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1 Introduction

In our symbolic approach to boundary problems for linear ordinary differential
equations we use the algebra of integro-differential operators as an algebraic ana-
logue of differential, integral and boundary operators (Section 2). They allow to
express the problem statement (differential equation and boundary conditions)
as well as the solution operator (an integral operator called “Green’s operator”),
and they are the basis for operations on boundary problems like solving and
factoring [14, 17]. A survey of the implementation is given in [18].

The integro-differential operators are realized by a noetherian and confluent
rewrite system [17]. From a ring-theoretic point of view, this rewrite system con-
stitutes a basis for the ideal of relations among the fundamental operators, and
confluence means we have a noncommutative Gröbner basis [3, 4, 2, 9]. However,
since the relation ideal is infinitely generated in a polynomial ring with infinitely
many indeterminates, none of the known implementations [13] is applicable.

This is why the confluence proof is somewhat subtle (Section 3). The gen-
erators for the relation ideal are parametrized over a given integro-differential
algebra, and the reduction of S-polynomials must incorporate the computational
laws of the latter. The automated proof in [15] has achieved this in an ad-hoc
manner for the special case of what was called “analytic algebras” there. In our
new proof, the computational laws of integro-differential algebras are internal-
ized by using so-called integro-differential polynomials [16] in the formation of
the S-polynomials. We also refer to [19] for a detailed presentation of the new
automated proof and the corresponding integro-differential structures.

We use a prototype implementation of integro-differential polynomials and
reduction rings, based on Theorema and available at www.theorema.org. The
Theorema system was designed by B. Buchberger as an integrated environment
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for proving, solving and computing in various domains [6]. Implemented on top
of Mathematica, its core language is higher-order predicate logic and contains a
natural programming language such that algorithms can be coded and verified
in a unified formal frame, using the powerful tool of functors for building up a
hierarchy of parametrized domains; for more details and references see [8].

2 Integro-Differential Polynomials and Operators

We need an algebraic structure having differentiation along with integration. In
the following definition [17], one may think of the standard example F = C∞(R),
where ∂ = ′ is the usual derivation and

r
the integral operator f 7→

∫ x

a
f(ξ) dξ for

a ∈ R. The section axiom corresponds to the Fundamental Theorem of Calculus,
the differential Baxter axiom to Integration by Parts. Scalars are over a field K.
For the similar notion of differential Rota-Baxter algebras, we refer to [10].

Definition 1. An integro-differential algebra (F , ∂,
r

) is a commutative differ-
ential K-algebra (F , ∂) with a K-linear section

r
of ∂, meaning (

r
f)′ = f , such

that the differential Baxter axiom (
r
f ′)(

r
g′) +

r
(fg)′ = (

r
f ′)g + f(

r
g′) holds.

Let (F , ∂,
r

) be an integro-differential algebra of “coefficients”. Then the
integro-differential operators F [∂,

r
], introduced in [17] as a generalization of the

“Green’s polynomials” of [15], are defined as the quotient—modulo the rewrite
rules from the table below—of the noncommutative polynomial ring over K in
the following indeterminates: ∂ and

r
, the “functions” f ∈ F , and the multiplica-

tive “functionals” ϕ. The functions f range over a basis of F ; the multiplicative
functionals (or characters) ϕ : F → K are typically point evaluations, and they
must include the evaluation e = 1 −

∫
∂, which is e(f) = f(a) in the above

example. In the rewrite rules, we use f and g range over functions, ϕ and ψ over
multiplicative functionals.

fg → f · g ∂f → ∂ · f + f∂
r
f
r
→ (

r
· f)

r
−

r
(
r
· f)

ϕψ → ψ ∂ϕ→ 0
r
f∂ → f −

r
(∂ · f)− (e · f) e

ϕf → (ϕ · f)ϕ ∂
r
→ 1

r
fϕ→ (

r
· f)ϕ

Theorem 1. The above rewrite system is noetherian and confluent.

As explained before, one may find an outline of a manual proof for this
theorem in [17], but the purpose of the present paper is to sketch a new auto-
mated proof based on the algebra of integro-differential polynomials. The precise
definition as an instance of the universal polynomial construction [12, 7, 1] is te-
dious [16], but the underlying intuition is perfectly clear since one just adjoins an
indeterminate function u to the given integro-differential algebra F . The integro-
differential polynomials are an extension of the usual differential polynomials [11]
and in analogy we denote them by F{u}. A proof of the following theorem can
be found in [19].



An Automated Confluence Proof 3

Theorem 2. The integro-differential polynomials F{u} constitute an integro-
differential algebra with an algorithmic canonical simplifier.

Unlike the integro-differential operators, F{u} is thus a commutative integro-
differential algebra, and its multiplication is realized by the so-called shuffle
product. While the definition of the derivation is straightforward and simi-
lar to differential polynomials, the integral must be defined by a careful case
distinction on the differential exponents [16, 19]. Note that integro-differential
polynomials act as nonlinear differential and integral operators on F . A typ-
ical integro-differential polynomial for F = K[x] is given by 4u(0)4u2

r
u′3 +r

(x6uu′′5
r

(x2e4xu3u′2
r
u4)). For computational purposes, we have implemented

a canonical simplifier, identifying different expressions that denote the same
integro-differential polynomial.

3 An Automated Confluence Proof

As announced in the Introduction, the integro-differential polynomials are used
for proving the confluence of the above rewrite rules defining the relations for
F [∂,

r
]. Equivalently, we show that the noncommutative polynomials given by

the difference between the left and right sides of the rules form a noncommu-
tative Gröbner basis. For handling parametrized polynomial reduction and S-
polynomials, we use a noncommutative adaption of reduction rings, i.e. rings
with so-called reduction multipliers in the sense of [5]. As usual, we show that
all S-polynomials reduce to zero.

Since the rewrite rules contain two generic functions f and g, one can view
the corresponding S-polynomials as elements of F̃ [∂,

r
] with F̃ = F{u, v}. Here

F{u, v} = (F{u}){v} denotes the integro-differential polynomials in two inde-
terminates. More precisely, we reason as follows: If we know that an S-polynomial
reduces to zero as such, the same is true after substituting the functions f, g ∈ F
for u, v. Note the subtle shift between object and meta level when we use the
instance of the rewrite system for the integro-differential operators F̃ [∂,

r
] over

integro-differential polynomials for proving the confluence of the rewrite rules
for integro-differential operators over arbitrary integro-differential algebras—this
proof needs only rewriting not confluence! (Actually one should also treat the
functionals ϕ,ψ in analogy to the functions f, g, but the former are much simpler
than the latter.) We refer again to [19] for further details.

We can now use Theorema for checking whether an S-polynomial reduces to
zero. All S-polynomials are generated algorithmically, but as a concrete example
we check the self-overlap

∫
u
∫

and
∫
v
∫

of the Baxter rule.

TS_In[554]:= ReducePolAII"Ù "×u
X1\M "Ù "×v

X1\
 "Ù " - "Ù " I"Ù "×u

X1\M v
X1\

 "Ù "M -

I"Ù " u
X1\

 I"Ù "×v
X1\M "Ù " - "Ù " u

X1\
 "Ù " I"Ù "×v

X1\MME

TS_Out[554]=

0

It turns out that there are 72 S-polynomials, and indeed all of them reduce to
zero. Hence we conclude that the rewrite system for F [∂,

r
] is confluent.
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