
Approximate Policy Iteration for several Environments and
Reinforcement Functions

Andreas Matt andreas.matt@uibk.ac.at
Georg Regensburger georg.regensburger@uibk.ac.at
Institute of Mathematics, University of Innsbruck, Austria

Abstract
We state an approximate policy iteration al-
gorithm to find stochastic policies that op-
timize single-agent behavior for several envi-
ronments and reinforcement functions simul-
taneously. After introducing a geometric in-
terpretation of policy improvement for sto-
chastic policies we discuss approximate pol-
icy iteration and evaluation. We present ex-
amples for two blockworld environments and
reinforcement functions.

1. Introduction

Reinforcement learning methods usually achieve op-
timal policies for one reinforcement function in one
environment (Bertsekas & Tsitsiklis, 1996; Kaelbling
et al., 1996). Multicriteria reinforcement learning is
concerned with optimizing several reinforcement func-
tions in one environment. Gábor et al. (1998) order
the different criteria, Wakuta (1995) discusses policy
improvement to find optimal deterministic policies for
vector-valued Markov decision processes. In our re-
search we focus on finding stochastic policies, which
can perform better than deterministic policies, for sev-
eral environments and reinforcement functions.

2. MDP’s and State Action Space

An environment E = (S,A,P) is given by a finite
set S of states, a family A = (A(s))s∈S of finite
sets of actions and a family P =P (− | a, s)s∈S,a∈A(s)
of transition probabilities on S. A policy for E is
given by a family π = π(− | s)s∈S of probabili-
ties on A(s). A Markov decision process (MDP) is
given by an environment E = (S,A,P) and a family
R =R(s0, a, s)s0,s∈S,a∈A(s) of rewards in R. Let (E,R)
be a MDP and 0 ≤ γ < 1 be a discount rate. Let
π be a policy for E. We denote by V π(s) the (dis-
counted) value function or utility of policy π in state
s and write Qπ (a, s) for the (discounted) action-value.
The goal of reinforcement learning is to find policies

that maximize the value function.

To apply one policy to different environments we in-
troduce the following notions. A state action space
E = (S,A) is given by a finite set S of states and a
family A = (A(s))s∈S of finite sets of actions. We call
an environment E = (SE ,AE ,PE) and a MDP (E,R)
a realization of a state action space if the set of states
is a subset of S and the actions for all states are the
same as in the state action space, that is SE ⊂ S and
AE(s) = A(s) for all s ∈ S. We can define policies
for a state action space which can be applied to any
realization.

3. Policy Improvement

3.1 One Realization

The policy improvement theorem for stochastic poli-
cies gives a sufficient criterion to improve a given policy
π. Let π̃ be a policy such thatX

a∈AQπ(a, s)π̃(a | s) ≥ V π(s) for all s ∈ S. (1)

Then V π̃ ≥ V π, that is V π̃ (s) ≥ V π (s) for all s ∈ S.
If additionally there exists an s ∈ S such that the
inequality (1) is strict then V π̃ > V π. A usual choice
for policy improvement is π̃(a | s) = 1 for an action a ∈
A (s) such that Qπ(a, s) = maxaQ

π(a, s). Repeating
policy improvement leads to policy iteration.

Considering all stochastic policies satisfying (1), we
define the set of improving policies for π in s by

Cπ
≥(s) =

n
π̃(− | s) :

X
Qπ(a, s)π̃(a | s) ≥ V π(s)

o
.

The set of strictly improving policies Cπ
>(s) and the

set of equivalent policies Cπ
=(s) for π in s are defined

analogously. We define the set of strictly improving
actions of π in s by Aπ

>(s) = {a : Qπ(a, s) > V π(s)}.
The set of improving policies Cπ

≥(s) is a polytope given
by the intersection of a half-space and a standard sim-
plex. Its vertices are

vert
¡
Cπ
≥(s)

¢
= vert(Cπ

=(s)) ∪Aπ
>(s). (2)

v12a1

π(s)

v32

a2

v32π(s)

v23

a2 a1

a3 a3

Figure 1. left: Improving policies for one realization right:
Improving policies for two realizations

See Figure 1 left, where Cπ
≥(s) is the shaded area, the

side marked by the small arrows, Aπ
>(s) = {a1, a3} and

vert(Cπ
=(s)) = {v12,v32}. Let A(s) = {a1, . . . , an},

c = (c1, . . . , cn)∈ Rn with ci = Qπ(ai, s) and b =
V π(s). Let ei ∈ Rn denote the ith standard basis
vector. Then vert (Cπ

=(s)) is {ek : ck = b}∪½
vij=

b− cj
ci − cj

ei +
ci − b

ci − cj
ej : ci > b, cj < b

¾
. (3)

3.2 Several Realizations

Let E =(S,A) be a state action space. We want to
improve a policy π for two realizations (E1,R1) and
(E2,R2) of E with value functions V π

i and Qπ
i for dis-

count rates γi, i = 1, 2. Let π̃ be a policy such thatX
a∈AQπ

1 (a, s)π̃(a | s) ≥ V π
1 (s) and (4)X

a∈AQπ
2 (a, s)π̃(a | s) ≥ V π

2 (s) (5)

for all s ∈ S1∩S2 and that π̃ (− | s) satisfies (4) or (5)
if s is only contained in S1 or S2 respectively. Then
V π̃
1 ≥ V π

1 and V π̃
2 ≥ V π

2 , see equation (1).

We define the set of improving policies Cπ
≥(s) =

Cπ
1,≥(s) ∩ Cπ

2,≥(s) for π in s ∈ S1 ∩ S2. The set of
strictly improving policies Cπ

>(s) is given by all poli-
cies π̃ (− | s) ∈ Cπ

≥(s) such that one inequality (4) or
(5) is strict. If s is only contained in S1 or S2 we use
the definition from the previous subsection. Let π̃ a
policy such that π̃(− | s) ∈ Cπ

≥(s) for all s ∈ S and
π̃(− | s) ∈ Cπ

>(s) for at least one s. Then π̃ per-
forms better than π since V π̃

i ≥ V π
i and V π̃

1 > V π
1 or

V π̃
2 > V π

2 by the previous subsection.

We call a policy balanced if Cπ
>(s) is empty. In general

there exist several balanced policies which can be sto-
chastic. In one environment a policy is optimal if and
only if it is balanced. For further details and policy
iteration for the general case with a finite family of
realizations see Matt and Regensburger (2001).

To describe Cπ
≥(s) and find a π̃(− | s) ∈ Cπ

>(s)
we consider its vertices, see Figure 1 right. We call
the vertices vert(Cπ

≥ (s)) improving vertices and de-
fine the strictly improving vertices by vert(Cπ

> (s)) =

vert(Cπ
≥ (s)) ∩ Cπ

> (s). For one realization the strictly
improving vertices are the strictly improving actions.
To find all strictly improving vertices for two realiza-
tions and an s ∈ S1 ∩ S2 we take all elements from
vert(Cπ

1,≥(s)) ∪ vert(Cπ
2,≥(s)) that are in Cπ

1,> (s) or
Cπ
2,> (s), where vert(C

π
i,≥(s)) are given by (2) and (3).

4. Approximate Policy Iteration

For policy iteration we need the action-values. If the
model of the environment is not given explicitly we can
approximate them. We use a SARSA related method,
see algorithm 1, (Sutton & Barto, 1998).

repeat
choose s ∈ S and a ∈ A(s) derived from π
take action a and observe r and s0

choose a0 ∈ A(s0) according to π
Q(a, s)←− Q(a, s) + α (r + γQ(a0, s0)−Q(a, s))

Algorithm 1: Approximate Policy Evaluation

We call Algorithm 2 approximate policy iteration for
several realizations. We start with an arbitrary policy
and approximate the action-values. The value function
can be derived by the Bellman equation. Then we
improve the policy according to Section 3.2 with the
approximated values.

repeat
approximate V π

i and Qπ
i for i ∈ [n]

for all s ∈ S do
if vert(Cπ̃

>(s)) 6= ∅ then
choose π0(− | s) ∈ vert(Cπ

>(s))
π(− | s)←− π0(− | s)

Algorithm 2: Approximate Policy Iteration

5. Experiments

All experiments are made with the simulator Sim-
Robo1. The robot has four sensors, forward, left, right,
and back, with a range of five blocks each. There
are three actions in each state, move forward, left and
right. The state action space is defined by all possible
sensor values and actions. We consider two environ-
ments, see Figure 2, and two reinforcement functions.
For obstacle avoidance, Roa, the robot gets rewarded
if it moves away from obstacles and it gets punished if
it moves towards them. For wall following, Rwf , the
robot gets rewarded if there is a block on its right side
and punished otherwise.

1More information on the blockworld simulator is avail-
able at http://mathematik.uibk.ac.at/users/rl.

Figure 2. Environments E1 and E2

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Iterations

N
or

m
ed

 U
til

ity

optimal
right env, wf
left env, wf

Figure 3. The performance of online policy iteration for
wall following in two environments

In each experiment we consider two realizations and
run Algorithm 2 starting with the random policy. For
policy evaluation, Algorithm 1, we use discount rate
γ = 0.95, start with learning rate α = 0.8 and run 5000
iterations. We choose action a using the �−greedy pol-
icy derived from π. We define the utility of a policy
by the average utilities of all states. To evaluate and
compare the policies obtained after each improvement
step we calculate the utilities of the policies exactly us-
ing value iteration. The utilities are then normalized,
with 1 being an optimal and 0 the random policy in
this realization.

5.1 Two Environments

We want to learn a policy for a wall following be-
havior for the environments E1 = (S1,A1,P1) and
E2 = (S2,A2,P2). Thus we have the realizations
(E1,Rwf) and (E2,Rwf). Figure 3 shows the utilities
of the learned policy in each iteration step for each re-
alization. Since the action values and value functions
are only approximated the utility may decrease after
a policy improvement step.

5.2 Two Environments and Two
Reinforcement Functions

We look for a policy that avoids obstacles in E1 and fol-
lows the wall in E2. The realizations are (E1,Roa) and
(E2,Rwf). Figure 4 shows the utilities. Even tough
wall following and obstacle avoidance together may be
contradicting we obtain a stochastic policy that per-

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Iterations

N
or

m
ed

 U
til

ity

optimal
right env, wf
left env, oa

Figure 4. The performance of online policy iteration for
wall following and obstacle avoidance in two environments

forms well in both realizations.

6. Discussion

Approximate policy iteration requires good approxi-
mations of all action-values in all realizations for the
improvement step. Therefore the approximate policy
evaluation step is critical and exploration plays a fun-
damental role. We note that the starting policy influ-
ences the policy learned by the algorithm. Our future
research focuses on optimistic policy iteration meth-
ods, where the policy is improved after incomplete
evaluation steps.

References
Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-
dynamic programming. Belmont, MA: Athena Sci-
entific.

Gábor, Z., Kalmár, Z., & Szepesvári, C. (1998). Multi-
criteria reinforcement learning. Proceedings of the
15th International Conference on Machine Learning
(ICML 1998) (pp. 197—205). Madison, WI: Morgan
Kaufmann.

Kaelbling, L. P., Littman, M. L., & Moore, A. W.
(1996). Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, pp. 237—285.

Matt, A., & Regensburger, G. (2001). Policy improve-
ment for several environments. Proceedings of the
5th European Workshop on Reinforcement Learning
(EWRL-5) (pp. 30—32). Utrecht, Netherlands.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Wakuta, K. (1995). Vector-valued Markov decision
processes and the systems of linear inequalities. Sto-
chastic Process. Appl., 56, 159—169.

