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General Polynomial Reduction with TH∃OREM∀ Functors:

Applications to Integro-Differential Operators and Polynomials

Bruno Buchberger Georg Regensburger Markus Rosenkranz Loredana Tec

General Polynomial Reduction. We outline a prototype implementation of the algorithms for integro-
differential operators/polynomials in [12]. Our approach based on a generic implementation of noncommutative
monoid rings with reduction, programmed in the functors language of the TH∃OREM∀ system. The integro-
differential operators—realized by a suitable quotient of noncommutative polynomials over a given integro-differential
algebra—can be used for solving and manipulating boundary problems for linear ordinary differential equations. For
describing extensions of integro-differential algebras algorithmically, we use integro-differential polynomials.

We use a fixed Gröbner basis for normalizing integro-differential operators. Gröbner bases were invented by
Buchberger [2, 3] for commutative polynomials and reinvented in [1] for noncommutative ones. While [9] analyzes
the computational aspects of the latter, it does not support two features that are important for our present setting:
the usage of infinitely many indeterminates and reduction modulo an (algorithmic) infinite system of polynomials.

Among the systems implementing noncommutative Gröbner bases, most address certain special classes (e.g. alge-
bras of solvable type or homogeneous polynomials) which do not include our present case. To our best knowledge,
none of these allow polynomials with infinitely many indeterminates and reduction modulo an infinite system of
polynomials. For details, see the website http://www.ricam.oeaw.ac.at/Groebner-Bases-Implementations.

Our implementation, although targeted at the integro-differential applications described below, follows a generic
approach that encompasses commutative/noncommutative polynomials as well as one/two-sided reduction. Polyno-
mial rings are formulated as monoid rings (leading to the standard commutative or noncommutative polynomials
by employing the additive monoid Nn or the word monoid {x1, . . . , xn}∗, respectively), while polynomial reduction
is realized by a noncommutative adaption of reduction rings (rings with so-called reduction multipliers) in the sense
of [4, 14]; for a noncommutative approach along different lines, we refer to [8].

The TH∃OREM∀ Functor Language. The generic implementation of monoid rings with reduction multipliers
is realized through functors whose principle and implementation in the TH∃OREM∀ version of higher order predicate
logic were introduced by B. Buchberger. The general idea—and its use for structuring those domains in which
Groebner bases computation is possible—is described in [4, 5], where you also find references to original and early
papers by B. Buchberger on the subject. For a general discussion of functor programming, see also [15].

The TH∃OREM∀ system is designed as an integrated environment for doing mathematics [6], in particular
proving, computing, and solving in various domains of mathematics. Its core language is higher-order predicate logic,
containing a natural programming language such that algorithms can be coded and verified in a unified formal frame.
Functors are a powerful tool for realizing a modular and generic build-up of hierarchical domains in mathematics. For
speeding up computations, one may also use the new Java-to-Theorema compiler described in the recent thesis [16].

Starting from the base category of rings and monoids, the monoid ring is the crucial functor that builds up
polynomials. After adding reduction multipliers, the functions for enumerating Groebner bases are added by virtue
of an extension functor (a functor that leaves previous operations unchanged and adds new ones). Obviously, the
coefficient rings may in turn be monoid rings, and there are also various functors for composing useful monoid rings:
word monoids, cartesian products, free products.

Anticipating the explanations given in the following two sections, let us here state one interesting example of
a chain of functors that can be realized in our system: integro-differential operators over exponential polynomials
with an undetermined function. This proceeds in three stages: Starting with say Q, the exponential polynomials are
obtained as the monoid ring with N×Q as monoid. The second step is the functor of integro-differential polynomials,
the last step the functor of integro-differential operators.

Integro-Differential Operators. The notion of integro-differential operators [13] is a generalization of the
“Green’s polynomials” of [11]. They can be seen as an algebraic analog of differential, integral and boundary
operators in the context of linear ordinary differential equations (LODEs). They are particularly useful for treating
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boundary problems for LODEs as they express both the problems statement (differential equation and boundary
conditions) and its solution operator (an integral operator usually called “Green’s operator”). We have described
methods for solving and factoring boundary problems in [13] and an abstract (inconstructive) framework in [10].

The implementation of integro-differential operators proceeds along the lines sketched above: A monoid ring is
built up for the word monoid over the infinite alphabet consisting of the letters ∂ and

r
along with all basis elements

xneλx (n ∈ N, λ ∈ Q) of the exponential polynomials. Then we factor out the nine (parametrized) rewrite rules
described in Table 1 of [13, 12], which form a Gröbner basis in the underlying polynomial ring. This is achieved by
working with the normal forms of the polynomial reduction induced by these rules.

Integro-Differential Polynomials. The integro-differential polynomials over a given integro-differential alge-
bra, introduced in [12], have a slightly different flavor: They form a commutative algebra (since multiplication is
understood pointwise and not by composition as above) modelling nonlinear differential and integral operators with
an indeterminate u, so a typical element would be

r
(x4uu′′2

r
(xe3xu2u′3

r
u)). Another interpretation is that they

are certain functions (of x) involving an “unknown” function (namely u). This means one can describe extensions
of a given integro-differential algebra by forming suitable quotients of the integro-differential polynomials over it.

An elegant abstract characterization of integro-differential polynomials is in terms of a general polynomial alge-
bra [7] in the variety of integro-differential algebras. For computational purposes, we have introduced a canonical
simplifier for the induced congruence (identifying different expressions denoting the same integro-differential polyno-
mial), which thus solves the word problem in this variety. The resulting functor is somewhat similar to the monoid
ring (where polynomial reduction provides a canonical simplifier), but some operations need special attention: the
multiplication of canonical forms involves the shuffle product, and the integral must be computed by a careful case
distinction on the differential exponents.
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