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Abstract

We propose a general algorithmic approach to noncommutative operator algebras generated by
additive operators using quotients of tensor rings that are defined by tensor reduction systems.
Skew polynomials are a well-established tool covering many cases arising in applications. How-
ever, integro-differential operators over an arbitrary integro-differential algebra do not fit this
structure, for example. Instead of using parametrized Gröbner bases in free algebras, as has
been used so far in the literature, we use Bergman’s basis-free analog in tensor rings. Since
reduction rules are given by module homomorphisms, the tensor setting often allows for a finite
reduction system. A confluent tensor reduction system enables effective computations based on
normal forms. Using tensor rings, we can also model integro-differential operators with matrix
coefficients, where constants are not commutative.

To have smaller reduction systems, we develop a generalization of Bergman’s setting. It
allows overlapping domains of reduction homomorphisms, which also make the algorithmic ver-
ification of the confluence criterion more efficient. Moreover, we discuss a heuristic approach
to complete a given reduction system to a confluent one in analogy to Buchberger’s algorithm
and Knuth-Bendix completion. Integro-differential operators are used to illustrate the tensor set-
ting, verification of confluence, and completion of tensor reduction systems. We also introduce
a confluent reduction system and normal forms for integro-differential operators with linear sub-
stitutions, which have applications in delay differential equations. Verification of the confluence
criterion and completion based on S-polynomial computations is supported by the Mathematica
package TenReS.
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1. Introduction

Skew polynomial rings are used in the literature for an algebraic and algorithmic treatment of
many common operators like differential and difference operators; see e.g. the works by Chyzak
and Salvy (1998); Li (2002); Bueso et al. (2003); Chyzak et al. (2005); Levandovskyy (2005) or
the recent overview by Gómez-Torrecillas (2014). Normal forms for skew polynomials are given
by the standard polynomial basis. However, normal forms for univariate integral operators are
sums of terms of the form f

∫
g. We show that quotients of tensor rings are useful for algebraic

modeling of and algorithmic computations with additive operators. The framework provided uses
a quotient of a tensor ring by a two-sided ideal for constructing a ring of operators, constructing
quotients of such rings of operators by one-sided ideals would be a separate problem. Tensor
rings naturally capture the multiadditivity of composition of additive operators. In addition, they
allow basis-free treatment of multiplication operators resp. coefficients. In particular, the coef-
ficient ring is not required to be finitely presented. Moreover, for integro-differential operators,
they also cover arbitrary rings of constants which neither have to be fields nor commutative rings
but need to contain a unit element.

We are not aware that tensor reduction systems in tensor rings have been used so far in
the literature for an algorithmic treatment of operator algebras. For applications of noncommu-
tative Gröbner bases in the free polynomial algebra to operator algebras, we refer to (Helton
et al., 1998; Helton and Stankus, 1999; Rosenkranz et al., 2003) and the references on integro-
differential operators in Section 4. An overview on Gröbner-Shirshov bases for various algebraic
structures is given in (Bokut and Chen, 2014); see, in particular, (Guo et al., 2013; Gao et al.,
2014, 2015; Gao and Guo, 2017) in connection with differential type, integro-differential, and
Rota-Baxter type operators.

For computing in quotients of tensor rings by two-sided ideals, we use Bergman’s analog
(Bergman, 1978) of Gröbner bases in tensor rings, which we explain in Section 2 along with
the underlying algebraic structures. Bergman’s confluence criterion for tensor reduction systems
involves computations in the tensor ring, but determining the structure of normal forms reduces
to a combinatorial problem on words. We generalize Bergman’s tensor setting in Section 3 by
introducing the concept of specialization. As a first example for our setting with specializa-
tion, we present integro-differential operators (IDOs) over an arbitrary integro-differential ring
in Section 4. There we give a confluent tensor reduction system together with the corresponding
normal forms. In Section 5, we introduce IDOs with linear substitutions. For completing a tensor
reduction system to a confluent one, we give a heuristic method along the lines of Buchberger’s
algorithm in Section 6 and we discuss various problems arising in this context. In each sec-
tion, we comment about the computational aspects. The Mathematica package TenReS can be
obtained at http://gregensburger.com/softw/tenres/ along with example files; see also
(Hossein Poor et al., 2016b) for further details on the package.

Throughout this paper rings are not necessarily commutative unless stated otherwise, but they
are always assumed to have a unit element (of multiplication). Furthermore, we use operator
notation, e.g. we write ϕ1 instead of ϕ(1) or ∂ f g = (∂ f )g + f∂g for the Leibniz rule ∂( f g) =

∂( f )g + f∂(g). All our operators act from the left, in particular, a product AB acts on f as
(A ◦ B)( f ).

1.1. Comparison with conference paper

A two-level version of Bergman’s setting in tensor algebras has been introduced already
in (Hossein Poor et al., 2016a). In contrast, in the present paper we deal with the more general
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structure of tensor rings instead of tensor algebras. We introduce a generalization and simplifi-
cation of the two-level tensor setting in Section 3. New aspects treated are deletion criteria for
excluding ambiguities from consideration (see Section 2.3.1) and the heuristic completion pro-
cess discussed in Section 6. The example presented in Section 4 is more general as it allows also
noncommutative differential rings and Section 5 contains an entirely new example.

We also need to correct some minor mistakes in (Hossein Poor et al., 2016a). The definition
of Φ in Eq. (8) should include the requirement that ϕ1 = 1. Lemma 4.2 should be replaced
by the weaker statement of Lemma 15 of the present paper, the proof of Theorem 4.6 needs to
be adapted accordingly, cf. the proof of Theorem 20. Also, the equation immediately before
Lemma 4.4 has to be replaced by the equation immediately before Lemma 17 in the present
paper.

1.2. Introductory example

We use the well-known example of differential operators to briefly discuss several approaches
for modelling rings of operators. Recall that differential operators with polynomial coefficients
(Weyl algebra) over a field K ⊇ Q can be defined as the quotient algebra

K〈X,D〉/(DX − XD − 1)

of the free polynomial algebra K〈X,D〉 by a two-sided ideal; see for example (Coutinho, 1995).
Let now (R, ∂) be a commutative differential ring and let K denote its ring of constants. If R is
a finitely presented K-algebra, then also the differential operators R〈∂〉 are a finitely presented
K-algebra analogous to the Weyl algebra.

Skew polynomials are a well-established approach that only introduces finitely many rules
for differential operators over arbitrary differential rings R (e.g. rational functions): they are
represented by defining a multiplication on normal forms

∑
fi∂i based on the commutation rule

∂ · f = f∂ + ∂ f .

Viewed as construction by generators and relations, this amounts to (potentially) infinitely many
relations, one for each generator of R.

In the following, we motivate and illustrate informally tensor reduction systems. For a com-
mutative differential ring, the construction leads to a quotient of the tensor algebra as in (Hos-
sein Poor et al., 2016a). The commutation rule for skew polynomials above corresponds to a
reduction homomorphism for tensors below. The ring R is regarded as the coefficient ring of
skew polynomials, whereas in the tensor construction below R is just considered as a K-module
and we tensor over the ring K only. Hence for the multiplication in R, we need to introduce an
additional reduction homomorphism for tensors.

Example 1. Consider a commutative differential ring (R, ∂) and let K denote its ring of con-
stants. By the Leibniz rule, the derivation ∂ : R → R is a K-module homomorphism. Since R
is commutative, also the multiplication operators induced by f ∈ R mapping g 7→ f g are K-
module homomorphisms. Let MD = K∂ denote the free left K-module generated by the symbol ∂.
The identities in the K-tensor algebra K〈M〉 on the K-module M = R ⊕ K∂ reflect the identities
coming from the K-linearity of the operators and their compositions, where the tensor product is
interpreted as composition of operators.
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To incorporate the additional identities, we use reduction rules defined by K-module homo-
morphisms on certain submodules of the tensor algebra. Corresponding to the composition of
multiplication operators and the Leibniz rule, we consider two homomorphisms defined by

f ⊗ g 7→ f g and ∂ ⊗ f 7→ f ⊗ ∂ + ∂ f .

These two reduction rules induce the two-sided ideal J = ( f ⊗g− f g, ∂⊗ f − f ⊗∂−∂ f | f , g ∈ R)
which we use to define the K-algebra of differential operators as the quotient algebra

R〈∂〉 = K〈M〉/J.

We want to obtain unique normal forms in the quotient by applying the reduction rules above. A
tensor of the form

∂ ⊗ f ⊗ g

corresponds to an overlap ambiguity of these two rules, since it can be reduced by the homomor-
phisms in different ways to obtain either

( f ⊗ ∂ + ∂ f ) ⊗ g or ∂ ⊗ ( f g).

For checking resolvability of the ambiguity the S-polynomial formed by the difference of these
alternatives should be reducible to zero. In the present case, it reduces to zero because of the
Leibniz rule in R. More explicitly, for all f , g ∈ R we have

SP(∂ ⊗ f , f ⊗ g) = ( f ⊗ ∂ + ∂ f ) ⊗ g − ∂ ⊗ ( f g)
→ f ⊗ g ⊗ ∂ + f ⊗ ∂g + (∂ f )g − f g ⊗ ∂ − ∂( f g)
→ f g ⊗ ∂ + f∂g + (∂ f )g − f g ⊗ ∂ − ∂( f g)
= f∂g + (∂ f )g − ∂( f g) = 0.

Another ambiguity is expressed by tensors of the form f ⊗ g ⊗ h and is resolvable as well. Since
all ambiguities are resolvable, we obtain normal forms in terms of irreducible tensors

∂⊗ j and f ⊗ ∂⊗ j.

For differential operators with matrix coefficients, we let R be a ring of matrices over some
(commutative) differential ring. Then not only R is a noncommutative differential ring, but also
its ring of constants K is no longer commutative and elements of K do not commute with el-
ements of R. Consequently, R is not a K-algebra anymore. More generally, we consider an
arbitrary differential ring R. It is a bimodule over its ring of constants K and tensoring over K
leads to a construction of the differential operators as a quotient of the tensor ring instead of the
tensor algebra.

Example 2. For an arbitrary (not necessarily commutative) differential ring (R, ∂), ∂ is a K-
bimodule homomorphism of R whereas multiplication operators g 7→ f g in general are only
right K-module homomorphisms. We consider the K-tensor ring K〈M〉 on the K-bimodule M =

R ⊕ MD, where MD is a K-bimodule non-freely generated by ∂. The identities in the tensor ring
K〈M〉 reflect the identities coming from the additivity of the operators and their compositions.
Reduction rules are K-bimodule homomorphisms defined by the same formulae as above. For
details see Example 8 later.
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2. Tensor reduction systems

In this section, we describe analogs of Gröbner bases in tensor rings following Bergman
(1978) using standard notation for rewriting systems from (Baader and Nipkow, 1998). First
we outline the construction and some properties of the K-tensor ring K〈M〉 on a K-bimodule
M over a arbitrary ring K with unit element. If K is commutative and the left and right scalar
multiplication on M agree, then K〈M〉 is the tensor algebra on M, which is a generalization
of the noncommutative polynomial algebra on a set of indeterminates. In contrast to the non-
commutative polynomials, in the tensor ring the “coefficients” in K do not commute with the
“indeterminates”. For further details on tensor rings and proofs see, for example, (Cohn, 2003;
Rowen, 1991). A Gröbner basis theory for free bimodules has been presented in (Kobayashi,
2005) and for bimodules over Poincaré-Birkhoff-Witt (PBW) algebras in (Román García and
Román García, 2005; Levandovskyy, 2005).

2.1. Basics of tensor rings
From now, K denotes a ring (not necessarily commutative) with unit element. A K-bimodule

is a left K-module M which is also a right K-module satisfying the associativity condition (km)l =

k(ml) for all m ∈ M and k, l ∈ K. By a K-ring we understand a ring R that is a K-bimodule such
that (xy)z = x(yz) for any x, y, z in R or K. Even when K is commutative, the notion of K-ring is
more general than the notion of K-algebra, because the action of K need not centralize the ring,
that is, we do not require kr = rk for k ∈ K and r ∈ R. In other words, the difference can be
described by saying that whereas a K-algebra (K commutative) is a ring R with a homomorphism
from K to the center of R, a K-ring is a ring R with a ring homomorphism from K to R. In
particular, if K is a subring of some ring R, then R is a K-ring.

We first recall basic properties of the tensor product on K-bimodules. Let M1, . . . ,Mn be
K-bimodules. Given an abelian group (A,+), we say that β : M1 × · · · × Mn → A is a balanced
map if it is multiadditive and it satisfies

β(m1, . . . ,mik,mi+1, . . . ,mn) = β(m1, . . . ,mi, kmi+1, . . . ,mn)

for all k ∈ K, m j ∈ M j, where i = 1, . . . , n − 1 and j = 1, . . . , n. By the definition of the tensor
product, there exists an abelian group M1 ⊗ · · · ⊗ Mn together with a balanced map

⊗ : M1 × · · · × Mn → M1 ⊗ · · · ⊗ Mn.

We write m1 ⊗ · · · ⊗ mn for the image of (m1, . . . ,mn) under ⊗. The universal property of the
tensor product states that if β : M1 × · · · × Mn → A is any balanced map, then there exists a
unique homomorphism β : M1 ⊗ · · · ⊗ Mn → A such that

β(m1 ⊗ · · · ⊗ mn) = β(m1, . . . ,mn).

Note that, if M1, . . . ,Mn are K-bimodules, then M1 ⊗ · · · ⊗Mn is again a K-bimodule with scalar
multiplications

k(m1 ⊗ · · · ⊗ mn) = km1 ⊗ · · · ⊗ mn and (m1 ⊗ · · · ⊗ mn)k = m1 ⊗ · · · ⊗ mnk.

We denote the tensor product of M with itself over K by M⊗n = M ⊗ · · · ⊗ M (n factors) and its
elements are called tensors. In particular, M⊗1 = M and we interpret M⊗0 as the K-bimodule Kε,
where ε denotes the empty tensor. Elements of the form m1⊗· · ·⊗mn ∈ M⊗n with m1, . . . ,mn ∈ M,
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are called pure tensors and they generate M⊗n as a K-bimodule. As a K-bimodule, the tensor ring
K〈M〉 is defined as the direct sum K〈M〉 =

⊕∞

n=0 M⊗n with multiplication M⊗r ×M⊗s → M⊗(r+s)

given by the balanced map

(m1 ⊗ · · · ⊗ mr, m̃1 ⊗ · · · ⊗ m̃s) 7→ m1 ⊗ · · · ⊗ mr ⊗ m̃1 ⊗ · · · ⊗ m̃s,

which can be extended to K〈M〉 by biadditivity. In general, the K-bimodule K〈M〉 with this
multiplication is a ring with ε being its unit element. Note that by the homomorphism K → K〈M〉
mapping k 7→ kε the tensor ring K〈M〉 is a K-ring.

The K-tensor algebra on a K-module M with K commutative is a special case of the K-
tensor ring by viewing M as a K-bimodule with identical scalar multiplication from left and
right. Note that for a free K-module M with basis X, the K-tensor algebra K〈M〉 is isomorphic
to the noncommutative polynomial algebra K〈X〉. It has the set of all products x1 ⊗ · · · ⊗ xn

for x1, . . . , xn ∈ X as a K-module basis, i.e. elements in K〈X〉 have a unique representation as
K-linear combinations of such products.

The analogous situation for tensor rings is more involved. The free K-bimodule on a set X
is given by K⊗ZZX⊗ZK, where ZX denotes the free left Z-module on X. The K-tensor ring
over the free K-bimodule on X is isomorphic to the free K-ring on X, which is generated as
a K-bimodule by the set of all products x1 ⊗ k2x2 ⊗ · · · ⊗ knxn such that x1, . . . , xn ∈ X and
k2, . . . , kn ∈ K. Note that the representation of elements of the free K-ring on X in terms of such
products is not unique, in contrast to the noncommutative polynomial algebra. Since bimodules
have coefficients on both sides and coefficients do not commute with indeterminates, even the
free K-bimodule generated by {x1} gives rise to non-uniqueness: k1x1k3+k2x1k1 = k3x1k1+k1x1k2
for k3 = k1 + k2 ∈ K.

2.2. Diamond Lemma in tensor rings
Now we are ready to explain the setting for reduction systems in tensor rings following

(Bergman, 1978, Sec. 6). Let (Mx)x∈X be a family of K-bimodules indexed by a set X. The
modules Mx play the role of the indeterminates in the noncommutative polynomial algebra.

We denote the free monoid on X by 〈X〉 and its unit element by ε. The free monoid 〈X〉 can
also be regarded as the word monoid over the alphabet X with ε as the empty word. For every
word W = x1 . . . xn ∈ 〈X〉, we denote the tensor product of the corresponding bimodules by

MW := Mx1 ⊗ · · · ⊗ Mxn .

In particular, we have Mε = Kε for the empty word/tensor ε. The pure tensors m1⊗· · ·⊗mn ∈

MW with mi ∈ Mxi play the role of the monomials in the tensor ring. We consider the direct sum

M :=
⊕
x∈X

Mx (1)

and the K-tensor ring on M:

K〈M〉 =

∞⊕
n=0

M⊗n =
⊕
W∈〈X〉

MW . (2)

Every tensor t ∈ K〈M〉 can be written as a sum of pure tensors. However, in contrast to linear
combinations of monomials in the noncommutative polynomial algebra, this representation is
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not unique. This happens because already M⊗n is not freely generated as a K-bimodule by the
pure tensors, e.g. m1 ⊗m3 + m2 ⊗m1 = m3 ⊗m1 + m1 ⊗m2 in M⊗2 for m3 = m1 + m2 ∈ M. Still,
using bimodule homomorphisms, one can define reductions analogous to polynomial reduction
for (non-)commutative Gröbner bases.

Definition 3. Let M be given by Eq. (1). A reduction rule for K〈M〉 is given by a pair (W, h)
of a word W ∈ 〈X〉 and a K-bimodule homomorphism h : MW → K〈M〉. For a reduction rule
r = (W, h) and words A, B ∈ 〈X〉, we define a reduction as the K-bimodule homomorphism

hA,r,B : K〈M〉 → K〈M〉

acting as idA ⊗ h ⊗ idB on MAWB and the identity on all other MV with V ∈ 〈X〉 and V , AWB.

For a pure tensor a ⊗ w ⊗ b ∈ MAWB with a ∈ MA, w ∈ MW , and b ∈ MB, the reduction hA,r,B

is given by
a ⊗ w ⊗ b 7→ a ⊗ h(w) ⊗ b.

So, as for polynomial reduction, we “replace” the “leading monomial” w by the “tail” h(w) given
by the homomorphism h.

Let t ∈ K〈M〉. A reduction hA,r,B acts trivially on t, i.e. hA,r,B(t) = t, if the summand of t in
MAWB is zero, see Eq. (2). A reduction rule r = (W, h) reduces t to s ∈ K〈M〉 if a reduction hA,r,B

for some A, B ∈ 〈X〉 acts non-trivially on t and hA,r,B(t) = s and we write t →r s.
A reduction system for K〈M〉 is a set Σ of reduction rules. Every reduction system Σ induces a

reduction relation→Σ on tensors by defining t →Σ s for t, s ∈ K〈M〉 if t →r s for some reduction
rule r ∈ Σ. Fixing a reduction system Σ, we say that t ∈ K〈M〉 can be reduced to s ∈ K〈M〉 by Σ

if t = s or there exists a finite sequence of reduction rules r1, . . . , rn in Σ such that

t →r1 t1 →r2 · · · →rn−1 tn−1 →rn s

and we write t
∗
→Σ s. In other words,

∗
→Σ denotes the reflexive transitive closure of the reduction

relation→Σ.
The set of irreducible words 〈X〉irr ⊆ 〈X〉 consists of those words having no subwords from

the set {W | (W, h) ∈ Σ}. We define the K-subbimodule of irreducible tensors as

K〈M〉irr =
⊕

W∈〈X〉irr

MW . (3)

We also need to consider partial orders on 〈X〉. A semigroup partial order on 〈X〉 is a partial
order ≤ on 〈X〉 such that B < B̃⇒ ABC < AB̃C for all A, B, B̃,C ∈ 〈X〉. If in addition ε ≤ A, for
all A ∈ 〈X〉, then it is called a monoid partial order. It is called Noetherian if there are no infinite
descending chains.

Remark 4. Note that a lexicographic order on 〈X〉 is not a semigroup order. However, a
(weighted) degree-lexicographic order of the words is a semigroup (total) order on 〈X〉 and it
is Noetherian if X is finite. Given a semigroup S with a semigroup partial order � on it and a
semigroup homomorphism ϕ : 〈X〉 → S , we can define the induced semigroup partial order on
〈X〉 by

V ≤ W :⇔ V = W or ϕ(V) ≺ ϕ(W).

For example, for S = N with the usual order and the homomorphism given by ϕ(x0) = 1 for
x0 ∈ X and ϕ(x) = 0 for x ∈ X \ {x0}, the induced partial order just compares the degree
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in x0. Given two semigroups S 1 and S 2 with corresponding semigroup partial orders ≤1 and
≤2 respectively, we can combine them lexicographically to obtain a semigroup partial order on
S = S 1 × S 2 by

(a1, a2) ≤ (b1, b2) :⇔ a1 <1 b1 or a1 = b1 and a2 ≤2 b2.

A semigroup partial order ≤ is compatible with a reduction system Σ if for all reduction rules
(W, h) ∈ Σ,

h(MW ) ⊆
⊕
V<W

MV .

If a compatible semigroup partial order is Noetherian, then there do not exist infinite sequences
of reductions in Σ. In other words, the reduction relation→Σ is terminating or Noetherian. So,
in that case, every t ∈ K〈M〉 can be reduced in finitely many steps to an irreducible tensor

t
∗
→Σ s ∈ K〈M〉irr

and such an s is called a normal form of t. In general, a tensor can have different normal forms.
If t ∈ K〈M〉 has a unique normal form, we denote it by t↓Σ.

For ensuring unique normal forms for reduction systems on tensor rings, we state below
Bergman’s analog of Buchberger’s criterion for Gröbner bases (Buchberger, 1965). In the con-
text of Gröbner-Shirshov bases for various algebraic structures this is also referred to as the
Composition-Diamond Lemma; see e.g. the survey by Bokut and Chen (2014).

Let Σ be a reduction system. We study the cases when two different reductions act non-
trivially on tensors in MW for W ∈ 〈X〉.

Definition 5. An overlap ambiguity is given by two (not necessarily distinct) reduction rules
(W, h), (W̃, h̃) ∈ Σ and nonempty words A, B,C ∈ 〈X〉 such that

W = AB and W̃ = BC.

It is called resolvable if for all pure tensors a ∈ MA, b ∈ MB, and c ∈ MC the S-polynomial can
be reduced to zero:

h(a ⊗ b) ⊗ c − a ⊗ h̃(b ⊗ c)
∗
→Σ 0.

An inclusion ambiguity is given by distinct reduction rules (W, h), (W̃, h̃) ∈ Σ and words A, B,C ∈
〈X〉 with W = B and W̃ = ABC. It is called resolvable if for all pure tensors a ∈ MA, b ∈ MB,
and c ∈ MC the S-polynomial can be reduced to zero: a ⊗ h(b) ⊗ c − h̃(a ⊗ b ⊗ c)

∗
→Σ 0.

With slight abuse of notation, we refer to S-polynomials of an overlap or inclusion ambiguity,
respectively, by

SP(AB, BC) or SP(B, ABC).

A reduction system Σ induces the two-sided reduction ideal

IΣ := (t − h(t) | (W, h) ∈ Σ and t ∈ MW ) ⊆ K〈M〉. (4)

For studying operator algebras, we want to compute in the factor ring K〈M〉/IΣ. If all ambiguities
are resolvable, then we can do this effectively using reductions in K〈M〉 and the corresponding
normal forms with respect to→Σ. This is the confluence criterion (condition 1. below) that we
will check algorithmically, for a brief discussion see the following subsection.
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Theorem 6. (Bergman (1978)) Let K be a ring, let (Mx)x∈X be a family of K-bimodules indexed
by a set X, and let M =

⊕
x∈X Mx. Let Σ be a reduction system on K〈M〉 and let ≤ be a

Noetherian semigroup partial order on 〈X〉 that is compatible with Σ. Then the following are
equivalent:

1. All ambiguities of Σ are resolvable.
2. Every t ∈ K〈M〉 has a unique normal form t↓Σ.
3. K〈M〉/IΣ and K〈M〉irr are isomorphic as K-bimodules.

If these conditions hold, then we can define a multiplication on K〈M〉irr by s · t := (s ⊗ t) ↓Σ so
that K〈M〉/IΣ and K〈M〉irr are isomorphic as K-rings.

Note that our definition of resolvability above differs from the definition used by Bergman.
Actually, he uses two different notions for resolvability of ambiguities, wich we briefly describe
below. Both of them are weaker than our Definition 5 in general. However, if every tensor has a
unique normal form, then all three definitions of resolvability are equivalent. Hence Theorem 6
holds regardless which of these three notions of resolvability is used. One slightly weaker notion
only requires the existence of a tensor t ∈ K〈M〉 such that

h(a ⊗ b) ⊗ c
∗
→Σ t

∗
←Σ a ⊗ h̃(b ⊗ c) or a ⊗ h(b) ⊗ c

∗
→Σ t

∗
←Σ h̃(a ⊗ b ⊗ c),

respectively, in other words, the two different results of the reductions of a ⊗ b ⊗ c are joinable.
Another even weaker notion is the following, which depends on semigroup partial order ≤.

Definition 7. We call an overlap or inclusion ambiguity with words A, B,C ∈ 〈X〉 ≤-resolvable
if and only if all its S-polynomials are contained in the bimodule IABC generated by⋃

V∈〈X〉
V<ABC

{t − s | t ∈ MV and t →Σ s ∈ K〈M〉}.

If the semigroup partial order ≤ is compatible with Σ, then this bimodule is contained in a
“truncation” IΣ ∩

⊕
V∈〈X〉

V<ABC
MV of the reduction ideal IΣ.

Example 8. We revisit Example 2 to study it formally in the tensor ring setting. Let (R, ∂) be
a differential ring and let K denote its ring of constants. We consider the K-bimodule MR = R
(indexed by the letter R). In addition, we consider the free left K-module MD = K∂ generated by
∂ (indexed by the letter D), which we view as a K-bimodule with right multiplication defined by

c∂ · d = cd∂,

for all c, d ∈ K. This definition is based on left K-linearity of the operation ∂ on R:

(c∂d) f = c∂(d f ) = (cd∂) f .

Let M = MR ⊕ MD be the module of basic operators. Then words over the alphabet X = {R,D}
index the direct summands of the K-tensor ring K〈M〉.

We interpret elements f ∈ R as multiplication operators, ∂ as the derivation on R, and
the tensor product ⊗ as the composition of operators. So we consider the reduction system
Σ = {rRR, rDR} with the reduction rules

rRR = (RR, f ⊗ g 7→ f g) and rDR = (DR, ∂ ⊗ f 7→ f ⊗ ∂ + ∂ f )
9



corresponding to the composition of multiplication operators and the Leibniz rule. Then the ring
of differential operators can be defined as the quotient

R〈∂〉 = K〈M〉/IΣ

of the tensor ring by the two-sided reduction ideal. The informal definition of the reduction
homomorphisms above can be made formal in the following way. First, since

MR × MR → MR

( f , g) 7→ f g

is a balanced map, it induces a well-defined homomorphism MRR → MR of abelian groups. This
homomorphism can be verified to be even a K-bimodule homomorphism, which we use to define
rRR. Extending the definition

β(∂, f ) := f ⊗ ∂ + ∂ f

by
β(c∂, f ) := β(∂, c f ),

we obtain a balanced map β : MD × MR → MRD ⊕ MR, since

β(c∂ · d, f ) = β(cd∂, f ) = β(∂, cd f ) = β(c∂, d f ).

Like above, β induces a K-bimodule homomorphism MDR → MRD ⊕ MR constituting rDR.
So any semigroup partial order ≤ on 〈X〉 with RR > R, as well as DR > RD and DR > R

is compatible with Σ, e.g. the degree-lexicographic order with D > R. There are two overlap
ambiguities. The S-polynomials of the first ambiguity reduce to zero in two steps:

SP(RR,RR) = ( f g) ⊗ h − f ⊗ (gh)→rRR ( f g)h − f (gh) = 0.

We already have seen in Example 2 that the S-polynomials SP(DR,RR) reduce to the Leibniz
rule in R. Hence by Theorem 6 every t ∈ K〈M〉 has a unique normal form t↓Σ in K〈M〉irr, where

K〈M〉irr = Kε ⊕ MR ⊕ MD ⊕ (MR ⊗ MD) ⊕ M⊗2
D ⊕ (MR ⊗ M⊗2

D ) ⊕ . . .

since 〈X〉irr = {ε,R,D,RD,D2,RD2, . . .}. In other words, t ↓Σ can be written as a sum of pure
tensors of the form ε, f , ∂, f ⊗ ∂, ∂ ⊗ ∂, f ⊗ ∂ ⊗ ∂, . . . and we recover the well-known normal
forms of differential operators.

Remark 9. If some α ∈ Mx corresponds to a left K-linear operator, like ∂ ∈ MD above, then for
the right scalar multiplication of left multiples of α, we always have

cα · d = cdα

with c, d ∈ K; see also Eq. (12). As soon as such an operator is present, the ring over which the
tensors are formed has to contain K in order to incorporate the corresponding relations directly
into the tensor ring.
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2.3. Computational Aspects

Considering the algorithmic aspects of Theorem 6, we assume that we have a finite reduction
system Σ over a finite alphabet X. Moreover, a compatible Noetherian semigroup partial order
has to be assumed.

For generating the set of ambiguities, we only need to work in the word monoid 〈X〉. Like-
wise, determining the set of irreducible words 〈X〉irr is a purely combinatorial problem on words
as well, cf. the proofs of Theorems 27 and 32. For checking resolvability of ambiguities, it
suffices to work with S-polynomials constructed from general elements of the basic bimodules
Mx. The result of a reduction step, i.e. the application of a homomorphism from the reduction
system, needs to be simplified in the tensor ring. This involves application of properties of the
tensor product and of identities in the bimodules, like the Leibniz rule in the example above.
In practice, the reduction to zero often can be detected heuristically without having a canonical
simplifier in the bimodules.

The package TenReS provides routines to generate all ambiguities and corresponding S-
polynomials of a reduction system given by the user. It also includes routines for computing in
the tensor ring. Identities needed for computing in the bimodules of Eq. (1) have to be imple-
mented by the user in each concrete case.

In contrast to specifying new identities in the polynomial resp. term algebra, already the con-
structive specification of reduction homomorphisms in the tensor setting is not clear in general.

2.3.1. Deletion criteria
For polynomial rings there are two classical deletion criteria for excluding critical pairs from

consideration: the product criterion and the chain criterion. We want to consider their analogs
for excluding ambiguities from the confluence check for tensor reduction systems.

There is no need for an analog of the product criterion as it is already built into the definition
of ambiguities of tensor reduction rules. If rules (W, h), (W̃, h̃) ∈ Σ are such that no word of
length less than |W | + |W̃ | contains both W and W̃ as subwords, then the rules do not have any
ambiguities among them anyway. Hence we focus only on the chain criterion. The following
lemma is an analog of Lemma 5.11 in (Mora, 1994).

Lemma 10. Let ≤ be a semigroup partial order on 〈X〉 compatible with the reduction system Σ.
Let r1, r2 ∈ Σ have an overlap ambiguity with A, B,C ∈ 〈X〉, i.e. r1 = (AB, g) and r2 = (BC, h).
Let r3 = (V, f ) ∈ Σ where V is a subword of W = ABC such that one of the following cases holds.

1. V is a subword of A = LVR and the inclusion ambiguity of r1 and r3 with L,V,RB is
≤-resolvable.

2. V is a subword of B = LVR and the two inclusion ambiguities of r1 and r3 with AL,V,R
and of r2 and r3 with L,V,RC are ≤-resolvable.

3. V is a subword of C = LVR and the inclusion ambiguity of r2 and r3 with BL,V,R is
≤-resolvable.

4. V is a subword of AB = LVR (with nonempty V1,V2 such that V = V1V2 and B = V2R)
and the inclusion ambiguity of r1 and r3 with L,V,R as well as the overlap ambiguity of r2
and r3 with V1,V2,RC are ≤-resolvable.

5. V is a subword of BC = LVR (with nonempty V1,V2 such that V = V1V2 and B = LV1)
and the overlap ambiguity of r1 and r3 with AL,V1,V2 as well as the inclusion ambiguity
of r2 and r3 with L,V,R are ≤-resolvable.
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6. There are nonempty L,R such that V = LBR (with A = A1L and C = RC2) and the
overlap/inclusion ambiguity of r1 and r3 with A1, LB,R as well as the overlap/inclusion
ambiguity of r2 and r3 with L, BR,C2 are ≤-resolvable.

Then the overlap ambiguity of r1 and r2 with A, B,C is ≤-resolvable.

Proof. For all cases there are canonical choices for W1,W2 such that W = W1LVRW2 (resp.
W = W1LBRW2 in the last case). For a pure tensor t ∈ MW we have that the corresponding
S-polynomial is equal to hε,r1,C(t) − hA,r2,ε(t) = t1 + t2 with t1 := hε,r1,C(t) − t3, t2 := t3 − hA,r2,ε(t),
and t3 := hW1L,r3,RW2 (t) (resp. t3 := hW1,r3,W2 (t) in the last case). According to Definition 7, we
show that t1, t2 ∈ IW .

In Case 3, we directly verify t1 = g(a⊗b)⊗(c−hL,r3,R(c))−(a⊗b−g(a⊗b))⊗hL,r3,R(c) ∈ IW with
a ∈ MA, b ∈ MB, and c ∈ MC such that t = a⊗b⊗c. Otherwise, by assumption, all S-polynomials
of r1 and r3 are contained in IS 1 , where S 1 = ABV2 in Case 5, S 1 = ABR in Case 6, and S 1 = AB
in the remaining cases. Then, there is m1 ∈ MT1 , where T1 ∈ 〈X〉 is such that W = S 1T1, and an
S-polynomial s1 of r1 and r3 such that t1 = s1 ⊗ m1. Hence t1 ∈ IS 1 ⊗ MT1 ⊆ IS 1T1 = IW .

Analogously, we directly verify t2 ∈ IW in Case 1. In the remaining cases we let S 2 := BC
(resp. S 2 := V1BC in Case 4 and S 2 := LBC in Case 6). Then, we have t2 = m2 ⊗ s2 for some
S-polynomial s2 of r2 and r3 and some m2 ∈ MT2 , where T2 ∈ 〈X〉 is such that W = T2S 2. We
conclude t2 ∈ MT2 ⊗ IS 2 ⊆ IW , since s2 ∈ IS 2 by assumption.

Consequently, t1 and t2 are in IW in all cases. Hence the same applies to the S-polynomial
hε,r1,C(t) − hA,r2,ε(t) and the overlap ambiguity of r1 and r2 with A, B,C is ≤-resolvable.

Note that V might be a subword of W in multiple ways, so we need to specify which ambigu-
ities of r1, r3 resp. r2, r3 are ≤-resolvable in order to be able to conclude that the given ambiguity
of r1, r2 is ≤-resolvable. A similar statement can be obtained for inclusion ambiguities of r1 and
r2.

3. Tensor setting with specialization

Direct application of Bergman’s tensor setting requires the sum in Eq. (1) to be direct. As a
consequence, domains of reduction rules in a reduction system cannot overlap, even their tensor
factors cannot overlap. In order to emulate overlapping domains (or factors), reduction rules have
to be split into several smaller parts so that domains of those smaller rules do not overlap. Thus
computations with such reduction systems can be inconvenient and inefficient in practice as the
smaller rules technically are just individual rules that need to be applied separately. Moreover,
this leads to some redundancy in the investigation of ambiguities and S-polynomials. Sticking to
the above definition of reduction systems for tensor rings, this situation cannot be avoided.

Example 11. Note that in Example 8 irreducible tensors still have some relations among them
when acting as operators. For instance, kε ∈ M⊗0 and k ∈ M both act by multiplying with k ∈ K.
So we need an additional reduction rule reducing k ∈ M to kε ∈ M⊗0 for k ∈ K. Fixing a direct
complement R = K ⊕ R̃ in R for defining the reduction rule

rK = (K, 1 7→ ε),

would cause the splitting of the rule rRR into four rules rKK, rKR̃, rR̃K, rR̃R̃ and similarly rDR would
split into two rules. The aim of this section is to introduce a framework that allows the rule rK to
coexist with rRR and rDR.

12



In order to remedy this situation, the aim of this section is to introduce a more flexible ten-
sor setting where the definable reduction systems are much more general. While the induced
reduction relations are also more general, the corresponding reduction ideals are not, however.

Definition 12. Let M be a K-bimodule. We call a family (Mz)z∈Z of K-subbimodules of M a
decomposition with specialization, if M =

∑
z∈Z Mz and there exists a subset X ⊆ Z such that

1. we have the direct sum decomposition M =
⊕

x∈X Mx and
2. for every z ∈ Z the corresponding module Mz satisfies

Mz =
⊕
x∈S (z)

Mx (5)

where S (z) := {x ∈ X | Mx ⊆ Mz} is the set of specializations of z.

Note that this definition implies S (x) = {x} for x ∈ X. In the following, we define a framework
for tensor reduction systems that are based on such a decomposition with specialization. To
this end, we fix a K-bimodule M, alphabets X ⊆ Z, and a decomposition (Mz)z∈Z of M with
specialization.

For words W = w1 . . .wn ∈ 〈Z〉 we define the corresponding subbimodule of K〈M〉 as before
by MW := Mw1 ⊗ · · · ⊗ Mwn . Because of Eq. (5), any MW is then a direct sum of certain MV , V ∈
〈X〉. For a precise statement we can extend the notion of specialization from the alphabet Z to the
whole word monoid 〈Z〉 by the definition below such that we have the following generalization
of Eq. (5):

MW =
⊕

V∈S (W)

MV .

Definition 13. For W = w1 . . .wn ∈ 〈Z〉 we define the set of specializations of W by

S (W) := {v1 . . . vn ∈ 〈X〉 | ∀i : vi ∈ S (wi)}

Remark 14. Note that for V ∈ 〈X〉 and W ∈ 〈Z〉 the bimodules MV and MW either intersect only
in 0 or MV is contained in MW . Note further that the specializations of W ∈ 〈Z〉 are also given
by

S (W) = {V ∈ 〈X〉 | MV ⊆ MW }.

Definition 3 carries over by replacing X with Z. For such a reduction system Σ over Z
we define the reduction ideal IΣ by Eq. (4) and we define 〈X〉irr as the set of words from 〈X〉
containing no subwords from the set ⋃

(W,h)∈Σ

S (W).

Based on 〈X〉irr we define K〈M〉irr as in Eq. (3). Furthermore, for every reduction system Σ over
Z we call its reformulation as a reduction system over X the refined reduction system ΣX , which
is given by

ΣX :=
⋃

(W,h)∈Σ

{(V, h|MV ) | V ∈ S (W)}. (6)

Lemma 15. Let Σ be a reduction system over Z and let ΣX be its refinement on X. Then the
reduction ideals and the irreducible words are the same for Σ and for ΣX . Moreover, also K〈M〉irr

stays the same.
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Proof. Follows immediately from the definitions.

Note that, however, the refined reduction system does not define the same reduction relation.
In general, we neither have→ΣX⊆→Σ nor→Σ ⊆→ΣX . We only have→Σ ⊆

∗
→ΣX in general.

Definition 16. We call a partial order ≤ on 〈Z〉 consistent with specialization if for all words
V,W ∈ 〈Z〉 with V < W we also have Ṽ < W̃ for all specializations Ṽ ∈ S (V) and W̃ ∈ S (W).

Note that the above definition implies that W is incomparable to all elements in S (W), except
possibly W itself, which can be seen by considering the two cases V ∈ S (W) and W ∈ S (V) in
the definition.

A semigroup partial order ≤ on 〈Z〉 is compatible with a reduction system Σ over Z if for all
(W, h) ∈ Σ we have

h(MW ) ⊆
∑

V∈〈Z〉
V<W

MV .

If ≤ is consistent with specialization, then for any W̃ ∈ S (W) we have∑
V∈〈Z〉
V<W

MV ⊆
⊕
V∈〈X〉
V<W̃

MV .

Lemma 17. Let Σ be a reduction system over Z and let ≤ be a semigroup partial order on
〈Z〉 consistent with specialization and compatible with Σ. Then the restricted order ≤ on 〈X〉 is
compatible with ΣX .

Proof. By definition of ΣX , For any reduction rule (W̃, h̃) ∈ ΣX there is (W, h) ∈ Σ such that
W̃ ∈ S (W) and h̃ = h|MW̃

. So, by our assumptions, we have

h̃(MW̃ ) = h(MW̃ ) ⊆ h(MW ) ⊆
∑

V∈〈Z〉
V<W

MV ⊆
⊕
V∈〈X〉
V<W̃

MV .

We need to generalize the notion of ambiguities to account for the fact that the sum K〈M〉 =∑
W∈〈Z〉 MW is not necessarily direct anymore.

Definition 18. Let (W, h), (W̃, h̃) ∈ Σ be two (not necessarily distinct) reduction rules and let
A, B1, B2,C ∈ 〈Z〉 be nonempty words with

W = AB1, W̃ = B2C, and S (B1) ∩ S (B2) , ∅,

then we call this an overlap ambiguity. An overlap ambiguity is called resolvable if for all pure
tensors a ∈ MA, b ∈ MB1 ∩ MB2 , and c ∈ MC the S-polynomial can be reduced to zero:

h(a ⊗ b) ⊗ c − a ⊗ h̃(b ⊗ c)
∗
→Σ 0.

Similarly, an inclusion ambiguity is given by two distinct reduction rules (W, h), (W̃, h̃) ∈ Σ

and words A, B1, B2,C ∈ 〈Z〉 with W = B1, W̃ = AB2C, and S (B1) ∩ S (B2) , ∅. An inclusion
ambiguity is called resolvable if for all pure tensors a ∈ MA, b ∈ MB1 ∩ MB2 , and c ∈ MC the
S-polynomial can be reduced to zero: a ⊗ h(b) ⊗ c − h̃(a ⊗ b ⊗ c)

∗
→Σ 0.

If B1 , B2 for an overlap or inclusion ambiguity, then we say that the ambiguity is with
specialization.
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Again, we use SP(AB1, B2C) or SP(B1, AB2C), respectively, to refer to S-polynomials of an
overlap or inclusion ambiguity.

Remark 19. Note that in total there now can be four types of ambiguities: in addition to the
two types of ambiguities (without specialization) of Definition 5 there are also corresponding
versions with specialization as defined above.

With these definitions we can prove the following generalization of Bergman’s result. In or-
der to prove properties of the reduction system Σ over Z we apply Bergman’s result (Theorem 6)
to the refined reduction system ΣX over X.

Theorem 20. Let M be a K-bimodule and let (Mz)z∈Z be a decomposition with specialization.
Let Σ be a reduction system over Z on K〈M〉 and let ≤ be a Noetherian semigroup partial order
on 〈Z〉 consistent with specialization and compatible with Σ. Then the following are equivalent:

1. All ambiguities of Σ are resolvable.
2. Every t ∈ K〈M〉 has a unique normal form t↓Σ.
3. K〈M〉/IΣ and K〈M〉irr are isomorphic as K-bimodules.

Moreover, if these conditions are satisfied, then we can define a multiplication on K〈M〉irr by
s · t := (s ⊗ t)↓Σ so that K〈M〉/IΣ and K〈M〉irr are isomorphic as K-rings.

Proof. First, we prove the implication 2. ⇒ 1. Any S-polynomial of an ambiguity of Σ is of
the form h(t) − h̃(t) for some pure tensor t ∈ K〈M〉 and reductions h and h̃ of Σ. Let H1 be
a composition of reductions of Σ such that H1(h(t)) ∈ K〈M〉irr and let H2 be a composition of
reductions of Σ such that H2(H1(h̃(t))) ∈ K〈M〉irr. Then H2 ◦ H1 reduces the S-polynomial to
zero since t has a unique normal form w.r.t. Σ.

The rest of the proof is reduced to Theorem 6 via properties of the refined reduction system
ΣX . Lemma 15 shows that we can replace the reduction system Σ by its refinement ΣX without
changing the reduction ideal or K〈M〉irr, hence statement 3. holds for Σ if and only if it holds for
ΣX . Furthermore, we note that every S-polynomial of ΣX is also an S-polynomial of Σ and that
∗
→Σ⊆

∗
→ΣX , hence statement 1. holds for ΣX if it holds for Σ. If statement 2. holds for ΣX , then

by
∗
→Σ⊆

∗
→ΣX and the fact that K〈M〉irr does not change it also holds for Σ. Finally, Lemma 17

implies that ΣX and the restriction of ≤ to 〈X〉 satisfy the assumptions of Theorem 6, which
concludes the proof.

Note that for W, W̃ ∈ 〈Z〉 having a common specialization, i.e. S (W) ∩ S (W̃) , ∅, there does
not necessarily exist V ∈ 〈Z〉 such that S (V) = S (W) ∩ S (W̃). In general, the intersection of two
modules is given by

MW ∩ MW̃ =
⊕

V∈S (W)∩S (W̃)

MV =

n⊗
k=1

⊕
x∈S (wk)∩S (w̃k)

Mx,

where W = w1 . . .wn and W̃ = w̃1 . . . w̃n.

Example 21. Consider alphabets X = {x1, x2, x3} and Z = X ∪ {y1, y2} with bimodules My1 =

Mx1 ⊕ Mx3 and My2 = Mx2 ⊕ Mx3 . The words W = x1y2y1 and W̃ = y1y2y2 in 〈Z〉 satisfy
S (W) ∩ S (W̃) = {x1x2x3, x1x3x3} , ∅. We have MW ∩ MW̃ = Mx1 ⊗ My2 ⊗ Mx3 . So, in this case,
there even exists a word V = x1y2x3 that satisfies S (V) = S (W)∩S (W̃) and MV = MW∩MW̃ .
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Example 22. Consider alphabets X = {x1, x2, x3, x4} and Z = X∪{y1, y2} with S (yi) = X \ {x5−i}.
The words W = y1 and W̃ = y2 satisfy S (W) ∩ S (W̃) = {x1, x2} , ∅ and there is no word V with
S (V) = S (W) ∩ S (W̃).

In order to describe the intersection of modules in terms of words again it will be convenient
to also consider another partial order � on 〈Z〉, which is induced by the natural partial order,
given by set inclusion, on all sets of the form S (W) ⊆ 〈X〉. In other words, we have V � W in
〈Z〉 if and only if S (V) ⊆ S (W), which holds if and only if MV is contained in MW .

In addition, for a set S ⊆ 〈Z〉 we define the K-bimodule

MS :=
∑
W∈S

MW ⊆ K〈M〉 (7)

with MS being the trivial bimodule {0} if S is empty. We also define lb(S ) := {V ∈ 〈Z〉 | V �
W for all W ∈ S } as the set of all lower bounds of S with respect to the partial order �. Note that
this implies ⋂

W∈S

MW = Mlb(S ) = Mlb(S )∩〈X〉

where we have lb(S ) ∩ 〈X〉 =
⋂

W∈S S (W). If � satisfies the ascending chain condition, it is
enough to consider only maximal elements of lb(S ) for

⋂
W∈S MW = Mlb(S ).

Example 23. Consider alphabets X = {x1, x2, x3, x4, x5, x6} and Z = X ∪ {y1, y2, y3, z1, z2} with
S (yi) = {xi, xi+1} and S (zi) = X \ {x7−i}. The words W = z1 and W̃ = z2 satisfy S (W) ∩ S (W̃) =

{x1, x2, x3, x4} , ∅ and there is no word V with S (V) = S (W) ∩ S (W̃). We have lb(W, W̃) =

{x1, x2, x3, x4, y1, y2, y3} and the maximal elements of lb(W, W̃) are y1, y2, y3. As explained above,
we have MW ∩ MW̃ = Mlb(W,W̃) = Mlb(W,W̃)∩〈X〉 = M{y1,y2,y3}. In this example, we can even find
words such that the intersection is a direct sum of as few modules as possible: MW ∩ MW̃ =

My1 ⊕ My3 .

3.1. Multi-level setting

Our two-level tensor setting presented at ISSAC 2016 (Hossein Poor et al., 2016a, Sec. 4)
can be generalized to obtain a multi-level tensor setting, which in turn is a special case of the
setting presented above. We briefly describe how the multi-level tensor setting looks like. To this
end, we first recall when one direct sum decomposition of M is a refinement of another.

For two families of K-bimodules with M =
⊕

x∈X Mx =
⊕

y∈Y My, we say that (Mx)x∈X is a
refinement of (My)y∈Y if there exists a partition (Xy)y∈Y of X such that

1. Xy = {x} for all y ∈ X ∩ Y and
2. My =

⊕
x∈Xy

Mx for all y ∈ Y .

For the multi-level setting we consider a family of alphabets (Xi)i∈I each corresponding to
a direct sum decomposition M =

⊕
x∈Xi

Mx, the “levels”. On the index set I we can define a
partial order � such that i � j if and only if (Mx)x∈Xi is a refinement of (Mx)x∈X j . We require that
the set I has a least element 0 ∈ I w.r.t. �, i.e. there exists a finest level that is a refinement of all
levels. Defining X := X0 and Z :=

⋃
i∈I Xi we easily recognize this as a special case of the above

tensor setting with specialization.
Conversely, each instance of the tensor setting with specialization can be viewed as multi-

level by completing each Mz, z ∈ Z \ X, into a level of its own: M = Mz ⊕ Mz with Mz :=
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⊕
x∈X\S (z) Mx. The resulting order � on I := {0} ∪ (Z \ X) may be far from total, it may even be

trivial.
The multi-level setting is worth mentioning mainly because of the following property. If �

is a total order on I, i.e. if all levels are nested, then for any W, W̃ ∈ 〈Z〉 with S (W) ∩ S (W̃) , ∅,
there exists (at least one) V ∈ 〈Z〉 such that S (V) = S (W) ∩ S (W̃), i.e. MV = MW ∩ MW̃ .

3.2. Computational Aspects

Many properties that we discussed for Bergman’s tensor setting also hold for the tensor set-
ting with specialization we introduced above. For instance, determining ambiguities and irre-
ducible words is done just on the level of words. In the following, we discuss the differences of
the two settings.

The main computational benefit of Theorem 20 compared to Theorem 6 lies in the fact that
for the confluence criterion we only need to check ambiguities of Σ over the alphabet Z and no
computations with ΣX are needed. Computing with the refined reduction system over X instead,
generally would lead to a higher number of ambiguities, since one reduction rule in Σ can give
rise to many reduction rules in ΣX . Only for determination of irreducible words we restrict to 〈X〉.

If we formulate our reduction system Σ over the alphabet Z, instead of using some Σ̃ over
the smaller alphabet X for the same reduction ideals IΣ̃ = IΣ, we may be able to considerably
reduce the size of the reduction system. This may happen in two different ways. First, assume a
partition of X such that some homomorphisms in Σ̃ are defined by the same formula and the
homomorphisms differ only by the choice of their domain and the corresponding words are
obtained as specializations from some template. Then the corresponding reduction rules from
Σ̃ could be merged into one reduction rule in Σ. This is exactly what happens for Σ̃ = ΣX .
Second, also extending the domain of some homomorphism from Σ̃ may contribute to obtaining
a smaller reduction system Σ. So usually we will have Σ̃ ⊂ ΣX .

The package TenReS also provides routines for generating all overlap and inclusion ambigu-
ities with specialization together with their corresponding S-polynomials. For a detailed com-
parison of Bergman’s setting and our generalization for the example of IDOs see (Hossein Poor
et al., 2016a).

4. Integro-differential operators

Integro-differential operators over a field of constants were introduced in (Rosenkranz, 2005;
Rosenkranz and Regensburger, 2008) to study algebraic and algorithmic aspects of linear ordi-
nary boundary problems. The construction made use of a parametrized Gröbner basis in infinitely
many variables coming from a basis of the coefficient algebra; see also the survey (Rosenkranz
et al., 2012) for an automated confluence proof and (Regensburger, 2016) for related references.
For polynomial coefficients, also generalized Weyl algebras (Bavula, 2013), skew polynomials
(Regensburger et al., 2009), and noncommutative Gröbner bases (Quadrat and Regensburger,
2017) have been used to study them. In this section, we apply the tensor setting with special-
ization introduced above to the construction of normal forms for integro-differential operators
(IDOs) over an arbitrary integro-differential ring. First, we define an integro-differential ring
analogous to the definition of an integro-differential algebra in (Rosenkranz et al., 2012; Guo
et al., 2014).
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Definition 24. Let (R, ∂) be a differential ring such that ∂R = R. Moreover, let
∫

: R → R be a
bimodule homomorphism over the ring of constants in R, such that

∂
∫

f = f (8)

for all f ∈ R. We call (R, ∂,
∫

) an integro-differential ring if the evaluation

E f := f −
∫
∂ f (9)

is multiplicative, i.e. for all f , g ∈ R we have

E f g = (E f )Eg.

The following lemma shows that in any integro-differential ring, the evaluation E maps to
the constants such that it acts as the identity on them, in particular, it is also a homomorphism of
rings with unit element. Moreover, the ring R can be decomposed as direct sum of constant and
non-constant “functions”.

Lemma 25. Let (R, ∂,
∫

) be an integro-differential ring with constants K. Then, we have E1 = 1,
E f ∈ K for all f ∈ R, and

R = K ⊕
∫

R,

as direct sum of K-bimodules.

Proof. We first compute E1 = 1 −
∫
∂1 = 1 and ∂E f = ∂( f −

∫
∂ f ) = ∂ f − ∂ f = 0. For any

f ∈ R, we have f = E f + f − E f = E f +
∫
∂ f and hence R = K +

∫
R. Let f ∈ K ∩

∫
R and g ∈ R

such that f =
∫

g. Then 0 = ∂ f = ∂
∫

g = g, which implies f = 0.

For the rest of this section, we fix an arbitrary integro-differential ring (R, ∂,
∫

) and we de-
note its ring of constants by K. By an operator, we understand in the following a K-bimodule
homomorphism from R to R. For example, the operations ∂,

∫
,E can be viewed as operators.

Following Lemma 25, we consider the direct sum decomposition R = K ⊕
∫

R and the corre-
sponding K-bimodules

MK = K and MR̃ =
∫

R (10)

(indexed by the symbols K and R̃). Note that the elements of MK and MR̃ are not interpreted as
functions but as left multiplication operators g 7→ f g induced by those functions. For studying
boundary value problems algebraically, we also need to deal with other multiplicative “function-
als” on R with the same properties as E, so we consider the set

Φ := {ϕ : R→ K | ϕ is a K-bimodule homomorphism with ϕ f g = (ϕ f )ϕg and ϕ1 = 1}. (11)

Instead, one can also consider Φ as a proper subset (containing E) of the full set defined above.
This amounts to working with a smaller ring of operators later. For the operators ∂,

∫
, E, and

ϕ ∈ Φ̃ with Φ̃ = Φ \ {E}, we consider the free left K-modules

MD = K∂, MI = K
∫
, ME = KE, MΦ̃ = KΦ̃ (12)

generated by them (indexed by the symbols D, I, E, and Φ̃). We view these modules as K-
bimodules with right multiplication defined by

cα · d = cdα
18



where α ∈ {∂,
∫
,E} ∪ Φ̃ and c, d ∈ K, since the generators of these modules correspond to left

K-linear operators. We define two alphabets

X = {K, R̃,D, I,E, Φ̃} and Z = X ∪ {R,Φ}, (13)

with the K-bimodules (Mx)x∈X defined in Eqs. (10) and (12) as well as

MR = MK ⊕ MR̃ and MΦ = ME ⊕ MΦ̃. (14)

Now, we define the module M by

M := MR ⊕ MD ⊕ MI ⊕ MΦ, (15)

which turns (Mz)z∈Z into a decomposition with specialization.
In order to compute with these operators, we need to collect identities they satisfy in form

of a reduction system. To this end, we first list identities following immediately from their
definitions (like multiplicativity of functionals, K-linearity, and the Leibniz rule) and some of
their consequences that hold in R. For all f , g ∈ R and ϕ, ψ ∈ Φ:

ϕ f g = (ϕ f )ϕg ∂
∫

g = g
ψϕg = ϕg

∫
∂g = g − Eg

E
∫

g = 0
∫

fϕg = (
∫

f )ϕg
∂ f g = f∂g + (∂ f )g

∫
f∂g = f g −

∫
(∂ f )g − (E f )Eg

∂ϕg = 0
∫

f
∫

g = (
∫

f )
∫

g −
∫

(
∫

f )g

The identities that do not follow immediately from the definitions are E
∫

g = 0, integration by
parts ∫

f∂g = f g −
∫

(∂ f )g − (E f )Eg,

and the Rota-Baxter identity ∫
f
∫

g = (
∫

f )
∫

g −
∫

(
∫

f )g

for the integral. They can either be verified directly or we obtain them in Section 6 as a con-
sequence of S-polynomial computations. All identities listed above correspond to identities for
operators acting on g ∈ R. The reduction system Σ over the alphabet 〈Z〉 is given by Table 1,
defined in terms of all f , g ∈ R and ϕ, ψ ∈ Φ.

In analogy to the definition of reduction homomorphisms in Section 2, the informal defini-
tions in Table 1 have to be made formal. For instance,

βID(
∫
, ∂) := ε − E

is extended to a balanced map on MI × MD via

βID(c
∫
, d∂) := cdβID(

∫
, ∂)

and similarly
βIRΦ(

∫
, f , ϕ) :=

∫
f ⊗ ϕ

with ϕ ∈ Φ is extended to a balanced map on MI × MR × MΦ by

βIRΦ(c
∫
, f ,
∑

i

ciϕi) :=
∑

i

βIRΦ(
∫
, c f ci, ϕi).
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K 1 7→ ε
RR f ⊗ g 7→ f g
ΦR ϕ ⊗ f 7→ (ϕ f )ϕ
ΦΦ ψ ⊗ ϕ 7→ ϕ

EI E ⊗
∫
7→ 0

DR ∂ ⊗ f 7→ f ⊗ ∂ + ∂ f
DΦ ∂ ⊗ ϕ 7→ 0
DI ∂ ⊗

∫
7→ ε

IΦ
∫
⊗ ϕ 7→

∫
1 ⊗ ϕ

ID
∫
⊗ ∂ 7→ ε − E

II
∫
⊗
∫
7→
∫

1 ⊗
∫
−
∫
⊗
∫

1
IRΦ

∫
⊗ f ⊗ ϕ 7→

∫
f ⊗ ϕ

IRD
∫
⊗ f ⊗ ∂ 7→ f −

∫
⊗ ∂ f − (E f )E

IRI
∫
⊗ f ⊗

∫
7→
∫

f ⊗
∫
−
∫
⊗
∫

f

Table 1: Reduction rules for IDOs

Definition 26. Let (R, ∂,
∫

) be an integro-differential ring with constants K. We call

R〈∂,
∫
,Φ〉 := K〈M〉/J

the ring of integro-differential operators, where J is the two-sided reduction ideal induced by the
reduction system obtained from Table 1.

In order to compute in R〈∂,
∫
,Φ〉 we want to analyze the reduction system defined by Table 1

according to Theorem 20 above and determine normal forms of tensors. Following the definition
in Eq. (6), the refined reduction system ΣX is obtained, according to Eq. (14), by splitting rules
whose words contain R or Φ into “smaller” rules using S (R) = {K, R̃} and S (Φ) = {E, Φ̃}. For
example, the reduction rule (ΦR, h) ∈ Σ is split into the rules (W, h|MW ) ∈ ΣX where W ∈ S (ΦR) =

{EK,ER̃, Φ̃K, Φ̃R̃}.

Theorem 27. Let (R, ∂,
∫

) be an integro-differential ring with constants K and let Φ be the set
of multiplicative K-bimodule homomorphisms given by Eq. (11). Let M be defined by Eqs. (14)
and (15) and let the reduction system Σ be defined by Table 1.

Then every t ∈ K〈M〉 has a unique normal form t↓Σ, which is given by a sum of pure tensors
of the form

f ⊗ ϕ ⊗ ∂⊗ j or f ⊗ ϕ ⊗
∫
⊗ g

where j ∈ N0, each of f , g ∈ MR̃ and ϕ ∈ Φ may be absent, and ϕ ⊗
∫

does not specialize to
E ⊗
∫

. Moreover,
R〈∂,
∫
,Φ〉 � K〈M〉irr

as K-rings, where the multiplication on K〈M〉irr is defined by s · t := (s ⊗ t)↓Σ.

Proof. We consider the alphabets X and Z given by Eq. (13). This turns (Mz)z∈Z into a decompo-
sition with specialization for the module M, see Definition 12. For defining a Noetherian monoid
partial order ≤ on 〈Z〉 that is compatible with Σ, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃.
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For instance, we could use a degree-lexicographic order with I > D > Φ > R on 〈{R,D, I,Φ}〉 ⊆
〈Z〉 or other degree-lexicographic orders with D > R and I > R. We extend it to a monoid partial
order on 〈Z〉 based on Definition 16 in order to make it consistent with specialization. Then by
the package TenReS we verify that all ambiguities of Σ are resolvable, see Section 4.1. Hence
by Theorem 20 every element of K〈M〉 has a unique normal form and K〈M〉/IΣ � K〈M〉irr as
K-rings.

It remains to determine the explicit form of elements in K〈M〉irr. To do so, we determine
the set of irreducible words 〈X〉irr in 〈X〉. Irreducible words containing only the letters K and
R̃ have to avoid the subwords K and S (RR) = {KK,KR̃, R̃K, R̃R̃}, hence only the words ε and
R̃ are left. The irreducible words containing only E and Φ̃ are exactly ε, E, and Φ̃, since they
have to avoid the subwords S (ΦΦ) = {EE,EΦ̃, Φ̃E, Φ̃Φ̃}. Altogether, we see that the irreducible
words containing only the letters K, R̃, E, and Φ̃ are given by the set {ε, R̃,E, Φ̃, R̃E, R̃Φ̃}, since
they also have to avoid the subwords S (ΦR) = {EK,ER̃, Φ̃K, Φ̃R̃}. Allowing also the letter D, we
have to avoid the subwords coming from S (DR) = {DK,DR̃} and S (DΦ) = {DE,DΦ̃}. Therefore,
we can only append words D j with j ∈ N0 to the irreducible words determined so far, in order
to obtain all elements of 〈X〉irr not containing the letter I. Finally, we also consider the letter I.
Since subwords EI and DI have to be avoided, the first occurrence of I in an irreducible word
can only be preceded by ε, R̃, Φ̃, or R̃Φ̃. We also have to avoid the subwords S (IΦ) = {IE, IΦ̃},
ID, and II, so any letter immediately following I has to be R̃. In addition, we have to avoid the
subwords S (IRΦ) = {IKE, IKΦ̃, IR̃E, IR̃Φ̃}, S (IRD) = {IKD, IR̃D}, and S (IRI) = {IKI, IR̃I}, so the
letter I cannot be followed by a subword of length greater than one. Altogether, the elements of
〈X〉irr are of the form

R̃VD j or R̃Φ̃IR̃,

where j ∈ N0 and each of R̃, Φ̃, and V ∈ S (Φ) = {E, Φ̃}may be absent. The normal forms follow
from Eq. (3).

Note that the formulae given in Table 1 above to define the reduction system for the tensor
ring are the same as the formulae presented in Table 2 in (Hossein Poor et al., 2016a) for the
tensor algebra with commutative K. Here we use these formulae to define K-bimodule homo-
morphisms via balanced maps instead of defining K-module homomorphisms via multilinear
maps. The same ambiguities need to be considered for checking confluence and we obtain the
same structure of normal forms. Differences arise only from R now being a K-ring instead of a
K-algebra.

4.1. Computational aspects

In the following, we briefly discuss computational details of the tensor setting with special-
ization for integro-differential operators. Applying TenReS to the reduction system Σ, in total 52
ambiguities and corresponding S-polynomials are generated. Among them, there are 4 ambigui-
ties for which the corresponding S-polynomials are zero anyway, for instance

SP(DΦ,EI) = 0 ⊗
∫
− ∂ ⊗ 0 = 0.

The S-polynomials of 48 remaining ambiguities are reduced to zero by applying automatically
the implementation of rules from Σ, identities in R and identities in MD, MI and MΦ. The com-
plete computation is included in the example files of the package. Here we consider a few
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concrete instances of ambiguities. For example, we use the definition of E in R in the reduction
of the following S-Polynomial

SP(IRD,DΦ) = ( f −
∫
⊗ ∂ f − (E f )E) ⊗ ϕ −

∫
⊗ f ⊗ 0→rIRΦ f ⊗ ϕ − (

∫
∂ f ) ⊗ ϕ − (E f )E ⊗ ϕ

= f ⊗ ϕ − ( f − E f ) ⊗ ϕ − (E f )E ⊗ ϕ = E f ⊗ ϕ − (E f )E ⊗ ϕ→rΦΦ E f ⊗ ϕ − (E f )ϕ→rK 0.

As another example, we use the definition of the right multiplication in the K-bimodule MI in the
following reduction

SP(IΦ,ΦR) = (
∫

1⊗ϕ)⊗ f−
∫
⊗(ϕ f )ϕ→rIΦ

∫
1⊗ϕ⊗ f−ϕ f (

∫
1⊗ϕ)→rΦR

∫
1⊗(ϕ f )ϕ−ϕ f (

∫
1⊗ϕ)

= (
∫

1ϕ f ) ⊗ ϕ − ϕ f (
∫

1 ⊗ ϕ) = (ϕ f )
∫

1 ⊗ ϕ − ϕ f (
∫

1 ⊗ ϕ) = ϕ f (
∫

1 ⊗ ϕ) − ϕ f (
∫

1 ⊗ ϕ) = 0.

There are 41 ambiguities without specialization. The remaining 11 ambiguities consist of 4
overlap ambiguities with specialization and 7 inclusion ambiguities with specialization. For
example,

SP(IRΦ,EI) = (
∫

f ⊗ E) ⊗
∫
−
∫
⊗ f ⊗ 0→rEI 0,

and
SP(K,DR) = ∂ ⊗ ε ⊗ ε − 1 ⊗ ∂ →rK ∂ − ∂ = 0.

We emphasize again that the confluence criterion of Theorem 20 directly works with the reduc-
tion system Σ, no computations with the refined reduction system ΣX over X are needed.

5. Integro-differential operators with linear substitutions

In this section, we apply our tensor setting with specialization to extend the ring of integro-
differential operators by adding linear substitution operators. An important motivation for study-
ing this ring comes from the work by Quadrat (2015). In this paper, such operators and their
commutation rules are used for an algorithmic approach to Artstein’s integral transformation of
linear differential systems with delayed inputs to linear differential system without delays. IDOs
with linear substitutions also address the univariate case in (Rosenkranz et al., 2015), where al-
gebraic aspects of multivariate integration with linear substitutions are studied. Moreover, they
provide an algebraic setting for dealing with delay differential equations and the corresponding
initial and boundary problems in general.

A delay differential equation is an ordinary differential equation in which the derivative at a
certain time depends on the solution at prior times; see, for example, (Hale and Verduyn Lunel,
1993; Smith, 2011). A general first-order constant delay equation has the form

y′(x) = f (x, y(x), y(x − b1), y(x − b2), . . . , y(x − bn))

where the time delays b j for 1 ≤ j ≤ n are positive constants. A homogeneous linear first-order
time-delay equation with one constant delay has the form

y′(x) = A(x)y(x) + B(x)y(x − b).

The chain rule and integration by substitution from calculus describe the interaction of linear
substitutions f (ax − b) with differentiation and integration. More formally, let σa,b denote the
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linear substitution operator mapping a smooth function f (x) to f (ax − b) for a nonzero constant
a and an arbitrary constant b. Then

∂xσa,b f (x) = a f ′(ax − b) = aσa,b∂x f (x)

and∫ x

0
σa,b f (t) dt =

∫ x

0
f (at − b) dt =

1
a

∫ ax−b

−b
f (t) dt =

1
a
σa,b

∫ x

0
f (t) dt −

1
a

Eσa,b

∫ x

0
f (t) dt.

Following these identities, we want to define an integro-differential ring with linear substitu-
tions. In what follows, C = K ∩Z(R) denotes the ring of elements of K which commute with all
elements of R and C∗ denotes its group of units. In order to find a proper algebraic setting, we
will add an axiomatization of linear substitution operations to an integro-differential ring.

Definition 28. Let (R, ∂,
∫

) be an integro-differential ring with constants K and let

S := {σa,b | a ∈ C∗, b ∈ C}

where σa,b : R → R are multiplicative K-bimodule homomorphisms on R fixing the constants K
such that

σ1,0 f = f , σa,bσc,d f = σac,bc+d f (16)

and
∂σa,b f = aσa,b∂ f (17)

for all a, c ∈ C∗, b, d ∈ C and f ∈ R. Then we call (R, ∂,
∫
, S ) an integro-differential ring with

linear substitutions.

Remark 29. The set S along with composition can be considered as a group of K-bimodule
homomorphisms on R. The neutral element is σ1,0 and the inverse for σa,b ∈ S is given by

σ−1
a,b = σa−1,−ba−1 .

So the elements in S actually are automorphisms.

As in analysis, integration by substitution is a consequence of the chain rule and the funda-
mental theorem of calculus.

Lemma 30. Let (R, ∂,
∫
, S ) be an integro-differential ring with linear substitutions. For all

σa,b ∈ S and f ∈ R, ∫
σa,b f = a−1(id − E)σa,b

∫
f . (18)

Proof. We first apply
∫

to Eq. (17). So∫
∂σa,b f =

∫
aσa,b∂ f = a

∫
σa,b∂ f .

By Eq. (9), we substitute
∫
∂σa,b f with (id − E)σa,b f and multiply the resulting equation by a−1.

This gives the identity ∫
σa,b∂ f = a−1(id − E)σa,b f ,

which implies Eq. (18) by just replacing f with
∫

f .
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In the sequel, we fix an integro-differential ring with linear substitutions (R, ∂,
∫
, S ) with

constants K and evaluation E = id −
∫
∂. We consider the modules MK, MR̃, MD, MI, ME, MΦ̃,

MR, and MΦ which are introduced in Eqs. (10), (12), and (14). In addition, we add the free left
K-module

MG := KS .

We also view it as a K-bimodule with the right multiplication defined by cσa,b · d = cdσa,b with
c, d ∈ K. It has the direct sum decomposition

MG = MN ⊕ MG̃

such that MN := Kσ1,0 is the K-bimodule generated by the trivial substitution σ1,0 = id and
MG̃ := KS̃ is the K-bimodule generated by all linear substitutions in S̃ = S \ {σ1,0}. Therefore
we take the alphabets

X := {K, R̃,D, I,E, Φ̃,N, G̃}, Z := X ∪ {R,Φ,G}. (19)

With the K-bimodules

MR = MK ⊕ MR̃, MΦ = ME ⊕ MΦ̃, MG = MN ⊕ MG̃, (20)

we define
M := MR ⊕ MD ⊕ MI ⊕ MΦ ⊕ MG. (21)

Then (Mz)z∈Z is a decomposition with specialization.
In addition to the identities of IDOs that we collected in Section 4, the identities for IDOs

with linear substitutions include additional identities involving the substitution operators. Again,
we first collect some identities involving substitution operations that hold in R. For all f , g ∈ R,
ϕ ∈ Φ and σa,b, σc,d ∈ S we have:

σ1,0g = g σa,bσc,dg = σac,bc+dg
σa,b f g = (σa,b f )(σa,bg) ∂σa,bg = aσa,b∂g

σa,bϕg = ϕg
∫

fσa,bg = a−1(id − E)σa,b
∫

(σ−1
a,b f )g

The only identity above that does not follow immediately from Definition 28 is∫
fσa,bg = a−1(id − E)σa,b

∫
(σ−1

a,b f )g.

It can be verified by replacing f with (σ−1
a,b f )g in Lemma 30 and then using multiplicativity of

σa,b. Corresponding reduction rules to these identities in R are listed in Table 2.
In order to obtain our reduction system Σ over the alphabet 〈Z〉, we consider reduction rules

of the Table 1 along with the reduction rules of the Table 2 simultaneously.

Definition 31. Let (R, ∂,
∫
, S ) be an integro-differential ring with linear substitutions. We call

R〈∂,
∫
,Φ, S 〉 := K〈M〉/J

the ring of integro-differential operators with linear substitutions, where J is the two-sided re-
duction ideal induced by the reduction system obtained from adjoining Table 2 to Table 1.
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N σ1,0 7→ ε

GR σa,b ⊗ f 7→ σa,b f ⊗ σa,b

GΦ σa,b ⊗ ϕ 7→ ϕ

GG σa,b ⊗ σc,d 7→ σac,bc+d

DG ∂ ⊗ σa,b 7→ aσa,b ⊗ ∂

IG
∫
⊗ σa,b 7→ a−1(ε − E) ⊗ σa,b ⊗

∫
IRG

∫
⊗ f ⊗ σa,b 7→ a−1(ε − E) ⊗ σa,b ⊗

∫
⊗ σ−1

a,b f

Table 2: New reduction rules for IDOs with linear substitutions

Similar to the previous example, the refined reduction system ΣX is obtained, according to
Eq. (20), by splitting rules whose words contain R, Φ or G into “smaller” rules using S (R) =

{K, R̃}, S (Φ) = {E, Φ̃} and S (G) = {N, G̃}. Following Theorem 20, we determine normal forms
of tensors in R〈∂,

∫
,Φ, S 〉.

Theorem 32. Let (R, ∂,
∫
, S ) be an integro-differential ring with linear substitutions and let M

be as in Eqs. (21) and (20) and let the reduction system Σ be defined by Tables 1 and 2. Then
every t ∈ K〈M〉 has a unique normal form given by a sum of pure tensors

f ⊗ ϕ ⊗ σa,b ⊗ ∂
⊗ j or f ⊗ ϕ ⊗ σa,b ⊗

∫
⊗ g,

where j ∈ N0, each of f , g ∈ MR̃, ϕ ∈ Φ and σa,b ∈ S̃ may be absent, and ϕ ⊗ σa,b ⊗
∫

does not
specialize to E ⊗

∫
. Moreover, with defining the multiplication s · t := (s ⊗ t)↓Σ on K〈M〉irr

R〈∂,
∫
,Φ, S 〉 � K〈M〉irr.

Proof. We consider the alphabets X and Z as defined in Eq. (19). Then (Mz)z∈Z is a decomposi-
tion with specialization for the module M, see Definition 12. For defining a Noetherian monoid
partial order ≤ on 〈Z〉 that is compatible with Σ, it is sufficient to require the order to satisfy

DR > RD, IRD > E, ID > E, I > R̃, GR > RG, DG > GD, IG > EGI, IRG > EGIR.

For instance, on 〈Y〉 with Y = {R,D, I,Φ,G} we first define a monoid order by

V ≤ W :⇔ Ṽ ≺ W̃ or Ṽ = W̃ and V � W,

where Ṽ and W̃ are obtained by removing all occurrences ofΦ, cf. Remark 4, and � is the degree-
lexicographic order with I � D � G � Φ � R on 〈Y〉. Then, we extend ≤ to a monoid partial
order on 〈Z〉 based on Definition 16 in order to make it consistent with specialization.

Then by the package TenReS we verify that all ambiguities of Σ are resolvable, see Sec-
tion 5.1. Hence by Theorem 20 every element of K〈M〉 has a unique normal form and K〈M〉/IΣ �
K〈M〉irr as K-rings.

It remains to determine the explicit form of elements in K〈M〉irr. To do so, we determine the
set of irreducible words 〈X〉irr in 〈X〉. Note that ΣIDO ⊂ Σ, where ΣIDO is given by Table 1. Hence
the irreducible words w.r.t. Σ are among the irreducible words w.r.t. ΣIDO. In Theorem 27, we
already determined the irreducible words that do not contain the letters N and G̃ to be of the form

R̃VD j or R̃Φ̃IR̃,
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where j ∈ N0 and each of R̃, Φ̃, and V ∈ S (Φ) may be absent.
The irreducible words containing only N and G̃ are exactly ε and G̃, since they have to avoid

the subwords N and S (GG) = {NN,NG̃, G̃N, G̃G̃}. The irreducible words in 〈X〉irr also have to
avoid subwords from S (GR), S (GΦ), S (DG), S (IG), and S (IRG). Hence they are of the form

R̃VG̃D j or R̃VG̃IR̃,

where j ∈ N0 and each of R̃, G̃, and V ∈ S (Φ) may be absent and VG̃I does not specialize to EI.
The normal forms follow from Eq. (3).

5.1. Computational aspects
In the following, we shortly mention some computational details of the tensor setting with

specialization for integro-differential operators with linear substitutions. Applying TenReS to
the reduction system Σ given by Tables 1 and 2, in total 87 ambiguities and corresponding S-
polynomials are generated. All ambiguities are resolvable and the automatic verification can be
found in the example files of the package. There are 66 ambiguities without specialization. For
instance,

SP(IRΦ,EI) = (
∫

f ⊗ E) ⊗
∫
−
∫
⊗ f ⊗ 0→rEI

∫
f ⊗ 0 = 0,

and

SP(IG,GR) = (a−1σa,b ⊗
∫
− a−1E ⊗ σa,b ⊗

∫
) ⊗ f −

∫
⊗ (σa,b f ⊗ σa,b)

= a−1σa,b ⊗
∫
⊗ f − a−1E ⊗ σa,b ⊗

∫
⊗ f −

∫
⊗ σa,b f ⊗ σa,b →rIRG 0.

The remaining 21 ambiguities consist of 5 overlap ambiguities with specialization and 16 inclu-
sion ambiguities with specialization. They all involve the following three reduction rules (over
X)

(K, 1 7→ ε), (EI,E ⊗
∫
7→ 0), (N, σ1,0 7→ ε)

and their S-polynomials can be reduced to zero. For example,

SP(N,DG) = ∂ ⊗ ε − σ1,0 ⊗ ∂→rN ∂ − ∂ = 0,

and

SP(N, IRG) =
∫
⊗ f − (ε − E) ⊗ σ1,0 ⊗

∫
⊗ f →rN E ⊗ σ1,0 ⊗

∫
⊗ f →rN E ⊗

∫
⊗ f →rEI 0.

6. Completion of tensor reduction systems

For computing in the quotient ring K〈M〉/IΣ, we would like to compute with a system of
representatives. By Theorem 6, the irreducible tensors K〈M〉irr are such a system if the tensor
reduction system is confluent. If the reduction system is not confluent, we want to construct a
confluent one that generates the same reduction ideal of Eq. (4).

Like Buchberger’s algorithm (Buchberger, 1965) and Knuth-Bendix completion (Knuth and
Bendix, 1970), the completion process involves adding new rules corresponding to non-resolvable
ambiguities (S-polynomials resp. critical pairs); see also (Buchberger, 1987). Obstructions for
general algorithms are inherited from the noncommutative polynomial algebra case (Mora, 1994),
e.g., deciding existence of finite Gröbner bases and the undecidability of the word problem. Un-
like noncommutative Gröbner basis computations and Knuth-Bendix completion, where we have
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semi-decision algorithms, the method we describe for completing tensor reduction systems in-
volves also non-algorithmic steps. One of the main difficulties is to define a new reduction homo-
morphism based on the S-polynomials of a non-resolvable ambiguity. Since for verification of
confluence, a compatible semigroup partial order is sufficient, one can also start the completion
process with a compatible semigroup partial order instead of a total one. Extending this order in
a compatible way may not always be possible.

Before we discuss aspects of the completion process for tensor reduction systems more for-
mally below, we have a look at a few concrete non-resolvable ambiguities. We start with the
following reduction rules for integro-differential operators that follow immediately from the def-
inition:

Σ0 = {(K, 1 7→ ε), (RR, f ⊗ g 7→ f g), (ΦR, ϕ ⊗ f 7→ (ϕ f )ϕ), (ΦΦ, ψ ⊗ ϕ 7→ ϕ)

(DR, ∂ ⊗ f 7→ f ⊗ ∂ + ∂ f ), (DΦ, ∂ ⊗ ϕ 7→ 0), (DI, ∂ ⊗
∫
7→ ε), (ID,

∫
⊗ ∂ 7→ ε − E)}

On 〈Z〉 we define a partial order ≤ based on the length of words with the additional property that
DR > RD. Generating from it the minimal partial order that is consistent with specialization
means that we also have to define DK > KD, DK > R̃D, DR̃ > KD, and DR̃ > R̃D. In order to
obtain the minimal semigroup partial order generated by that, we not only have to define ADRB >
ARDB for any A, B ∈ 〈Z〉, but also for all k ≥ 2 the general condition A1DRA2DR . . .DRAk >
A1RDA2RD . . .RDAk for all Ai ∈ 〈Z〉 along with all 22k−2 specializations R ∈ {K, R̃}. The
resulting semigroup partial order ≤ is compatible with Σ0.

The rules rDI and rID have two overlap ambiguities with each other, one is resolvable and one
is not. The latter has S-polynomial

SP(ID,DI) = (ε − E) ⊗
∫
−
∫
⊗ ε = −E ⊗

∫
.

This trivially gives rise to the new rule

(EI,E ⊗
∫
7→ 0).

The rules rID and rDR have a non-resolvable overlap ambiguity with S-polynomials

SP(ID,DR) = (ε − E) ⊗ f −
∫
⊗ ( f ⊗ ∂ + ∂ f )→rΦR f − (E f )E −

∫
⊗ f ⊗ ∂ −

∫
⊗ ∂ f .

While we could reduce further, by using rK for example, we will not be able to reduce to zero for
all f ∈ R. Based on the expression above, however, we can introduce a new rule

(IRD,
∫
⊗ f ⊗ ∂ 7→ f − (E f )E −

∫
⊗ ∂ f )

that allows to reduce all the S-polynomials of the overlap ambiguity of rID and rDR to zero. This
rule gives rise to a non-resolvable overlap ambiguity with rDI among others. The corresponding
S-polynomials can be reduced to

SP(IRD,DI) = ( f − (E f )E −
∫
⊗ ∂ f ) ⊗

∫
−
∫
⊗ f ⊗ ε →rEI f ⊗

∫
−
∫
⊗ ∂ f ⊗

∫
−
∫
⊗ f .

We would like to have a new reduction homomorphism on MIRI that reduces
∫
⊗ ∂ f ⊗

∫
to

f ⊗
∫
−
∫
⊗ f . Replacing f by

∫
f , we arrive at the definition

(IRI,
∫
⊗ f ⊗

∫
7→
∫

f ⊗
∫
−
∫
⊗
∫

f ).
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Finally, we consider the inclusion ambiguity (with specialization) of this new rule with rK,
which has irreducible S-polynomials

SP(K, IRI) =
∫
⊗ ε ⊗

∫
− (
∫

1 ⊗
∫
−
∫
⊗
∫

1) =
∫
⊗
∫
−
∫

1 ⊗
∫

+
∫
⊗
∫

1.

At this point, the leading term is not determined by our partial order above. We decide to have
the new rule

(II,
∫
⊗
∫
7→
∫

1 ⊗
∫
−
∫
⊗
∫

1)

and extend ≤ accordingly to have it compatible with the new rule. Similarly, the overlap ambi-
guity of rIRD and rDΦ gives rise to the rule rIRΦ, which in turn has an inclusion ambiguity with rK

giving rise to rIΦ. Thereby we obtain the reduction system given in Table 1. The whole comple-
tion process for both Table 1 and 2 can be found in the example files of the TenReS package.

In the following, we discuss these issues more formally. For a better overview we consider
three different tensor settings starting with the special case of a total order for Bergman’s orig-
inal setting, which already covers most issues that may arise during the completion process.
Incrementally we discuss the problems arising in more general situations below. After that we
illustrate some of those problems by revisiting the computations done for Σ0 above.

Bergman’s tensor setting with a total order. Based on the direct sum decomposition (2) into
word modules MW we define the support of a tensor t ∈ K〈M〉 by

supp(t) := {W ∈ 〈X〉 | πW (t) , 0}, (22)

where πW denotes the canonical projection onto the direct summand MW of K〈M〉. For each
non-resolvable ambiguity, the following points have to be considered.

• We apply a sequence of reductions uniformly to the bimodule generated by S-polynomials
to obtain a new bimodule S red generated by reduced S-polynomials. It is not necessary to
have S red ⊆ K〈M〉irr.

• Among all possible supports supp(S red) = {supp(t) | t ∈ S red} we pick some nonempty
support S ∈ supp(S red), e.g. a maximal element of supp(S red) w.r.t. ⊆. The total order ≤
determines a maximal element W ∈ S , determining the “leading term” of the correspond-
ing tensors in S red.

• A new homomorphism h should be defined on MW that allows to reduce t ∈ S red ∩ MS

with πW (t) , 0 to zero, where MS is defined in Eq. (7) as the sum of all modules MV with
V ∈ S . In addition, h has to be defined such that id − h maps MW into IΣ, i.e. the reduction
ideal stays the same IΣ = IΣ∪{(W,h)}. To discuss this we consider the subbimodule N of S red
generated by all t ∈ S red ∩MS with πW (t) , 0. This bimodule N is contained in S red ∩MS ,
but they are not necessarily equal. If πW : N → MW is bijective, then it is natural to define
h via h(πW (t)) = πW (t) − t. Such a homomorphism may not exist for two reasons.

– If there are distinct t1, t2 ∈ N with πW (t1) = πW (t2), then we cannot have h(πW (t1)) =

πW (t1) − t1 and h(πW (t2)) = πW (t2) − t2 at the same time. In that case, we need to
be content with some homomorphism g : MW → N such that h(t) = t − g(t) and
πW ◦ g = id. As a consequence t1 − t2 ∈ S red may still not be reducible to zero with
Σ ∪ {(W, h)}.
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– If there is a t ∈ MW that is not in πW (N), then it is not clear how to define h on
all of MW so that ≤ is still compatible with Σ ∪ {(W, h)}, in particular πW (h(MW )) =

{0}, without violating IΣ = IΣ∪{(W,h)}. Instead of N, considering the larger bimodule
Ñ := S red ∩

⊕
V≤W MV might satisfy πW (Ñ) = MW . If not, it may be necessary to

split some modules Mx, x ∈ X, further in order to turn πW (N) or πW (Ñ) into a word
module MV over some new alphabet X.

• Finally, we include the new reduction rule (W, h) into Σ. If supp(S red) , {∅, S }, then it may
happen that the new rule is not sufficient to reduce all elements of S red to zero. In that case,
we need to check resolvability of the current ambiguity again.

Bergman’s tensor setting with a partial order. The only new issue that appears with a partial
order ≤ on words that is not a total order, is that the “leading term” of tensors in S red may not be
determined by the order. If the selected support S ∈ supp(S red) does not have a greatest element
already, we need to choose a word W ∈ S so that we can extend the semigroup partial order in
a compatible way, i.e. W becomes the greatest element of S . Such a choice is not guaranteed to
exist.

Tensor setting with specialization. The first thing to note is that we cannot have a total order on
〈Z〉 that is consistent with specialization (as long as Z , X). All points of the above discussion
apply also to decompositions of M with specialization except that supp(S red) should now be
defined as supp(S red) =

⋃
{supp(t) | t ∈ S red} where for a particular tensor t we now define

supp(t) as the set of “all possible supports”

supp(t) := {S ⊆ 〈Z〉 | t ∈ MS ,∀W, W̃ ∈ S : πW (t) , 0 ∧ S (W) ∩ S (W̃) = ∅}.

Other than that, no new fundamental obstacles arise in this setting. We just add a few remarks.
It can be advantageous to pick supports with words associated to bigger modules in order to

construct reduction homomorphisms h with larger domains. Also, it can be useful to introduce
additional letters to the alphabet Z in order to collect some of the bimodules appearing in the pro-
cess. We illustrate some of the points discussed formally by revisiting the concrete ambiguities
treated above.

The first and simplest case above was the overlap ambiguity of rID and rDI with words I,
D, and I. All S-polynomials are irreducible w.r.t. Σ0 and the bimodule generated by them has
supp(S red) = {∅, {EI}, {ΦI}}. Picking S = {ΦI} and W = ΦI would lead to πW |S red not being
surjective onto MW . So the choice S = {EI} and W = EI is preferable and we can define the
homomorphism h : MW → K〈M〉 of rEI by h(πW (t)) = πW (t) − t = 0 in this case.

For the overlap ambiguity of rID and rDR we applied the reduction hε,rΦR,ε to all S-polynomials.
The bimodule generated by them now has

supp(S red) = {∅, {K,E, IKD}, {R̃, IR̃D, IK}, {R̃, IR̃D, ˜IR}, {R̃, IR̃D, IR},

{R,E, IRD, IK}, {R,E, IRD, IR̃}, {R,E, IRD, IR}, . . . }.

The chosen partial order ≤ determines a greatest element of most S ∈ supp(S red). Picking S ∈
supp(S red) with the largest MS gives S = {R,Φ, IRD, IR} and W = IRD so that πW : S red → MW

is bijective. This allows for a straightforward definition of rIRD again.
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A more interesting case is the overlap ambiguity of rIRD and rDR with words IR, D, R. After
applying the reduction hε,rEI,ε to all S-polynomials the bimodule generated by them has

supp(S red) = {∅, {KI, IK}, {R̃I, IKI, IR̃}, {RI, IKI, IR}, {R̃I, IR̃I, IR̃}, {RI, IR̃I, IR}, {R̃I, IRI, IR̃},

{RI, IRI, IR}, {RI, IR}, {KI, R̃I, IKI, IK, IR̃}, . . . }.

Picking again one S ∈ supp(S red) with the largest MS gives S = {RI, IRI, IR} and W = IRI.
Now N = S red and πW : S red → MW is surjective but not injective. We choose the bimodule
homomorphism g : MW → S red to be defined by g(

∫
⊗ f ⊗

∫
) =
∫
⊗ f ⊗

∫
+
∫
⊗
∫

f −
∫

f ⊗
∫

.
It satisfies πW ◦ g = id and we define the homomorphism h : MW → K〈M〉 of rIRI by h := id − g.
While hε,rIRI,ε does not map S red to {0}, the image contains only elements of the form c⊗

∫
−
∫
⊗ c

with c ∈ K, which are reducible to zero by Σ0.
The last ambiguity dealt with explicitly above is the inclusion ambiguity (with specialization)

of rIRI and rK. Its S-polynomials are irreducible and we have

supp(S red) = {∅, {II, R̃I, IR̃}, {II, R̃I, IR}, {II,RI, IR̃}, {II,RI, IR}}.

As pointed out already, the partial order does not determine a greatest element within any of the
possible supports. Since πW : S red → MW is not surjective except for W = II, we would have
to split MR̃ further in order to define a new reduction rule on πW (S red) in all other cases. So we
choose W = II and extend the semigroup partial order such that II > R̃I and II > IR̃.

7. Concluding remarks

A ring of operators may not be finitely presented by generators and relations, it may not even
be finitely generated. The tensor setting nonetheless often allows to have a finite decomposition
of the module M of basic operators together with a finite reduction system. Reduction rules
need to be defined by homomorphisms due to non-uniqueness of the representation of tensors.
In addition, homomorphisms collect families of relations into one reduction rule. If a reduction
system is confluent, the normal forms are unique as tensors while tensors themselves do not have
unique representations in terms of pure tensors. Both the theoretical concepts and the concrete
formulae for the reduction systems in the examples presented essentially are the same when
working in the tensor algebra or in the tensor ring.

In comparison to Bergman’s tensor setting, our tensor setting with specialization allows more
flexibility in defining a reduction system for a given ring of operators. This is achieved by re-
laxing the restriction that the submodules of M that are used for defining the reduction homo-
morphisms have to form a direct sum. As a consequence, reduction systems can be smaller and
reduction is more efficient by avoiding unnecessary splitting.

Already when we compare quotients of the tensor algebra with quotients of the free algebra
we note some important differences. All computations in quotients of the free algebra happen on
two levels: polynomial arithmetic in the free algebra and polynomial reduction modulo the ideal.
Computations in the K-algebra K〈M〉 actually take place on three levels. The additional level
are computations in the module M and its submodules Mz. Analogous to the free algebra there
are computations in K〈M〉 coming from the properties of the tensor product and the reduction
system that acts by applying the reduction homomorphisms.

Depending on the choice of the module M and its decomposition, certain identities of oper-
ators either are dealt with by the reduction system or only within the module M. One extreme
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case occurs when M already is the whole K-ring of operators. Then the reduction system only
consists of the rules 1 7→ ε and m1 ⊗ m2 7→ m1m2 which do not expose any structure of the ring
of operators. Another extreme case occurs when M is some module that generates the ring of op-
erators and all Mz are cyclic. Then the reduction system has to encode all identities among those
generators, which makes it harder to have a finite reduction system. For instance, any confluent
reduction system for IDOs with polynomial coefficients K[x]〈∂,

∫
,E〉, Q ⊆ K, is infinite if M is

just generated by x, ∂,
∫

, and E. In between those two extreme cases there is the opportunity to
encode only part of the identities by the reduction system and “hide” the remaining ones inside
the modules Mz. For instance, following the construction of K[x]〈∂,

∫
,E〉, Q ⊆ K, given in Sec-

tion 4 the module M consists of K[x] and the modules generated by ∂,
∫

, and E and the confluent
reduction system given in Table 1 with R = K[x] is finite. Finiteness of this reduction system can
be understood by recalling that reduction rules can collect many identities of the same form into
one reduction homomorphism.

In principle, if M is a free module, one could reformulate each reduction rule in terms of
reduction rules on individual basis elements and work in the free algebra without making use
of tensors. Consequently, computations with the reduction system would then have to use basis
expansion in each step. In the tensor setting, however, we do not need to fix a basis of the module
M. It is enough to work with the decomposition into modules Mz, which also enables working
with non-free modules. This even allows to consider arbitrary modules M that are not concrete
but carry a certain algebraic structure. For example, the reduction systems and the computations
for checking their confluence in Sections 4 and 5 do not rely on a concrete integro-differential
ring R.

Based on the normal forms, a confluent reduction system for a ring of operators enables to
automatize many computations and proofs involving these operators. The confluent reduction
systems given for IDOs and IDOs with linear substitutions can be used e.g. to prove the Tay-
lor formula, to compute Green’s operators of linear ordinary boundary problems, or to support
computations in Artstein’s reduction of linear time-delay systems. Since K is neither required to
be a field nor commutative, we can directly consider operators with matrix coefficients to model
systems. Elements in R can even model matrices of generic size. The tensor setting can also be
used to model other rings of operators. For example, we already have results for IDOs with more
general types of functionals or a discrete analog of IDOs.
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