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We present a new version of the Maple package IntDiffOp [6, 7] for Symbolic Computation with boundary
problems for linear ordinary differential equations. The solution of boundary problems for linear ordinary differential
equations is of great practical importance, and there is a vast literature on their analytic treatment [4, 14, 1, 5, 2].
A new symbolic approach was introduced in [10] and subsequently generalized to a differential algebra setting in
[11]. For a recent survey and references on our symbolic approach to boundary problems we refer to [13]. The first
implementations were coded in Mathematica/TH∃OREM∀, as an external package in [10] for boundary problems with
constant coefficients and as an internal functor in [12, 15, 13] for generic integro-differential algebras. In contrast to
the stepwise reduction approach of the Mathematica packages, the IntDiffOp package uses normal forms (up to basis
expansion) [9]. In [7] we give a detailed description of the functionality for solving and factoring regular boundary
problems (i.e. those having a unique solution for every right hand side), similar to the package in [15]. Moreover, we
introduce an algorithmic approach for singular boundary problems and generalized Green’s operators [8, 3].

In the new version, our main purpose was on the one hand to improve the usability of the procedures for treating
boundary problems. The functions accept, where applicable, input in usual Maple syntax as used for dsolve. So one
can solve and manipulate boundary problems with the IntDiffOp package without having to use the syntax for integro-
differential operators. On the other hand, we provide an interface for integro-differential operators by overloading the
usual arithmetic operators. The package is available at http://www.risc.jku.at/people/akorpora/index.html.
We also provide two worksheets illustrating the new functionalities.

The new command for solving boundary problems is bdsolve. It uses the Maple function dsolve for computing a
fundamental system for the homogeneous differential equation. Boundary problems are represented as a list consisting
of a differential equation as the first entry followed by (possibly inhomogeneous) boundary conditions. If the optional
argument gf is set to 1, the Green’s function for regular two-point boundary problems with homogeneous boundary
conditions is computed. The function bdsolve can also solve multipoint boundary problems.

> with(IntDiffOp):
> ode := diff(u(x), x, x) = f(x): bcs := u(0) = 2, u(1) = 5:
> bdsolve([ode, bcs]);
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> bdsolve([ode, bcs], gf = 1);{
−ξ + xξ 0 ≤ ξ and ξ ≤ x and x ≤ 1

−x+ xξ 0 ≤ x and x ≤ ξ and ξ ≤ 1
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Maple’s dsolve can currently compute solutions for simple boundary problems, but there is no systematic support
for boundary conditions. If in the previous example the first condition is replaced by u(0)+D(u)(0) = 2, it does not
find a solution. Moreover, the functions of the IntDiffOp package allow global conditions involving integrals, which
occur naturally during factoring boundary problems or treating singular problems. We also use normal forms for
integro-differential operators, involving only single integrals, while dsolve returns nested integrals.

For singular boundary problems, which are not solvable for all forcing functions f , the command Compatibility-
Conditions computes the constraints for f . For such problems, one has to choose a complement of the image of the
differential operator restricted to the functions satisfying the boundary conditions. The solution is then computed for
the projection of f onto the space of functions satisfying the compatibility conditions along this exceptional space.
In bdsolve, the exceptional space can be specified with the optional argument es.

> bcs3 := D(u)(0) = 0, D(u)(1) = 0, u(1)=0:
> CompatibilityConditions([ode, bcs3]);
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f(x) dx = 0

> bdsolve([ode, bcs3], es=1);
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The procedure IsRegular uses the same input as bdsolve and tests if a boundary problem is regular and if a set
of functions forms a basis for an admissible exceptional space. Also other functions from the IntDiffOp package like
GreensOperator or FundamentalSystem have been modified to allow input in Maple notation. The new function
bdfactor factors boundary problems into lower-order problems. It uses the Maple function dfactor for factoring
differential operators. The output of bdfactor are boundary problems in Maple notation, which can also serve as
input for further computations.

> bcs2 := u(0) = 0, u(1) = 0:
> G := GreensOperator([ode, bcs2]):
> f1, f2 := bdfactor([ode, bcs2]);

f1, f2 :=

[
d

dx
u(x) = f(x),

1w

0

u(x) dx = 0

]
,
[ d

dx
u(x) = f(x), u(0) = 0

]
> G1 := GreensOperator(f1): G2:= GreensOperator(f2):
> SubtractOperator(G, MultiplyOperator(G2, G1));

0

The IntDiffOperations package predefines basic integro-differential operators and overloads the arithmetic oper-
ators. The differential and integral operator are denoted by d and a. For the output we use the symbols defined
in IntDiffOp (per default D and A). The action of integro-differential operators on functions is denoted by ‘&*‘.
Algebraic expressions are interpreted as multiplication operators, and the evaluation at a point c is denoted by e(c).

> with(IntDiffOperations):
> d, a, d&*f(x), a&*f(x);

D, A,
d

dx
f(x),

xw

0

f(x) dx

> (1+x^2+sin(x))&*f(x); (
1 + x2 + sin(x)

)
f(x)

> e(0), e(1), e(0)&*f(x), e(1)&*f(x);
E[0], E[1], f(0), f(1)
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For the noncommutative multiplication of integro-differential operators we overload ‘.‘. The first examples below
show the defining relations for the algebra of integro-differential operators with polynomial coefficients. We overload
respectively ‘+‘, ‘-‘, ‘ˆ‘, and ‘*‘ for the sum, difference, exponentiation, and scalar multiplication.

> d.x, d.a, a.d, a.a, e(1).e(0);

1 + x . D, 1, 1 − E[0], x . A − A . x, E[0]

> 1+3*d + (x^2).d+sin(x).d^2-a^2+(x^2).e(0)+e(1).(a.x);

1 + (xˆ2 + 3) . D + sin(x) . Dˆ2 − x . A + A . x + xˆ2 . E[0] + E[1] . A . x

> %&*f(x);

f(x) + (x2 + 3)
( d

dx
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dx2
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