
A Symbolic Framework for Operations on
Linear Boundary Problems

Markus Rosenkranz1, Georg Regensburger1,
Loredana Tec2, and Bruno Buchberger2

1 Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria

2 Research Institute for Symbolic Computation,
Johannes Kepler Universität, 4032 Castle of Hagenberg, Austria

Abstract. We describe a symbolic framework for treating linear bound-
ary problems with a generic implementation in the Theorema system. For
ordinary differential equations, the operations implemented include com-
puting Green’s operators, composing boundary problems and integro-
differential operators, and factoring boundary problems. Based on our
factorization approach, we also present some first steps for symbolically
computing Green’s operators of simple boundary problems for partial
differential equations with constant coefficients. After summarizing the
theoretical background on abstract boundary problems, we outline an
algebraic structure for partial integro-differential operators. Finally, we
describe the implementation in Theorema, which relies on functors for
building up the computational domains, and we illustrate it with some
sample computations including the unbounded wave equation.

Key words: Linear boundary problem, Green’s operator, Integro-Differential
Operator, Ordinary Differential Equation, Wave Equation

1 Introduction

Due to their obvious importance in applications, boundary problems play a dom-
inant role in Scientific Computing, but almost exclusively in the numerical seg-
ment. It is therefore surprising that they have as yet gained little attention in
Symbolic Computation, neither from a theoretical perspective nor in computer
algebra systems.

In applications [1, p. 42] one is “concerned not only with solving [the bound-
ary problem] for specific data but also with finding a suitable form for the solu-
tion that will exhibit its dependence on the data.” In our work, we focus on linear
boundary problems (and will henceforth suppress the attribute “linear”). For us,
a boundary problem is thus a differential equation with a symbolic right-hand
side, supplemented by suitable boundary conditions. Solving it means to deter-
mine its Green’s operator, namely the integral operator that maps the right-hand
side to the solution. For a symbolic approach to boundary problems, one has to



2 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

develop a constructive algebraic theory of integral operators and an algorithmic
framework for manipulating boundary conditions.

Such a development was initiated in [2], leading to a symbolic method for
computing Green’s operators of regular two-point boundary problems with con-
stant coefficients [3]. We extended these results to a differential algebra setting
in [4], where we also developed a factorization method applicable to boundary
problems for ordinary differential equations (ODEs). A more abstract view on
boundary problems and a general factorization theory is described in [5], includ-
ing in particular partial differential equations (PDEs).

In this paper, we describe a prototype implementation in Theorema [6], cur-
rently based on a raw interface that will be improved in the future. It provides
generic algorithms for various operations on boundary problems and integro-
differential operators for ODEs (Section 5), exemplified in (Appendix A): com-
puting Green’s operators, composing boundary problems and integro-differential
operators, and factoring boundary problems. The computations are realized by
a suitable noncommutative Gröbner basis that reflects the essential interactions
between certain basic operators. Gröbner bases were introduced by Buchberger
in [7]. For an introduction to the theory, we refer to [8], for its noncommutative
extension to [9].

Moreover, for PDEs we present some first steps for making the abstract
setting of [5] algorithmic. We develop an algebraic language for encoding the
integro-differential operators appearing as Green’s operators of some simple two-
dimensional Dirchlet problems for PDEs with constant coefficients (Section 4).
Using our generic factorization approach, this allows to find the Green’s oper-
ator of higher-order boundary problems by composing those of its lower-order
factors. This idea is exemplified for the unbounded wave equation with a sample
computation (Appendix A).

For the broader audience of Scientific Computing, we summarize the neces-
sary theoretical background on abstract boundary problems, omitting all techni-
cal details and illustrating it for the case of ODEs (Section 2). After explaining
the composition and factorization of boundary problems (Section 3), we outline
the algebraic structures used for encoding ordinary as well as partial integro-
differential operators (Section 4).

For motivating our algebraic setting of boundary problems, we consider first
the simplest two-point boundary problem. Writing F for the real or complex
vector space C∞[0, 1], it reads as follows: Given f ∈ F , find u ∈ F such that

u′′ = f,
u(0) = u(1) = 0.

(1)

Let D : F → F denote the usual derivation and L,R the two linear functionals
L : f 7→ f(0) and R : f 7→ f(1). Note that u is annihilated by any linear combi-
nation of these functionals so that problem (1) can be described by (D2, [L,R]),
where [L,R] is the subspace generated by L, R in the dual space F∗ .

As a second example, consider the following boundary problem for the wave
equation on the domain Ω = R×R≥0, now writing F for C∞(Ω): Given f ∈ F ,



A Symbolic Framework for Operations on Linear Boundary Problems 3

find u ∈ F such that

utt − uxx = f,
u(x, 0) = ut(x, 0) = 0.

(2)

Note that we use the terms “boundary condition/problem” in the general sense
of linear conditions. The boundary conditions in (2) can be expressed by the
infinite family of linear functionals βx : u 7→ u(x, 0), γx : u 7→ ut(x, 0) with x
ranging over R. So we can represent the boundary problem again by a pair
consisting of the differential operator D2

t −D2
x and the (now infinite dimensional)

subspace generated by βx and γx in F∗.
For ensuring a unique representation of boundary conditions, we take the

orthogonal closure of this subspace, which we denote by [βx, γx]x∈R. This is the
space of all linear functionals vanishing on the functions annihilated by βx, γx.
Every finite dimensional subspace is orthogonally closed, but here, for example,
the functionals u 7→

∫ x
0
u(η, 0) dη and u 7→ ux(x, 0) for arbitrary x ∈ R are in

the orthogonal closure but not in the space generated by βx and γx. We refer
to [10] or [5, App. A.1] for details on the orthogonal closure.

Some notational conventions. We use the symbol ≤ for algebraic substruc-
tures. If T : F → G is a linear map and B ≤ G∗, we write B · T for the subspace
{β ◦ T | β ∈ B} ≤ F∗. For a subset B ⊆ F∗ the so-called orthogonal is defined
as B⊥ = {u ∈ F | β(u) = 0 for all β ∈ B}.

2 An Algebraic Formulation of Boundary Problems

In this section, we give a summary of the algebraic setting for boundary prob-
lems exposed in [5], see also there for further details and proofs. We illustrate
the definitions and statements for ODEs on a compact interval [a, b] ⊆ R. In
this setting, most of the statements can be made algorithmic relative to solving
homogeneous linear differential equations (and the operations of integration and
differentiation).

A boundary problem is given by a pair (T,B), where T : F → G is a surjective
linear map between vector spaces F ,G and B ≤ F∗ is an orthogonally closed
subspace of homogeneous boundary conditions. We say that u ∈ F is a solution of
(T,B) for a given f ∈ G if Tu = f and u ∈ B⊥. Note that have restricted ourselves
to homogeneous conditions because the general solution is then obtained by
adding a “particular solution” satisfying the inhomogeneous conditions. While
for ODEs, this amounts to a simple interpolation problem, the treatment of
PDEs is more involved.

In the ODE setting, T = Dn+cn−1D
n−1+· · ·+c1D+c0 is a monic differential

operator of order n with coefficients ci ∈ G. For the spaces F ,G we could for
example choose F = G = C∞[a, b] or F = Cn[a, b] and G = C[a, b], as real
or complex vector spaces. The differential operator T is surjective since every
inhomogeneous linear differential equation has a solution in F , e.g. given by the
formula (3) below. The solution space of the homogeneous equation, KerT , has
dimension n, so we require dimB = n, and we assume that B is given by a



4 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

basis β1, . . . , βn. Then the boundary problem reads as follows: Given f ∈ G, find
u ∈ F such that

Tu = f,
β1(u) = · · · = βn(u) = 0.

The boundary conditions can in principle be any linear functionals. In partic-
ular, they can be point evaluations of derivatives or also more general boundary

conditions of the form β(u) =
∑n−1
i=0 ai u

(i)(a) + bi u
(i)(b) +

∫ b
a
v(ξ)u(ξ) dξ with

v ∈ F , known in the literature [11] as “Stieltjes boundary conditions”. Integral
boundary conditions also appear naturally when we factor a boundary prob-
lem along a given factorization of the differential operator (Section 3), and they
appear in the normal forms of integro-differential operators (Section 4).

A boundary problem (T,B) is regular if for each f ∈ G there exists exactly
one solution u of (T,B). Then we call the linear operator G : G → F that maps
a right-hand side f to its unique solution u = Gf the Green’s operator for
the boundary problem (T,B), and we say that G solves the boundary problem
(T,B). Since TGf = f , we see that the Green’s operator for a regular boundary
problem (T,B) is a right inverse of T , determined by the property ImG = B⊥.
Therefore we use the notation G = (T,B)−1 for the Green’s operator.

Regular boundary problems can be characterized as follows. A boundary
problem is regular iff B⊥ is a complement of KerT so that F = KerT uB⊥ as a
direct sum. For ODEs we have the following algorithmic regularity test (compare
[12, p. 184] for the special case of two-point boundary conditions): A boundary
problem (T,B) for an ODE is regular iff the evaluation matrix B = (βi(uj)) is
regular, where the βi and uj are any basis of respectively B and KerT .

Given any right inverse G̃ of a surjective linear map T : F → G, the Green’s
operator for a regular boundary problem (T,B) is given by G = (1−P )G̃, where
P is the projector with ImP = KerT and KerP = B⊥. Using this observation,
we outline in the following how the Green’s operator can be computed in the
ODE setting.

Let (T,B) be a regular boundary problem for an ODE of order n with B =
[β1, . . . , βn], and let u1, . . . , un be a fundamental system of solutions. We first
compute a right inverse of the differential operator T . This can be done by the
usual variation-of-constants formula (see for example [13, p. 87] for continuous
functions or [14] in a suitable integro-differential algebra setting): Let W =
W (u1, . . . , un) be the Wronskian matrix and d = detW . Moreover, let di =
detWi, where Wi is the matrix obtained from W by replacing the ith column
by the nth unit vector. Then the solution of the initial value problem Tu = f ,
u(a) = u′(a) = · · · = u(n−1)(a) = 0 is given by

u(x) =

n∑
i=1

ui(x)
r x
a
di(ξ)/d(ξ) f(ξ) dξ. (3)

The integral operator T� : f 7→ u defined by (3) is a right inverse of T , which we
also call the fundamental right inverse. Computing the projector P : F → F with
ImP = [u1, . . . , un] and KerP = [β1, . . . , βn]⊥ is a linear algebra problem, see



A Symbolic Framework for Operations on Linear Boundary Problems 5

for example [5, App. A.1]: Let B be the evaluation matrix B = (βi(uj)). Since

(T,B) is regular, B is invertible. Set (β̃1, . . . , β̃n)t = B−1(β1, . . . , βn)t. Then the
projector P is given by u 7→

∑n
i=1 β̃i(u)ui. Finally, we compute

G = (1− P )T� (4)

to obtain the Green’s operator for (T,B).

3 Composing and Factoring Boundary Problems

In this section we discuss the composition of boundary problems corresponding
to their Green’s operators. We also describe how factorizations of a boundary
problem along a given factorization of the defining operator can be characterized
and constructed. We refer again to [5] for further details. In the following, we as-
sume that all operators are defined on suitable spaces such that the composition
is well-defined.

Definition 1. We define the composition of boundary problems (T1,B1) and
(T2,B2) by (T1,B1) ◦ (T2,B2) = (T1T2,B1 · T2 + B2).

So the boundary conditions from the first boundary problem are “translated”
by the operator from the second problem. The composition of boundary problems
is associative but in general not commutative. The next proposition tells us that
the composition of boundary problems preserves regularity.

Proposition 1. Let (T1,B1) and (T2,B2) be regular boundary problems with
Green’s operators G1 and G2. Then (T1,B1) ◦ (T2,B2) = (T,B) is regular with
Green’s operator G2G1 so that ((T1,B1) ◦ (T2,B2))−1 = (T2,B2)−1 ◦ (T1,B1)−1.

The simplest example of composing two boundary (more specifically, initial
value) problems for ODEs is the following. Using the notation from the Intro-
duction, one sees that (D, [L]) ◦ (D, [L]) = (D2, [LD] + [L]) = (D2, [L,LD]).

Next we write the wave equation (2) as P = (D2
t − D2

x, [u(x, 0), ut(x, 0)]),
where u(x, 0) and ut(x, 0) are short for the functionals u 7→ u(x, 0) and u 7→
ut(x, 0), respectively, with x ranging over R, and [. . .] denotes the orthogonal
closure of the subspace generated by these functionals. For boundary problems
with PDEs, we usually have to describe the boundary conditions as the orthog-
onal closure of some subspaces that we can describe in finite terms. As detailed
in [5], we can still compute the composition of two such problems since taking
the orthogonal closure commutes with the operations needed for computing the
boundary conditions for the composite problem (precomposition with a linear
operator and sum of subspaces).

Using this observation, we can compute P as the composition of the two
boundary problems P1 = (Dt − Dx, [u(x, 0)]) and P2 = (Dt + Dx, [u(x, 0)]) as
follows. By Definition 1, we see that P1 ◦ P2 equals

(D2
t −D2

x, [ut(x, 0) + ux(x, 0)] + [u(x, 0)]) = (D2
t −D2

x, [u(x, 0), ut(x, 0)]), (5)



6 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

where the last equality holds since u(x, 0) = 0 for x ∈ R implies also ux(x, 0) = 0
for x ∈ R, showing that ux(x, 0) is in the orthogonal closure [u(x, 0)].

In the following, we assume that for a boundary problem (T,B) we have a fac-
torization T = T1T2 of the defining operator with surjective linear maps T1, T2.
In [5], we characterize and construct all factorizations (T,B) = (T1,B1)◦(T2,B2)
into boundary problems along the given factorization of T . We show in partic-
ular that if we factor a regular problem into regular problems, the left factor
(T1,B1) is unique, and we can choose for the right factor (T2,B2) any subspace
B2 ≤ B that makes the problem regular. Moreover, if G2 is the Green’s operator
for some regular right factor (T2,B2), the boundary conditions for the left factor
can be computed by B1 = B · G2. Factoring boundary problems for differen-
tial equations allows us to split a problem of higher order into subproblems of
lower order, provided we can factor the differential operator. For the latter, we
can exploit algorithms and results about factoring ordinary [15–17] and partial
differential operators [18, 19].

For ODEs we can factor boundary problems algorithmically as described
in [5] and in an integro-differential algebra setting in [4]. There we assume that we
are given a fundamental system of the differential operator T and a right inverse
of T2. As we will detail in the next paragraph, we can also compute boundary
conditions B2 ≤ B such that (T2,B2) is a regular right factor, given only a
fundamental system of T2. We can then compute the left factor as explained
above. This can be useful in applications, because it still allows us to factor
a boundary problem if we can factor the differential operator and compute a
fundamental system of only one factor. The remaining lower order problem can
then be solved by numerical methods (and we expect that the integral conditions
B1 = B ·G2 may be beneficial since they are stable).

Let now (T,B) be a boundary problem of order m+n with boundary condi-
tions [β1, . . . , βm+n]. Let T = T1T2 be a factorization into factors of respective
orders n and m, and let u1, . . . , um be a fundamental system for T2. We compute
the “partial” (m+n)×m evaluation matrix B̃ = βi(uj). Since (T,B) is regular,

the full evaluation matrix is regular and hence the columns of B̃ are linearly in-
dependent. Therefore computing the reduced row echelon form yields a regular
matrix C such that CB̃ =

(
Im
0

)
, where Im is the m ×m identity matrix. Let

now (β̃1, . . . , β̃m+n)t = C(β1, . . . , βm+n)t and B2 = [β̃1, . . . , β̃m]. Then (T2,B2)
is a regular right factor since its evaluation matrix is Im by our construction.
See Appendix A for an example.

As a first example, we factor the two-point boundary problem (D2, [L,R])
from the Introduction into two regular problems along the trivial factorization
with T1 = T2 = D. The indefinite integral A =

∫ x
0

is the Green’s operator for the
regular right factor (D, [L]). The boundary conditions for the unique left factor

are [LA,RA] = [0, RA] = [RA], where RA =
r 1

0
is the definite integral. So we

obtain (D, [RA]) ◦ (D, [L]) = (D2, [L,R]) or in traditional notation

u′ = f∫ 1

0
u(ξ) dξ = 0

◦ u′ = f
u(0) = 0

=
u′′ = f
u(0) = u(1) = 0

.



A Symbolic Framework for Operations on Linear Boundary Problems 7

Note that the boundary condition for the left factor is an integral (Stieltjes)
boundary condition.

As an example of a boundary problem for a PDE, we factor the wave equa-
tion (2) along the factorizationD2

t−D2
x = (Dt−Dx)(Dt+Dx). In Appendix A, we

show that one can use this factorization to determine algorithmically its Green’s
operator. The boundary problem P2 = (Dt+Dx, [u(x, 0)]) is a regular right fac-
tor. In general, choosing boundary conditions in such a way that they make up
a regular boundary problem for a given first-order right factor of a linear PDE
amounts to a geometric problem involving the characteristics; compare also Sec-
tion 4. The Green’s operator for P2 is G2f(x, t) =

∫ x
x−t f(ξ, ξ−x+ t) dξ. We can

compute the boundary conditions for the left factor by [u(x, 0)·G2, ut(x, 0)·G2] =
[0, u(x, 0)] = [u(x, 0)] so that P1 = (Dt −Dx, [u(x, 0)]) is the desired left factor.
In (5) we have already verified that P1 ◦ P2 = P.

4 Representation of Integro-Differential Operators

For representing ordinary boundary problems as well as their Green’s opera-
tors in a single algebraic structure, we have introduced the algebra of integro-
differential operators F [∂,

r
] in [4], see also [14] for a summary. It is based on

integro-differential algebras, which bring together the usual derivation struc-
ture with a suitable notion of indefinite integration and evaluation. The integro-
differential operators are defined as a quotient of the free algebra in the cor-
responding operators (derivation, integration, evaluation, and multiplication)
modulo an infinite parametrized Gröbner basis. See Section 5 for more details
and an implementation. Alternatively, integro-differential operators can also be
defined directly in terms of normal forms [20].

Let us now turn to the treatment of partial differential equations. We are cur-
rently forging an adequate notion of integro-differential operators for describing
the Green’s operators of an interesting class of PDEs, just as F [∂,

r
] can be used

for ODEs. In the remainder of this section we can only give a flavor (and a small
test implementation) of how integro-differential operators for PDEs might look
like in a simple case that includes the unbounded wave equation (2).

We construct a ring R of integro-differential operators acting on the function
space F = C∞(R×R); for simplicity we neglect here the restriction to R×R≥0.
The ring R is defined as the free C-algebra in the following indeterminates given
with their respective action on a function f(x, t) ∈ F .

Name Indeterminates Action

Differential operators Dx, Dt fx(x, t), ft(x, t)

Integral operators Ax, At

r x

0
f(ξ, t) dξ,

r t

0
f(x, τ) dτ

Evaluation operators Lx, Lt f(0, t), f(x, 0)

Substitution operators
(
a b
c d

)
∈ GL(R, 2) f(ax+ bt, cx+ dt)



8 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

Similar to the identities governing F [∂,
r

], described in [4], various relations
among the above operators can now be encoded in a quotient of R. We will only
sketch the most important relations, focusing on those that are needed for the
sample computations. (In a more complete setup, the indeterminates should also
be chosen in a more economical way. For example, it is possible to subsume the
evaluations under the substitutions if one allows all affine transformations by
adding translations and singular matrices.)

First of all, we can transfer all relations from F [∂,
r

] that involve D, A
and L, once for the corresponding x-operators and once for the corresponding
t-operators. Furthermore, each x-operator commutes with each t-operator. For
example, we have DxAx = 1 but DxAt = AtDx. For normalizing such commu-
tative products, we write the x-operators left of the t-operators. Our strategy
for normal forms is thus similar to the case of F [∂,

r
], the only new ingredient

being the substitutions: We will move them to the left as much as possible.
Since substitutions operate on the arguments, it is clear that we must reverse

their order when multiplying them as elements of R. But the most important
relations are those that connect the substitutions with the integro-differential
indeterminates: The chain rule governs the interaction with differentiation, the
substitution rule with integration. While the former gives rise to the identities

DxM = aMDx + cMDt and DtM = bMDx + dMDt

for a matrix M =
(
a b
c d

)
, the relation between M and integrals is a bit subtler.

If M is an upper triangular matrix (so that c = 0 and a 6= 0), the substitution
rule yields

AxM = 1
a (1− Lx)MAx,

and if M is a lower triangular matrix (so that b = 0 and d 6= 0) similarly
AtM = 1

d (1− Lt)MAt.
But there are no such identities for pushing

(
1 0
c 1

)
left of Ax or

(
1 b
0 1

)
left of

At; we leave them in their place for the normal forms. For treating the general
case, we make use of a variant of the Bruhat decomposition [21, p. 349], writing
M ∈ GL(R, 2) as

(
a b
c d

)
=
(

1 0
c/a 1

) (
a b
0 (ad−bc)/a

)
if a 6= 0 and

(
a b
c d

)
=
(
b 0
d c

) (
0 1
1 0

)
if a = 0. Alternatively, we may also use

(
a b
c d

)
=
(
1 b/d
0 1

) (
(ad−bc)/d 0

c d

)
if d 6= 0 and(

a b
c d

)
=
(
b a
0 c

) (
0 1
1 0

)
if d = 0. The former decomposition is applied in deriving

the rule for Ax, which reads

Ax
(
a b
c d

)
= 1

a (1− Lx)
(
a b
0 (ad−bc)/a

)
Ax
(

1 0
c/a 1

)
if a 6= 0 and otherwise Ax

(
0 b
c d

)
= 1

c (1 − Lx)
(
0 b
c d

)
At. Analogously, the latter

decomposition yields the rule for At as

At
(
a b
c d

)
= 1

d (1− Lt)
(
(ad−bc)/d 0

c d

)
At
(
1 b/d
0 1

)
if d 6= 0 and otherwise At

(
a b
c 0

)
= 1

b (1− Lt)
(
a b
c 0

)
Ax.

According to the rules above, an R-operator like Ax
(
1 0
k 1

)
is in normal form.

Also Ax
(
1 0
k 1

)
Ax is a normal form, describing an area integral. For interpreting



A Symbolic Framework for Operations on Linear Boundary Problems 9

it geometrically, it is convenient to postmultiply it with the reverse shear, ob-
taining thus the integral operator Tk =

(
1 0
−k 1

)
Ax
(
1 0
k 1

)
Ax. One can easily verify

that Tkf(x, t) represents the integral of f taken over the triangle with vertices
(x, t), (0, y) and (0, t− kx). This is the triangle delimited by the y-axis, the hor-
izontal through (x, y), and the slanted line through (x, t) with slope k. Similar
interpretations can be given for products involving At.

Finally, we need some rules relating substitutions with evaluations. Here the
situation is analogous to the integrals: We can move “most” of the substitutions
to the left of an evaluation, but certain shears remain on the right. In detail, we
have the rules

Lx
(
a b
c d

)
=
(
1 0
0 d

)
Lx
(
1 b/d
0 1

)
if d 6= 0 Lx

(
a b
c 0

)
=
(
0 b
1 0

)
Lt otherwise

and

Lt
(
a b
c d

)
=
(
a 0
0 1

)
Lt
(

1 0
c/a 1

)
if a 6= 0 Lt

(
0 b
c d

)
=
(
0 1
c 0

)
Lx otherwise.

As before, certain products remain as normal forms, for example Lx
(
1 k
0 1

)
. Such

an operator acts on a function f ∈ F as f(kt, t), collapsing the bivariate function
f to the univariate restriction along the diagonal line x = kt.

The language of R-operators is not very expressive, but enough for our mod-
est purposes at this point—expressing the boundary problem (2) and computing
its Green’s operator. Let us first look at the general first-order boundary prob-
lem with constant coefficients, prescribing homogeneous Dirichlet conditions on
an arbitrary line. Fixing the parameters a, b, c, k ∈ R, it reads as follows:

a ux + b ut = f
u(kt+ c, t) = 0

(6)

Here (a, b)t determines the direction (and speed) of the ground characteristics,
while x = kt + c gives the line of boundary values. Of course this excludes the
horizontal lines t = const, which would have to be treated separately, in a com-
pletely analogous manner. Since (in this paper) we are interested only in regular
boundary problems, the characteristics must have a transversal intersection with
the line of boundary values. Hence we stipulate that a − kb 6= 0. Moreover, we
will also assume a 6= 0; for otherwise one may switch the x- and t-coordinates. A
straightforward computation (or a suitable computer algebra system) gives now

u(x, y) =
1

a

∫ x

X

f(ξ, ba (ξ − x) + t) dξ with X =
ac+ (at− bx)k

a− bk
.

This solution for the general case can be reduced to (a, b)t = (1, 0)t and k = 0
by first rotating (a, b) into horizontal position, then normalizing it through x-
scaling, and finally shearing the line of boundary values into vertical position.
This yields the factorization

u(x, y) =
( 1/K −k/K
−b/L a/L

)
·
r x
c/K
·
( a kL/K
b L/K

)
f(x, y), (7)



10 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

where K = a − bk and L = a2 + b2. This is almost an R-operator, except that
we have only allowed Ax =

r x
0

and its t-analog, so we cannot express
r x
c/K

unless we allow more evaluations such that we could write the required integral

as Ax − Lc/Kx Ax, where Lξx acts on a function g(x, y) as g(ξ, y).
While it would be straightforward to incorporate such evaluations by adding

suitable relations, it is enough for our purposes to restrict the line of boundaries:
We require it to pass through the origin so that c = 0. In this case we have of
course

r x
c/K

= Ax, and (7) shows that we can indeed write the Green’s operator

in the R language.

5 Implementation in Theorema

As explained in Sections 2 and 4, we compute the Green’s operator of a boundary
problem for an ODE as an integro-differential operator. These operators are
realized as noncommutative polynomials (introduced by a generic construct for
monoid algebras), taken modulo an infinite parametrized Gröbner basis.

As coefficients we allow either standard polynomials or—more generally—
exponential polynomials. Informally speaking, an exponential polynomial is a
linear combination of terms having the form xneλx, where n is a natural and λ a
complex number. Both the standard and the exponential polynomials can again
be generated as an instance of the monoid algebra, respectively using N and
N×C as a term monoid. In this way, we have complete algorithmic control over
the coefficient functions (modulo Mathematica’s simplifier for constants); see
also [22]. Alternatively, we can also take as coefficients all functions representable
in Mathematica and let it do the operations on them.

We describe now briefly the representation of integro-differential operators
and the implementation of the main algorithms solving, composing and factoring
boundary problems. The implementation will soon be available at the website
www.theorema.org. It is based on Theorema [6], a system designed as an in-
tegrated environment for doing mathematics, in particular proving, computing,
and solving in various domains of mathematics. Its core language is higher-order
predicate logic, containing a natural programming language such that algorithms
can be coded and verified in a unified formal frame.

We make heavy use of functors, introduced and first implemented in Theo-
rema by Buchberger. The general idea—and its use for structuring those domains
in which Gröbner bases can be computed—is described in [23, 24], where one can
also find references to original and early papers by Buchberger on the subject.
For a general discussion of functor programming, see also [25].

Functors are a powerful tool for building up hierarchical domains in mathe-
matics in a modular and generic way that unites elegance and formal clarity. In
Theorema, the notion of a functor is akin to functors in ML, not to be confused
with the functors of category theory. From a computational point of view, a The-
orema functor is a higher-order function that produces a new domain (carrier
and operations) from given domains: operations in the new domain are defined
in terms of operations in the underlying domains. Apart from this computational



A Symbolic Framework for Operations on Linear Boundary Problems 11

aspect, functors also have an important reasoning aspect—a functor transports
properties of the input domains to properties of the output domain, for example
by “conservation theorems”.

The MonoidAlgebra is the crucial functor that builds up polynomials, starting
from the base categories of fields with an ordering and ordered monoids. We
construct first the free vector space V over a field K generated by the set of words
in an ordered monoid W via the functor FreeVecSpc[K,W]. Then we extend this
domain by introducing a multiplication using the corresponding operations in K

and W as follows.
MonoidAlgebra@K, WD = whereBV = FreeVecSpc@K, WD,
FunctorBP, any@c, d, f, g, Ξ, Η, m

�
, n
�D,

s = X\
¼H* linear operations from V *L
H* multiplication *L
X\*

P
g = X\

f*
P
X\ = X\

XXc, Ξ\, m
�\*

P
XXd, Η\, n

�\ = ZZc*
K
d, Ξ *

W
Η^^ +

P
XXc, Ξ\\*

P
Xn�\ +

P
Xm�\*

P
XXd, Η\, n

�\

FF

For building up the integro-differential operators over an integro-differential
algebra F of coefficient functions, FreeIntDiffOp[F,K] constructs an instance
of the monoid algebra with the word monoid over the infinite alphabet consisting
of the letters ∂ and

r
along with a basis of F and all multiplicative characters

corresponding to evaluations at points in K.

Definition@"IntDiffOp", any@F, KD,

IntDiffOp@F, KD = where@A = FreeIntDiffOp@F, KD, G = GreenSystem@F, KD

QuotAlg@GBNF@A, GDDD

D

The GreenSystem functor contains the encoding of the rewrite system described
in Table 1 of [4, 14], representing a noncommutative Gröbner basis. The nor-
mal forms with respect to total reduction modulo infinite Gröbner bases are
introduced in the GBNF functor, while the QuotAlg functor creates the quotient
algebra from the corresponding canonical simplifier.

In Appendix A, we present a few examples of boundary problems for ODEs
whose Green’s operators are computed using (4), which now takes on the follow-
ing concrete form in Theorema code.

GreensOp
P

@F, BD = 1
A
-

A
Proj

P

@B, FD *
A
RightInv

P

@FD

Here B is the vector of boundary conditions and F the given fundamental system
of solutions.

In a way similar to the integro-differential operators F [∂,
r

] for ODEs, we
have also implemented the integro-differential operators R for the simple PDE
setting outlined in Section 4. Using the same functor hierarchy, we added the
corresponding rules for the operators Dx, Dt, Ax, At, Lx, Lt and the substitution
operators defined by matrices in GL(R, 2). Moreover, we implemented the com-
putation of Green’s operators for first-order boundary problems (7). With the



12 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

factorization (5) we can then compute the Green’s operator for the unbounded
wave equation (Appendix A).

6 Conclusion

The implementation of our symbolic framework for boundary problems allows
us in particular to solve boundary problems for ODEs from a given fundamental
system of the corresponding homogeneous equations. Given a factorization of
the differential operator and a fundamental system of one of the factors, we
can also factor boundary problems into lower order problems. In both cases it
would be interesting to investigate the combination with numerical approaches
to differential equations and boundary problems. For example, how can we use
a fundamental system coming from a numerical algorithm or how can numerical
methods be adapted to deal with integral boundary conditions?

The current setting for PDEs is of course still very limited and should only
be seen as a starting point for future work. But in combination with our factor-
ization approach, we believe that it can be extended to include more complicated
problems. For example, the wave equation on the bounded interval [0, 1], which
in our notation reads as P = (D2

t −D2
x, [u(x, 0), ut(x, 0), u(0, t), u(1, t)]) with x

ranging over [0, 1] and t over R≥0, can be factored [5] into P = P1 ◦ P2 with

P1 = (Dt −Dx, [u(x, 0),
r 1

max (1−t,0)u(ξ, ξ + t− 1) dξ])

and P2 = (Dt + Dx, [u(x, 0), u(0, t)]). The more complicated structure of the
Green’s operator for P (it involves a finite sum with an upper bound depending
on its argument) is reflected in the Green’s operator for the left factor P1. Its
computation leads in this case to a simple functional equation, but a systematic
approach to compute and represent Green’s operators for PDEs with integral
boundary conditions still needs to be developed. In a generalized setting including
the bounded wave equation, we would also have to allow for more complicated
geometries: as a first step bounded intervals and then also arbitrary convex sets.

References

1. Stakgold, I.: Green’s functions and boundary value problems. John Wiley & Sons,
New York (1979)

2. Rosenkranz, M., Buchberger, B., Engl, H.W.: Solving linear boundary value prob-
lems via non-commutative Gröbner bases. Appl. Anal. 82 (2003) 655–675

3. Rosenkranz, M.: A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Comput. 39(2) (2005) 171–
199

4. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for
linear ordinary differential equations in differential algebras. J. Symbolic Comput.
43(8) (2008) 515–544

5. Regensburger, G., Rosenkranz, M.: An algebraic foundation for factoring linear
boundary problems. Ann. Mat. Pura Appl. (4) 188(1) (2009) 123–151



A Symbolic Framework for Operations on Linear Boundary Problems 13

6. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K.,
Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: To-
wards computer-aided mathematical theory exploration. J. Appl. Log. 4(4) (2006)
359–652

7. Buchberger, B.: An algorithm for finding the bases elements of the residue class
ring modulo a zero dimensional polynomial ideal (German). PhD thesis, Univ. of
Innsbruck (1965) English translation J. Symbolic Comput. 41(3-4) (2006) 475–511.

8. Buchberger, B.: Introduction to Gröbner bases. In Buchberger, B., Winkler, F.,
eds.: Gröbner bases and applications. Cambridge Univ. Press (1998)

9. Mora, T.: An introduction to commutative and noncommutative Gröbner bases.
Theoret. Comput. Sci. 134(1) (1994) 131–173

10. Köthe, G.: Topological vector spaces (Volume I). Springer, New York (1969)
11. Brown, R.C., Krall, A.M.: Ordinary differential operators under Stieltjes boundary

conditions. Trans. Amer. Math. Soc. 198 (1974) 73–92
12. Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. Teil I:

Gewöhnliche Differentialgleichungen. Akademische Verlagsgesellschaft, Leipzig
(1967)

13. Coddington, E.A., Levinson, N.: Theory of ordinary differential equations.
McGraw-Hill Book Company, Inc., New York-Toronto-London (1955)

14. Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators.
In Jeffrey, D., ed.: Proceedings of ISSAC ’08, New York, ACM (2008) 261–268

15. van der Put, M., Singer, M.F.: Galois theory of linear differential equations.
Springer, Berlin (2003)

16. Schwarz, F.: A factorization algorithm for linear ordinary differential equations.
In: Proceedings of ISSAC ’89, New York, ACM (1989) 17–25

17. Tsarev, S.P.: An algorithm for complete enumeration of all factorizations of a
linear ordinary differential operator. In: Proceedings of ISSAC ’96, New York,
ACM (1996) 226–231

18. Grigoriev, D., Schwarz, F.: Loewy- and primary decompositions of D-modules.
Adv. in Appl. Math. 38 (2007) 526–541

19. Tsarev, S.P.: Factorization of linear partial differential operators and Darboux
integrability of nonlinear PDEs. SIGSAM Bull. 32(4) (1998) 21–28

20. Regensburger, G., Rosenkranz, M., Middeke, J.: A skew polynomial approach
to integro-differential operators. In: Proceedings of ISSAC ’09, New York, ACM
(2009) to appear.

21. Cohn, P.M.: Further algebra and applications. Springer-Verlag, London (2003)
22. Buchberger, B., Regensburger, G., Rosenkranz, M., Tec, L.: General polynomial

reduction with Theorema functors: Applications to integro-differential operators
and polynomials. ACM Commun. Comput. Algebra 42(3) (2008) 135–137

23. Buchberger, B.: Groebner rings and modules. In Maruster, S., Buchberger, B.,
Negru, V., Jebelean, T., eds.: Proceedings of SYNASC 2001. (2001) 22–25

24. Buchberger, B.: Groebner bases in Theorema using functors. In Faugere, J., Wang,
D., eds.: Proceedings of SCC ’08, LMIB Beihang University Press (2008) 1–15

25. Windsteiger, W.: Building up hierarchical mathematical domains using functors
in Theorema. Electr. Notes Theor. Comput. Sci. 23(3) (1999) 401–419



14 M. Rosenkranz, G. Regensburger, L. Tec, B. Buchberger

A Sample Computations

Let us again consider example (1). By our implementation, we obtain the Green’s
operator for the boundary problem with the corresponding Green’s function.
As noted in [3], the Green’s function provides a canonical form for the Green’s

operator. In the following, we use the notation Au =
∫ x
0
u(ξ) dξ, Bu =

∫ 1

x
u(ξ) dξ,

Lu = u(0), Ru = u(1), and A1f(x, t) =
∫ x
0
f(ξ, t) dξ.

ComputeBAsGreen
g

BGreensOp
B

AD2, XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\\EFF

-A x - x B + x A x + x B x

ComputeBGreensFct
gf

BGreensOp
B

AD2, XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\\EFF

; -Ξ + x Ξ Ü Ξ £ x

-x + x Ξ Ü x < Ξ

As explained in Section 3, we can factor (1) along a factorization of the differ-
ential operator, given a fundamental system for the right factor. Here is how
we can compute the boundary conditions of the left and right factor problems,
respectively.

ComputeBAsGreen
g

BFactorize
Bm

@D, D, XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\\, XXX1, X\\\\DFF

XXA + B\, XL\\

We consider as a second example the fourth order boundary problem [4, Ex. 33]:

u′′′′ + 4u = f,
u(0) = u(1) = u′(0) = u′(1) = 0.

(8)

Factoring the boundary problem along D4 + 4 = (D2 − 2i)(D2 + 2i), we obtain
the following boundary conditions for the factor problems.

ComputeBAsGreen
g

BFactorize
Bm

AD2 - 2 ä, D2 + 2 ä,

XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\, XX1, XX"dt", 0\, "¶"\\\, XX1, XX"dt", 1\, "¶"\\\\,
XXX1, XX"`p", X0, -1 + ä\\\\\, XX1, XX"`p", X0, 1 + H-1L ä\\\\\\EFF

YYA ã
HComplex@-1,1DL x

+ B ã
HComplex@-1,1DL x

, A ã
HComplex@1,-1DL x

+ B ã
HComplex@1,-1DL x], XL, R\]

With our implementation we can also compute its Green’s operator and verify
the solution presented in [4].

The final example for ODEs is a third order boundary problem with expo-
nential coefficients.

u′′′ − (ex + 2)u′′ − u′ + (ex + 2)u = f,
u(0) = u(1) = u′(1) = 0.

(9)

Here we use as coefficient algebra all functions representable in Mathematica.
The Green’s operator is computed as follows.



A Symbolic Framework for Operations on Linear Boundary Problems 15

ComputeBGreensOp
B

AYXX1, mma@ã
xD\\, XX1, mma@ã

-xD\\, YY-1, mmaAã
ã
x

 ã
-xE], Y1, mmaAã

ã
xE]]],

XXX1, XX"dt", 0\\\\, XX1, XX"dt", 1\\\\, XX1, XX"dt", 1\, "¶"\\\\EF

H-1 + ãL-2
 ã

-1 ã
 ã

ã
x

 A + H-1 + ãL-2
 ã

-1 ã
 ã

ã
x

 B + H-1L H-1 + ãL-2
 ã

-1 ã
 ã

ã
x
+H-1L x

 A +

H-1L H-1 + ãL-2
 ã

-1 ã
 ã

ã
x
+H-1L x

 B +

1

2

+

1

2

 H-1 + ãL-2
 ã

-1 x
 A +

1

2

 H-1 + ãL-2
 ã

-1 x
 B +

-1

2

 H-1 + ãL-2
 ã

x
 A +

-1

2

 H-1 + ãL-2
 ã

x
 B + H-1 + ãL-2

 ã
-1 ã

 ã
ã
x

 A ã
-2 x

+

H-2L H-1 + ãL-2
 ã

-1 ã
 ã

ã
x

 A ã
-1 x

+ H-1L ã
ã
x

 B ã
-1 ã

x
+H-2L x

+ H-1 + ãL-2
 ã

-1 ã
 ã

ã
x

 B ã
-2 x

+

H-2L H-1 + ãL-2
 ã

-1 ã
 ã

ã
x

 B ã
-1 x

+ H-1L H-1 + ãL-2
 ã

-1 ã
 ã

ã
x
+H-1L x

 A ã
-2 x

+ 2 H-1 + ãL-2
 ã

-1 ã
 ã

ã
x
+H-1L x

 A ã
-1 x

+

ã
ã
x
+H-1L x

 B ã
-1 ã

x
+H-2L x

+ H-1L H-1 + ãL-2
 ã

-1 ã
 ã

ã
x
+H-1L x

 B ã
-2 x

+ 2 H-1 + ãL-2
 ã

-1 ã
 ã

ã
x
+H-1L x

 B ã
-1 x

+

1 +

1

2

 I-1 + H-1 + ãL-2M  ã
-1 x

 A ã
-2 x

+ I-1 + H-1L H-1 + ãL-2M ã
-1 x

 A ã
-1 x

+

1

2

 I-1 + H-1 + ãL-2M ã
-1 x

 B ã
-2 x

+ H-1L H-1 + ãL-2
 ã

-1 x
 B ã

-1 x
+

-1

2

+

1

2

 H-2 + ãL H-1 + ãL-2
 ã  ã

x
 A ã

-2 x
+

H-1 + ãL-2
 ã

x
 A ã

-1 x
+

1

2

 H-2 + ãL H-1 + ãL-2
 ã ã

x
 B ã

-2 x
+ H-1 + ãL-2

 ã
x
 B ã

-1 x

As a last example, we return to the boundary problem for the wave equa-
tion (2). With Proposition 1 and using the factorization (5), we can compute
the Green’s operator for (2) simply by composing the Green’s operators of the
first-order problems P1 = (Dt − Dx, [u(x, 0)]) and P2 = (Dt + Dx, [u(x, 0)]).
Relative to the setting in Section 4, we switch the x- and t-coordinates.

ComputeBGreensOp
B

@1, -1, 0D*
B

GreensOp
B

@1, 1, 0DF

XX1, XXmat, XX1, 0\, X-1, 1\\\, A1, Xmat, XX1, 0\, X2, 1\\\, A1, Xmat, XX1, 0\, X-1, 1\\\\\\

Interchanging again t and x, this corresponds in the usual notation toG1f(x, t) =∫ t
0
f(ξ,−ξ + x+ t) dξ and G2f(x, t) =

∫ t
0
f(ξ, ξ + x− t) dξ, which yields

G2G1f(x, t) =

∫ t

0

∫ τ

0

f(ξ, 2τ − ξ + x− t) dξ dτ

for the Green’s operator of the unbounded wave equation (2).


