim(V1 ∩ V2) = dimV1 + dimV2

and analogously for the codimension

codim(V1 + V2) + codim(V1 ∩ V2) = codimV1 + codimV2.
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Note that if V is finite dimensional, the second equation is a consequence from the
first and the equation dimV1 + codimV1 = dimV . For V finite dimensional, we
obtain similarly the equation

codim(V1 + V2) + dimV1 = dim(V1 ∩ V2) + codimV2

relating the codimension of the sum with the dimension of the intersection of two
subspaces. We show that this equation holds for arbitrary vector spaces.

Proposition A.14 We have

codim(V1 + V2) + dimV1 = dim(V1 ∩ V2) + codimV2

for subspaces V1 and V2 of a vector space V .

Proof Let Ṽ1 and Ṽ2 be complements of V1 ∩ V2 in V1 and V2, respectively, so that
V1 = Ṽ1 u (V1 ∩ V2) and V2 = Ṽ2 u (V1 ∩ V2). Then one sees that we have a direct
sum

V1 + V2 = Ṽ1 u Ṽ2 u (V1 ∩ V2).

Let W̃ be a complement of V1 + V2 in V so that

V = (V1 + V2) u W̃ = Ṽ1 u Ṽ2 u (V1 ∩ V2) u W̃ .

Hence codim(V1 + V2) = dim W̃ and codimV2 = dim(W̃ + Ṽ1). Computing the

dimension of the subspace W̃ u Ṽ1 u (V1 ∩ V2) in two different ways, we obtain

codim(V1 + V2) + dimV1 = dim W̃ + dim(Ṽ1 + (V1 ∩ V2))

= dim(V1 ∩ V2) + dim(W̃ + Ṽ1) = dim(V1 ∩ V2) + codimV2,

and the proposition is proved. ut

If V1 is finite dimensional and V2 finite codimensional, all dimensions and codi-
mensions in the above proposition are finite, and we obtain the following corollaries.

Corollary A.15 Let V1 and V2 be subspaces of a vector space V with dimV1 <∞
and codimV2 <∞. Then

codim(V1 + V2)− dim(V1 ∩ V2) = codimV2 − dimV1.

In particular, we have dim(V1 ∩ V2) = codim(V1 + V2) iff dimV1 = codimV2.

Corollary A.16 Let V1 and V2 be subspaces of a vector space V with dimV1 <∞
and codimV2 < ∞. Then V1 u V2 = V iff V1 ∩ V2 = 0 and dimV1 = codimV2 iff
V1 + V2 = V and dimV1 = codimV2.

So for testing whether two subspaces V1 and V2 with dimV1 = codimV2 < ∞
establish a direct decomposition V = V1uV2, we have to check only one of the two
defining conditions V1 ∩ V2 = 0 and V1 + V2 = V .

The hypothesis that the dimensions are finite is necessary. Let k be a field,
V = kN, and consider for example the two subspaces

V1 = {(0, x1, 0, x2, 0, x3, . . .) | (xn) ∈ kN}
V2 = {(0, 0, x1, 0, x2, 0, x3, . . .) | (xn) ∈ kN}.

Then dimV1 = codimV2 = dimV =∞, V1 ∩ V2 = 0 but codim(V1 + V2) = 1.
We use the following corollary in Section 6 as a regularity test for boundary

problems with finite dimensional kernels and boundary conditions.
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Corollary A.17 Let V1 = [v1, . . . , vm] be a subspace of a vector space V and
F1 = [f1, . . . , fn] a subspace of V ∗ with fi and vj linearly independent. Then

V = V1 u F⊥1
is a direct sum iff m = n and the matrix (fi(vj)) is regular.

Proof By (A.6), codimF⊥1 = dimF1, so we know from the previous corollary that
V = V1 u F⊥1 is a direct sum iff V1 ∩ F⊥1 = 0 and m = n. Let B = (fi(vj))
with columns bj . Now note that B is singular iff there exists a linear combination∑
λjbj = 0 with at least one λj 6= 0 iff there exists a nonzero u =

∑
λjvj in

V1 ∩ F⊥1 . ut
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Lectures delivered in the summer term of 1861 in Göttingen. Available at
http://de.wikisource.org/wiki/Schwere, Elektricität und Magnetismus

19. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39(2), 171–199
(2005)

20. Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value
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