```
<<
    "C:\\Users\\Jamal\\Desktop\\main\\Research\\Codes\\IDOs\\ArtesteinsReduction\\
        TenReS.m"
Package TenReS version 0.2.4
written by Clemens G. Raab
Copyright 2016, RICAM, Austrian Academy of Sciences
```

A few definitionsleedto be madeby the user. Type?CoeffQ ?Specializatiarand ?CyclicModuleformoreinformation

Basic definitions

Reduction system for IDOLS

Auxiliary functions

4) Recovering Artstein's Transformation

Consider the differential time-delay control system of the form

$$
\begin{equation*}
\dot{x}(t)=A_{0}(t) x(t)+B_{0}(t) u(t)+B_{1}(t) u(t-h) \tag{1}
\end{equation*}
$$

which can be written in terms of blocks as

$$
\left(\begin{array}{ll}
I_{n} & 0
\end{array}\right)\binom{\dot{x}(t)}{\dot{u}(t)}=\left(\begin{array}{ll}
A(t) & B_{0}(t)
\end{array}\right)\binom{x(t)}{u(t)}+\left(\begin{array}{ll}
0 & B_{1}(t) \tag{2}
\end{array}\right)\binom{x(t-h)}{u(t-h)} .
$$

We show how we can use our package to find by ansatz a transformation from the system above to the following differential system

$$
\begin{equation*}
\dot{z}(t)=E(t) z(t)+F(t) v(t) \tag{3}
\end{equation*}
$$

which can be expressed in terms of blocks as

$$
\left(\begin{array}{ll}
I_{n} & 0
\end{array}\right)\binom{\dot{z}(t)}{\dot{v}(t)}=\left(\begin{array}{ll}
E(t) & F(t) \tag{4}
\end{array}\right)\binom{z(t)}{v(t)} .
$$

Corresponding to the systems (2) and (4) we consider the following operators

$$
\begin{equation*}
R^{\prime}=R_{0}^{\prime} \cdot \partial+R_{1}^{\prime}+R_{2}^{\prime} \cdot \delta, \quad R=R_{0} \cdot \partial+R_{1}, \tag{5}
\end{equation*}
$$

where the coefficients have the block structures as

$$
R_{0}^{\prime}=\left(\begin{array}{ll}
I_{n} & 0
\end{array}\right), R_{1}^{\prime}=\left(\begin{array}{ll}
-A & -B_{0}
\end{array}\right), R_{2}^{\prime}=\left(\begin{array}{ll}
0 & -B_{1}
\end{array}\right), R_{0}=\left(\begin{array}{ll}
I_{n} & 0
\end{array}\right), R_{1}=\left(\begin{array}{ll}
-E & -F
\end{array}\right) .
$$

Our goal is to find the operators P and Q such that

$$
\begin{equation*}
R \cdot P=Q \cdot R^{\prime} \tag{7}
\end{equation*}
$$

For the transformation we choose $Q=Q_{0}$ where Q_{0} is a multiplication operator and P as the simplified ansatz

$$
\begin{equation*}
P=P_{0} \cdot \delta \cdot \int \cdot P_{1}+P_{2} \cdot \int \cdot P_{3}+P_{4} \cdot \delta+P_{5} \tag{8}
\end{equation*}
$$

Moreover, the operators $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$, and P_{5} have undetermined blocks P_{11}, P_{22}, a_{0}, $a_{1}, a_{2}, a_{3}, a_{4}$, and a_{5} as follows

$$
P_{0}=\binom{a_{0}}{0}, \quad P_{1}=\left(\begin{array}{ll}
0 & a_{1}
\end{array}\right), \quad P_{2}=\binom{a_{2}}{0}, \quad P_{3}=\left(\begin{array}{ll}
0 & a_{3}
\end{array}\right), \quad P_{4}=\left(\begin{array}{cc}
0 & a_{4} \\
0 & 0
\end{array}\right), \quad P_{5}=\left(\begin{array}{cc}
P_{11} & a_{5} \\
0 & P_{22}
\end{array}\right) .
$$

First we need to introduce to our package the coefficients
$R_{0}^{\prime}, R_{1}^{\prime}, R_{2}^{\prime}, P_{0}, P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, Q_{0}$, and Φ which we use as elements of the coefficient ring R, the parameter h and the notation $\delta=\sigma_{1, h}$.

```
Member ( }\mp@subsup{Q}{R}{[ OR_Integer |ORR_Integer | P_Integer | Q_Integer | \Phi] := True
MemberQz[h] := True
\delta:=S [1,h]
```

I) Normal form computations for the lhs and the rhs of $R \cdot P=Q \cdot R$ '.

```
R1 := Prod[ORo, Diff] + Prod[OR [ ]
```



```
LHS := Prod[R1, P1]
(LeftSide = ApplyRules[LHS, RedSys]) // Coefficients // TableForm
Prod[] mul[OR 
Prod[Diff] mul[OR 0, P5 ]
```



```
Prod[Int, P3] mul[OR , Diff[P2]] + mul[OR [O, P
Prod[S[1,h], Diff] mul[OR 0, P4]
Prod[S[1,h], Int, P1] mul[OR , Diff[P0]] + mul[OR [ , P
Q1 := Prod[Qo]
RR1 := Prod[ORR0, Diff] + Prod [ORR1] + Prod [ORR2, \delta]
RHS := Prod [Q1, RR1]
```

(RightSide = ApplyRules [RHS, RedSys]) // Coefficients // TableForm

$\operatorname{Prod}[]$	$\operatorname{mul}\left[\mathrm{Q}_{0}, \mathrm{ORR}_{1}\right]$
$\operatorname{Prod}[\operatorname{Diff}]$	$\operatorname{mul}\left[\mathrm{Q}_{0}, \mathrm{ORR}_{0}\right]$
$\operatorname{Prod}[\mathrm{S}[1, \mathrm{~h}]]$	$\operatorname{mul}\left[\mathrm{Q}_{0}, \mathrm{ORR}_{2}\right]$

2) Extracting conditions by coefficient comparison.
```
BlockStructure :=
```



```
        ORR2}->(\begin{array}{ll}{0}&{-\mp@subsup{B}{1}{}}\end{array}),\mp@subsup{P}{0}{\prime}->(\begin{array}{c}{\mp@subsup{a}{0}{}}\\{0}\end{array}),\mp@subsup{P}{1}{\prime}->(\begin{array}{ll}{0}&{\mp@subsup{a}{1}{}}\end{array}),\mp@subsup{P}{2}{}->(\begin{array}{c}{\mp@subsup{a}{2}{}}\\{0}\end{array}),\mp@subsup{P}{3}{}->(\begin{array}{ll}{0}&{\mp@subsup{a}{3}{}}\end{array}),\mp@subsup{P}{4}{}->(\begin{array}{cc}{0}&{\mp@subsup{a}{4}{}}\\{0}&{0}\end{array})
        P
```

```
Coefficients[LeftSide - RightSide][[All, 2]] /. BlockStructure // TableForm
Diff[P11] - mul[EE, P
```



```
P
a5
0
Diff[a4]-mul[EE, a c ] + mul [a
Diff[a2] - mul[EE, a2]
O
Diff[\mp@subsup{a}{0}{}]-mul[EE, a m]
equations = DeleteCases[Flatten [%], 0]
{Diff[P(P11] - mul[EE, P}\mp@subsup{P}{11}{}]+\operatorname{mul}[\mp@subsup{Q}{0}{},A]
```



```
    P
    Diff[\mp@subsup{a}{2}{}] - mul[EE, a (2], a
```


3) Solving obtained system and finding P.

For solving the obtained equations, we set $a_{4}=a_{5}=0$ and let P_{11} be such that the following equation holds:

$$
\partial P_{11}-E P_{11}=-Q_{0} A .
$$

We also set $Q_{0}=P_{11}$ and let Φ invertible such that

$$
\partial \Phi=E \Phi .
$$

Then for arbitrary constants c_{0} and c_{2} we assume that

$$
a_{0}=\Phi c_{0} \text { and } a_{2}=\Phi c_{2} .
$$

Diff[$\left.\mathbf{C l}_{0} \mid \mathrm{C}_{2}\right]:=0$
Diff[Φ] : = mul[EE, Φ]
This solves six of the above equations.


```
RemainingEquations = DeleteCases[equations /. Solution1, 0]
```


The remaining equations

$$
a_{0} \delta a_{1}+\partial a_{4}-E a_{4}=-Q_{0} B_{1} \quad \text { and } \quad \partial a_{5}+a_{2} a_{3}-E a_{5}-F P_{22}=-Q_{0} B_{0}
$$

can be written respectively as

$$
c_{0} a_{1}=-\delta^{-1} \Phi P_{11} B_{1} \quad \text { and } \quad c_{2} a_{3}=-\Phi^{-1}\left(F P_{22}-P_{11} B_{0}\right)
$$

We assume that $c_{0}, c_{2}, a_{1}, a_{3}$ are such that they satisfy the above equations.

```
Solution2 :=
```


After entering these assumptions, our package verifies the remaining equations are solved.

RemainingEquations /. Solution2

$\{0,0\}$
Considering these assumptions, the operator P can be written as

$$
\begin{aligned}
& \left.P=-\binom{\Phi}{0} \cdot \delta \cdot \int \cdot\left(\begin{array}{ll}
0 & \delta^{-1} \Phi P_{11} B_{1}
\end{array}\right)+\binom{\Phi}{0} \cdot \int \cdot\left(\begin{array}{ll}
0 & \Phi^{-1}\left(F P_{22}-P_{11} B_{0}\right.
\end{array}\right)\right)+\left(\begin{array}{cc}
P_{11} & 0 \\
0 & P_{22}
\end{array}\right) . \\
& \text { Solution : }=\left\{P_{0} \rightarrow\binom{\Phi}{0}, P_{1} \rightarrow\left(0-\operatorname{mul}\left[\operatorname{inv}[\delta]\left[\operatorname{mul}\left[\operatorname{inv}[\Phi], P_{11}, B_{1}\right]\right]\right. \text {), }\right.\right. \\
& P_{2} \rightarrow\binom{\Phi}{0}, P_{3} \rightarrow\left(0 \operatorname{mul}\left[\operatorname{inv}[\Phi], \operatorname{mul}\left[F F, P_{22}\right]-\operatorname{mul}\left[P_{11}, B_{0}\right]\right]\right), \\
& \left.\mathbf{P}_{4} \rightarrow\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), P_{5} \rightarrow\left(\begin{array}{cc}
\mathbf{P}_{11} & 0 \\
0 & P_{22}
\end{array}\right), Q_{0} \rightarrow\left\{\left\{P_{11}\right\}\right\}\right\} ; \\
& \mathbf{O P}=\operatorname{Prod}\left[\mathrm{P}_{0}, \delta, \operatorname{Int}, \mathrm{P}_{1}\right]+\operatorname{Prod}\left[\mathrm{P}_{2}, \operatorname{Int}, \mathrm{P}_{3}\right]+\operatorname{Prod}\left[\mathrm{P}_{4}, \delta\right]+\operatorname{Prod}\left[\mathrm{P}_{5}\right] / . \text { Solution } \\
& \operatorname{Prod}\left[\left\{\left\{\mathrm{P}_{11}, 0\right\},\left\{0, \mathrm{P}_{22}\right\}\right\}\right]+ \\
& \operatorname{Prod}\left[\{\{\Phi\},\{0\}\}, \operatorname{Int},\left\{\left\{0, \operatorname{mul}\left[\operatorname{inv}[\Phi], \mathrm{FF}, \mathrm{P}_{22}\right]-\operatorname{mul}\left[\operatorname{inv}[\Phi], \mathrm{P}_{11}, \mathrm{~B}_{0}\right]\right\}\right\}\right]+ \\
& \operatorname{Prod}[\{\{\Phi\},\{0\}\}, S[1, h] \text {, Int, } \\
& \left.\left\{\left\{0,-\operatorname{mul}\left[\operatorname{inv}[S[1,-h][\Phi]], S[1,-h]\left[P_{11}\right], S[1,-h]\left[B_{1}\right]\right]\right\}\right\}\right]
\end{aligned}
$$

4) Verifying correctness of the solution.

In the following we prove that for the obtained operators P and Q the identity $R \cdot P=Q \cdot R^{\prime}$ holds.

```
MemberQ ( 
MemberQ}\mp@subsup{Q}{R}{[P}\mp@subsup{P}{11}{}] := Tru
Diff[\mp@subsup{P}{11}{}] := mul[EE, P}\mp@subsup{P}{11}{}]-\operatorname{mul[P
ApplyRules[LHS - RHS, RedSys] / .
```



```
        ORR2 }->(0-\mp@subsup{B}{1}{})} /. Solution // Coefficients // TableForm
Prod []
Prod[Int, {{0, mul[inv[\Phi], FF, P22]-mul[inv[\Phi], P11, Bol}}] 0
Prod[S[1,h], Int, {{0, -mul[inv[S[1, -h][\Phi]], S[1,-h][P11], S[1, -h][B1]]}}]
```

