```
<<
"C:\\Users\\Jamal\\Desktop\\main\\Research\\Codes\\IDOs\\ArtesteinsReduction\\
TenReS.m"
Package TenReS version 0.2.4
written by Clemens G. Raab
Copyright 2016, RICAM, Austrian Academy of Sciences
```

 $A few definition {\tt seed to be made by the user. Type? CoeffQ ? Specialization {\tt and ?CyclicModule {\tt formore information} and ?CyclicModule {\tt formore information} and ?CyclicModule {\tt formation} and ?CyclicModule {\tt f$

Basic definitions

Reduction system for IDOLS

Auxiliary functions

Examples of subsections 3.3 and 3.4 in TDS paper

First we need to introduce to the package the coefficients A_0 , A_1 , H_1 , H_2 , Φ , Θ , and Θ which we use in our examples as elements of the coefficient ring R, the parameter h and the notation $\delta = \sigma_{1,h}$.

```
\begin{split} & \texttt{Member} Q_{\mathsf{R}} \left[ \mathsf{A}_0 \mid \mathsf{A}_1 \mid \mathsf{H}_1 \mid \mathsf{H}_2 \mid \Phi \mid \Theta \mid \Theta \Theta \right] := \texttt{True} \\ & \texttt{Member} Q_{\mathsf{Z}} \left[ \mathsf{h} \right] := \texttt{True} \\ & \delta := \mathsf{S} \left[ \mathsf{1, h} \right] \end{split}
```

Ex.8) Variation of constants with square coefficients

Consider the inhomogeneous differential system

$$\dot{x}(t) - A_0(t) x(t) = f(t)$$

which corresponds to the operator $L := \partial -A_0$.

OL := Prod[Diff] - Prod[A₀]

Our goal is to construct a solution operator $H := H_1 \cdot \int H_2$ with the unknowns H_1 and H_2 such that $L \cdot H = 1$.

OH := Prod[H₁, Int, H₂]

We apply the reduction system to $L \cdot H - 1$ and extract its left coefficients.

```
ApplyRules[Prod[OL, OH] - Prod[], RedSys]
```

```
-Prod[] + Prod[mul[H_1, H_2]] + Prod[Diff[H_1], Int, H_2] - Prod[mul[A_0, H_1], Int, H_2]
```

% // Coefficients // TableForm

Then by coefficient comparison we obtain the conditions

$$H_1 H_2 = 1$$
 and $\partial H_1 - A_0 H_1 = 0$.

A solution for this system is obtained by choosing an invertible Φ s.t. $\partial \Phi - A_0 \Phi = 0$. Taking $H_1 = \Phi$ and $H_2 = \Phi^{-1}$ we obtain

 $H = \Phi \cdot \int \cdot \Phi^{-1}.$

 $\begin{array}{l} \texttt{Diff}[\Phi] := \texttt{mul}[A_0, \Phi] \\ \texttt{OH} = \left(\texttt{OH} \ /. \ \{\texttt{H}_1 \rightarrow \ \Phi, \ \texttt{H}_2 \rightarrow \ \texttt{inv}[\Phi]\}\right); \end{array}$

We can also check the operator $H = \Phi \cdot \int \Phi^{-1}$ satisfies the identity $L \cdot H = 1$.

```
ApplyRules[Prod[OL, OH] - Prod[], RedSys]
```

0

The equation L x = f from example above is equivalent to the equation $(H \cdot L) x = Hf$. Let H and Φ be defined as above. Applying the reduction system, we can easily find $1 - \Phi E \Phi^{-1} \cdot E$ as the irreducible form of $H \cdot L$.

```
ApplyRules[Prod[OH, OL], RedSys]
```

```
Prod[] - Prod[mul[\Phi, Eval[inv[\Phi]]], Eval]
```

Let us define $P := \Phi E \Phi^{-1} \cdot E$ where *P* is a projector.

```
OP := Prod[mul[$\Delta$, Eval[inv[$\Delta$]]], Eval]
ApplyRules[Prod[OP, OP] - OP, RedSys]
0
```

Considering the operator P allows us to write $(H \cdot L) x = Hf$ as the following recurrence equation.

$$x = Px + Hf$$

Ex.9) Differential time delay systems (method of steps)

Consider the differential time delay system

$$\dot{x}(t) - A_0(t) x(t) + A_1(t) x(t-h) = f(t) ,$$

which corresponds to the operator R := L + S

where the operator *L* is defined like above and $S := -A_1 \cdot \delta$.

```
OS := -Prod[A_1, \delta]
OR := OL + OS
```

Our goal is to reproduce "method of steps" for general solution of this system. We apply the reduction system to the operator $H \cdot R$.

ApplyRules[Prod[OH, OR], RedSys]

 $\begin{array}{l} Prod[] - Prod[mul[\Phi, Eval[inv[\Phi]]], Eval] - \\ Prod[\Phi, S[1, h], Int, mul[inv[S[1, -h][\Phi]], S[1, -h][A_1]]] + \\ Prod[\Phi, Eval, S[1, h], Int, mul[inv[S[1, -h][\Phi]], S[1, -h][A_1]]] \end{array}$

The identity $H \cdot R = H \cdot L + H \cdot S = 1 - P + H \cdot S = 1 - (P - H \cdot S)$ allows us to define an operator *G* as follows.

OG := OP - Prod[OH, OS]

We can also check for the operator *G* the identity $H \cdot R = 1 - G$ holds.

ApplyRules[Prod[OH, OR] - (Prod[] - OG), RedSys]

0

Considering the operator G allows us to rewrite $(H \cdot R) x = Hf$ as the following recurrence equation.

$$x = Gx + Hf$$

Ex.10) Variation of constants with rectangular coefficients

Consider the inhomogeneous differential system

$$A_1(t) \dot{x}(t) - A_0(t) x(t) = f(t),$$

which corresponds to the operator $L := A_1 \cdot \partial - A_0$ with rectangular coefficients A_0 and A_1 .

$OL := Prod[A_1, Diff] - Prod[A_0]$

Our goal is to construct a solution operator $H = H_1 \cdot \int H_2$ with unknowns H_1 and H_2 such that the identity $L \cdot H = 1$ holds.

 $OH := Prod[H_1, Int, H_2]$

We apply the reduction system to $L \cdot H$ and extract its left coefficients.

ApplyRules[Prod[OL, OH], RedSys]

```
\label{eq:prod_mul_A_1, H_1, H_2] - Prod[mul[A_0, H_1], Int, H_2] + Prod[mul[A_1, Diff[H_1]], Int, H_2]
```

% // Coefficients // TableForm

 Prod[]
 mul[A1, H1, H2]

 Prod[Int, H2]
 -mul[A0, H1] + mul[A1, Diff[H1]]

Comparing coefficients in $L \cdot H = 1$ yields

$$A_1 H_1 H_2 = 1$$
 and $A_1 \partial H_1 - A_0 H_1 = 0$.

A solution is obtained by choosing Θ and $\tilde{\Theta}$ s.t. $A_1 \Theta \tilde{\Theta} = 1$ and $A_1 \partial \Theta - A_0 \Theta = 0$. Taking $H_1 = \Theta$ and $H_2 = \tilde{\Theta}$ we obtain

 $H = \Theta \cdot \int \cdot \tilde{\Theta}.$

 $\begin{array}{l} mul[a_{--}, A_1, \Theta, \Theta\Theta, b_{--}] := mul[a, b] \\ mul[a_{--}, A_1, Diff[\Theta], b_{--}] := mul[a, A_0, \Theta, b] \\ OH = (OH /. \{H_1 \rightarrow \Theta, H_2 \rightarrow \Theta\Theta\}); \end{array}$

We can easily check the operator $H = \Theta \cdot \left[\cdot \tilde{\Theta} \right]$ satisfies the identity $L \cdot H = 1$.

```
ApplyRules[Prod[OL, OH] - Prod[], RedSys]
```

0