
Policy Improvement for several Environments

Andreas Matt andreas.matt@uibk.ac.at
Georg Regensburger georg.regensburger@uibk.ac.at
Institute of Mathematics1 , University of Innsbruck, Austria

Abstract
In this paper we state a generalized form of
the policy improvement algorithm for rein-
forcement learning. This new algorithm can
be used to …nd stochastic policies that op-
timize single-agent behavior for several envi-
ronments and reinforcement functions simul-
taneously. We …rst introduce a geometric in-
terpretation of policy improvement, de…ne a
framework to apply one policy to several en-
vironments, and propose the notion of bal-
anced policies. Finally we explain the algo-
rithm and present examples.

1. Idea
Until now reinforcement learning has been applied to
learn behavior within one environment. Several meth-
ods to …nd optimal policies for one environment are
known (Kaelbling et al., 1996; Sutton & Barto, 1998).

In our research we focus on a general point of view of
behavior that appears independently from a single en-
vironment. As an example imagine that a robot should
learn to avoid obstacles, a behavior suitable for more
than one environment. Obviously a policy for several
environments cannot - in general - be optimal for each
one of them. Improving a policy for one environment
may result in a worse performance in an other. Nev-
ertheless it is often possible to improve a policy for
several environments. Compared to multiagent rein-
forcement learning as in Bowling and Veloso (2000),
where several agents act in one environment, we have
one agent acting in several environments.

2. Equivalent and Improving Policies
We …x a …nite Markov Decision Process (S;A;P;R),
use the standard de…nitions of value function V and Q-
value and write ¼(a j s) for the probability that action

1We wish to thank Prof. Ulrich Oberst for his mo-
tivation, comments and support. This research was
partially supported by “Forschungsstipendien an öster-
reichische Graduierte” and Project Y-123 INF.

a is chosen in state s. We say that two policies ¼ and
~¼ are equivalent if their value functions coincide, i.e.
V ¼ = V ~¼.

Theorem 1 Two policies ~¼ and ¼ are equivalent if
and only if

X
a2A

Q¼(a; s)~¼(a j s) = V ¼(s) for all s 2 S.

This gives us a description of the equivalence class of a
policy. We interpret ¼(¡ j s) as a point on a standard
simplex and the equivalence class as the intersection
of the hyperplane H de…ned by Q¼(¡ j s) and V ¼(s)
with the simplex. See Figure 1 left for an example with
three actions a1, a2 and a3. The following theorem is

a2

a3

¼(s)

H

a1

a1 a2

a3

v12

v23

¼(s)

Figure 1. left: A policy in state s and its equivalence class
right: Improving policies in state s

a general version of the policy improvement theorem.

Theorem 2 Let ¼ and ~¼ be policies such that
X

a2A
Q¼(a; s)~¼(a j s) ¸ V ¼(s) for all s 2 S.

Then V ~¼ ¸ V ¼. If additionally there exists an s 2 S
such that

P
Q¼(a; s)~¼(a j s) > V ¼(s) then V ~¼ > V ¼.

We de…ne the set of improving policies for ¼ in s by

C¼
¸(s) =

n
~¼(¡ j s) :

X
Q¼(a; s)~¼(a j s) ¸ V ¼(s)

o
,

and in analogy the set of strictly improving policies
C¼

>(s) and the set of equivalent policies C¼
=(s) for ¼ in

s. We de…ne the set of strictly improving actions of ¼
in s by A¼

>(s) = fa : Q¼(a; s) > V ¼(s)g.
The set of improving policies C¼

¸(s) is a polytope given
by the intersection of a half-space and a standard sim-
plex. Its vertices are vert

¡
C¼

¸(s)
¢

= vert(C¼
=(s)) [

A¼
>(s). See Figure 1 right, where A¼

>(s) = fa1; a3g,
vert(C¼

=(s)) = fv12;v23g and C¼
¸(s) is the shaded

area, the side marked by the small arrows.

3. Policies for several Environments
Consider a robot and its sensors to perceive the world.
All possible sensor values together represent all pos-
sible states for the robot. In each of these states the
robot can perform some actions. We call all possi-
ble states and actions the state action space (SAS)
E = (S;A). Now we put the robot in a physical en-
vironment, where we can observe all possible states
for this environment, a subset SE ½ S of all possible
states in general, and the transition probabilities PE.
We call E = (SE;A;PE) a realization of an SAS.

Let E =(Ei;Ri)i=1:::n be a …nite family of realizations
of an SAS with rewards Ri. Since the actions are
given by the SAS it is clear what is meant by a policy
¼ for E. For each (Ei;Ri) we can calculate the value
function, which we denote by V ¼

i . We de…ne the set
of improving policies of ¼ in s 2 S by

C¼
¸ (s) =

\
i2[n]; s2Si

C¼
i;¸(s)

and the set of strictly improving policies of ¼ in s by

C¼
>(s) =

½
~¼(¡ j s) 2 C¼

¸(s) such that
9 i 2 [n] with ~¼(¡ j s) 2 C¼

i;>(s)

¾
,

where [n] = f1; : : : ; ng. The set of improving policies
of ¼ in s is the intersection of a …nite number of half-
spaces through a point with a standard simplex.

Theorem 3 Let ~¼ be a policy for E such that

~¼(¡ j s) 2 C¼
¸(s) for all s 2 S:

Then V ~¼
i ¸ V ¼

i for all i 2 [n]. If additionally there
exist an s 2 S with ~¼(¡ j s) 2 C¼

>(s) then there exists
an i 2 [n] such that V ~¼

i > V ¼
i .

In order to describe C¼
¸(s) and …nd an ~¼(¡ j s) 2

C¼
>(s) we consider its vertices. We call the vertices

of C¼
¸ (s) improving vertices and de…ne the strictly

improving vertices by vert(C¼
> (s)) = vert(C¼

¸ (s)) \
C¼

> (s). There exist several algorithm to …nd all ver-
tices of a polytope (Fukuda, 2000). Linear Program-
ming methods can be used to decide whether there

exist strictly improving vertices and to …nd one (Schri-
jver, 1986). Observe that for a single environment the
strictly improving vertices are just the set of strictly
improving actions.

Let s 2 S. We de…ne ¼s as the set of all policies that
are arbitrary in s and equal ¼ otherwise. We call a
policy balanced if and only if for all s 2 S and all
~¼ 2 ¼s either V ~¼

i = V ¼
i for all i 2 [n] or there exists

i 2 [n] such that V ~¼
i < V ¼

i . This means that if one
changes a balanced policy in one state s it is the same
for all environments or it gets worse in at least one.
Compare to the notion of an equilibrium point in game
theory (Nash, 1951). Note that for one environment
the notions of optimal and balanced policies coincide.

Theorem 4 A policy ¼ is balanced if and only if there
are no strictly improving policies, i.e. C¼

>(s) = ; for
all s 2 S.

4. General Policy Improvement
We state a generalized form of the policy improvement
algorithm for a family of realizations of an SAS which
we call general policy improvement (algorithm 1). The
idea is to improve the policy by choosing in each state
a strictly improving vertex. If there are no strictly
improving vertices the policy is balanced and the al-
gorithm terminates.

Input: a policy ¼ and a family of realizations (Ei;Ri)
Output: a balanced policy ~¼ : V ~¼

i ¸ V ¼
i for all i 2 [n]

~¼ Ã¡ ¼
repeat

calculate V ~¼
i and Q~¼

i for all i 2 [n]
for all s 2 S do

if vert(C~¼
>(s)) 6= ; then

choose ¼0(¡ j s) 2 vert(C~¼
>(s))

~¼(¡ j s) Ã¡ ¼0(¡ j s)
until vert(C~¼

>(s)) = ; for all s 2 S

Algorithm 1: General Policy Improvement

In each step of the algorithm we try to choose a strictly
improving vertex. Di¤erent choices may result in dif-
ferent balanced policies and in‡uence the number of
improvement steps before termination. The algorithm
includes policy improvement for one environment as a
special case.

A geometric interpretation of one step of the general
policy improvement algorithm for three states and two
realizations can be seen in Figure 2. In state s1 there
are no strictly improving vertices. In state s2 there
are three strictly improving vertices, one of them is
the action a3. In state s3 there are only two, both of

state s1
a1 ¼(s1)

¼(s2)
¼(s3)

state s2
a2 a1 a2

state s3
a1 a2

a3a3a3

Figure 2. Improving policies for two realizations

them a stochastic combination of a2 and a3.

5. Examples
All experiments are made with a 10x10 gridworld sim-
ulator to learn an obstacle avoidance behavior. The
robot has 4 sensors, forward, left, right, and back,
with a range of 5 blocks each. There are 3 actions
in each state: move forward, left and right. The robot
gets rewarded if it moves away from obstacles, it gets
punished if it moves towards obstacles.

Environment 1 Environment 2 Environment 3

Figure 3. Three di¤erent environments

We choose three environments (see Figure 3) with the
same reinforcement function and run the algorithm. In
all experiments we start with the random policy. We
calculate in each step all strictly improving vertices
and choose one randomly. In order to evaluate and
compare policies we consider the average utilities of all
states, and normalize it, with 1 being an optimal and
0 the random policy in this environment. Four sample
experiments show performances in each environment
of the di¤erent balanced policies learned.

Experiment: 1 2 3 4
Environment 1 0:994 0:771 0:993 0:826
Environment 2 0:862 0:876 0:788 0:825
Environment 3 0:872 0:905 0:975 0:878

Figure 4 shows the progress of the algorithm for each
environment in experiment 2. In all experiments the
algorithm terminates after 6 to 8 iteration steps.

6. Discussion
The general policy improvement algorithm can be used
to improve a policy for several realizations of a state

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

N
or

m
ed

 A
ve

ra
ge

 U
til

ity

env1 0.771
env2 0.876
env3 0.905

Figure 4. The progress of general policy improvement for
each environment.

action space simultaneously. This means that it can
be used to learn a policy for several environments and
several reinforcement functions together. A useful ap-
plication is to add a new environment or behavior to
an already optimal policy, without changing its perfor-
mance. We have already implemented Value Iteration
for several realizations which leads to an extension of
Q-learning. Our future research focuses on the imple-
mentation of on-line algorithms, methods to …nd the
strictly improving vertices and to decide which of them
are best regarding to learning speed. For more detailed
information please consult the extended version of this
paper on http://mathematik.uibk.ac.at/~rl.

References
Bowling, M., & Veloso, M. (2000). An analysis of

stochastic game theory for multiagent reinforcement
learning (Technical Report CMU-CS-00-165).

Fukuda, K. (2000). Frequently asked questions in
polyhedral computation. http://www.ifor.math.
ethz.ch/~fukuda/polyfaq/polyfaq.html.

Kaelbling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of Arti…cial Intelligence Research, 4, pp. 237–285.

Nash, J. (1951). Non-cooperative games. Ann. of
Math. (2), 54, 286–295.

Schrijver, A. (1986). Theory of linear and integer pro-
gramming. Chichester: John Wiley & Sons Ltd.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

