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Abstract

If we consider the real numbers extended by minus infinity with the operations maximum and addition,
we obtain the max-algebra or the max-plus semiring. The analog of linear algebra for these operations
extended to matrices and vectors has been widely studied.

We outline some facts on semirings and max-plus linear algebra, in particular, the solution of max-
plus linear systems. As an application, we discuss how to compute symbolically generalized solutions
for nonlinear first-order ordinary boundary value problems (BVPs) by solving a corresponding max-
plus interpolation problem. Finally, we present the Maple package MaxLinearAlgebra and illustrate the
implementation and our application with some examples.

1 Semirings and Idempotent Mathematics

The max-algebra or max-plus semiring (also known as the schedule algebra) Rmax is the set R∪ {−∞} with
the operations

a ⊕ b = max{a, b} and a ⊙ b = a + b.

So for example, 2 ⊕ 3 = 3 and 2 ⊙ 3 = 5. Moreover, we have a ⊕ −∞ = a and a ⊙ 0 = a so that −∞ and
0 are respectively the neutral element for the addition and for the multiplication. Hence Rmax is indeed a
semiring, a ring “without minus”, or, more precisely, a triple (S,⊕,⊙) such that (S,⊕) is a commutative
additive monoid with neutral element 0, (S,⊙) is a multiplicative monoid with neutral element 1, we have
distributivity from both sides, and 0⊙ a = a ⊙ 0 = 0.

Other examples of semirings are the natural numbers N, the dual Rmin of Rmax (the set R ∪ {∞} and
min instead of max), the ideals of a commutative ring with sum and intersection of ideals as operations or
the square matrices over a semiring; see [Gol99] for the theory of semirings in general and applications.

The semirings Rmax and Rmin are semifields with a(−1) = −a. Moreover, they are idempotent semifields,
that is, a⊕ a = a. Note that nontrivial rings cannot be idempotent since then we would have 1 + 1 = 1 and
so by subtracting one also 1 = 0. Idempotent semirings are actually “as far away as possible” from being
a ring because in such semirings a ⊕ b = 0 ⇒ a = b = 0. Hence zero is the only element with an additive
inverse.

There is a standard partial order on idempotent semirings defined by a � b if a⊕ b = b. For Rmax this is
the usual order on R. Due to this order, the theory of idempotent semirings and modules is closely related
to lattice theory. Moreover, it is a crucial ingredient for the development of idempotent analysis [KM97],
which studies functions with values in an idempotent semiring. The idempotent analog of algebraic geometry
over Rmin and Rmax respectively is known as tropical algebraic geometry [RGST05]. For a recent survey on
idempotent mathematics and an extensive bibliography we refer to [Lit05].
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2 Max-Plus Linear Algebra

The analog of linear algebra for matrices over idempotent semirings and in particular for the max-algebra
has been widely studied starting from the classical paper [Kle56]. The first comprehensive monograph on
this topic is [CG79]. See for example the survey [GP97] for more references, historical remarks, and some
typical applications of max-plus linear algebra ranging from language theory to optimization and control
theory.

From now we consider only the max-algebra Rmax, although the results remain valid for Rmin after the
appropriate changes (for example, replacing ≤ with ≥ or −∞ with ∞). Moreover, most of the results can be
generalized to linearly ordered commutative groups with addition defined by the maximum, see for example
[But94].

For matrices with entries in Rmax and compatible sizes we define

(A ⊕ B)ij = Aij ⊕ Bij and (A ⊙ B)ij =
⊕

k

Aik ⊙ Bkj = max
k

(Aik + Bkj).

Like in Linear Algebra matrices represent max-plus linear operators over max-plus semimodules and the
matrix operartions correspond to the addition and composition of such operators.

The identity matrix is

I =











1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1











=











0 −∞ . . . −∞
−∞ 0 . . . −∞

...
...

. . .
...

−∞ −∞ . . . 0











.

More generally, we denote diagonal matrices with 0 = −∞ outside the diagonal by diag(a1, . . . , an). A
permutation matrix is a matrix obtained by permuting the rows and/or the columns of the identity matrix,
and a generalized permutation matrix is the product of a diagonal matrix and a permutation matrix. It can
be shown [CG79, GP97] that the only invertible matrices in the max-algebra are generalized permutation
matrices. So in particular a matrix A ∈ R

n×n is not invertible in Rmax.
Many basic problems in max-plus linear algebra such as systems of linear equations, eigenvalue problems,

linear independence and dimension are closely related to combinatorial problems and hence also the corre-
sponding solution algorithms, see [But03]. For the application described in the next section we are interested
in particular in solving linear systems over Rmax, see Section 4.

3 Generalized Solutions for BVPs and Max-Plus Interpolation

We consider boundary value problems (BVPs) for implicit first-order nonlinear ordinary differential equations
of the form

f(x, y′(x)) = 0, (1)

which are known as (stationary) Hamilton-Jacobi equations. As a simple example, take

(y′(x))2 = 1 with y(−1) = y(1) = 0. (2)

Such BVPs usually do not have classical C1 solutions, one has to define a suitable solution concept to ensure
existence and uniqueness of solutions; see [MS92, KM97] for generalized solutions in the context idempotent
analysis and the relation to viscosity solutions as in [CIL92] and for ordinary differential equations in [Li01].

We want to compute symbolically generalized solutions for BVPs assuming that we have a symbolic
representation of some or all solutions for the differential equation. The approach is based on Maslov’s
idempotent superposition principle, which in our setting amounts to the following observation.

Suppose we are given two classical C1 solutions y1(x), y2(x) of (1). Then the max-plus linear combination

y(x) = max(a1 + y1(x), a2 + y2(x))
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for two constants a1, a2 ∈ R is a again a (generalized) solution, possibly nondifferentiable at some points.
So if we want to solve a BVP given by Equation (1) and two boundary conditions y(x1) = b1 and

y(x2) = b2 with x1, x2 and b1, b2 in R, we have to solve the system

max(a1 + y1(x1), a2 + y2(x1)) = b1

max(a1 + y1(x2), a2 + y2(x2)) = b2.

of max-plus linear equations.
More generally, we arrive at the following max-plus interpolation problem: Given m points x1, . . . , xm

with the corresponding values b1, . . . , bm in R and n functions y1(x), . . . , yn(x). Find a (or all) max-plus
linear combinations y(x) of y1(x), . . . , yn(x) such that y(xi) = bi.

To solve this interpolation problem, we have to find a (or all) solutions of the max-plus linear system
A ⊙ x = b with the interpolation matrix Aij = (yj(xi)) and b = (b1, . . . , bm)T .

4 Max-Plus Linear Systems

In this section, we outline how we can compute the solution set

S(A, b) = {x ∈ R
n | A ⊙ x = b}

of a max-plus linear system for given A ∈ R
m×n and b ∈ R

m. The method is known since the 1970s. Our
presentation and notation is based on [But03], see also there for further details and references.

Note first that by multiplying the linear system A ⊙ x = b with the invertible diagonal matrix D =
diag(b−1

1 , . . . , b−1
m ) = diag(−b1, . . . ,−bm), we obtain an equivalent normalized system D⊙A⊙x = D⊙ b = 0

(but not a homogenous system in the usual sense since 0 = 1 in Rmax).
So we can assume that we have have to solve a normalized system A ⊙ x = 0, which is in conventional

notation the nonlinear system
max

j
(aij + xj) = 0,

for i = 1, . . . , m. We see immediately that if x is a solution, then

xj ≤ min
i

−aij = −max
i

aij

for j = 1, . . . , n. Writing x̄j = −maxi aij for the negative of the jth column maximum, this gives in vector
notation x ≤ x̄.

On the other hand, for x being a solution, we must also have in each row at least one column maximum
that is attained by xj . More precisely, let

Mj = {k | akj = max
i

aij}.

Then x ∈ S(A) = S(A, 0) iff

x ≤ x̄ and
⋃

j∈Nx

Mj = {1, . . .m},

where Nx = {j | xj = x̄j}. Hence A ⊙ x = 0 has a solution iff the principal solution x̄ solves the system iff
⋃

j Mj = {1, . . .m}.
Since the principal solution can be computed in O(mn) operations, we can decide the solvability of a

max-plus linear system with this complexity. With the above characterization of solutions one also sees
that for deciding if the principal solution is the unique solution, we have to check that x̄ is a solution and
⋃

j∈N Mj 6= {1, . . .m} for any proper subset N ⊂ {1, . . . n}. This amounts to a minimal set covering problem,
which is well known to be NP-complete. For the max-plus interpolation problem this means that deciding if
there exists a solution and computing it is fast but deciding uniqueness for larger problems is difficult.
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Like in Linear Algebra the number of solutions |S(A, b)| for a linear system is either 0, 1 or ∞. By
contrast, even if a system A ⊙ x = b has a unique solution for some right hand side b, one can always find a
b such that there are respectively no and infinitely many solutions. More precisely,

T (A) = {|S(A, b)| | b ∈ R
m} = {0, 1,∞}.

Furthermore, the only other possible case is T (A) = {0,∞}. For the max-plus interpolation problem this
implies in particular that the solvability depends on b and there are always values b such that it is solvable.

Finally, we want to emphasize that unlike in Linear Algebra, a general max-plus linear system A⊙x⊕b =
C ⊙ x ⊕ d is not always equivalent to one of the form A ⊙ x = b. For several other important cases, like
the spectral problem A ⊙ x = λ ⊙ x, the fixed point problem x = A ⊙ x ⊕ b, or two-sided linear systems
A ⊙ x = B ⊙ x, there also exist efficient solution methods, see [But03, GP97].

5 The MaxLinearAlgebra Package

To the best of our knowledge, the only package for max-plus computations in a computer algebra system is the
Maple package MAX by Stéphane Gaubert. It implements basic scalar-matrix operations, rational operations
in the so called minmax-algebra, and several other more specialized algorithms. The package works in Maple
V up to R3 but not in newer versions, for details see http://amadeus.inria.fr/gaubert/PAPERS/MAX.html.

For numerical computations in the max-algebra, there is the Maxplus toolbox for Scilab, which is devel-
oped by the Maxplus INRIA working group. The current version is available at http://www.scilab.org. A
toolbox for max-algebra in Excel and some MATLAB functions (e.g. for two-sided max-plus linear systems)
by Peter Butkovic̆ and his studends are available at http://web.mat.bham.ac.uk/P.Butkovic/software.
Some additional software is available at http://www-rocq.inria.fr/MaxplusOrg.

Our Maple package MaxLinearAlgebra is based on the LinearAlgebra package introduced in Maple 6.
We also use the ListTools and combinat package. The names correspond (wherever applicable) to the
commands in Maple with a Max and Min prefix, respectively. We have implemented basic matrix operations
and utility functions, solvability tests and solutions for max/min-plus linear systems, and max/min linear
combinations and interpolation. The package could serve as framework for implementing other max-plus
algorithms in Maple, some also based on the already implemented ones, as for example the computation of
bases in Rmax, see [CGB04].

For the application to BVPs we rely on Maple’s dsolve command to compute symbolic solutions of
differential equations. Using the identities

max(a, b) =
a + b + |a − b|

2
and min(a, b) =

a + b − |a − b|

2
,

we can express max/min linear combinations and hence generalized solutions for BVPs with nested absolute
values. This has advantages in particular for symbolic differentiation.

The package and a worksheet with examples for all functions, large linear systems, and BVPs are available
at http://gregensburger.com. See also the next section for two examples.

6 Examples

We first consider the example (2). The differential equation has the two solutions y1(x) = x and y2(x) =
−x. After loading the package

> with(MaxLinearAlgebra):

we compute the interpolation matrix

> A:=InterpolationMatrix([x->x,x->-x],<-1,1>);

A :=

[

−1 1

1 −1

]
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and solve the corresponding max-plus linear system

> linsolmax:=MaxLinearSolve(A);

linsolmax := [

[

−1

−1

]

, [[1, 2]]]

The first element is the principal solution and the second element describes the solution space, here we
have a unique solution (x1, x2) = (x̄1, x̄2). The generalized max solution is then

> MaxLinearCombination(linsolmax[1],[x,-x]);

max (−1 + x,−1 − x)

or with absolute values

> MaxLinearCombinationAbs(linsolmax[1],[x,-x]);

−1 + |x|

As a second example, we consider the BVP

y′ 3 − xy′ 2 − y′ + x with y(−1) = y(0) = y(1) = 0. (3)

The differential equation has three solutions y1(x) = x, y2(x) = −x and y3(x) = 1/2x2. The correspond-
ing interpolation matrix is

> A:=InterpolationMatrix([x->x,x->-x,x->1/2*x^2],<-1,0,1>);

A :=









−1 1 1/2

0 0 0

1 −1 1/2









There is no max-plus solution

> IsMaxMinSolvable(A,ColumnMax(A));

false

but one min-plus solution that gives the generalized solution

> MinLinearCombinationAbs(linsolmin[1],[x,-x,1/2*x^2]);

1/2 − 1/2 |x| + 1/4 x2 − 1/2
∣

∣−1 + |x| + 1/2 x2
∣

∣

for (3), and it looks like:

x
K1.0 K0.5 0 0.5 1.0

0.05

0.10

0.15

0.20

0.25

Figure 1: The generalized min-plus solution for (3).
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389 (2004), 107–120. MR2080398

[CIL92] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User’s guide to viscosity solutions of
second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67.
MR1118699

[Gol99] Jonathan S. Golan, Semirings and their applications, Kluwer Academic Publishers, Dordrecht,
1999. MR1746739

[GP97] Stéphane Gaubert and Max Plus, Methods and applications of (max, +) linear algebra, STACS
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