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Introduction. We present a Maple package for computing in algebras of integro-differential operators. This
provides the appropriate algebraic setting for treating boundary problems [7] for linear ordinary differential equations
symbolically. They allow to formulate a boundary problem—a differential equation and boundary conditions—
but they are also expressive enough for describing its solution via an integral operator, which is called Green’s
operator. The implementation was tested in Maple 11, 12 and 13. It is available with an example worksheet at
http://www.risc.jku.at/people/akorpora/index.html.

Integro-differential Operators. The definition of integro-differential operators is based on an integro-differential
algebra (F , ∂,

r
) providing the coefficients. It is given by a commutative differential algebra (F , ∂) over a field K

such that
r
is a K-linear right inverse of ∂ that fulfills the differential Baxter axiom

(
r
f ′)(

r
g′) = (

r
f ′)g + f(

r
g′)−

r
(fg)′;

see [5] for details. For the similar notion of differential Rota-Baxter algebras see [1]. We call an integro-differential
algebra ordinary if dimK ker(∂) = 1. The integro-differential operators FΦ[∂,

r
] over an ordinary integro-differential

algebra (F , ∂,
r

) are introduced in [5] essentially as the K-algebra generated by the symbols ∂ and
r
, the functions

f ∈ F and a collection of multiplicative functionals Φ ⊆ F∗, modulo a Noetherian and confluent rewrite system.
In our Maple package, we do not implement the rewrite rules but a new approach via normal forms. The key
fact for working with normal forms is that each integro-differential operator can be written uniquely as a sum of
a differential, an integral, and a so-called Stieltjes boundary operator. Furthermore, the normal forms of products
within and between these three classes of operators are straightforward to determine [3]. Differential operators are
well-known, normal forms of integral operators are sums of terms of the form f

r
g with f, g ∈ F and boundary

operators are sums of terms having the form fϕ∂i or fϕ
r
g with ϕ ∈ Φ and f, g ∈ F . In our implementation,

the functionals in Φ are arbitrary point evaluations. As “coefficient algebra” we use the fragment of C∞ functions
representable in Maple. The differential operator ∂ is the usual derivation and the integral operator

r
is the integral

∫x0 , both computed by Maple.

Boundary problems. The idea of solving boundary problems symbolically was presented in [4] for two-point
boundary problems with constant coefficients and generalized to the setting of integro-differential algebras in [5].
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A general boundary problem of order n is formulated as follows: Given a forcing function f ∈ F , we want to find
u ∈ F such that

Tu = f
β1u = · · · = βnu = 0

for a monic differential operator T of order n and Stieltjes boundary conditions β1, . . . , βn ∈ F∗. For regular
boundary problems, the Green’s operator G : F → F maps the forcing function f to the unique solution u. Our
package computes the Green’s operator for a given regular boundary problem, provided that Maple can solve the
underlying homogeneous differential equation Tu = 0. For computing its fundamental system, we use the Maple
package DEtools and the command dsolve. An interesting example is given by the differential equation

u′′′ − (ex + 2)u′′ − u′ + (ex + 2)u = f,

for which Maple can find the general solution and solve it with given initial conditions. But it seems to have no
systematic procedure to solve it for arbitrary boundary conditions. For example, Maple does not give any solution
for the conditions

u(0) = u(1) = u′(1) + u′′(0) = 0.

With our package, we can compute the Green’s operator for this boundary problem and apply it symbolically to an
arbitrary forcing function f . The output is part of our example worksheet.

Outlook. We plan to have a complete package for treating linear boundary problems for ordinary differential
equations. We have already implemented various operations on boundary problems, like composition and factorization
of boundary problems along a given factorization of the defining differential operator [5, 6], see also the example
worksheet. In a next step, we want to treat singular boundary problems, as for example in [2]. The package should
also allow for an extension to integro-differential operators acting on multivariate functions; see [6] for some first
steps in this direction.
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