
An Adaptive Clustering Method for Model-free Reinforcement Learning

Andreas Matt and Georg Regensburger∗

Institute of Mathematics
University of Innsbruck, Austria

{andreas.matt, georg.regensburger}@uibk.ac.at

Abstract

Machine Learning for real world applications is a
complex task due to the huge state and action sets
they deal with and the a priori unknown dynamics of
the environment involved. Reinforcement Learning of-
fers very efficient model-free methods which are of-
ten combined with approximation architectures to over-
come these problems. We present a Q-learning imple-
mentation that uses a new adaptive clustering method
to approximate state and actions sets. Experimental re-
sults for an obstacle avoidance behavior with the mo-
bile robot Khepera are given.

1. Introduction

Reinforcement learning (RL)is a research field
within Machine Learning and Artificial Intelligence. It
addresses problems of sequential decision making and
stochastic control and is strongly connected to dynamic
programming and Markov decision processes.

RL is based on the idea of learning by trial and er-
ror while interacting with an environment. At each step
the agent performs an action and receives a reward de-
pending on the starting state, the action and the envi-
ronment. The agent learns to choose actions that maxi-
mize the sum of all rewards in the long run. The result-
ing choice of actions for each state is called a policy.

Several methods to find optimal or suboptimal poli-
cies are known, Bertsekas and Tsitsiklis [1], Kaelbling,
Littman and Moore [2], Sutton and Barto [3]. Combined
with approximation architectures to deal with huge state
and action sets model-free methods have become a pow-
erful tool which resulted in impressive applications, see
for example [1] and [3].

∗ We would like to thank Prof. Ulrich Oberst for numerous discus-
sions and substantial improvements on the presented method.

2. Markov Decision Processes

The term Markov decision process (MDP) was in-
troduced by Bellman [4, 5]. For further information on
MDPs see for example Puterman [6].

An environmentis given by

• A finite setS. The setS is interpreted as the set of
all possiblestates.

• A family A = (A(s))s∈S of finite sets. The set
A(s) is interpreted as the set of availableactions
in states.

• A family P = (P (− | a, s))s∈S,a∈A(s) of proba-
bilities P (− | a, s) onS. We interpretP (s′ | a, s)
as thetransition probabilitythat performing action
a in states leads to thesuccessor states′.

Let E = (S,A,P) be an environment. Apolicy
for E is given by a familyπ = (π(− | s))s∈S of prob-
abilitiesπ(− | s) on A(s). We interpretπ(a | s) as the
probability that actiona is chosen in states. A policy is
calleddeterministicif π(− | s) is deterministic for all
s ∈ S. We use the notationπ(− | s) = a ∈ A(s).

A finite Markov decision process (MDP)is given
by an environmentE = (S,A,P) and a family

R =(R(s′, a, s))s′,s∈S,a∈A(s) with R(s′, a, s) ∈ R.

The valueR(s′, a, s) represents thereward if perform-
ing actiona in states leads to the successor states′.

The goal of RL is to find policies that maximize the
sum of the expected rewards. Let(E,R) be an MDP
and0 ≤ γ < 1 be adiscount rate. Thevalue function
for a policyπ for E is the unique solution of theBell-
man equation

V π(s) =
∑

a∈A(s)

(
R(a, s)+γ

∑

s′
V π(s′)P (s′ | a, s)

)

· π(a | s), for s ∈ S,

where

R(a, s) =
∑

s′
R(s′, a, s)P (s′ | a, s)

is theexpected rewardof actiona in states. The value
function V π(s) is the expected discounted sum of re-
wards starting in states and following policyπ. The
Bellman equation suggests defining theaction-valueof
actiona ∈ A (s) in states for policy π

Qπ (a, s) = R(a, s) + γ
∑

s′∈S

V π(s′)P (s′ | a, s)

as the average reward if actiona is chosen in states and
afterwards the policyπ is followed.

A policy π∗ is optimal if V π(s) ≤ V π∗(s) for all
s ∈ S and all policiesπ. There exists at least one de-
terministic optimal policy and all optimal policies share
the same value function which we denote byV ∗. The
optimal action-valuefor actiona ∈ A(s) in states ∈ S
is defined by

Q∗(a, s) = R(a, s) + γ
∑

s′∈S

V ∗(s′)P (s′ | a, s). (1)

The optimal value function and action-values satisfy

V ∗(s) = max
a∈A(s)

Q∗(a, s), for s ∈ S. (2)

A greedy policyπ∗ for the optimal action-valuesQ∗,

π∗(− | s) = a ∈ arg max
a∈A(s)

Q∗(a, s), for s ∈ S,

is an optimal deterministic policy. A greedy policy for
an approximation of the optimal action-values is an ap-
proximation of an optimal policy.

3. Model-free Methods and Q-learning

Methods that approximate the value function and
action-values or find (sub)optimal policies without an
explicit model of the environment are calledmodel-free
methods. They are important in real world applications
where in general the transition probabilities of the envi-
ronment can only be observed.

Figure 1 summarizes the interaction between an
agent and the (real world) environment or simulation
which provide the observations. We start in states, ap-
ply an actiona and observe the successor states′ and
the rewardr = R(s′, a, s) ∈ R. The resulting triple
(s′, a, s) and the rewardr are then used to estimate the
value function or action-values.

Q-learning, introduced by Watkins [7], directly ap-
proximates the optimal action-valuesQ∗. The following
considerations motivate the algorithm. Let(E,R, γ) be
an MDP. By substituting (2) into (1) we obtain

Q∗(a, s) = R(a, s)+γ
∑

s′
max

a′
Q∗(a′, s′)P (s′ | a, s).

real world environment or simulation

observations′actiona

(s′, a, s), r
rewardr = R(s′, a, s)states

Figure 1. Interaction between agent and
environment

Suppose thatQ is an approximation ofQ∗. Thenr is an
estimate ofR(a, s) and

r + γ max
a′∈A(s′)

Q(a′, s′)

is a new estimate ofQ∗(a, s) based on the current ob-
servations(s′, a, s), r andQ. We obtain theupdate rule

Q(a, s) ← Q(a, s)+α(r+γ max
a′

Q(a′, s′)−Q(a, s)),

(3)
whereα is a positivestep-size parameter. The resulting
algorithm is given in Algorithm 1.

Output: an approximation ofQ∗

initialize Q arbitrarily
repeat

chooses ∈ S (s ← s′)
choosea ∈ A(s) (derived fromQ(−, s))
apply actiona, observes′ and obtainr
Q(a, s) ← Q(a, s)

+α(r+γ maxa′ Q(a′, s′)−Q(a, s)).

Algorithm 1: Q-learning

The random vectors related to the approximations
Q generated by the algorithm converge to the optimal
action-valuesQ∗ with probability one, provided that
each state and each action is chosen with nonzero prob-
ability and the step-size parameter decreases to zero un-
der conditions explained below. We refer to Tsitsiklis
[8] and [1, pp. 247] for a proof based on the fact that
Q∗ is the fixed point of a contraction mapping.

The conditions for the decreasing step-size param-
etersαt at iterationt are

∑∞
t=1

αt = ∞ and
∑∞

t=1
α2

t < ∞. (4)

The first condition allows the change in the update to be
big enough to overcome any initial bias and the second
ensures convergence, compare [1, p. 135] and [3, p. 39].
A usual choice for the step-size parameters that satisfies
(4) isαt = c/t, wherec is a positive constant.

Figure 2. left: The robot Khepera right:
Range and distribution of its sensors

In real world applications usually a variant of Q-
learning is applied where the states are chosen accord-
ing to the successor states obtained from the previous it-
eration, see (s ← s′) in Algorithm 1. Thus the chosen
action influences the next state. Since every state has to
be visited with nonzero probability to guarantee conver-
gence the actions should be chosen so that the whole
state space is explored. Moreover, the robot should
choose actions using knowledge already gathered. This
dilemma is referred to asexploration-exploitationand
plays an important role in online learning methods, see
[1, p. 251] and Thrun [9].

For exploitation, that is, using knowledge gained
during learning, the actions are often selected accord-
ing to a greedy policy for the current approximation of
the action-values. Thenexplorationis applied, a tech-
nique that adds a random component to the actions se-
lected. We call the resulting actionderivedfrom the cur-
rent action-values, see (derived fromQ(−, s)) in Algo-
rithm 1. See Section 5 for a specific implementation.

4. The Robot and its Environment

Khepera is a miniature mobile robot produced by
the Swiss companyK-Team, see Figure 2left. It has a
cylindric shape, is55 mm in diameter and30 mm high.
Two wheels allow the robot to move around with a max-
imum speed of one meter per second. It is equipped with
eight infrared proximity sensors. See Mondada, Franzi
and Ienne [10] for technical details.

For our experiments we developed the program
RealRobo which controls the robot in real-time via
theRs232 serial port, see [11] for further details. The
robot is put into a wooden box as shown in Figure
3. The values received by the proximity sensors are
between0 and 1023. We normalize them between0
and 1 and thus the set of possible sensor values is
S̃ = {0, 1/1023, . . . , 1022/1023, 1}, where0 means
that there is no obstacle in sight and1 that there is an

obstacle right in front. Figure 2right shows the distri-
bution and enumeration of the six front sensors and the
two back sensors.

We describe how we model the robot and its en-
vironment. The possible values of the eight proximity
sensors of the robot in a wooden box define the set of
states, that is a subsetS of all possible values

{(s0, ..., s7) : si ∈ S̃, for i ∈ 0 . . . 7} ⊂ [0, 1]8,

In every state we consider the same actions, that con-
sist of turning by an integer angle between−90 and90
degrees, and then moving forward a fixed distance of4
mm. Hence the set of actions is

A(s) = {a : a ∈ −90 . . . 90} for all s ∈ S.

In theory, if we fix a probability on all physical posi-
tions of the robot then transition probabilities can be de-
rived from the wooden box. However, this process turns
out to be infeasible since it is difficult to measure the
robot’s physical position and there are approximately
1024 states and181 actions in each state.

We consider obstacle avoidance to be learned by
the robot, see Santos [12, p. 90]. If the robot moves
away from obstacles it will be rewarded, if it gets too
close to an obstacle it will be punished, and otherwise it
gets a neutral reinforcement. The rewards depend only
on states and successor states′ and are given by:

R (s′, s) = +1, if
∑7

i=0(si − s′i) > 0.04,

and in any other case

R (s′, s) = −1, if
∑7

i=0 s′i > 0.94,

and0 otherwise.

5. Q-learning Implementation

In the following two sections we discuss a method
to apply Q-learning for large state and action spaces. We
describe a specific variant of Q-learning for the robot
but the considerations can be applied generally in the
model-free case. We call the approximation ofQ∗ the
learning phase. One experimental run of the robot is de-
scribed by a theoretically infinite sequence

(. . . , at+1, st+1, at, st, . . . , s1, a0, s0)

of statesst = (st
0, . . . , s

t
7) ∈ S and actionsat ∈ A(st).

At the discrete time stept actionat is applied to statest

to yield the next statest+1.
Let π̃t+1(− | st+1) be a greedy policy for the

current approximationQt+1. For exploration, we add
a random numberb ∈ [−bt, bt] to a greedy actiona

of π̃t+1 where bt > 0 is a zero-sequence. We then
choose the actionat+1 which is nearest toa + b. We
obtain a probabilityπt+1(− | st+1) on A(st+1) ac-
cording to which the actionat+1 is selected. Note that
πt+1(− | st+1) becomes a greedy policy for the ap-
proximationQt+1 for larget.

Assuming the convergence of the Q-learning vari-
ant we have

lim
t→∞

max
a∈A(s)

Qt+1(a, s) = max
a∈A(s)

Q∗(a, s) = V ∗(s),

for s ∈ S, and a greedy policy with respect toQt+1 be-
comes an optimal policy for larget. Since actionat+1

is chosen greedily forQt+1 we haveat+1 ∈ A∗(st+1)
for larget, where

A∗(s) = {a ∈ A(s) : Q∗(a, s) = V ∗(s)}
denotes the set ofoptimal actionsin a states. In other
terms, for larget

(st, at, Qt(at, st)) ∼ (st, a
∗, V ∗(st)),

with a∗ ∈ A∗(st). Thus if we run the experiment for
a long time the chosen actions become optimal actions.
After learning we apply the obtained policy in the so
calledexecution phase.

6. An Adaptive Clustering Method

Approximation methods are needed to implement
learning methods for large state and action spaces. See
Bertsekas and Tsitsiklis [1, pp. 59] for an introduction
and overview. In our experiment we have280 ∼ 1024

states and181 actions, such that the vectorsQ are con-
tained inR 280·181. It is obvious that vectors of such a
high dimension cannot be computed and stored. This
problem is often referred to as “the curse of dimension-
ality” [5, p. ix]. To implement the Q-learning method
discussed in the previous section we propose a new
clustering methodbased on [12, pp. 85]. Compare also
Mahadevan and Connell [13]. The clustering method
can be interpreted as a variant ofvector quantization
as introduced by Kohonen [14, ch. 6].

We mapA(s) into the unit interval[0, 1] and iden-
tify A = A(s) = {i/180 : i = 0, . . . , 180}. Recall that
in an experimental run of the robot we obtain, for each
time stept, a triple

(st, at, Qt(at, st)) ∈ S ×A× R ⊂ R10.

We encode the wanted datas, a∗ andV ∗ in a matrix
W ∈ Rm×10 with a suitable numberm of rowsw(j),
for j = 1, . . . ,m, of the form

w(j) = (ws(j), wa(j), wq(j)) ∈ [0, 1]8+1 × R

and the following desired property. Ifs is a state then
there is a rowj with ws(j) nearby,wq(j) is a good ap-
proximation ofV ∗(s) andwa(j) is close to an optimal
actiona∗ ∈ A∗(s). Or, in more precise terms,

min
j
‖ s− ws(j) ‖¿ 1,

and for
j∗ = arg min

j
‖ s− ws(j) ‖

we have|V ∗(s)− wq(j∗)| ¿ 1 and

arg min
a
|a− wa(j∗)| ∈ A∗(s).

Here‖ − ‖ is any norm and in our implementation the
L2-norm, that is‖x‖2 = (

∑
i x2

i)
1
2 , for x ∈ Rn. In

neural science the matrixW is called anetworkwith m
unitsj = 1, . . . ,m with centerw(j).
Learning Phase

The networkW is determined by one or more ex-
perimental runs(. . . , at, st, . . . , a0, s0) of the robot as
the limit of networksWt, t = 0, 1, . . . , with mt units.
Themt form an increasing but not strictly increasing se-
quence of row dimensions. One talks about anadaptive
networkW since the number of units can change.

The sequence(. . . , at, st, . . . , a0, s0) and themt×
10-matricesWt with rows wt(j), j = 1, . . . , mt, are
obtained as follows. We start with a randomly chosen
state-action pair(a0, s0) and the1×10-matrixW0 with
the roww0(1) = (s0, a0, 0).

After t iterations the history(at, st, . . . , s0) has
been observed and the networkWt ∈ Rmt×10 has been
obtained. The rows of this matrixWt are interpreted as
a good approximation of the vectors

(sk, ak, Qk(ak, sk)), k = 0, . . . , t,

where, however,mt ¿ t in general. The matrixWt is
updated as explained below.

For the update we need to select greedy actions
based on the current approximation. In a states we
choose a rowj∗ with ws(j∗) close tos and wq(j∗)
as high as possible. We choose a “distance function”
ds,q(x, y) of a nonnegative real variablex for the dis-
tance betweens andws and a real variabley for the ap-
proximate action-valuewq, with the property that it is
strictly monotonically increasing inx and decreasing in
y. In our actual implementation action-valuesq are kept
in the unit interval by cutting them off below zero and
above one, and we use the distance function

ds,q(x, q) = x2 +
(1− q)2

2
.

Moreover, we need to select a rowk∗ for the cur-
rent state-action pair(s, a) with ws(k∗) close tos and

wa(k∗) close toa. Again we choose a distance, in our
case theL2-norm. To decide when to add a new unit
during the update we additionally choose two small
constantsδs,a > 0 andδs,q > 0. The choice of the dis-
tances and constants have to be made appropriately. The
actual update proceeds in the following five steps:
Step 1.Apply actionat to the statest, observe the new
statest+1 and compute the rewardrt = R(st+1, at, st).
Step 2.Compute

j∗ = arg min
j

ds,q(‖ st+1 − wt,s(j) ‖, wt,q(j)).

Due the properties ofds,q we can use the vec-
tor (wt,s(j∗), wt,q(j∗)) as an approximation of
(st+1, maxa′ Qt(a′, st+1)) in the update rule (3).
Step 3.Compute

δ1 = min
k
‖(st, at)− (wt,s(k), wt,a(k))‖ .

If δ1 ≤ δs,a then compute

k∗ = arg min
k
‖(st, at)− (wt,s(k), wt,a(k))‖ .

If δ1 > δs,a then add toWt a new row or unit

wt(mt + 1) = (st, at, rt + γwt,q(j∗))

and setk∗ = mt + 1. We usewt(k∗) as an approxima-
tion of (st, at, Qt(st, at)) in the update rule (3).
Step 4.Define the new networkWt+1 by

wt+1(k) = wt(k), for k 6= k∗,

and update the row

wt(k∗) = (wt,s(k∗), wt,a(k∗), wt,q(k∗))

by

wt+1,q(k∗) = wt,q(k∗)+αt(rt+γwt,q(j∗)−wt,q(k∗)),

and

wt+1,s(k∗) = wt,s(k∗) + ηt,s(st − wt,s(k∗)),
wt+1,a(k∗) = wt,a(k∗) + ηt,a(at − wt,a(k∗)).

The sequenceαt denotes step-size parameters for Q-
learning andηt,s, ηt,a are zero-sequences of positive
step-size parameters for the network.

The first update is determined by the update
rule (3) with the approximate values from the pre-
ceding steps. The other two updates are typical for
clustering or vector quantization. Since the vec-
tor (wt+1,s(k∗), wt+1,a(k∗)) is intended to be a bet-
ter approximation of the observed state action pair
(st, at) than(wt,s(k∗), wt,a(k∗)) it is chosen in the in-
terior of the line segment between the two latter vec-
tors. Hence the updated center moves towards(st, at).

In the robot experiments we choose the constant pa-
rametersαt = 0.7, ηt,s = 0.01, ηt,q = 0.2.
Step 5.Finally the actionat+1 is chosen. Compute

δ2 = min
i

ds,q(‖ st+1 − wt+1,s(i) ‖, wt+1,q(i)).

If δ2 ≤ δs,q then compute

i∗ = arg min
i

ds,q(‖ st+1 − wt+1,s(i) ‖, wt+1,q(i))

and usewt+1,a(i∗) as an approximation of the greedy
actiona. For exploration we draw a random numberb ∈
[−bt, bt] and choose

at+1 = arg min
a
|a− wt+1,a(i∗)− b|.

If δ2 > δs,q chooseat+1 randomly and add to the ma-
trix Wt+1 the new row or unit

wt+1(mt+1 + 1) = (st+1, at+1, 0).

In our experiment we fix a number of iterationsT
for the learning phase. For exploration we chooseb0 =
1 andbt+1 = bt − 1/T .
Execution Phase

After T iteration steps whereT is sufficiently large
the matrixW = WT with m = mT rows is used to con-
struct an approximation of an optimal deterministic pol-
icy. The rowsw(j) in the network approximate the op-
timal action-values for largeT . Thus a greedy policyπ
with respect to the network which can be computed for
each state as follows is a (sub)optimal policy. For state
s we select the row

i∗ = arg min
i

ds,q(‖ s− ws(i) ‖, wq(i))

and choose actiona = arg mina|a− wa(i∗)|.

7. Experiments

The robot is put in the center of the wooden box,
Figure 3. During the learning phase the robot is pro-

Figure 3. Environment for the robot

vided with two reflexes. If it gets too close to an obstacle

it undoes the last action executed. If there is no obsta-
cle in sight it moves straight forward until it again per-
ceives an obstacle. The robot acts randomly at the be-
ginning due to the used exploration technique. With in-
creasing iterations the actions of the robot become the
greedy actions with respect to the current network. Fig-
ure 4 shows the increasing number of units of the net-
work during the learning phase for an experiment with
430 iterations.

50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

35

40

45

Iteration

N
um

be
r

of
 u

ni
ts

Figure 4. Number of units of the network

To compare the obtained policies we use estimates
of the value function derived from sample runs, see
Monte Carlo methods in [3, pp. 113] and [1, pp. 181].
The robot is put to a start position. Then the policy is ex-
ecuted for100 steps and the rewards are observed. The
average sum of the rewards is computed. For the ran-
dom policy, a policy obtained after150 iterations and
a policy obtained after300 iterations we conduct three
sample runs each and average the obtained estimates. In
Figure 5 these averages are displayed. We observe that
the average sum of rewards raises with the number of it-
erations.

The robot performs obstacle avoidance applying

random 150 300
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Iteration

A
ve

ra
ge

 s
um

 o
f r

ew
ar

ds

Figure 5. Average sum of rewards

the obtained policy. It moves around while remaining
far away from obstacles. Once the parameters are set
the proposed method obtains good policies by learning
a reduced representation of the state and action sets and
an approximation of optimal action-values for this rep-
resentation. The learned policies turn out to be flexi-
ble and can successfully be applied to different envi-
ronments.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Pro-
gramming. Belmont, MA: Athena Scientific, 1996.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Re-
inforcement learning: A survey,”Journal of Artificial In-
telligence Research, vol. 4, pp. 237–285, 1996.

[3] R. S. Sutton and A. G. Barto,Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press, 1998.

[4] R. Bellman, “The theory of dynamic programming,”
Bull. Amer. Math. Soc., vol. 60, pp. 503–515, 1954.

[5] R. Bellman,Dynamic programming. Princeton Univer-
sity Press, Princeton, N. J., 1957.

[6] M. L. Puterman,Markov decision processes: discrete
stochastic dynamic programming. Wiley Series in Prob-
ability and Mathematical Statistics: Applied Probability
and Statistics, New York: John Wiley & Sons Inc., 1994.

[7] C. J. Watkins,Learning from Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, England,
1989.

[8] J. N. Tsitsiklis, “Asynchronous stochastic approxima-
tion and Q-learning,”Machine Learning, vol. 16, no. 3,
pp. 185–202, 1994.

[9] S. B. Thrun, “Efficient exploration in reinforcement
learning,” Tech. Rep. CMU-CS-92-102, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, 1992.

[10] F. Mondada, E. Franzi, and P. Ienne, “Mobile robot
miniaturisation: A tool for investigation in control algo-
rithms,” in Experimental Robotics III, (Kyoto), pp. 501–
513, Springer-Verlag, 1994.

[11] A. Matt and G. Regensburger,Reinforcement Learn-
ing for Several Environments: Theory and Appli-
cations. PhD thesis, University of Innsbruck,
2004. URL:http://mathematik.uibk.ac.at/
users/rl .

[12] J. M. Santos,Contribution to the study and the design
of reinforcement functions. PhD thesis, Universidad de
Buenos Aires and Universit d’Aix-Marseille III, 1999.

[13] S. Mahadevan and J. Connell, “Automatic programming
of behavior-based robots using reinforcement learning,”
Artificial Intelligence, vol. 55, pp. 311–365, June 1992.

[14] T. Kohonen,Self-organizing maps, vol. 30 of Springer
Series in Information Sciences. Berlin: Springer-Verlag,
1995.

