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ABSTRACT
We propose two algebraic structures for treating integral
operators in conjunction with derivations: The algebra of
integro-differential polynomials describes nonlinear integral
and differential operators together with initial values. The
algebra of integro-differential operators can be used to solve
boundary problems for linear ordinary differential equations.
In both cases, we describe canonical/normal forms with al-
gorithmic simplifiers.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation—simplification of expres-
sions; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—algebraic algorithms

General Terms
Theory, Algorithms

Keywords
Integral operators, integro-differential algebras, noncommu-
tative Gröbner bases, Green’s operators, linear boundary
value problems

1. INTRODUCTION
While differential operators are studied extensively in sym-
bolic computation, this cannot be asserted about integral
operators. In the former case, one uses two fundamental
structures for transferring analysis to algebra: “differential
operators” and “differential polynomials”; both of these can
act on suitable function spaces (the former linearly and the
latter nonlinearly). In this paper, we propose two analogous
algebraic structures for treating integral operators (along
with differential operators): “integro-differential operators”
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and “integro-differential polynomials”; both of these are ex-
tensions of the corresponding differential structures. In Sec-
tion 2, we review some notions about integro-differential al-
gebras needed for these constructions.

The integro-differential polynomials are introduced here for
the first time. Their construction is explained in Section 3,
the computational approach in Section 4. While model-
ing nonlinear integral operators, the most important use of
the integro-differential polynomial ring F{u} over a given
integro-differential algebra F is probably to describe exten-
sions of integro-differential algebras in a constructive fash-
ion. In practice, one can start with the integro-differential
algebra F0 of exponential polynomials, adjoin a solution of
differential equations (with initial values) by passing to a
quotient F1 of F0{u}, and iterate this procedure.

The notion of integro-differential operators has been intro-
duced in [23], where it is used for multiplying and factoring
BVPs (= linear boundary value problems for ordinary dif-
ferential equations). In fact, one of the main applications of
integro-differential operators is that they describe the differ-
ential equation, boundary conditions and solution operator
(Green’s operator) of a BVP in uniform language. In [23]
we have constructed a monoid on BVPs isomorphic to the
compositional structure of their Green’s operators, studied
in [21] from an abstract viewpoint. In this paper, we will
review their construction and main properties in Section 5
and focus on computational aspects in Section 6.

For both integro-differential polynomials and operators, the
crucial instrument for an algorithmic treatment is of course
the usage of standard representatives, but they arise in fairly
different contexts: In the former case, where we prefer to
speak of canonical forms, we employ tools from universal
algebra to build a canonical simplifier for the appropriate
polynomial concept. In the latter case, where we shall use
word normal forms, our approach is to construct a confluent
rewrite system (equivalently: a noncommutative Gröbner
basis).

2. INTEGRO-DIFFERENTIAL ALGEBRAS
Our starting point is a commutative differential algebra (F , ∂)
over a field K, so ∂ : F → F is a K-linear map satisfying
the Leibniz rule

∂(fg) = f ∂(g) + g ∂(f). (1)



For convenience, we may assume K ≤ F , and we write f ′

as a shorthand for ∂(f). Furthermore, we will assume that
K has characteristic zero and Q ≤ K, hence F is what is
sometimes called a Ritt algebra [14, p. 12]. The algebra of
differential operators over F is denoted by F [∂] as in [27].

For inhomogeneous differential equations Tu = f with T ∈
F [∂], the solution operators (mapping f ∈ F to u ∈ F) are
integral operators. The simplest equation is u′ = f , and its
solution operators

r
are exactly the sections (i.e. K-linear

right inverses) of the differential operator ∂ so that

∂
r

= 1. (2)

Note that derivations need not have sections (for example
in the algebra of univariate differential polynomials, the in-
determinate cannot be a derivative).

The characterization of sections follows from Linear Alge-
bra, see [19, p. 17] or [21]: Every section

r
: F → F of

the derivation ∂ : F → F corresponds to a unique projector
P : F → F with

P = 1 −
r
∂ (3)

and to a unique direct sum decomposition F = C ∔ I of
K-vector spaces with

C = Ker(∂) = Im(P ) and I = Im(
r
) = Ker(P ).

Moreover, if
r

is any fixed section of ∂, every projector P
with Im(P ) = Ker(∂) induces a section (1−P )

r
, and every

section of ∂ arises uniquely in this way.

We refer to the elements of I = Im(
r
) as initialized (with

respect to
r
), while those of C = Ker(∂) are usually called

the constants (with respect to ∂).

As a standard example, we take F = C∞[a, b] where differ-
entiability in the endpoints is understood in the sense one-
sided derivatives. The initialized functions are those that
can be written as F (x) =

r x

α
f(ξ) dξ for f ∈ C∞[a, b] and

an initialization point α ∈ [a, b]; hence F is the unique an-
tiderivative of f that fulfills the initial condition F (α) = 0.

For solving inhomogeneous differential equations of higher
order, one must expect to iterate the section

r
. While this

would in general lead to nested integrals, we know from the
classical C∞ setting that the Green’s operator can always
be expressed via the Green’s function [26] by a single inte-
gration. To capture this behavior, we need an identity for
resolving nested integrals (eventually leading to the rewrite
rule for

r
f
r

in Table 1). Such an identity is given by the
so-called Baxter axiom (of weight zero), asserting

r
f ·

r
g =

r
f
r
g +

r
g
r
f (4)

for all f, g ∈ F . Note that we apply the following convention
in this paper: An integral like

r
f
r
g should be interpreted

as
r
(f

r
g), unless we use · as on the left-hand side above.

Obviously (4) is an algebraic version of integration by parts,
written in a way that does not involve the derivation. (For
the integro-differential polynomials, the role of the Baxter
axiom is more subtle: From the left to right, it “flattens”
products of nested integrals; in the other direction, it is used
for “integrating out” coefficient functions—see Section 4.) A

weight-zero Baxter algebra (F ,
r
) is then aK-algebra F with

a K-linear operation
r

fulfilling the Baxter axiom (4); we
refer to [11, 2, 24] for more details.

What we shall actually use is the differential Baxter axiom,
which requires

r
fg = f

r
g −

r
f
′
r
g (5)

for all f, g ∈ F . Note that this is what most people do when
they actually apply integration by parts. Variant (4) follows
immediately by substituting

r
f for f in (5), and often both

versions are equivalent (see after Definition 11).

We can also characterize what makes the differential Baxter
axiom stronger than the pure one: A section

r
of ∂ fulfills

the differential Baxter axiom (5) iff it fulfills the pure Baxter
axiom (4) and the homogeneity condition

r
cf = c

r
f (6)

for all c ∈ C and f ∈ F . In fact, (6) implies that
r

: F → F
is C-linear and not only K-linear.

We refer to [23] for the proof of the equivalence and for an
example of a differential algebra with a section that satisfies
the pure Baxter axiom but not its differential form. To
exclude such cases we will insist that integral operators must
satisfy the differential Baxter axiom.

Definition 1. Let F be a differential algebra over a field
K. A section

r
of ∂ is called an integral if it satisfies the

differential Baxter axiom (5). In this case, we call (F , ∂,
r
)

an integro-differential algebra.

As an example, take F = C∞[a, b] with its usual derivation
∂ and integral operators

r
∗
: f 7→

Z x

a

f(ξ) dξ and
r
∗
: f 7→

Z b

x

f(ξ) dξ.

Then both (F , ∂,
r
∗
) and (F , ∂,−

r
∗
) are integro-differential

algebras. By contrast, the operator

f 7→

Z b

a

Z x

τ

f(ξ) dξ dτ,

is just a section for ∂, but not an integral.

In the above example, the projectors P ⋆ : f 7→ f(a) and
P⋆ : f 7→ f(b) corresponding to the respective integral oper-
ators

r
∗

and
r
∗

are multiplicative (see (7) below), whereas

the projector
r b

a
for the third operator is not. This is true

in general—we can characterize integrals by their projectors
or images as detailed in [23]: A section

r
: F → F of the

derivation ∂ : F → F is an integral iff I = Im(
r
) is an ideal

of F iff P = 1 −
r
∂ is multiplicative, meaning

P (fg) = P (f)P (g) (7)

for all f, g ∈ F . Using the homogeneity condition (6), this
implies also

r
fg

′ = fg −
r
f
′
g − P (f)P (g) (8)

as an equivalent formulation (corresponding to the rewrite
rule for

r
f∂ in Table 1) of the differential Baxter axiom (5).



Similar structures are introduced under the name differen-
tial Rota-Baxter algebras in the recent article [12]. A crucial
difference is that they only require the section axiom (2)
for connecting derivation and integral, but not the differen-
tial Baxter axiom (5). They construct free objects in more
general categories where the algebras are over unital commu-
tative rings rather than fields, they may be noncommuative,
and the weight can be an arbitrary scalar.

3. THE ALGEBRA OF INTEGRO-
DIFFERENTIAL POLYNOMIALS

In this section, we introduce the algebra of integro-differ-
ential polynomials obtained by adjoining one indeterminate
function to an integro-differential algebra. This is a special
case of the general construction of polynomials in universal
algebra. See for example [1] for the basic notions in universal
algebra that we use in the following and [7, 13, 16] for details
on polynomials in universal algebra.

The idea of the construction is as follows. Let V be a variety
defined by a set E of identities or “laws” over a signature Σ.
Let A be a fixed“coefficient domain” from the variety V, and
let X be a set of “variables” or “indeterminates”. Then all
terms in the signature Σ with constants (henceforth called
“coefficients”) in A and variables in X represent the same
polynomial if their equality can be derived in finitely many
steps from the identities in E and the operations in A. The
set of all such terms TΣ(A ∪X) modulo this congruence ≡
is an algebra in V, called the polynomial algebra (for V) in
X over A, denoted by AV [X].

The polynomial algebra AV [X] contains A as a subalgebra,
and A∪X is a generating set. As in the case of polynomials
for commutative rings, we have the substitution homomor-
phism in general polynomial algebras. Let B be an algebra
in V. Then given a homomorphism ϕ1 : A → B and a map
ϕ2 : X → B, there exists a unique homomorphism

ϕ : AV [X] → B

such that ϕ(a) = ϕ1(a) for all a ∈ A and ϕ(x) = ϕ2(x) for
all x ∈ X.

In order to compute with polynomials one can use an effec-
tive canonical simplifier [7], that is, a computable map

σ : TΣ(A ∪X) → TΣ(A ∪X)

such that

σ(T ) ≡ T and S ≡ T ⇒ σ(S) = σ(T )

for all terms S, T ∈ TΣ(A ∪ X). The representatives in
R := Im(σ) are called canonical forms. Canonical simpli-
fiers correspond uniquely to so-called systems of canonical
forms, i.e. a set of terms

R ⊆ TΣ(A ∪X)

such that for every T ∈ TΣ(A∪X) one can compute a canon-

ical form R ∈ R with T ≡ R and such that R 6= R̃ ⇒ R 6≡ R̃
for R, R̃ ∈ R. In other words, for every polynomial in AV [X]
represented by a term T one can compute a term R ∈ R
representing the same polynomial, with different terms in R
representing different polynomials, see [16, p. 23].

As a well-known example take the polynomial ring R[x] in
one indeterminate x over a commutative ring R. The set of
all terms of the form anx

n + . . .+a0 with coefficients ai ∈ R
and an 6= 0 together with 0 is a system of canonical forms
for R[x]. One usually defines the polynomial ring directly
in terms of these canonical forms. Polynomials for groups,
bounded lattices and Boolean algebras are discussed in [16]
along with systems of canonical forms.

Let us now consider the variety V of integro-differential al-
gebras. Its signature Σ contains (besides the ring opera-
tions): the derivation ∂, the integral

r
, the family of unary

“scalar multiplications” (·λ)λ∈K ; for convenience we also in-
clude the projection P . The identities E are (besides those
of a K-algebra and theK-linearity of the operators ∂,

r
, P ):

the Leibniz rule (1), the section axiom (2), the definition of
the projection (3), and the differential Baxter axiom (5).

Definition 2. Let F be an integro-differential algebra.
Then FV [u] is called the algebra of integro-differential poly-
nomials in u over F and denoted it by F{u} in analogy to
differential polynomials.

We will also use the following identities following from E and
describing the basic interactions between the operations in
F : the pure Baxter axiom (4), the multiplicativity of the
projection (7), the identities

P
2 = P, ∂P = 0, P

r
= 0,

r
P (f)g = P (f)

r
g, (9)

and the variant (8) of the differential Baxter axiom connect-
ing all three operations. Moreover, we use also the shuffle
identity [25, 20] obtained from iterating the Baxter axiom

r
f1

r
. . .

r
fm ·

r
g1

r
. . .

r
gn =

X r
h1

r
. . .

r
hm+n, (10)

where the sum ranges over all shuffles of (f1, . . . , fm) and
(g1, . . . , gn). By construction of the polynomial algebra, all
these identities hold also for F{u}.

We will use f, g for denoting coefficients in F and V for
terms in TΣ(F ∪ {u}). As for differential polynomials, we
write un for the nth derivative of u. We use the multi-index
notation

u
β =

∞
Y

i=0

u
βi

i

for a sequence β in N with only finitely many nonzero en-
tries. The order of a differential monomial uβ is the highest
derivative appearing in uβ or −∞ if β = 0. Moreover, we
write V (0) for P (V ) and

u(0)α =
∞
Y

i=0

ui(0)
αi .

for a multi-index α.

4. CANONICAL FORMS FOR INTEGRO-
DIFFERENTIAL POLYNOMIALS

Our goal is to find a system of canonical forms for integro-
differential polynomials. As a first step, we describe a system
of terms that is sufficient for representing every polynomial,
but not in a unique (canonical) way.



Lemma 3. Every polynomial in F{u} can be represented
by a finite sum of terms of the form

fu(0)α
u

β
r
f1u

γ1
r
. . .

r
fnu

γn , (11)

where each multi-index as well as n may be zero.

Proof. By induction on the structure of terms, using
the identities of integro-differential algebras and the above
mentioned consequences (except the differential variants of
the Baxter axiom).

Note that for terms only involving the derivation, (11) gives
already the usual canonical form for differential polynomi-
als. With the aid of Lemma 3, we can now determine the
constants in F{u}.

Proposition 4. Every constant in F{u} can be repre-
sented as a finite sum

P

α
cαu(0)

α with constants cα in F.

Proof. By the identity
r
∂ = 1−P , a term V represents

a constant in F{u} iff P (V ) ≡ V . Since V is congruent to
a finite sum of terms of the form (11) and since Im(P ) = C,
the identities for P imply that V is congruent to a finite sum
of terms of the form cαu(0)

α.

It is immediately clear that terms of the form (11) cannot be
canonical forms for general integro-differential polynomials
since for example f

r
gu and λ−1f

r
λgu with λ ∈ K represent

the same polynomial. This can be solved by choosing a basis
B for F containing 1.

A second problem for canonical forms comes from the fact
that we can integrate certain differential polynomials using
integration by parts (8). For example, the terms

r
fu′ and

fu−
r
f ′u− f(0)u(0) represent the same polynomial. More

generally, we have the following identity.

Lemma 5. We have

r
V u

βk

k uk+1

≡
1

βk + 1

“

V u
βk+1
k −

r
V

′
u

βk+1
k − V (0)uk(0)βk+1

”

(12)

where k, βk ≥ 0.

Proof. Using (8) and the Leibniz rule, we see that

r
V u

βk

k uk+1 =
r
(V uβk

k )(uk)′

≡ V u
βk+1
k −

r
V

′
u

βk+1
k −βk

r
V u

βk

k uk+1−V (0)uk(0)βk+1
,

and the equation follows.

In particular, if V = fu
β0

0 . . . u
βk−1

k−1 , then V ′ and hence also
the right-hand side of (12) contains only differential mono-
mials with order at most k. So if the highest derivative in
the differential monomial uβ of order k+ 1 appears linearly,
the term

r
fuβ is congruent to a sum of terms involving only

differential monomials of order at most k. This motivates
the following classification of differential monomials; confer
also [4, 10].

Definition 6. A monomial (11), with uβ having order
k, is said to have depth n and order k. It is called quasicon-
stant if β = 0, quasilinear if k > 0 and the highest derivative
appears linearly; otherwise it is called functional.

Definition 7. We write R for the set of all K-linear
combinations of terms of the form

bu(0)α
u

β
r
b1u

γ1
r
. . .

r
bnu

γn , (13)

where b, b1, . . . , bn ∈ B, the multi-indices α, β as well as n
may be zero, and uγ1 , . . . , uγn are functional.

As we will see, R forms a system of canonical forms for
F{u}. The easier part of this claim is that every polynomial
has such a representation.

Proposition 8. Every polynomial in F{u} can be repre-
sented by a term in R.

Proof. Using basis expansions and theK-linearity of the
integral, we can represent with Lemma 3 every polynomial
in F{u} as a K-linear combination of terms of the form

bu(0)α
u

β
r
b1u

γ1
r
. . .

r
bnu

γn , (14)

where the multi-indices and n can also be zero.

With basis expansions and the identity
r
f
r
V ≡

r
f ·

r
V −

r
V

r
f,

coming from the pure Baxter axiom (4), we can achieve that
every multi-index γk in (14) is nonzero (induction on depth).
Using Lemma 5, one sees that a term

r
b1u

γ1 is congruent
to a sum of terms involving only integral terms with func-
tional differential monomials (induction on order). Finally
one shows (induction on depth and order) that this also
holds for terms of the form

r
b1u

γ1
r
. . .

r
bnu

γn .

The proposition then follows by basis expansions and the
K-linearity of the integral.

It remains to show that each term in R represents a different
polynomial. To this end, let 〈R〉 be the free vector space
over the set of terms (13). In order to distinguish the basis
vectors of 〈R〉 from the corresponding terms in R, we denote
them by

〈bu(0)α
u

β
r
b1u

γ1
r
. . .

r
bnu

γn〉. (15)

If b, b1, . . . , bn are no basis vectors, (15) is to be understood
as an abbreviation for the corresponding basis expansion.
We equip the free vector space 〈R〉 with the structure of an
integro-differential algebra. The operations are defined on
the basis vectors mimicking the corresponding operations in
TΣ(F ∪ {u}), and reducing to congruent terms in R.

The multiplication in 〈R〉 is introduced in stages. Let J

and J̃ range over pure integral terms
r
b1u

γ1

r
. . .

r
bnu

γn ,



including 1 for n = 0. The product of a term 〈bu(0)αuβ〉

with a general term 〈b̃u(0)α̃uβ̃ J̃〉 is defined as

〈bb̃ u(0)α+α̃
u

β+β̃
J̃〉.

Corresponding to the shuffle identity (10), we define the

product 〈
r
buγJ〉〈

r
b̃uγ̃ J̃〉 of pure integrals recursively as

〈
r
bu

γ〉 ⋆ 〈J〉〈
r
b̃u

γ̃
J̃〉 + 〈

r
b̃u

γ̃〉 ⋆ 〈J̃〉〈
r
bu

γ
J〉,

where ⋆ denotes the operation of nesting integrals (multi-
plication binds stronger than ⋆); the base case is given by
the neutral element 1. With this product, the pure integral
terms form a subalgebra isomorphic to the shuffle algebra so
that · is associative and commutative. Finally, the product

of two general basis vectors 〈bu(0)αuβJ〉 and 〈b̃u(0)α̃uβ̃ J̃〉 is

given by multiplying 〈bu(0)αuβ〉〈b̃u(0)α̃uβ̃〉 with 〈J〉〈J̃〉.

The derivation of basis vector is defined through the Leibniz
rule, using also the identities ∂P = 0, ∂

r
= 1 and basis

expansions.

The integral of a basis vector is defined recursively (first
by depth and then by order), based on the classification of
Definition 6. In the quasiconstant case, we define

r
〈bu(0)α

J〉 = 〈
r
b〉〈u(0)α

J〉 −
r
〈J ′〉

r
〈bu(0)α〉,

where J ′ is J with the integral removed (zero for J = 1).
For a quasilinear basis vector

〈bu(0)α
V u

βk

k uk+1J〉 with V = u
β0

0 . . . u
βk−1

k−1 ,

we set s = βk + 1 and define the integral by

s
r
〈bu(0)α

V u
βk

k uk+1J〉

= 〈bu(0)α
V u

s
kJ〉 − 〈u(0)α〉

r
〈bV J〉′〈us

k〉 − 〈bV uα
u

s
kJ〉(0);

the third summand is absent unless J = 1.

In the functional case, we use
r
〈bu(0)α

u
β
J〉 = 〈u(0)α

r
bu

β
J〉,

as a definition for the integral.

For showing that 〈R〉 is an integro-differential algebra, we
have to verify the axioms: First of all we see that it is a
commutative K-algebra by our previous remark about the
shuffle product. The Leibniz rule and the section axiom fol-
low immediately from the definition. The only difficult task
is to prove the differential Baxter axiom. An easy calcula-
tion shows that

r
〈u(0)α〉〈R〉 = 〈u(0)α〉

r
〈R〉.

Proposition 4 then implies that
r

is homogeneous over the
constants in 〈R〉. By the observation before (6), it suffices
therefore to verify the pure Baxter axiom. The proof is
lengthy (using inductions over depth and order, with case
distinctions according to the definition of the integral) and
will be presented in a subsequent publication.

Proposition 9. With the operations defined as above,
〈R〉 is an integro-differential algebra.

The integro-differential algebra 〈R〉 provides the key for
showing that all terms in R represent different polynomi-
als of F{u}.

Theorem 10. The terms in R constitute a system of ca-
nonical forms for F{u}, provided that basis expansion in F
is computable.

Proof. Since 〈R〉 is an integro-differential algebra, there
exists a unique substitution homomorphism

ϕ : F{u} → 〈R〉

such that ϕ(f) = 〈f〉 for all f ∈ F and ϕ(u) = 〈u〉. Let

π : R → F{u}

denote the restriction of the canonical epimorphism associ-
ated with ≡. Then ϕ ◦ π is injective since it maps R ∈ R
to 〈R〉 ∈ 〈R〉 and surjective by Proposition 8. We conclude
that π is also bijective, so R is indeed a system of canonical
forms.

5. THE ALGEBRA OF INTEGRO-
DIFFERENTIAL OPERATORS

As explained in the Introduction, one important applica-
tion of integro-differential polynomials is the adjunction of
new elements to an initially given integro-differential alge-
bra F ; this issue will be broached in a future paper. If
F is ordinary (see Definition 11 below), we can thus en-
sure that a given homogeneous differential equation Tu = 0
with monic T ∈ F [∂] is dimensionally adequate, meaning
dimK Ker(T ) = deg T . This is the prerequisite for finding
the Green’s operator of the corresponding inhomogeneous
equation Tu = f ; see [23] for a detailed description of the
solution method. Its groundwork consists of adding and
multiplying integro-differential operators, and this is what
we shall consider here.

Before giving the construction of integro-differential opera-
tors, we will explicitly restrict ourselves to ordinary differ-
ential equations in the following sense. Note that in the fol-
lowing definition our terminology deviates from [15, p. 58],
where it only refers to having a single derivation.

Definition 11. A differential algebra F over a field K is
called ordinary if dimK Ker(∂) = 1. An integro-differential
algebra (F , ∂,

r
) is called ordinary if (F , ∂) is ordinary.

As a consequence, the solution space of a homogeneous dif-
ferential equation Tu = 0 with monic T ∈ F [∂] is now
finite-dimensional, so we can indeed enforce dimensional ad-
equacy by adjunction. (The notion of saturated integro-
differential algebra [23] postulates dimensional adequacy for
every monic T ∈ F [∂].)

Clearly we have K = C in an ordinary differential algebra
F , which is thus an algebra over its own field of constants.
But then a section is automatically homogeneous over C, so
the pure Baxter axiom (4) and its differential version (5)
coincide. Moreover, one knows from Linear Algebra that



a projector P onto a one-dimensional subspace [w] of a K-
vector space V can be written as P (v) = ϕ(v)w with a
functional ϕ that can be made unique by the normalization
ϕ(w) = 1. If V is a K-algebra, a projector onto K = [1]
is canonically described by the functional ϕ with ϕ(1) = 1.
This holds in particular in an ordinary differential algebra,
where the projectors (3) corresponding to sections of the
derivation can be regarded as normalized functionals.

In an ordinary integro-differential algebra F , the normalized
functional corresponding to the integral

r
is moreover mul-

tiplicative, as explained at the end of Section 2. We call this
multiplicative functional

e = 1 −
r
∂ (16)

its evaluation. The terminology stems from the standard
example F = C∞[a, b], where e is a point evaluation (see
below Definition 1). The multiplicative functionals on an
algebra are known as its characters (note that all characters
are normalized). We write M(F) for the vector space of
all characters on an ordinary integro-differential algebra F ,
including the evaluation e as a distinguished character.

Let F be a fixed ordinary integro-differential algebra over a
field K with evaluation e. The variables f, g are used for
elements of F , the variables ϕ,ψ for elements of M(F). We
introduce now an algebra of operators on F using rewrite
systems [1] in the spirit of [3].

fg → f · g ∂f → ∂ · f + f∂

ϕψ → ψ ∂ϕ → 0

ϕf → (ϕ · f)ϕ ∂
r

→ 1
r
f
r

→ (
r
· f)

r
−

r
(
r
· f)

r
f∂ → f −

r
(∂ · f) − (e · f) e

r
fϕ → (

r
· f)ϕ

Table 1: Rewrite System for F [∂,
r
]

Definition 12. The integro-differential operators F [∂,
r
]

are defined as the K-algebra generated by the symbols ∂ andr
, the “functions” f ∈ F and the multiplicative “functionals”
ϕ ∈ M(F), modulo the rewrite system of Table 1.

In the rules of Table 1, we use the notation U · f for the
action of U on an element f ∈ F , where U is an element of
the free algebra in the above generators. It is an easy matter
to check that the rewrite rules of Table 1 are fulfilled in F ,
so we may lift · to an action of F [∂,

r
] on F . In particular,

f · g now denotes the product in F .

We remark that Table 1 is to be understood as including
implicit rules for

r r
,

r
∂ and

r
ϕ by substituting f = 1 in

the rules for
r
f
r
,
r
f∂ and

r
fϕ, respectively. Moreover, one

obtains the derived rule e

r
= 0 from the definition of the

evaluation e. Note also that F [∂] ⊆ F [∂,
r
], with the same

induced action on F .

Theorem 13. The rewrite system for F [∂,
r
] in Table 1

is convergent.

In other words, the polynomials given by the difference be-
tween the left-hand and right-hand sides of Table 1 form
a two-sided noncommutative Gröbner basis. The proof is
given in [23]. For the theory of Gröbner bases, we refer
to [5, 6], for its noncommutative extension to [17, 18].

6. NORMAL FORMS FOR INTEGRO-
DIFFERENTIAL OPERATORS

Having a convergent rewrite system, every integro-differ-
ential operator has a unique normal form [1, p. 12]. To
compute such normal forms we also need a canonical simpli-
fier on the free algebra generated by ∂ and

r
, the functions

f ∈ F and the functionals ϕ ∈ M(F); one possibility is by
basis expansion in F . Here we summerize the description of
the normal forms on F [∂,

r
] obtained in [23].

We first consider operators in the right ideal

S(F) = M(F)F [∂,
r
],

which we call Stieltjes boundary conditions over F or“bound-
ary conditions” for short. Every such boundary condition
has the normal form

X

ϕ∈M(F)

 

X

i∈Naϕ,i ϕ∂
i + ϕ

r
fϕ

!

with aϕ,i ∈ K and fϕ ∈ F almost all zero. We write
F [e] for the left F-submodule generated by S(F) and call
them Stieltjes boundary operators or “boundary operators”
for short.

With the rule for ∂f of Table 1 it is clear that the differen-
tial operators F [∂] ⊂ F [∂,

r
] have their usual normal forms.

Analogously, we write F [
r
] ⊂ F [∂,

r
] for the subalgebra of

integral operators, generated by the functions and
r

mod-
ulo the rule for

r
f
r

of Table 1; one sees immediately that
that their normal forms are linear combinations of f

r
g with

f, g ∈ F .

Theorem 14. Up to ordering the summands, every nor-
mal form of F [∂,

r
] with respect to the rewrite system of

Table 1 can be written uniquely as a sum T + G + B with
T ∈ F [∂] and G ∈ F [

r
] and B ∈ F [e].

We can use integro-differential operators for specifying and
solving boundary problems. Since space is limited, we can
only state the main results here; for details and complete
proofs, we must again refer to [23]. We formulate the bound-
ary problem for a monic differential operator T ∈ F [∂] with
deg T = n and Stieltjes boundary conditions β1, . . . , βn ∈
S(F) as follows.

Given a forcing function f ∈ F , find u ∈ F such that

Tu = f,

β1u = . . . = βnu = 0.
(17)

We call the boundary problem regular if there is a unique u ∈
F for every f ∈ F ; this implies in particular that β1, . . . , βn

are linearly independent over K.

The first step in solving (17) is to consider the correspond-
ing initial value problem based on a character η ∈ M(F),



where one replaces the boundary conditions β1, . . . , βn by
η, η∂, . . . , η∂n−1. Note that one may in particular choose
η = e, evaluating in the initialization point. The main idea
of solving initial value problems is of course an adaption of
the familiar variation-of-constants formula (see for example
in [9, p. 74] for systems and [9, p. 87] for scalar differential
equations).

Proposition 15. Let T ∈ F [∂] be a monic differential
operator with deg T = n such that Tu = 0 has a fundamental
system of solutions u1, . . . , un ∈ F. If W is its Wronskian
matrix and d = detW is invertible in F, the initial value
problem Tu = f based on η ∈ M(F) has the unique solution

u =
n
X

i=1

ui(1 − η)
r
d
−1
dif (18)

for every forcing function f ∈ F. Here di = detWi, where
Wi is the matrix obtained from W by replacing the ith col-
umn by the nth unit vector.

Proof. We can use the usual technique of reformulating
Tu = f as a system of linear first-order differential equations
with companion matrix A ∈ Fn×n. The integral operator

−

r
= (1 − η)

r

is a section of ∂ with corresponding projector 1 − −

r
∂ = η.

Since η is multiplicative, we know from Section 2 that −

r
is

an integral. We extend the action of the operators −

r
, ∂, η

componentwise to Fn. Setting now

û = W−

r
W

−1
f̂

with f̂ = (0, . . . , 0, f)⊤ ∈ Fn, one may readily check that

û ∈ Fn is a solution of the first-order system û′ = Aû + f̂
with initial condition ηû = 0. Writing u for the first com-
ponent of û, we have a solution of the initial value problem
Tu = f based on η ∈ M(F). Using Cramer’s rule to com-
pute the nth column of W−1, we see that

W
−1
f̂ = d

−1
f (d1, . . . , dn)⊤,

and (18) follows since the first row of W is (u1, . . . , un).

For proving uniqueness, assume Tu = 0 along with the ini-
tial conditions ηu = . . . = ηu(n−1) = 0. Let

u = c1u1 + . . .+ cnun

with coefficients in K. Then the initial conditions yield
η(Wc) = 0 with c = (c1, . . . , cn)⊤ ∈ Kn. But η(Wc) =
η(W )c because η is linear, and det η(W ) = η(detW ) be-
cause it is moreover multiplicative. Since detW ∈ F is
invertible, this implies that η(W ) ∈ Kn×n is regular, so
c = η(W )−10 = 0 and u = 0.

The above proposition hinges on two conditions: The first
has already been discussed and can be satisfied by adjunc-
tion. The second condition needs an invertible Wronskian d.
This could also be enforced by a suitable localization of F ,
as for Picard-Vessiot rings [27, p. 12]. But in many appli-
cations, this condition will come out naturally: The Wron-
skian d is always an exponential over F since it satisfies the

differential equation d′ = ad, where a is the trace of the
companion matrix A.

Since every integro-differential algebra F comes with the
evaluation η = e as a distinguished character, we can speak
of the initial value problem associated with a monic T ∈
F [∂]. Then the map T� : F → F described by the assign-
ment f 7→ u in (18) simplifies to

T
� =

n
X

i=1

ui

r
d
−1
di. (19)

We call T� ∈ F [∂,
r
] the fundamental right inverse of T .

Note that (19) can be further simplified if T has constant
coefficients; see [22].

The next step in solving (17) is to compute the projector
onto Ker(T ) = [u1, . . . , un] along

[β1, . . . , βn]⊥ = {u ∈ F | β1u = . . . = βnu = 0},

which can be achieved as follows: Change from the basis
β1, . . . , βn of [β1, . . . , βn] to a new basis β̃1, . . . , β̃n over K

biorthogonal to u1, . . . , un in the sense that β̃i(uj) = δij .
Then the projector can be determined as

P = u1β̃1 + . . .+ unβ̃n ∈ F [e].

See [23] for further details.

We can now put everything together for determining the
Green’s operator G : f 7→ u of (17). The point is that T�

solves the initial value problem, while 1−P “translates” the
initial conditions e, e∂, . . . , e∂n−1 to the required boundary
conditions β1, . . . , βn.

Theorem 16. Let T ∈ F [∂] be monic with deg T = n
and β1, . . . , βn ∈ S(F) such that the boundary problem (17)
is regular. If the conditions of Proposition 15 are satisfied,
the Green’s operator of (17) is given by

G = (1 − P )T�
,

where P is the projector onto Ker(T ) along [β1, . . . , βn]⊥.

Proof. Let u1, . . . , un be a fundamental system for T .
We have TG = TT� − PT� = 1 − 0 since P annihilates
u1, . . . , un. Thus u = Gf satisfies the differential equation
Tu = f of (17).

For ensuring the boundary conditions of (17), we prove
βiG = 0 for i = 1, . . . , n. But we have even βi(1 − P ) = 0
because 1 − P projects onto [β1, . . . , βn]⊥.

In analysis, the Green’s operator G is usually written as an
integral operator with the bivariate Green’s function as its
kernel. As remarked in Section 2, this is the effect of the
Baxter axiom. Hence the abstract version of a Green’s func-
tion is the Green’s operator G ∈ F [∂,

r
] written in its nor-

mal form. In the classical C∞[a, b] setting, there is indeed a
straight-forward correspondence between normal forms and
Green’s functions [22].



7. CONCLUSION
We have presented two algorithmic tools for studying inte-
gration from an algebraic operator perspective. The integro-
differential polynomials, introduced for the first time in this
paper, enjoy a rich structure that deserves further analysis.
Specifically, their quotient algebras are relevant in view of
adjunctions (see at the beginning of Section 5). Unlike the
integro-differential polynomials, the integro-differential op-
erators are an algebraic model of linear operators, based on
the (noncommutative) compositional structure. Their nor-
mal forms are much easier to describe since one can fall back
on Gröbner basis methods. We can benefit from both in
the study of differential equations—particularly when con-
sidered with boundary conditions.
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